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This paper presents a multimodal image fusion and classification method for power equipment based on 

the Non-Subsampled Contourlet Transform (NSCT) and Adaptive Pulse-Coupled Neural Network 

(APCNN). The approach begins with image normalization, geometric alignment, and adaptive noise 

filtering as preprocessing steps. The NSCT is then applied to decompose input images into low- and high-

frequency subbands. Low-frequency components are fused using phase congruency weighting to retain 

energy features, while high-frequency subbands with structural details are selectively fused using APCNN 

for precise edge and contour extraction. For efficiency, subbands beyond the fifth decomposition level use 

local energy maximization for fusion. Experiments were conducted on a dataset of 3,000 images of 

transformers, current transformers, and disconnectors collected by inspection robots. The model achieved 

maximum recognition accuracies of 99.39% for transformers, 99.57% for current transformers, and 

98.74% for disconnectors. The average classification time per image was 2.36 seconds. Compared with 

APCNN, PCNN, LeNet, AlexNet, and SVM, the proposed NSCT-APCNN model demonstrated superior 

performance in accuracy, F1-score, and processing speed. This work provides an effective and scalable 

solution for real-time multimodal image classification in substation inspection scenarios, with potential 

for extension to fault detection in smart grids. 

Povzetek: Algoritem NSCT-APCNN združuje fazno kongruenco in večnivojsko nevronsko fuzijo za 

kvalitetno in časovno učinkovito prepoznavo slik elektroopreme v realnem okolju robotskih inšpekcij. 

 

1 Introduction 
With the advancement of information technology, 

research on computer visualization, sensor-based imaging, 

and image analysis continues to progress, making multi-

source information fusion one of the most promising 

research topics [1]. By equipping inspection robots with 

visual instruments such as cameras, comprehensive and 

rapid detection of power equipment can be achieved [2]. 

Intelligent inspection systems collect vast amounts of 

image data, requiring efficient and accurate image 

screening and processing. 

Traditional image analysis techniques for detection 

primarily rely on classical image processing algorithms, 

where manually extracted features are mostly low-level 

visual characteristics [3]. Compared to purely learned 

features, these handcrafted features offer stronger 

interpretability but exhibit poorer adaptability to diverse 

data [4]. Deep learning algorithms have been applied in 

image fusion. These algorithms can train parameters by 

learning from large volumes of labeled data, enabling 

adaptive representation of multi-scale image features 

without human intervention, and have been applied in 

more image fusion tasks [5,6]. 

However, power equipment images have unique 

properties. Their imaging is affected by multiple factors, 

including the operating status of the equipment, 

environmental lighting conditions, shooting angles, and 

the complex structure of the equipment itself. Different 

types of power equipment, such as transformers, current 

transformers, and disconnectors, have significant 

differences in appearance, texture, and detailed features. 

Even images of the same type of equipment under 

different working conditions vary. These complex 

characteristics mean that when manually annotating their 

training data, annotators not only need to master basic 

knowledge of image processing but also possess 

professional domain knowledge, such as the operating 

principles of power equipment, types of faults, and their 

characteristics. Only in this way can they accurately 

identify and mark key information in the images, such as 

the location of equipment components and potential fault 

points. Consequently, training robust models remains 

challenging. Processing large datasets is time-consuming, 

making it difficult to meet the real-time requirements of 

multimodal power equipment image recognition. 

Additionally, unstable training networks may lead to 

reduced fusion accuracy[7]. Moreover, due to variability 

among multimodal sensors, power equipment image 

fusion still faces significant challenges in precise detail 

discrimination, noise suppression, and robustness[8]. 
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This research aims to propose a multimodal image 

fusion and recognition algorithm for power equipment 

based on the Adaptive Pulse-Coupled Neural Network 

(APCNN). Specifically, we aim to investigate the 

following research questions: 

(1) Can the integration of Non-Subsampled 

Contourlet Transform (NSCT) with APCNN enhance 

recognition accuracy of power equipment images 

compared to baseline methods such as APCNN, PCNN, 

LeNet, AlexNet, and SVM? 

(2) Can this approach maintain or improve real-time 

performance, as measured by average inference time per 

image, despite added preprocessing complexity? 

(3) Does the proposed method improve robustness 

and fine-detail preservation in multimodal image fusion 

tasks where standard CNN models show limitations? 

The algorithm is designed to address issues such as 

low precision in detail discrimination, weak noise 

suppression capabilities, and poor robustness when 

existing algorithms process power equipment images. It 

also aims to overcome the shortcomings of traditional and 

deep learning algorithms in image recognition, improve 

the high accuracy and low inference latency of 

recognition, and provide reliable technical support for the 

intelligent inspection of power equipment. Its theoretical 

significance lies in offering new ideas for algorithm 

research in related fields, enriching the theoretical system 

of image fusion algorithms, and providing references for 

subsequent research. Practically, it enables precise 

recognition by acquiring multimodal images through 

inspection robots, improving the efficiency and accuracy 

of power equipment inspection, reducing labor costs and 

misjudgment rates, ensuring the stable operation of power 

systems, minimizing the risk of power outages caused by 

equipment failures, and generating significant economic 

and social benefits. 

 

Table 1: Performance of existing methods on multimodal 

power equipment image recognition 
Method Acc F1-Score Processing Dataset Limitations 

SVM 88.42 0.87 3.85 Substation 
Poor 

adaptability 

LeNet 90.15 0.89 3.42 Substation 

Limited to 

shallow 

feature 

extraction 

AlexNet 93.04 0.92 3.10 Substation 

High 

computationa

l cost 

PCNN 92.21 0.91 2.75 Substation 

Sensitive to 

parameter 

tuning 

APCNN 95.76 0.94 2.54 Substation 

Lacks 

multiscale 

structural 

detail 

preservation 

Ours 96.71 0.96 2.36 Substation 
None 

observed 

 

2 Method description 
2.1 Overall idea of the algorithm 

The proposed power equipment image fusion method 

follows a systematic three-stage processing flow (Figure 

1). In the preprocessing phase, input images first undergo 

normalization to ensure dimensional consistency, 

followed by geometric alignment and adaptive filtering for 

noise reduction. The core fusion process begins with Non-

Subsampled Contourlet Transform (NSCT) 

decomposition, where source images are decomposed into 

multi-scale low-frequency approximation coefficients and 

directional high-frequency details. For fusion, we employ 

distinct strategies: low-frequency components are fused 

using a phase congruency weighting scheme to preserve 

energy information, while high-frequency components are 

processed hierarchically-subbands with k≤5 layers utilize 

APCNN-based fusion for precise feature extraction, 

whereas subbands with k>5 layers adopt local energy 

maximization for computational efficiency [9]. The 

system incorporates a feedback mechanism for parameter 

self-optimization during fusion. Finally, the processed 

coefficients undergo inverse NSCT transformation with 

post-fusion quality enhancement to produce the output 

image. 

This architecture's key innovation is its adaptive 

dual-path fusion strategy that automatically selects 

optimal processing methods based on subband 

characteristics, achieving superior balance between 

computational efficiency and fusion quality compared to 

conventional approaches [10]. The low-frequency path 

emphasizes energy preservation through phase analysis, 

while the high-frequency path combines neural network 

processing with traditional feature extraction for 

comprehensive detail reconstruction. 

Figure 1: Overall idea of the NSCT-APCNN algorithm 

 

2.2 NSCT-APCNN algorithm 

2.2.1 Low-frequency subband fusion 

method 

The NSCT transform is applied to the source images, 

and the resulting low-frequency components contain the 

energy information and spatial regions of the original 

images. For low-frequency subbands, phase congruency 

can be employed to characterize the global information of 

the image, extracting its feature information [12]. A phase 

congruency calculation model is calculated by Log-Gabor 

filte 

 

 
 

+

−
=

0 0

0 0000

)(

)()()(
)(

n n

n nn

xA

TxxAxW
xPC


(1) 

In the equation, Wo(x) represents the weighted 

propagation quantity in the frequency domain, and T0 

denotes the noise threshold. An0(x) and ∆Φn0(x) are the 

amplitude and phase deviation measurement functions, 

respectively, along the filter direction and decomposition 
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scale. ε indicates a very small constant. Phase congruency 

is adopted as the coefficient selection criterion for the low-

frequency components, with the fusion rule defined as 

follows: 
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where, LA(x,y) and LB(x,y) represents the low-

frequency coefficient of source image A and B at position 

(x,y). PCA(x,y) and PCB(x,y) indicate the phase congruency 

values of A and B respectively, where a higher value 

corresponds to more distinct pixel information in the 

image. In our implementation, a phase congruency 

threshold 0.035T = was used to determine whether the 

difference between ( ),
A

PC x y and ( ),
B

PC x y  is 

significant. If ( ) ( ),   ,  
A B

PC x y PC x y T−  , the 

coefficient from the image with the higher phase 

congruency value is selected; otherwise, a weighted 

average is applied. This threshold was empirically 

determined based on validation set performance and is 

further adjusted adaptively using local statistical contrast 

within a 3×3 neighborhood window. The adaptive update 

rule scales T  by a factor proportional to the standard 

deviation of local phase congruency values, allowing the 

fusion process to better handle varying image 

complexities and lighting conditions. 

The fusion strategy for low-frequency coefficients 

implements an adaptive selection mechanism based on 

phase congruency comparison. Specifically, when the 

computed phase congruency difference between source 

images surpasses a predetermined threshold, the system 

preferentially selects coefficients from the image 

exhibiting stronger phase congruency characteristics. 

Conversely, if the phase congruency measurements fall 

within the threshold range, indicating comparable phase 

characteristics between images, the algorithm activates a 

weighted averaging operation. This dual-mode approach 

ensures optimal preservation of both luminance 

characteristics and spatial structural information from the 

source images, while maintaining the energy consistency 

of the fused output. The threshold parameter is 

dynamically adjusted according to image content 

characteristics through an adaptive optimization process. 
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where, Lmap(x,y) represents the fused low-frequency 

decomposition coefficient at position (x,y); LAmap and LBmap 

denote the low-frequency decomposition coefficients of A 

and B respectively. 

mapF LBEAEyxL += )(),(    (4) 

The high-frequency components obtained through 

NSCT decomposition contain multiple layers, and 

processing the high-frequency bands as a whole would be 

too coarse [13]. To achieve more accurate subband 

coefficient values, each subband is further divided into 

directional subbands for coefficient fusion and extraction. 

Since the high-frequency subbands obtained after 

decomposition cannot be negative, the default range for 

subband layers is set between 1 and 5. 

Subbands with fewer than 5 layers contain rich 

structural edge information, which requires precise pixel-

level relationships with structural contrast. To address 

this, an APCNN is introduced. Using local energy values 

as input, the model calculates a structural tensor operator 

to stimulate neuron firing. The resulting PCNN output 

map enables accurate extraction of edge contours and 

detailed image features. 

The APCNN used in our framework is based on a 

modified Pulse-Coupled Neural Network architecture 

with adaptive threshold learning. Specifically, it consists 

of a single convolutional layer with a 3×3 kernel size 

applied to the high-frequency subbands to calculate local 

energy maps. The linking strength β and decay constant α 

are dynamically adjusted based on the image’s standard 

deviation and gradient magnitude. The pulse firing 

threshold θ is initialized to 0.2 and decays exponentially. 

A sigmoid activation function is used to simulate neuron 

firing behavior, improving convergence smoothness and 

robustness. The network iterates for T = 20 steps per 

subband to produce the final pulse map. This 

configuration allows the network to adaptively enhance 

meaningful structures and suppress noise across varying 

subband characteristics. A fusion strategy based on 

regional energy features is proposed. Firstly, the local 

energy calculation model (Equation 5) was used to 

quantitatively analyze the energy distribution 

characteristics of each subband region, and the energy 

characteristic map was established. On this basis, a 

selection mechanism based on energy comparison is 

designed (Formula 6), which realizes the adaptive 

selection of the optimal coefficient by comparing and 

analyzing the local energy feature differences between the 

source images. 
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Here, Hk>5,Fmap(x,y) represents the high frequency 

subband coefficient after k>5 fusion, Hk>5,Amap(x,y) and 

Hk>5,Bmap(x,y) represent the high frequency component of 

A and source B at (x,y) coordinates, respectively. Finally, 

the optimized high-frequency subband fusion coefficient 

(Equation 7) is obtained through the selection mechanism. 

This method ensures the reasonable transfer of energy 

features while maintaining edge sharpness, and effectively 

improves the structural integrity and detail expression of 

the fused image. 

),()(),( ,5,5 yxHBAyxH FmapkFk  +=  (7) 

In the field of two - dimensional image processing 

and analysis, it often involves the extraction and 

description of image structure information. Defining the 

smooth tensor as the structure tensor is a highly effective 

approach. The structure tensor can accurately characterize 

the local structure features within the neighborhood of 

pixel points in an image at the mathematical level, 

providing crucial theoretical support for subsequent image 
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analysis, feature extraction, edge detection, and other 

operations. Its specific expression is as follows: 

GgG =       (8) 

where, gσ is a Gaussian function; σ is the variance. In 

our proposed method, the structure tensor is computed on 

each high-frequency subband to capture local directional 

gradients and edge orientation information. These tensor 

values are used as one of the input channels to the 

APCNN, alongside the local energy map. This allows the 

network to simultaneously consider both intensity-based 

(energy) and geometry-based (gradient structure) cues 

when selecting or enhancing subband coefficients. The 

APCNN processes these dual inputs through its neuron 

activation function to generate a refined feature map that 

better preserves structural detail during fusion. 

In the process of processing multimodal images of 

power equipment, after the high-frequency sub-band is 

decomposed by k×5, a series of sub - bands with different 

characteristics are obtained. Among them, those sub - 

bands containing edge and contour information play a 

crucial role in accurately identifying key information such 

as the shape of the equipment, the boundaries of 

components, and potential fault areas. 

To extract the effective information in these sub - 

bands more precisely, we adopt a method of inputting the 

structure tensor and local energy adaptive parameters into 

the APCNN. The structure tensor can effectively capture 

the structural features of local regions in the image. It 

reflects the direction and degree of change within the 

neighborhood of pixel points through the statistical 

analysis of image gradient information, providing basic 

information about the image structure for the APCNN. 

The local energy adaptive parameters, on the other hand, 

focus on describing the energy distribution in local regions 

of the image. They adjust the parameters dynamically 

according to the gray - scale changes and distributions of 

pixels within the sub - band, enabling a more sensitive 

capture of energy changes at the edges and contours. 

When these two are provided as inputs to the APCNN, the 

network will perform complex calculations and 

processing based on its own neuron connections and pulse 

- transfer mechanisms, and finally output a mapping 

diagram. 

MA(x,y) and MB(x,y) are the mapping maps of A. 

When k<5, the HF coefficients are caculated as follows: 
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Finally, perform the inverse NSCT at the point 

{LF(x,y), HF(x,y)}, calculate the fusion coefficients of the 

obtained sub-bands, and then obtain the final fused image. 

It is important to note that fusion is performed individually 

per image pair, regardless of the equipment type. The 

model is not trained separately for transformers, current 

transformers, or disconnectors. Instead, a unified model 

processes all categories, and the classification phase that 

follows the fusion is responsible for distinguishing 

between equipment types. 

 

3 Experiment and analysis 

3.1 Dataset 
In the experiment, a multi-modal image recognition 

test was carried out on three commonly used electrical 

equipment in the substation, namely transformers, current 

transformers, and disconnectors, which were collected by 

the inspection robot. The images were pre-aligned using 

feature-based geometric transformation to ensure spatial 

consistency across modalities before fusion. Illumination 

and weather conditions varied across capture sessions to 

simulate realistic inspection environments, including 

daytime and dusk lighting, as well as overcast and clear 

weather scenarios. The robot used for data acquisition was 

the StateGrid IRR-02 platform, equipped with a FLIR 

Lepton thermal sensor and a 5MP CMOS visible light 

camera. To improve model generalization, data 

augmentation was applied during training, including 

random horizontal flipping, rotation (±15°), brightness 

jitter (±20%), and Gaussian noise injection. The dataset 

was randomly divided into a training set (80%) and a test 

set (20%). To ensure result robustness, the training and 

evaluation processes were repeated 35 times using 

different random splits, effectively forming a repeated 

random sub-sampling validation protocol (not a strict 35-

fold CV). A fixed random seed (seed = 42) was used to 

maintain reproducibility. 

The NSCT-APCNN image classification model was 

trained using the Adam optimizer with an initial learning 

rate of 0.001, a batch size of 32, and a total of 50 epochs. 

No learning rate decay schedule was applied. All 

experiments were conducted on a workstation with an 

NVIDIA RTX 3060 GPU (12 GB VRAM), Intel i7-11700 

CPU, and 32 GB RAM. These hardware specifications are 

provided to contextualize claims of real-time performance 

(average classification time of 2.36 seconds per image). 

The inverse NSCT reconstruction process used full-

bandwidth reconstruction with no coefficient truncation or 

lossy compression, ensuring maximum fidelity in the 

reconstructed fused image. The contourlet decomposition 

was performed up to five levels with directional subbands 

set according to scale-dependent directional filters. The 

APCNN used in our method is a custom implementation 

built from scratch. It does not rely on pretrained weights 

or external transfer learning. Instead, the neuron firing 

thresholds, linking strength, and decay constants are 

adaptively initialized based on the image content. This 

allows the network to dynamically respond to input energy 

and structural characteristics without external supervision. 

 

3.2 Comparison of recognition accuracy 
The multi-modal image recognition accuracies of 

power equipment for six algorithms are compared and 

analyzed. These six algorithms are NSCT-APCNN, 

APCNN, PCNN [14], LeNet [15], AlexNet [16], and 

Support Vector Machine (SVM) [17]. The recognition 

accuracy tests are simultaneously conducted on the same 

image dataset. 

The multi-modal image recognition accuracy of 

transformers is shown in Figure 2. In 35 test experiments, 

the highest multi-modal image recognition accuracy of 

NSCT-APCNN is 99.39%, the lowest is 95.03%, and the 
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average is 96.30%, which is higher than that of the other 

five algorithms for the multi-modal image recognition of 

transformers. 

Figure 2: Multi-modal image recognition accuracy of 

transformers 

 
The multi-modal image recognition accuracy of 

current transformers is shown in Figure 3. In 35 test 

experiments, the highest multi-modal image recognition 

accuracy of NSCT-APCNN is 99.57%, the lowest is 

95.06%, and the average is 96.54%, which is higher than 

that of the other five algorithms for the multi-modal image 

recognition of current transformers. 

Figure 3 Multi-modal image recognition accuracy of 

current transformers 

 
The multi-modal image recognition accuracy of 

disconnectors is shown in Figure 4. In 35 test experiments, 

the highest multi-modal image recognition accuracy of 

NSCT-APCNN is 98.74%, the lowest is 95.07%, and the 

average is 96.29%, which is higher than that of the other 

five algorithms for the multi-modal image recognition of 

disconnectors. 

 
Figure 4: Multi-modal image recognition accuracy of 

disconnectors 

 

3.3 Comparison of F1-scores 
The F1-scores of multi-modal image recognition for 

transformers are shown in Figure 5. In 35 test experiments, 

the highest F1-score of NSCT-APCNN is 0.99, the lowest 

is 0.95, and the average is 0.96, which is higher than that 

of the other five algorithms for the multi-modal image 

recognition of transformers. 

 

 
Figure 5: F1-scores of multi-modal image recognition for 

transformers 

 
The F1-scores of multi-modal image recognition for 

current transformers are shown in Figure 6. In 35 test 

experiments, the highest F1-score of NSCT-APCNN is 

0.996, the lowest is 0.95, and the average is 0.96. It doesn't 

differ much from the F1-scores of NSCT-APCNN for 

multi-modal image recognition of transformers, but is 

higher than those of the other five algorithms. 
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Figure 6: F1-scores of multi-modal image recognition for 

current transformers 

 
The F1-scores of multi-modal image recognition for 

disconnectors are shown in Figure 7. In 35 test 

experiments, the highest F1-score of NSCT-APCNN is 

0.98, the lowest is 0.95, and the average is 0.96. It can be 

seen that this F1-score is almost the same as those of 

NSCT-APCNN for multi-modal image recognition of 

transformers and current transformers, but still higher than 

the F1-scores of the other five algorithms for multi-modal 

image recognition. 

 

 
Figure 7: F1-scores of multi-modal image recognition 

for disconnectors 

 

3.4 Comparison of classification time 
The classification time tests were simultaneously 

conducted on the same image dataset using NSCT-

APCNN, APCNN, PCNN, LeNet, AlexNet, and SVM 

(e.g. Figure 8). In 35 test experiments, the maximum 

classification time required by NSCT-APCNN was 3.17 s, 

the minimum was 2.00 s, and the average was 2.36 s, 

which is less than that of the other five algorithms for 

multi-modal image recognition of transformers. 

Figure 8: Multi-modal image recognition time for 

transformers 

 

The multi-modal image recognition time for current 

transformers is shown in Figure 9. In 35 test experiments, 

the maximum classification time required by NSCT-

APCNN was 3.32 s, the minimum was 2.01 s, and the 

average was 2.35 s, which is lower than the recognition 

time of the other five algorithms. 

Figure 9: Multi-modal image recognition time for current 

transformers 

 

The multi-modal image recognition time for 

disconnectors is shown in Figure 10. In 35 test 

experiments, the maximum classification time required by 

NSCT-APCNN was 3.28 s, the minimum was 2.00 s, and 

the average was 2.32 s. To evaluate whether this 

processing time is suitable for real-time deployment, we 

refer to the operational constraints of common inspection 

robots such as the StateGrid IRR-02 platform. These 

robots typically operate at a movement speed of 0.5–1.0 

m/s and capture images at a rate of 0.2–0.5 Hz (i.e., 1 

image every 2–5 seconds) to allow for stable capture and 

onboard analysis. Given this cycle time, an average 

classification duration of ~2.36 seconds per image falls 

within acceptable limits for real-time onboard processing.  
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Therefore, the proposed NSCT-APCNN model 

meets the practical deployment requirements for 

inspection robots in substation environments. This clearly 

gives NSCT-APCNN an advantage in terms of time 

among the six recognition algorithms. 

 

Figure 10: Multi-modal image recognition time for 

disconnectors 

 

4 Discussion 
To further clarify the performance and internal 

mechanisms of the proposed NSCT-APCNN algorithm, 

we present a comparative discussion with five widely used 

methods: APCNN, PCNN, LeNet, AlexNet, and SVM.  

The performance advantage of the NSCT-APCNN 

stems from a hybrid architectural design that intelligently 

integrates signal decomposition with adaptive neural 

processing. NSCT Decomposition Enables Multiscale 

Feature Isolation. Unlike conventional CNN-based 

methods (e.g., AlexNet, LeNet), the NSCT first 

decomposes images into multiple frequency subbands, 

enabling separation of structural (low-frequency) and 

detailed (high-frequency) components. This facilitates 

precise spatial localization of important features such as 

edges and contours. The phase congruency method used 

for low-frequency component fusion enables enhanced 

contrast sensitivity and better alignment of key image 

regions. This outperforms simple averaging or maximum 

selection methods commonly used in PCNN/APCNN. 

High-frequency layers (k ≤ 5), rich in contours and 

component boundaries, are fed into an APCNN enhanced 

with structure tensors and local energy maps. This 

enhanced discrimination between similar-looking classes 

(e.g., CTs and transformers). For deeper subbands (k > 5), 

where detail contributions diminish, the algorithm 

bypasses neural processing and uses energy-maximization 

rules. This hybrid strategy achieves a strong balance 

between accuracy and computational efficiency, resulting 

in the lowest average processing time (2.36s) among all 

methods tested. 

SVM and PCNN fail to generalize across varying 

illumination and texture conditions due to lack of adaptive 

feature learning or hierarchical analysis. LeNet and 

AlexNet, while leveraging deep learning, treat all image 

features uniformly, leading to inefficiencies in fusing 

multimodal inputs with differing characteristics. APCNN, 

though adaptive, does not operate in the frequency 

domain, thus lacking the layered processing benefits 

critical for multimodal detail retention. 

 

5 Conclusion 
This study proposes an innovative NSCT-APCNN-

based image fusion algorithm for power equipment. By 

employing a phase consistency strategy to process low-

frequency components for energy feature preservation, 

and combining the APCNN model with a local energy 

maximization method for precise high-frequency detail 

extraction, the algorithm demonstrates it performance. 

Experimental results show outstanding effectiveness in 

identifying transformers, current transformers and other 

equipment, achieving a peak recognition accuracy of 

99.57% with an average processing time of merely 2.36 

seconds. Compared with conventional recognition 

methods, this approach overcomes the issue of excessive 

training time in traditional neural networks while 

maintaining accurate equipment identification. 

Benchmarking against APCNN, PCNN, LeNet, AlexNet 

and SVM confirms superior performance in multimodal 

image recognition of power equipment. Future research 

directions include developing hardware acceleration 

solutions to enhance real-time performance, exploring 

region-adaptive fusion to improve robustness, and 

extending applications to smart grid fault diagnosis. The 

proposed methodological framework also holds 

significant reference value for image processing in other 

industrial inspection scenarios. 
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