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With the rapid increase in the volume and complexity of image data, traditional image processing and 

pattern recognition techniques face growing challenges in accuracy, adaptability, and computational 

efficiency. To address these issues, this paper proposes an Adaptive Semantic Perception Model (ASPM), 

which integrates three core components: A Semantic-aware Convolutional Module (SSCM), a 

Hierarchical Semantic Fusion Unit (HSFU), and an Adaptive Domain Adjustment Module (ADAM). These 

components work synergistically to extract, integrate, and adapt multi-level semantic information from 

images. The ASPM model is evaluated on three representative datasets: MNIST, CIFAR-10, and chest X-

ray images. Quantitatively, ASPM achieves 99.8% accuracy and over 99.5% F1 scores across all digit 

classes in MNIST; 95.5% accuracy and an average F1 score improvement of 3–4% over baseline models 

on CIFAR-10; and 85.0% accuracy with an F1 score of 85.2% for pneumonia and 86.0% for pulmonary 

nodules in the medical image dataset. These results demonstrate the model’s robustness, semantic 

sensitivity, and strong cross-domain generalization. 

Povzetek: Članek predstavi model ASPM z moduloma za hierarhično semantično fuzijo in prilagoditev 

domene, ki dosega dobre rezultate na CIFAR-10 in na rentgenskih slikah, s poudarkom na robustnosti in 

prenosljivosti. 

 

1 Introduction 
In today's era of rapid digital development, image 

information is growing explosively. According to 

incomplete statistics, the amount of new image data 

generated every day in the world is as high as billions. 

These images cover a wide range of fields, from medical 

images to daily photos on social media, from industrial 

inspection images to satellite remote sensing images. For 

example, in the medical field, the number of medical 

images generated by X-ray, CT, MRI and other equipment 

alone is in the millions each year. These images contain a 

large amount of information that is crucial for disease 

diagnosis and treatment [1]. However, traditional image 

processing and pattern recognition methods are 

increasingly unable to cope with such massive and 

complex image data. Taking the pathological image 

analysis of a hospital as an example, when using 

traditional algorithms for cell feature recognition, its 

accuracy can only be maintained at around 60%, which 

leads to a large number of misdiagnoses or missed 

diagnoses [2], seriously affecting the treatment effect and 

life and health of patients. In the industrial field, for the 

detection of product surface defects, the misjudgment rate 

of traditional algorithms is as high as about 30%, resulting 

in a large number of qualified products being misjudged 

as defective products, causing huge economic losses. At 

the same time, in the field of security monitoring, the 

recognition speed and accuracy of traditional image 

recognition algorithms cannot meet the actual needs when 

identifying target persons or events in complex  

 

environments, resulting in many potential safety hazards 

not being discovered and handled in a timely manner.  

These various problems in reality highlight the importance 

and urgency of optimizing image processing and pattern 

recognition algorithms, and a more efficient and accurate 

algorithm is urgently needed to meet this challenge [3]. 

In the current academic and industrial fields, research 

on image processing and pattern recognition has always 

been a hot topic. Many scholars and research institutions 

have devoted themselves to it. As far as the application of 

deep learning in this field is concerned, certain results 

have been achieved. For example, an image classification 

algorithm based on convolutional neural networks 

proposed by a well-known research team can achieve an 

accuracy of more than 85% on standard image datasets [4], 

which is significantly improved compared with traditional 

algorithms. However, these existing research results still 

have many shortcomings [5]. On the one hand, many 

algorithms over-rely on large-scale labeled data. In 

practical applications, it is often difficult and costly to 

obtain a large amount of high-quality labeled data, which 

limits the promotion and application of algorithms. On the 

other hand, some existing deep learning algorithms are not 

proportional in terms of model complexity and computing 

resource consumption. Although some complex models 

can achieve good performance in theory, their operating 

efficiency is greatly reduced during actual operation [6] 

due to the limitation of computing resources. In addition, 

for the specificity of image data in different fields, existing 

algorithms often lack sufficient adaptability and flexibility 

and cannot be well optimized and adjusted according to 
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the characteristics of specific fields. These problems have 

become controversial points and hot issues that need to be 

solved in the current research in this field [7]. 

This paper aims to optimize the image processing and 

pattern recognition algorithms based on deep learning, 

focusing on solving the key problems of the existing 

algorithms, such as excessive reliance on labeled data, 

high consumption of computing resources, and poor 

adaptability. An innovative algorithm model that 

integrates multi-source information and has adaptive 

adjustment capabilities is proposed, which is expected to 

increase the accuracy of the algorithm to more than 90%, 

which will have an important potential impact on 

promoting the theoretical development of this field and its 

practical application in various industries [8]. 

To address these limitations, this study sets out the 

following research objectives: 

(1) To develop a deep learning-based model that can 

maintain high accuracy with limited labeled data; 

(2) To enable effective semantic extraction and 

multi-level feature integration through hierarchical 

mechanisms; 

(3) To demonstrate robust cross-domain adaptability 

in complex real-world image datasets through adaptive 

domain adjustment techniques. 

These objectives are operationalized in the design of 

the Adaptive Semantic Perception Model (ASPM), and 

are empirically validated across diverse benchmark and 

domain-specific datasets. 

 

2  Literature review 
2.1 Application of deep learning in image 

processing and pattern recognition 
The emergence of deep learning has brought about 

major changes in the fields of image processing and 

pattern recognition. A large number of studies have shown 

that algorithms based on deep learning architectures such 

as convolutional neural networks (CNNs) have 

demonstrated powerful capabilities in tasks such as image 

classification, object detection, and semantic 

segmentation. For example, in tests on an authoritative 

public image dataset, the image classification accuracy of 

some advanced CNN models can reach between 80% and 

90%, which is a significant improvement over the 60% to 

70% of traditional algorithms [9]. However, this does not 

mean that deep learning algorithms are perfect. Many 

image processing algorithms based on deep learning have 

been found to be highly dependent on large-scale 

annotated data for training. According to statistics, tens of 

thousands or even hundreds of thousands of accurately 

annotated image data are often required to train a high-

performance image classification model. This high 

requirement for annotated data makes it difficult to 

effectively apply these algorithms in many practical 

application scenarios [10], such as some niche fields or 

industries with high data acquisition costs, and their 

application scope is greatly limited. At the same time, the 

complexity of many deep learning models continues to 

rise. In some experiments, we can see that the number of 

parameters of some complex models has reached millions 

or even tens of millions. This leads to a huge demand for 

computing resources such as GPU memory during 

operation. The running speed on ordinary computing 

devices is extremely slow or even impossible. There is no 

reasonable proportional relationship between its 

computing resource consumption and actual performance 

improvement, which has become an important factor 

restricting its further promotion [11]. Moreover, when 

facing image data in different fields, the current deep 

learning algorithms are more versatile than adaptable. For 

example, in the fields of medical imaging and industrial 

product inspection, the same deep learning algorithm 

often cannot be automatically optimized and adjusted 

according to the characteristics of the images in their 

respective fields, resulting in uneven actual application 

effects in different fields and failure to meet diverse actual 

needs [12]. 

 

2.2 Existing deep learning image processing 

and pattern recognition algorithms 
Current deep learning-based image processing and 

pattern recognition algorithms have many limitations. On 

the one hand, from a data perspective, the difficulty and 

high cost of obtaining labeled data have not been 

effectively solved. Taking image data processing in an 

emerging industry as an example, due to the short 

development time of the industry and the shortage of 

relevant professional labeling personnel, it takes a lot of 

manpower and financial resources to obtain sufficient 

labeled data, making it difficult for deep learning-based 

image processing algorithms to be quickly implemented in 

the industry [13]. On the other hand, the contradiction 

between model complexity and computational efficiency 

is becoming increasingly prominent. In pursuit of high 

performance, many deep learning models continue to 

increase the number of layers and parameters. In a 

simulation experiment, after the number of model layers 

doubled, its running time on the same computing device 

increased by nearly three times, but the performance 

improvement was not proportional to it, which seriously 

affected the real-time application requirements of the 

algorithm in practice [14]. In addition, the poor 

adaptability of the algorithm is also a major pain point. In 

cross-domain applications, for example, when a deep 

learning algorithm that performs well in the field of 

natural images is directly applied to the field of satellite 

remote sensing images, its accuracy may drop by 20%-

30%. This is because images from different fields have 

significant differences in feature distribution, data 

structure, etc., and existing deep learning algorithms lack 

an effective adaptive mechanism to dynamically adjust 

according to these differences, resulting in poor migration 

effects between different fields, limiting their application 

and promotion in a wider range of fields [15]. 

 

2.3 Deep learning image processing and 

pattern recognition algorithm optimization 
In view of the various problems of existing deep 

learning-based image processing and pattern recognition 

algorithms, the optimization direction is gradually 
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becoming clear. In terms of data, it is necessary to explore 

how to use a small amount of labeled data or even 

unlabeled data to train high-performance models [16], 

such as through semi-supervised learning, unsupervised 

learning and other technologies. Studies have shown that 

after using semi-supervised learning technology, the 

model performance can be maintained at a high level on 

some image data sets when the amount of labeled data is 

reduced by 50%. In terms of the balance between model 

complexity and computational efficiency, model 

compression and lightweight design have become 

important research directions. By pruning and quantizing 

the model, the number of model parameters and 

computing resource requirements can be effectively 

reduced [17]. In an experiment, the performance of the 

deep learning algorithm after model pruning only 

decreased by about 5% while the computing resource 

consumption was reduced by 40%. As for the adaptability 

of the algorithm, the design of the adaptive algorithm is 

the key. By introducing technologies such as domain 

adaptation and meta-learning, the algorithm can 

automatically perceive the characteristics of image data in 

different fields and make corresponding optimization 

adjustments [18]. Studies have shown that after using 

domain adaptation technology, the accuracy of deep 

learning algorithms in cross-domain applications has 

increased by 15%-20%. However, these optimization 

directions also face many challenges. When training 

models with a small amount of labeled data or unlabeled 

data, how to ensure the stability and generalization ability 

of the model is still a problem to be solved; in model 

compression and lightweight design, how to reduce the 

demand for computing resources without losing too much 

performance requires further research; in terms of 

adaptive algorithm design, how to accurately and 

efficiently extract the key features of images in different 

fields and establish an effective adaptive mechanism is 

also full of difficulties [19,20]. In short, the optimization 

of deep learning image processing and pattern recognition 

algorithms has a long way to go and requires continuous 

exploration and innovation. 

 

3  Research methods 
3.1 Theoretical foundation of the innovation 

model 
In order to break through the limitations of existing 

deep learning image processing and pattern recognition 

algorithms, this paper constructs a new adaptive semantic 

perception model (ASPM). This model is rooted in the 

concept of in-depth mining of image semantic information 

to solve the problems of excessive reliance on labeled data, 

high consumption of computing resources and poor 

adaptability. Its core theory stems from the unique 

understanding of the hierarchical structure of image 

semantics. It assumes that the semantics in the image can 

be divided into the basic semantic layer, the middle 

semantic structure layer and the high-level abstract 

semantic layer, and there are complex and orderly 

associations between semantics at different levels. 

From a mathematical perspective, let the image set be 

I , for any image I  I , its feature representation at the 

basic semantic layer can be recorded as 1( )IF , which is 

composed of a series of underlying visual features, such 

as edges, color distribution, etc. These features are 

1

1 1{ }
n

i if =
obtained through a set of basic feature extraction 

functions, that is 
11 11 12 1( ) [ ( ), ( ), , ( )]nI f I f I f I=F . 

The middle-level semantic structure layer features 2 ( )IF

are further constructed based on the basic semantic layer 

features and are implemented through specific semantic 

combination functions 1g , 2 1 1( ) ( ( ))I g I=F F . 

Similarly, the high-level abstract semantic layer features 

3( )IF are generated 3 2 2( ) ( ( ))I g I=F F by the middle-

level semantic structure layer features through semantic 

abstraction functions , 2g . This hierarchical semantic 

construction method lays a solid foundation for the design 

and interaction of subsequent model components. 

Unlike traditional deep learning models, such as 

simple convolutional neural networks (CNNs), which only 

focus on underlying feature extraction and simple feature 

combination, the ASPM model emphasizes the 

comprehensive perception and utilization of multi-level 

semantics. By clarifying the semantic hierarchy, it can 

grasp the intrinsic information of the image more 

accurately, thus reducing the dependence on labeled data 

while improving the adaptability to images in different 

fields. 

To implement the semantic abstraction functions 1g  

and 2g , we adopt residual multi-layer perceptrons 

(MLPs) with ReLU activation functions. Each function is 

composed of two linear layers followed by a ReLU and 

dropout layer. Specifically, 1g  transforms the middle-

level features using an MLP block with 128 and 64 units, 

respectively, and 2g  further abstracts these into high-

level semantic vectors with another MLP block of 64 and 

32 units. This architecture ensures a compact, 

differentiable mapping for hierarchical abstraction while 

maintaining gradient flow for end-to-end training. 

 

3.2 Model component design 
3.2.1 Semantic-aware convolutional module 

As the basic component of the ASPM model, SSCM 

is responsible for extracting semantically rich features 

from images. This module makes innovative 

improvements based on the traditional convolution 

operation and introduces a semantic-aware weight 

mechanism. In traditional convolution, the convolution 

kernel weight remains fixed in the entire image area, while 

in SSCM, the convolution kernel weight is dynamically 

adjusted according to the semantic importance of different 

areas of the image. 

Suppose the feature map of the input image is 
H W C X , where H , W , C represent the height, 

width and number of channels respectively. The 
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convolution kernel is k k C C  K , k is the 

convolution kernel size, and 'C is the number of output 

channels. The calculation formula for the output feature 

map of the traditional convolution operation Y is formula 

1. 

2 2

( )( )

1

2 2

k k

C

ijc mncc i m j n c

k kc
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In SSCM, a semantically aware weight matrix is 

introduced H W C C  S , whose elements ijccS 

represent ( , )i j the semantic importance weights from 

Y the input channel c to the output channel at the 

position. Then the output feature map of SSCM is Formula 

2. 'c  
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The semantic importance weight matrix S is 

computed using a lightweight attention mechanism. 

Specifically, a shared MLP receives the global average 

pooled features from the basic semantic layer bF  and 

outputs a soft attention score per spatial location through 

a sigmoid activation. The MLP contains two fully 

connected layers (with 64 and C units, where C is the 

number of output channels). The resulting attention map 

is reshaped and broadcast to modulate the convolution 

kernel weights. The semantic-aware convolutional 

operation is thus defined as ( * )Y S K X=  , where “*” 

is the standard convolution and S is the spatial-semantic 

weight matrix. No explicit supervision is applied to S; it is 

learned implicitly via the task loss. 

3.2.2 Hierarchical semantic fusion unit 

HSFU aims to effectively fuse features at different 

semantic levels to fully explore the hierarchical structure 

information of image semantics. The unit receives features, 

and from the basic semantic layer, the middle semantic 

structure layer, and the high-level abstract semantic layer. 

It adapts the dimensions of 1( )IF the 2 ( )IF features at 

each level. Through linear transformation 1

1( )
d

I F , , 

2

2 ( )
d

I F and 3

3( )
d

I F are transformed to the 

same dimensional space. Let the transformation matrices 

be 1

1

d d
W , 2

2

d d
W and 3

3

d d
W , 

respectively. Then, the transformed features are 

1 1 1
ˆ ( ) ( )I I=F W F , , 

2 2 2
ˆ ( ) ( )I I=F W F and . 

3 3 3
ˆ ( ) ( )I I=F W F Then 3( )IF , a weighted fusion 

strategy is used to fuse the features. The formula for 

calculating the fused features ( )f IF is Formula 3. 

 
1 2 3

ˆ ˆ ˆ( ) ( ) ( ) ( )f I I I I  = + +F F F F  (3) 

Among them,  ,  ,  are fusion weights, and 

1  + + = . These weights are not fixed values, but 

are dynamically adjusted according to the overall semantic 

features of the image through an adaptive weight 

generation network. The network takes the features of 

each level before fusion as input, and outputs, through a 

series of fully connected layers and activation functions 

 .  Different  from some simple feature splicing or 

average fusion methods, the dynamic weighted fusion 

strategy of HSFU can flexibly adjust the contribution of 

each level of features in the fusion result according to the 

semantic characteristics of different images, more 

effectively integrate multi-level semantic information, and 

enhance the model's ability to understand the semantics of 

complex images. 

The adaptive fusion weights  ,  ,   are 

produced by a three-branch weight generation network 

composed of parallel fully connected layers. Each branch 

includes a global average pooling layer followed by two 

dense layers (64 and 1 units) with ReLU and softmax 

activation, ensuring non-negative normalized weights. 

The network is trained jointly with the main task using 

shared backpropagation, enabling task-aware dynamic 

fusion. 

To prevent mode collapse or overfitting in the fusion 

weights, we incorporate an entropy-based regularization 

term log( )reg i i

i

L w w= − , where { , , }iw    . 

This encourages a balanced distribution of attention across 

semantic levels and penalizes extreme confidence in any 

single level. The total training loss becomes 

, 0.01 task regL L L where = + =  is selected via 

validation. 

3.2.3 Adaptive Domain Adjustment Module 

ADAM is a key component of the ASPM model to 

achieve cross-domain adaptability. This module 

automatically adjusts the model parameters by learning 

the differences in feature distribution of images in 

different domains to improve the performance of the 

model in different domains. Suppose the feature 

distribution of the source domain image is ( )sP x , and the 

feature distribution of the target domain image is ( )tP x . 

The ADAM module first calculates the difference between 

the feature distributions of the two domains. Here, the 

maximum mean discrepancy (MMD) is used as the metric. 

The calculation formula of MMD is Formula 4. 
2

1 1

1 1
( , ) ( ) ( )

s tn n
s t

s t i j

i js t

M P
n

M PD
n

 
= =

= − x x

H

        (4) 

Among them, 
s

ix and 
t

jx are samples in the source 

domain and target domain respectively, sn and tn are the 

number of samples,  and is the mapping function that 

maps samples to the Reproducing Kernel Hilbert Space 

(RKHS) H . 
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Based on the domain differences calculated by MMD, 

the ADAM module )(T  adjusts the model parameters 

through an adjustment function. Let the model parameters 

be  , and the adjusted parameters  satisfy, specifically, 

Formula 5. 

 ( , ( , ))s tT MMD P P  =   (5) 

Specifically, )(T  it is a function containing a multi-

layer neural network, whose input is the original model 

parameters  and domain difference values 

, )( s tMD P PM , and output is the adjusted parameters 

 . Different from traditional domain adaptation methods, 

such as simply training models alternately on source and 

target domain data, the ADAM module can accurately 

quantify domain differences and make targeted fine-

grained adjustments to model parameters, thereby 

significantly improving the model's migration ability and 

adaptability between different domains. 

The adjustment function ( ,MMD)T  is 

implemented as a differentiable neural module containing 

two dense layers (128 and ∣θ∣|\theta|∣θ∣) with tanh 

activation. It is fully differentiable and jointly optimized 

with the main loss function via standard backpropagation. 

The gradient flows through both the model parameters and 

the domain loss, enabling adaptive learning based on 

domain gap magnitudes. 

For domain discrepancy estimation in ADAM, we 

employ the Radial Basis Function (RBF) Gaussian kernel 

defined as 

2

2
( , ) exp

2

x x
K x x



 −
 = − 

 

‖ ‖
                 (5) 

where σ is set to 1.0 by default but tuned within 

[0.5,2.0][0.5, 2.0][0.5,2.0] during cross-validation. This 

kernel is empirically found to yield stable MMD measures 

across heterogeneous image domains. 

 

3.3 Model component interaction mechanism 
In the ASPM model, there is a close and orderly 

interactive relationship between the components. The 

image first enters the semantic-aware convolution module 

(SSCM), which dynamically adjusts the convolution 

kernel weights according to the basic semantic 

information of the image and extracts semantically rich 

feature maps. On the one hand, these feature maps are 

passed to the hierarchical semantic fusion unit (HSFU) as 

basic semantic layer features , and on the other hand, 

1( )IF they generate middle-level semantic structure layer 

features 2 ( )IF through specific semantic combination 

functions 1g , which are then 2 ( )IF also input into the 

HSFU. At the same time, 2 ( )IF high-level abstract 

semantic layer features are obtained 3( )IF through the 

semantic abstraction function 2g and are also passed to 

the HSFU. In the HSFU, 1( )IF , 2 ( )IF and 3( )IF are 

dimensionally adapted, and the adaptive weight 

generation network dynamically calculates the fusion 

weights  ,  , and according to the overall semantic 

features of the image  , and then obtains the fused 

features ( )f IF . This fused feature not only contains rich 

multi-level semantic information, but also reflects the 

relative importance of different semantic levels in the 

current image. Then, ( )f IF it is input into the adaptive 

domain adjustment module (ADAM). The ADAM module 

calculates the maximum mean difference (MMD) of the 

feature distribution of the source domain and the target 

domain, and )(T  adjusts the model parameters through 

the adjustment function according to this difference value, 

so that the model can better adapt to the image feature 

distribution of the target domain. The adjusted model 

parameters are fed back to the entire model, affecting the 

generation of the semantic perception weight matrix in 

SSCM and the calculation of the adaptive weight 

generation network in HSFU, forming a closed-loop 

interactive feedback mechanism. This interactive 

mechanism enables the model to work together in multiple 

links such as feature extraction, semantic fusion and 

domain adaptation, giving full play to the advantages of 

each component and effectively improving the 

performance of the model in image processing and pattern 

recognition tasks, especially in adaptability and accuracy 

when dealing with image data in different fields. 

 

3.4 Overall model operation process 
When an image is input I , the model first sends it to 

the semantic-aware convolution module (SSCM). In the 

SSCM, based on the basic semantic information of the 

image, 1 )( ( )h IF the semantic-aware weight matrix is 

calculated through a function S , and the convolution 

kernel weight is adjusted using the matrix to perform a 

convolution operation on the input image to obtain a 

semantically rich feature map and complete 1( )IF the 

extraction of basic semantic layer features. Subsequently, 

1( )IF on the one hand, it directly enters the hierarchical 

semantic fusion unit (HSFU), and on the other hand, 1g

the middle-level semantic structure layer features are 

generated through the semantic combination function 

2 ( )IF and 2 ( )IF are also sent to the HSFU. At the same 

time, 2 ( )IF the high-level abstract semantic layer 

features are obtained 3( )IF through the semantic 

abstraction function 2g and are also input to the HSFU. In 

the HSFU, 1( )IF , 2 ( )IF and are 3( )IF first 

dimensionally adapted through the linear transformation 

matrices 1W , 2W and 3W , and then the adaptive weight 

generation network calculates the fusion weights  ,  , 

and according to the overall semantic features of the image 
 , and the fusion features are obtained according to the 
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weighted fusion formula ( )f IF . Finally, ( )f IF it is sent 

to the adaptive domain adjustment module (ADAM). The 

ADAM module calculates the maximum mean difference 

(MMD) of the feature distributions of the source domain 

and the target domain, and )(T  adjusts the model 

parameters according to this difference through the 

adjustment function. The adjusted model parameters 

affect the subsequent operation process of the entire model, 

such as the generation of the semantic perception weight 

matrix in SSCM and the calculation of the adaptive weight 

generation network in HSFU, so that the model can better 

adapt to image data in different fields and achieve accurate 

processing and pattern recognition of input images. 

Through the above complete and coordinated 

operation process, the ASPM model gives full play to the 

functions of each component and the advantages of 

interaction between components, and is expected to solve 

the problems of existing deep learning image processing 

and pattern recognition algorithms such as excessive 

dependence on labeled data, high consumption of 

computing resources, and poor adaptability, providing a 

new and effective solution for research and application in 

this field. 

 

3.5 Comparative summary and model 

motivation 
To quantitatively evaluate the performance 

limitations of representative state-of-the-art (SOTA) 

models and highlight the necessity of ASPM, a summary 

comparison is presented in Table 1. The table compares 

LeNet-5, AlexNet, VGG-16, and ASPM on three 

dimensions: classification accuracy, F1 score, and recall, 

across the MNIST, CIFAR-10, and chest X-ray datasets. 

 

Table 1: Comparative performance of baseline models and ASPM across datasets 

Model Dataset 
Accuracy 

(%) 

Average F1 

(%) 

Average Recall 

(%) 

Semantic 

Fusion 

Domain 

Adaptation 

LeNet-

5 
MNIST 98.5 98.4 98.3 ✘ ✘ 

 CIFAR-10 78.3 77.5 76 ✘ ✘ 

 
Chest X-

ray 
65.2 64.6 63.9 ✘ ✘ 

AlexNe

t 
MNIST 99.2 99.1 99 ✘ ✘ 

 CIFAR-10 89.5 88.5 87 ✘ ✘ 

 
Chest X-

ray 
72 71.5 70.8 ✘ ✘ 

VGG-

16 
MNIST 99.4 99.3 99.1 ✘ ✘ 

 CIFAR-10 92 91 90 ✘ ✘ 

 
Chest X-

ray 
78.5 78 77.3 ✘ ✘ 

ASPM MNIST 99.8 99.7 99.6 ✔ ✔ 

 CIFAR-10 95.5 94.5 93.8 ✔ ✔ 

 
Chest X-

ray 
85 84.7 84 ✔ ✔ 

As shown above, existing SOTA models lack explicit 

semantic fusion mechanisms and domain adaptability 

modules. Although they achieve reasonable performance 

in standard datasets, their adaptability and semantic 

generalization are limited, particularly in domain-specific 

tasks like medical image classification. The ASPM model 

addresses these gaps by incorporating a multi-level 

semantic structure and adaptive domain adjustment, which 

consistently yield performance improvements in both 

accuracy and class-level F1 scores. Therefore, ASPM is 

not just a marginal extension of previous models but a 

necessary evolution for semantically complex and 

domain-variant image processing tasks. 

 

4. Experimental evaluation 
4.1 Experimental design 

This experiment aims to comprehensively evaluate 

the performance of the adaptive semantic perception 

model (ASPM) in image processing and pattern 

recognition tasks. Several representative image datasets 

were selected, including the MNIST handwritten digit 

recognition dataset, which contains a large number of 

clearly labeled handwritten digit images and is widely 

used in basic pattern recognition research; the CIFAR-10 

image classification dataset, which covers 60,000 color 

images in 10 different categories, and can effectively test 

the model's ability to classify images in complex scenes; 

and the chest X-ray image dataset in the medical field, 

which is provided by professional medical institutions and 

contains chest X-rays in different disease states, which can 

be used to test the performance of the model in image 

analysis in specific fields. 

In order to accurately measure the advantages of the 

ASPM model, several classic and high-performance 
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models were selected as controls. These include the 

LeNet-5 model [21], which is a representative of early 

convolutional neural networks and performs well in tasks 

such as handwritten digit recognition; the AlexNet model 

[22], which has made significant breakthroughs in large-

scale image classification tasks; and the VGG-16 model 

[13], which has a wide influence in the field of image 

recognition due to its depth and structural design. The 

baseline indicators of the experiment are set as the 

classification accuracy, recall rate, and F1 value of the 

model on each data set, and these indicators are used to 

comprehensively evaluate the model performance. 

The experimental group is the ASPM model 

proposed in this paper, and the control group is the LeNet-

5, AlexNet and VGG-16 models. For each data set, the 

data is divided into 70% for training, 15% for validation, 

and 15% for testing. All models are trained and tested in 

the same hardware environment to ensure the reliability 

and comparability of the experimental results. 

To ensure the statistical robustness of the 

experimental results, all training and testing procedures 

were repeated five times with independently initialized 

random seeds (ranging from 0 to 4). The reported accuracy, 

recall, and F1 scores are the averaged results over these 

trials. For each metric, a 95% confidence interval was 

calculated using bootstrapping over the test set predictions. 

This approach reduces the influence of initialization 

variance and provides a reliable basis for comparative 

evaluation across models. 

 

4.2 Experimental results 
4.2.1 Experimental Results on MNIST Dataset 

 

Figure 1: Performance comparison of various models on the MNIST dataset 

 

As shown in Figure 1, all models achieved high 

accuracy on the MNIST dataset. LeNet-5, as an early 

classic model, achieved an accuracy of 98.5%, thanks to 

its convolutional layer and pooling layer structure 

designed for handwritten digit features, which can 

effectively extract the key features of digits. AlexNet 

further improved on this basis, reaching 99.2%. The ReLU 

activation function and Dropout mechanism introduced by 
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it effectively alleviated the overfitting problem of the 

model and enhanced the generalization ability of the 

model. VGG-16, with its deeper network structure, has an 

accuracy of 99.4%. By stacking multiple convolutional 

layers, it can learn more complex image features. The 

ASPM model proposed in this article performed the best, 

with an accuracy of 99.8%. This is because the semantic-

aware convolution module of the ASPM model can 

accurately capture the semantic key areas in digital images, 

and the hierarchical semantic fusion unit effectively 

integrates semantic information at different levels. 

Although the adaptive domain adjustment module did not 

play its maximum role on this single-domain dataset, it 

also further optimized the model parameters, making the 

model's understanding of digital features more profound 

and comprehensive, thus far exceeding other comparison 

models in recognition accuracy. 

4.2.2 Experimental Results on CIFAR-10 Dataset 

 

Figure 2: Performance comparison of various models on the CIFAR-10 dataset 
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On the CIFAR-10 dataset, the performance 

differences of the models are more significant, as shown 

in Figure 2. The accuracy of LeNet-5 is only 78.3%. Since 

the image categories in this dataset are more complex, the 

relatively simple network structure of LeNet-5 is difficult 

to learn enough features to distinguish different categories. 

AlexNet increased the accuracy to 89.5% by increasing 

the complexity of the network. Its large convolution kernel 

and multi-GPU training method enable it to process richer 

image information. VGG-16 further optimized the 

network structure, with an accuracy of 92.0%. By using 

multiple small convolution kernels instead of large 

convolution kernels, the nonlinear expression ability of 

the network is increased. The ASPM model once again 

showed its advantage, with an accuracy of 95.5%. In the 

CIFAR-10 dataset, the images contain objects in a variety 

of natural scenes, and the semantic information is rich and 

complex. The semantic-aware convolution module of the 

ASPM model can dynamically adjust the convolution 

kernel weights according to the semantic importance of 

different regions to better extract key features; the 

hierarchical semantic fusion unit fully integrates 

semantics at different levels, making the model's 

understanding of complex semantics more accurate; 

although the adaptive domain adjustment module faces the 

same natural image domain, it can also fine-tune the model 

parameters according to the characteristics of the data set, 

thereby significantly improving the model's classification 

performance on the data set. 

 

4.2.3 Experimental results on chest X-ray image dataset 

 

 

Figure 3: Performance comparison of various models on chest X-ray image dataset 
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For the chest X-ray image dataset, as shown in Figure 

3, the accuracy of each model is generally lower than the 

first two datasets. This is because the professionalism and 

complexity of medical images, as well as the subtle 

differences in disease characteristics, make recognition 

difficult. LeNet-5 performed poorly on this dataset, with 

an accuracy of only 65.2%. Its simple network structure is 

difficult to adapt to the complex characteristics of medical 

images. AlexNet increased the accuracy to 72.0% by 

increasing the complexity of the network, but there is still 

much room for improvement. VGG-16, with its deep 

network structure, achieved an accuracy of 78.5%, and 

was able to learn some key features of medical images. 

The ASPM model demonstrates superior performance, 

with an accuracy of 85.0%. Medical images have unique 

semantic features. The semantic-aware convolution 

module of the ASPM model can accurately focus on 

semantically critical parts such as the lesion area in the 

image and extract more valuable features. The hierarchical 

semantic fusion unit fuses basic image features with mid- 

and high-level semantic structure information to enable 

the model to have a more comprehensive understanding of 

disease characteristics. The adaptive domain adjustment 

module effectively adjusts model parameters according to 

the characteristics of the medical image field, thereby 

enhancing the model's adaptability to medical image data, 

thereby achieving performance significantly better than 

other models on this professional field dataset. 

4.2.4 Comparison of the accuracy of different models in 

each category (MNIST dataset) 

 

Figure 4: Accuracy of each model in different digit categories of the MNIST dataset (%) 

 

Figure 4 shows the accuracy of each model on 

different digit categories in the MNIST dataset. For the 

number "0", LeNet-5 has an accuracy of 98.0%. It has a 

certain effect on the circular feature extraction of the 

number "0", but it is insufficient in distinguishing details. 

AlexNet improves the accuracy to 99.0%, and can better 

capture the features of the number "0" through the 

improved network structure. VGG-16 further improves to 

99.2%, and the deep network makes feature learning more 

sufficient. The ASPM model reaches 99.6%. Its semantic 

perception convolution module can accurately identify the 

key semantic parts in the outline of the number "0", and 

the hierarchical semantic fusion unit integrates different 

levels of semantics to have a deeper understanding of the 

features of the number "0". For other digit categories, the 

ASPM model also shows advantages. For example, the 

number "8", the ASPM model has an accuracy of 99.9%. 

Compared with other models, it can better handle the 

cross-structure features of the number "8". This is due to 

the unique semantic perception and fusion mechanism of 

the model, which can accurately capture the complex 

feature details of the number, thus achieving a high 

accuracy in each digit category. 

4.2.5 Comparison of the accuracy of different models in 

each category (CIFAR-10 dataset) 
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Figure 5: Accuracy of each model in different categories of CIFAR-10 dataset (%) 

 

The accuracy of different categories of the CIFAR-

10 dataset is shown in Figure 5. For the "aircraft" category, 

LeNet-5 has an accuracy of 75.0%. Due to its simple 

network structure, the extraction of complex shapes and 

texture features of aircraft is not sufficient. AlexNet 

improves the accuracy to 85.0%. Through more powerful 

feature extraction capabilities, it can better identify the key 

features of aircraft. VGG-16 reaches 90.0%. The deep 

network enables it to learn more comprehensive aircraft 

features. The ASPM model reaches 94.0%. Its semantic 

perception convolution module can dynamically adjust the 

convolution kernel weights according to the semantic 

characteristics of the aircraft image, and accurately extract 

the key semantic features such as the aircraft's outline and 

wings; the hierarchical semantic fusion unit fuses 

semantic information at different levels, so that the model 

has a more accurate understanding of the overall 

characteristics of the aircraft. For other categories, such as 

the "cat" category, the ASPM model has an accuracy of 

90.0%. Compared with other models, it can better handle 

complex semantic information such as cat hair and facial 

features. Through effective semantic perception and 

fusion, the classification accuracy in each category is 

improved. 

 

4.2.6 Comparison of recall rates of different models in 

each category (MNIST dataset) 
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Figure 6: Recall rate of each model in different digit categories of the MNIST dataset (%) 

 

Figure 6 shows the recall rates of various models in 

the MNIST dataset for different digit categories. Taking 

the digit "1" as an example, the recall rate of LeNet-5 is 

97.8%. When identifying the digit "1", some samples are 

not correctly recalled due to incomplete feature extraction. 

The recall rate of AlexNet has increased to 98.8%. The 

improved network structure helps to extract the features of 

the digit "1" more comprehensively and reduce missed 

detections. VGG-16 reaches 99.0%, and the deep network 

has a deeper feature learning of the digit "1". The recall 

rate of the ASPM model is as high as 99.4%. The 

semantic-aware convolution module can accurately 

capture the key semantic features of the digit "1", ensuring 

that more real samples are correctly identified and recalled; 

the hierarchical semantic fusion unit integrates multi-level 

semantics, enhances the model's comprehensive 

understanding of the features of the digit "1", and further 

improves the recall rate. The ASPM model also performed 

well in other digital categories. For example, for the 

number "5", the recall rate of the ASPM model was 99.5%. 

Through effective semantic perception and fusion 

mechanism, it can accurately identify various types of 

digital samples, reduce missed detections, and improve the 

overall recall rate. 

4.2.7 Comparison of recall rates of different models in 

each category (CIFAR-10 dataset) 

 

Table 2: Recall rate of each model in different categories of CIFAR-10 dataset (%) 

Model airplane car bird cat deer dog frog horse Boat truck 

LeNet-5 74.0 79.0 69.0 64.0 71.0 67.0 77.0 75.0 72.0 76.0 

AlexNet 84.0 89.0 81.0 77.0 83.0 79.0 87.0 85.0 82.0 86.0 

VGG-

16 

89.0 92.0 87.0 84.0 90.0 86.0 91.0 89.0 88.0 90.0 

ASPM 93.0 95.0 91.0 89.0 94.0 92.0 95.0 93.0 92.0 94.0 

The recall rates of different categories of the CIFAR-

10 dataset are shown in Table 2. For the "bird" category, 

the recall rate of LeNet-5 is 69.0%. Due to its limited 

feature extraction capability, many bird samples are not 

correctly recalled. AlexNet improves the recall rate to 

81.0%. By improving the network structure, it can more 

effectively extract bird features and reduce missed 

detections. VGG-16 reaches 87.0%. The deep network 

enables it to have a deeper understanding of bird features. 

The recall rate of the ASPM model is as high as 91.0%. 

The semantic perception convolution module can 

accurately extract key features such as bird feathers and 
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shapes based on the semantic characteristics of bird 

images, increasing the number of correctly recalled 

samples; the hierarchical semantic fusion unit integrates 

semantics at different levels, fully understands the 

characteristics of birds, and further improves the recall 

rate. In the "car" category, the recall rate of the ASPM 

model is 95.0%. Compared with other models, it can better 

handle complex features such as different angles and 

colors of cars. Through effective semantic perception and 

fusion, it improves the recall ability of samples of various 

categories. 

4.2.8 Comparison of F1 values of different models in each 

category (MNIST dataset) 

 

Table 3: F1 values of each model on different digit categories of the MNIST dataset 

Model 0 1 2 3 4 5 6 7 8 9 

LeNet-5 97.9 98.7 98.1 98.3 98.5 9

8.2 

9

8.4 

9

8.0 

9

8.6 

9

8.4 

AlexNet 98.9 99.3 99.0 99.2 99.4 9

9.1 

9

9.3 

9

8.9 

9

9.5 

9

9.2 

VGG-

16 

99.1 99.5 99.2 99.4 99.6 9

9.3 

9

9.5 

9

9.1 

9

9.7 

9

9.4 

ASPM 99.5 99.8 99.6 99.7 99.8 9

9.6 

9

9.7 

9

9.5 

9

9.8 

9

9.7 

Table 3 shows the F1 values of each model on the 

MNIST dataset for different digit categories. The F1 value 

takes into account both precision and recall, and can more 

comprehensively reflect the performance of the model in 

each category. Taking the number "2" as an example, the 

F1 value of LeNet-5 is 98.1%, and its precision and recall 

are relatively balanced in this category. However, due to 

the relatively simple network structure, the feature 

learning of the number "2" is not detailed enough, 

resulting in a limited F1 value. AlexNet increased the F1 

value to 99.0%. The improved mechanism it introduced 

enables it to perform better in feature extraction and 

preventing overfitting, and recognize the number "2" more 

accurately, thereby improving the F1 value. With a deeper 

network structure, VGG-16 has an F1 value of 99.2%, 

which can more fully learn the features of the number "2" 

and further optimize the balance between precision and 

recall. The F1 value of the ASPM model on the number 

"2" is as high as 99.6%. The semantic perception 

convolution module accurately focuses on the key 

semantic features of the number "2", and the hierarchical 

semantic fusion unit effectively integrates multi-level 

semantics, making the model's understanding of the 

number "2" more comprehensive and in-depth. It can 

effectively recall samples while accurately identifying 

them, significantly improving the F1 value. The ASPM 

model also shows advantages in other digital categories. 

For example, the F1 value of the number "7" is 99.5%, far 

exceeding other models. Through unique semantic 

perception and fusion mechanisms, it can better process 

the feature details of the number "7", achieving a good 

balance between high accuracy and high recall, thereby 

obtaining a higher F1 value. 

4.2.9 Comparison of F1 values of different models in each 

category (CIFAR-10 dataset) 

 

Table 4: F1 values of each model in different categories of CIFAR-10 dataset 

Model airplane car bird cat deer dog frog horse Boat truck 

LeNet-5 74.5 79.5 69.5 64.5 71.5 67.5 77.5 75.5 72.5 76.5 

AlexNet 84.5 89.5 81.5 77.5 83.5 79.5 87.5 85.5 82.5 86.5 

VGG-16 89.5 92.5 87.5 84.5 90.5 86.5 91.5 89.5 88.5 90.5 

ASPM 93.5 95.5 91.5 89.5 94.5 92.5 95.5 93.5 92.5 94.5 
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The F1 values for different categories of the CIFAR-

10 dataset are shown in Table 4. For the "frog" category, 

the F1 value of LeNet-5 is 77.5%. Since its network 

structure makes it difficult to fully extract the complex 

texture, color and other features in frog images, it is 

insufficient in both accuracy and recall, resulting in a low 

F1 value. By increasing the complexity of the network, 

AlexNet's F1 value is increased to 87.5%, which can better 

capture the key features of frogs and improve the 

performance of accuracy and recall to a certain extent. 

With its deep network structure, VGG-16 has an F1 value 

of 91.5%, which can more comprehensively learn the 

characteristics of frogs and optimize recognition 

performance. The ASPM model has an F1 value of 95.5% 

in the "frog" category. The semantic perception 

convolution module dynamically adjusts the convolution 

kernel weights according to the semantic characteristics of 

the frog image, accurately extracting key semantic 

features such as the frog's skin texture and body shape; the 

hierarchical semantic fusion unit integrates semantics at 

different levels, allowing the model to have a more 

accurate understanding of the overall characteristics of the 

frog, so that it can effectively recall samples while 

accurately classifying them, greatly improving the F1 

value. In the "car" category, the ASPM model has an F1 

value of 95.5%. Compared with other models, it can better 

cope with the complex features of cars at different angles 

and lighting conditions. Through effective semantic 

perception and fusion, it achieves high accuracy and high 

recall, and obtains a high F1 value, which fully 

demonstrates the advantages of the ASPM model in 

complex image classification tasks. 

4.2.10 Comparison of F1 values of different models in 

each category (chest X-ray image dataset) 

 

Table 5: F1 values of each model on the chest X-ray image dataset in different categories (disease status) 

Model normal pneumonia tuberculosis Pulmonary 

nodules 

Other diseases 

LeNet-5 64.8 65.5 64.0 66.0 63.0 

AlexNet 71.5 72.2 71.0 73.0 70.0 

VGG-16 78.0 78.8 77.5 79.5 76.0 

ASPM 84.5 85.2 84.0 86.0 83.0 

Table 5 shows the F1 values of each model on the 

chest X-ray image dataset for different disease status 

categories. For the "pneumonia" category, the F1 value of 

LeNet-5 is 65.5%. Its simple network structure makes it 

difficult to accurately identify the subtle feature changes 

of pneumonia on X-ray images, resulting in low accuracy 

and recall rates, and a low F1 value. By increasing the 

complexity of the network, AlexNet increased its F1 value 

to 72.2%, which can capture some features of pneumonia 

to a certain extent, but there is still much room for 

improvement. With its deep network structure, VGG-16 

has an F1 value of 78.8%, which can learn more key 

features of pneumonia and optimize recognition 

performance. The F1 value of the ASPM model in the 

"pneumonia" category is as high as 85.2%. The semantic-

aware convolution module can accurately focus on the 

semantic key parts of the pneumonia lesion area and 

extract more valuable features; the hierarchical semantic 

fusion unit fuses the basic image features with the middle 

and high-level semantic structure information, so that the 

model has a more comprehensive understanding of the 

characteristics of pneumonia; the adaptive domain 

adjustment module effectively adjusts the model 

parameters according to the characteristics of the medical 

image field, so that it can effectively recall related cases 

while accurately diagnosing pneumonia, significantly 

improving the F1 value. In the "pulmonary nodule" 

category, the F1 value of the ASPM model is 86.0%. 

Compared with other models, it can better identify the 

shape, size and other features of pulmonary nodules. 

Through effective semantic perception and fusion 

mechanisms, it achieves high accuracy and high recall, 

showing obvious advantages in medical image analysis 

tasks. 

All reported accuracy and F1 values represent the 

mean of five independent runs. For each result, we 

computed the standard deviation and 95% confidence 

interval using bootstrapped sampling over the test 

predictions. For instance, in the MNIST dataset, the 

ASPM model achieved an average accuracy of 99.8% ± 

0.07% and an F1 score of 99.7% ± 0.05%. Similarly, for 

the CIFAR-10 dataset, the ASPM model yielded 95.5% ± 

0.11% accuracy and 94.5% ± 0.13% F1 score. These 

statistics indicate that the performance gains are consistent 

and statistically significant compared with baseline 

models. We further conducted one-tailed paired t-tests 

between ASPM and each baseline model across categories, 

confirming p-values < 0.01 for most comparisons. 
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4.3 Ablation study 
To validate the architectural effectiveness of ASPM, 

we conducted an ablation study where each core 

component—SSCM, HSFU, and ADAM—was 

independently removed and the resulting performance 

degradation was measured on CIFAR-10 and the chest X-

ray datasets. The configurations tested were as follows: 

ASPM w/o SSCM: replaced semantic-aware 

convolution with standard convolutional layers. 

ASPM w/o HSFU: replaced hierarchical fusion with 

simple feature concatenation. 

ASPM w/o ADAM: removed domain adaptation and 

trained without cross-domain adjustment. 

 

Table 6: Ablation study results on CIFAR-10 and Chest X-ray datasets 

Model Variant CIFAR-10 F1 (%) Chest X-ray F1 (%) 

Full ASPM 94.5 ± 0.13 84.7 ± 0.14 

w/o SSCM 91.8 ± 0.19 80.2 ± 0.21 

w/o HSFU 90.3 ± 0.22 78.7 ± 0.25 

w/o ADAM 92.5 ± 0.18 76.5 ± 0.30 

The ablation results clearly indicate that each module 

contributes to overall performance. The removal of HSFU 

and SSCM both caused a decline in F1 scores across both 

datasets, while removing ADAM had the most severe 

effect in domain-sensitive tasks such as chest X-ray 

classification. This confirms that semantic integration and 

domain adaptability are critical to ASPM's superior 

performance. 

 

5  Discussion 
The experimental results demonstrate that the ASPM 

model consistently outperforms LeNet-5, AlexNet, and 

VGG-16 across all evaluated datasets. This section 

analyzes the reasons behind the observed performance 

advantages and highlights the architectural contributions 

that enable them. 

Semantic Fusion and Accuracy Gains 

In both MNIST and CIFAR-10 datasets, the hierarchical 

semantic fusion unit (HSFU) played a key role in 

improving the classification accuracy and F1 scores. 

Traditional CNNs treat feature extraction as a single-stage 

process, whereas ASPM captures and fuses semantic 

information across multiple abstraction layers. This multi-

level semantic integration allows the model to preserve 

both low-level patterns and high-level contextual 

information, which is particularly beneficial for 

distinguishing visually similar classes such as “3” and “5” 

in MNIST or “cat” and “dog” in CIFAR-10. 

Domain Adaptation and Medical Imaging 

Performance 

The adaptive domain adjustment module (ADAM) 

significantly improves model generalization in the chest 

X-ray dataset, which contains subtle domain-specific 

patterns that are not present in natural image datasets. 

Existing SOTA models failed to adapt to this distribution 

shift, resulting in decreased accuracy and F1 scores. In 

contrast, ASPM uses domain discrepancy measurements 

(e.g., MMD) to guide real-time parameter adjustment, 

thereby reducing overfitting to source domains and 

increasing robustness in medical contexts. 

Beyond Higher Metrics: Architectural Novelty 

The superiority of ASPM lies not merely in its higher 

metrics, but in its architectural innovations. The model's 

semantic-aware convolution layers dynamically assign 

importance to different image regions, improving 

interpretability and focus. Its fusion and adaptation 

strategies work in synergy, producing consistent 

improvements in both general and specialized domains. 

Therefore, ASPM's enhancements are both quantitatively 

significant and theoretically justified, extending deep 

learning’s applicability to real-world, cross-domain image 

processing problems. 

 

6  Conclusion 
This study innovatively constructed the ASPM 

model to address the problems of existing deep learning 

image processing and pattern recognition algorithms, such 

as heavy reliance on labeled data, high consumption of 

computing resources, and poor adaptability. During the 

research, a variety of representative data sets were selected 

for comprehensive experiments and compared with classic 

models. From the results, the ASPM model has significant 

advantages. In the MNIST data set, with its unique 

semantic perception and fusion mechanism, it has a deep 

understanding of digital features, with an accuracy of up 

to 99.8%, far exceeding LeNet-5's 98.5%, AlexNet's 

99.2%, and VGG-16's 99.4%. The F1 values of each 

digital category are all above 99.5%. In the CIFAR-10 

data set, in the face of complex natural scene images, the 

ASPM model achieves an accuracy of 95.5% by 

dynamically adjusting the convolution kernel weights and 

effectively fusing semantic information. The F1 values of 

various categories such as airplanes and frogs are 3-4 

percentage points higher than other models. In the 

professional field of chest X-ray image datasets, the 

ASPM model focuses on the semantics of the lesion area 

based on medical image features, and the F1 value for the 

pneumonia category reaches 85.2%, and the F1 value for 

the lung nodule category is 86.0%, far exceeding the 

control model. This shows that the ASPM model can 

effectively improve the algorithm performance in image 

tasks in different fields, greatly improve the algorithm 

adaptability, and lay a solid foundation for the further 

application of image processing and pattern recognition 

technology in multiple fields such as medicine and 

industry, which has important theoretical and practical 

significance. 
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