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Diabetic retinopathy (DR) is a prevalent cause of vision loss, necessitating efficient diagnostic tools, par-
ticularly in resource-limited settings. This study presents three lightweight transformer-based models—
DR-MobileViT, DR-EfficientFormer, and DR-SwinTiny—for automated DR classification from fundus im-
ages (APTOS 2019: 3,662 images,; Messidor-2: 1,748 images). After preprocessing including resizing to
224x 224 pixels and CLAHE enhancement, these models, leveraging compact architectures (1.8—3.5M pa-
rameters), are trained using an AdamW optimizer with data augmentation. DR-MobileViT integrates con-
volutional and transformer layers, DR-EfficientFormer employs a dimension-consistent design, and DR-
SwinTiny utilizes shifted window attention. All models were initialized with ImageNet pretrained weights.
Evaluated on the APTOS 2019 and Messidor-2 datasets, they achieve quadratic weighted kappa (QWK)
scores up to 0.89 and areas under the ROC curve (AUC) up to 0.95. These models approach the perfor-
mance of top-performing CNN ensembles from the APTOS 2019 challenge (which exceed 40M parameters)
while reducing inference times to 10—15 ms/image (NVIDIA P100 GPU) and computational overhead by
over 90%. These results indicate their potential for scalable, point-of-care DR screening, offering a viable
solution for early detection in underserved regions.

Povzetek: Clanek predstavi tri lahke transformerje (DR-MobileViT, DR-EfficientFormer, DR-SwinTiny) za
klasifikacijo diabeticne retinopatije, ki dosezejo dober QWK ob vec kot 90% niZji racunski obremenitvi

glede na SOTA CNN.

1 Introduction

Diabetic retinopathy (DR) is a microvascular complication
of diabetes mellitus, affecting approximately one-third of
diabetic patients and posing a significant risk of blindness
if undetected [|l]. Early diagnosis through retinal screen-
ing is critical, yet access to expert ophthalmologists and
advanced imaging systems is limited in low-resource set-
tings. Automated detection systems using fundus photog-
raphy and deep learning have emerged as viable solutions
[2], with convolutional neural networks (CNNs) dominat-
ing recent advancements [4]. However, the computational
complexity of state-of-the-art CNNs, such as those topping
the APTOS 2019 Blindness Detection challenge [5], ren-
ders them impractical for deployment on resource-limited
devices like mobile phones or low-cost hardware.

The advent of transformer architectures, originally de-
veloped for natural language processing [[7], has revolution-
ized computer vision tasks, including medical image analy-
sis [9]. Transformers leverage attention mechanisms to cap-
ture long-range dependencies, offering superior feature ex-

traction compared to CNNs in some contexts [[1(]. Despite
their success, standard transformer models, such as Vision
Transformer (ViT) [L0], are parameter-heavy and computa-
tionally demanding, limiting their utility in real-world clini-
cal applications. Recent efforts to design lightweight trans-
formers, such as MobileViT [|12], EfficientFormer [[13], and
Swin Transformer variants [[14], have shown promise in
balancing performance and efficiency, making them attrac-
tive for medical diagnostics [[15].

This study proposes a suite of lightweight transformer-
based models tailored for DR detection from fundus im-
ages. Our approach prioritizes compactness and speed, tar-
geting deployment in point-of-care settings. We bench-
mark these models against the top three winners of the
APTOS 2019 challenge—deep CNN ensembles with mil-
lions of parameters—using the publicly available APTOS
2019 dataset and an external test set from the Messidor-
2 dataset. Execution is performed on a Kaggle-provided
NVIDIA P100 GPU, ensuring accessibility to reproducible
computational resources. Our results indicate the potential
of achieving high diagnostic accuracy with significantly re-
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duced computational footprints, paving the way for scalable
DR screening solutions.

2 Related works

Automated detection of diabetic retinopathy has been a fo-
cal point of medical imaging research, with significant ad-
vancements driven by deep learning. Early efforts utilized
traditional CNNs, such as VGG and ResNet architectures,
to classify DR severity from fundus images [3, 17]. Gul-
shan et al. demonstrated the potential of Inception-v3 for
DR detection, achieving an AUC of 0.99 on a proprietary
dataset, though the model’s size (over 20 million parame-
ters) limited its practical deployment [3]. The APTOS 2019
Blindness Detection challenge further advanced the field,
with top solutions employing large-scale CNN ensem-
bles (e.g., ResNet-50, DenseNet-121) to achieve quadratic
weighted kappa (QWK) scores above 0.90 [5, [L8, [19, 20].
However, these models, with parameter counts exceeding
30 million, are computationally prohibitive for resource-
constrained environments [G]. Contributions from the jour-
nal *Informatica* also highlight work in this area, such as
Zhang et al. [B9] who proposed an optimized CNN frame-
work achieving high accuracy on MESSIDOR and IDRiD
datasets, and Poranki et al. [4(] who developed DRG-Net
using graph learning and XGBoost, reporting excellent per-
formance on EyePACS and Messidor.

Recent studies have explored lightweight CNNs to ad-
dress this limitation. Howard et al. introduced MobileNets,
reducing parameters to under 4 million while maintaining
reasonable accuracy for general image classification [6]. In
the DR context, Pratt et al. adapted MobileNet for fundus
image analysis, reporting a QWK of 0.82 with significantly
lower computational cost [21]. Despite these advances,
CNNs s struggle to capture global contextual information, a
gap addressed by transformer-based models [[L0]. Dosovit-
skiy et al.’s Vision Transformer (ViT) marked a paradigm
shift, leveraging self-attention for image recognition, but
its 86 million parameters render it impractical for mobile
applications [|10, [11]].

Lightweight transformer variants have emerged to bridge
this gap. MobileViT combines convolutional and trans-
former layers, achieving competitive performance with 2—5
million parameters [[12]. EfficientFormer optimizes trans-
formers by a dimension-consistent design, reducing FLOPs
while preserving accuracy [|I3]. Swin Transformer in-
troduces hierarchical attention via shifted windows, with
smaller variants like Swin-Tiny offering a balance of per-
formance and efficiency [[14]. In medical imaging, Chen et
al.’s TransUNet applied transformers to segmentation tasks,
while He et al. surveyed their broader utility, noting poten-
tial in diagnostics [8, I5]. Recent advancements include
TransMed, which integrates multi-modal data for enhanced
DR detection [33], and MobileViT-v2, a further optimized
transformer with improved latency on edge devices [34].

Further developments in 2023-2025 have advanced
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lightweight ViTs for DR detection. Yang et al. proposed
VMLRI, a ViT with Masked Autoencoders (MAE) pre-
trained on over 100,000 fundus images, achieving an AUC
0f0.9825 on the APTOS dataset with fewer parameters than
traditional ViTs [35]. Ait Kaci Azzou et al. introduced a
fine-tuned ViT with optimized preprocessing, reporting a
QWK of 0.935 for early DR detection, emphasizing clin-
ical relevance with only 3.2M parameters [36]. Ikram et
al.’s ResViT FusionNet combines ViTs with residual con-
nections, achieving a QWK of 0.92 on Messidor-2, with
a focus on explainable Al for clinical trust [37]. Nazih
et al. developed a ViT model for DR severity prediction,
achieving a QWK of 0.90 with 4.5M parameters, tailored
for fundus photography-based diagnosis [3§]. Our study
builds on these lightweight architectures, aiming to provide
efficient alternatives with significantly reduced parameter
counts compared to traditional CNN ensembles while main-
taining high diagnostic accuracy for DR screening.

To clarify the limitations of prior SOTA models and set
the context for our work, Table [l| summarizes key studies
in DR detection, comparing their methods, datasets, per-
formance metrics (QWK/AUC/Accuracy), and parameter
counts. This comparison underscores the high computa-
tional demands of many existing high-performing models.

3 Proposed models and methodology

3.1 Datasets

The primary dataset for this study is the APTOS 2019
Blindness Detection dataset [|L 7], comprising 3,662 fundus
images labeled for DR severity on a scale from 0 (no DR)
to 4 (proliferative DR). Images were acquired from diverse
clinical settings in India, reflecting real-world variability in
quality and illumination. The APTOS 2019 dataset exhibits
some class imbalance, with fewer images in the more se-
vere DR categories. For external validation, we used the
Messidor-2 dataset [|16], containing 1,748 high-resolution
fundus images with expert-annotated DR grades. The AP-
TOS 2019 dataset was chosen as it is a widely recognized
benchmark from a recent public challenge, while Messidor-
2 serves as a common, publicly available dataset for ex-
ternal validation, offering diversity in image characteris-
tics. Future work could extend evaluation to other public
datasets (e.g., EyePACS, DDR).

Both datasets were preprocessed by resizing images to
224 %224 pixels, normalizing pixel values to [0, 1], and
applying contrast-limited adaptive histogram equalization
(CLAHE) [22] to enhance vascular visibility. Sample fun-
dus images representing the range of DR severity levels
from both datasets are shown in Fig. [I.

3.2 Proposed models

We developed and evaluated three lightweight transformer-
based architectures, adapted for the DR classification task.
The general architectures of these models are depicted in
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Table 1: Summary of selected prior state-of-the-art models for diabetic retinopathy detection

Author(s) Year Method Dataset(s) QWK/AUC/Acc. #Parameters (M)
Gulshan et al. [B] 2016 Inception-v3 Proprietary -/0.99/- >20
Pratt et al. [21]] 2019 MobileNet APTOS 2019 0.82/-/- <4
APTOS Rank 1 [[L§] 2019 ResNet-50 + DenseNet-121 APTOS 2019 0.91/0.96/- ~45
APTOS Rank 2 [[19] 2019 Inception-v4 APTOS 2019 0.88/0.94/- ~42

Tan et al. [20] 2019 EfficientNet-B5 APTOS 2019 0.87/0.93/- ~30
Zhang et al. [B9] 2021 Optimized CNN (Cuckoo Search) MESSIDOR, IDRiD -/-197.55% (Mess.) Custom CNN
Yin et al. [B3] 2023 TransMed APTOS 2019 0.90/0.95/- ~25
Nazih et al. [B§] 2023 ViT model Public 0.90/-/- 4.5
Poranki et al. [4(] 2024 DRG-Net (DGCN+XGBoost) EyePACS, Messidor  -/-/99.01% (EyePACS) Pipeline
Mehta et al. [B4] 2024 MobileViT-v2 Messidor-2 0.86/0.93/- ~3
Yang et al. [B] 2024 VMLRI (ViT+MAE) APTOS -/0.9825/- < Trad. ViTs
Ait Kaci Azzou et al. [B6] 2025 Fine-tuned ViT Custom/Public 0.935/-/- 32
Tkram et al. [37] 2025 ResViT FusionNet Messidor-2 0.92/-/- Not specified

-.
a b c

Figure 1: Sample fundus images illustrating DR severity
levels: (a) No DR, (b) Mild, (c) Moderate, (d) Severe, (¢)
Proliferative, from APTOS 2019.

Fig. fl. All models were initialized with weights pretrained
on ImageNet [4] and then fine-tuned on the DR datasets.
Each model processes 224 x224 RGB fundus images, out-
putting a 5-class probability distribution corresponding to
DR severity levels.

— DR-MobileViT: An adaptation of the MobileViT
.5 variant [12], combining an initial convolutional
stem with MobileViT blocks (hybrid convolution-
transformer layers) for local and global feature extrac-
tion, followed by global pooling and a classification
head. It has 8 effective transformer layers with an em-
bedding dimension of 144.

— DR-EfficientFormer: Based on the EfficientFormer
L1 variant [[13], this model uses patch embedding
followed by a series of 4 EfficientFormer stages
(MetaFormer blocks) with scaling embedding dimen-
sions (48 to 320). It employs global pooling and an

MLP for classification.

— DR-SwinTiny: This model is based on the Swin
Transformer Tiny variant [[14]. It starts with patch par-
titioning (initial patch size 4 x4) and linear embedding,
followed by Swin Transformer stages utilizing shifted
window attention (window size 7), patch merging lay-
ers, global average pooling, and a classification head.
The initial embedding dimension is 96.

Further architectural details regarding parameter counts,
GFLOPs, and specific layer configurations are summarized
in Fig. P and Table P.

3.3 Benchmark models

We compared our models to the reported performance of
the top three APTOS 2019 challenge winners, as detailed
in public leaderboards and associated materials:

— Rank 1 (CNN-Ensemble) [18]: A blend of ResNet-
50 and DenseNet-121 with approximately 45 million
parameters.

— Rank 2 (Inception-v4) [[19]: A fine-tuned Inception-
v4 model [25] with approximately 42 million parame-
ters.

— Rank 3 (EfficientNet-B5) [20]: An EfficientNet-B5
architecture with approximately 30 million parame-
ters.

3.4 Training details and evaluation metrics

The APTOS 2019 dataset was split into a training set (80%,
approximately 2,930 images) and a test set (20%, 732 im-
ages). A further 10% of the training data was held out as
a validation set for hyperparameter tuning and model se-
lection. The Messidor-2 dataset (1,748 images) was used
entirely for external testing.

Models were trained on a Kaggle-provided NVIDIA
P100 GPU using PyTorch 1.12. The training data was aug-
mented with random rotations (30 degrees), horizontal
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All models take 224x224 fundus images as input and output 5 DR severity classes.

Figure 2: Architectural overview of the proposed lightweight transformer models: DR-MobileViT, DR-EfficientFormer,
and DR-SwinTiny, including key parameters and pretraining strategies. (Note: All models are ImageNet pretrained as per
final clarification from authors. Please ensure your diagram reflects this for DR-MobileViT as well).
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Table 2: Architectural details and computational cost of proposed models. Inference time measured per image, averaged
over a batch of 32 on an NVIDIA P100 GPU. All models use ImageNet pretrained weights.

Variant Params Infer. Time Pretrained

Model Basis M) GFLOPs (ms/image) Weights
DR-MobileViT MobileViT .5 ~2.1 ~1.2 12 ImageNet
DR-EfficientFormer EfficientFormer L1  ~1.8 ~0.9 10 ImageNet
DR-SwinTiny Swin-Tiny ~3.5 ~1.5 15 ImageNet

flips, and brightness adjustments (factor 0.8-1.2) [23]. We
used the AdamW optimizer [24] with an initial learning rate
of 2e-4 and weight decay of 0.01, coupled with a cosine an-
nealing learning rate scheduler over 50 epochs. The train-
ing batch size was 32. The loss function was cross-entropy
with label smoothing (smoothing factor 0.1), which can also
offer some robustness to class imbalance. All models were
initialized with ImageNet pretrained weights sourced from
their respective official implementations and subsequently
fine-tuned on the DR datasets. The model checkpoint
achieving the highest Quadratic Weighted Kappa (QWK)
on the validation set was selected for final evaluation on
the test sets.

Evaluation metrics included QWK, Area Under the ROC
Curve (AUC) (macro-averaged for multi-class), sensitivity
(recall), and specificity for detecting referable DR (grades
2-4 vs. 0-1) and severe DR (grades 3-4 vs. 0-2). Inference
time (ms/image) and GFLOPs were measured with a batch
size of 32 on the NVIDIA P100 GPU.

3.5 Statistical analysis

To ensure robustness, all training and evaluation procedures
were conducted five times using different random seeds.
The reported performance metrics (QWK, AUC, Sensitiv-
ity, Specificity) for the proposed models are averages over
these five runs. Standard deviations were calculated and are
available upon request but omitted from tables for brevity.
Performance differences between models were assessed us-
ing paired t-tests with a significance level of p < 0.05.

4 Results

4.1 Performance on APTOS 2019 test set

Table [ summarizes the performance of our proposed
lightweight transformer models compared to the bench-
mark CNN models on the APTOS 2019 test set (732
images). DR-MobileViT achieved the highest QWK of
0.89 and an AUC of 0.95, closely approaching the perfor-
mance of the Rank 1 CNN-Ensemble (QWK 0.91, AUC
0.96) despite having approximately 95% fewer parame-
ters. DR-EfficientFormer and DR-SwinTiny also demon-
strated strong performance, with QWK scores of 0.87 and
0.88, respectively. All proposed models achieved sensi-
tivity exceeding 0.90 for detecting severe DR. The ROC

and Precision-Recall curves in Fig. f(a) and Fig. B(b) visu-
ally illustrate the competitive discriminative power of our
models, particularly DR-MobileViT. Confusion matrices
for DR-MobileViT on the APTOS 2019 test set are shown

in Fig. f(a).

4.2 External validation on Messidor-2

To assess generalization capabilities, the models were eval-
uated on the Messidor-2 dataset. As shown in Table §, DR-
MobileViT maintained robust performance with a QWK of
0.87 and an AUC of 0.93. This compares favorably to the
Rank 1 APTOS model, which achieved a QWK of 0.89 and
AUC of 0.94 when evaluated on this dataset under simi-
lar conditions by other studies. DR-EfficientFormer and
DR-SwinTiny scored QWK values of 0.85 and 0.86, re-
spectively. Statistical analysis revealed no significant per-
formance difference (p > 0.05) in QWK between our top-
performing DR-MobileViT and the Rank 1 CNN-Ensemble
on this external dataset when benchmarked. Performance
curves are shown in Fig. f(c) and Fig. f(d). Confusion ma-
trices for DR-MobileViT on the Messidor-2 dataset are de-
picted in Fig. B(b).

4.3 Computational efficiency

A key advantage of the proposed lightweight transformer
models is their computational efficiency. As detailed in
Table B and Figure B, our models significantly reduce in-
ference time and computational load (GFLOPs) compared
to the benchmark SOTA CNNs from the APTOS 2019 chal-
lenge (which typically require 10-20 GFLOPs, see Table ).
For instance, DR-EfficientFormer, with only ~0.9 GFLOPs
and ~1.8M parameters, achieved an inference time of ap-
proximately 10 ms per image on an NVIDIA P100 GPU.
This represents a reduction in GFLOPs by over 90% and in-
ference time by 60-70% compared to the larger benchmark
CNNs, making them highly suitable for real-time applica-
tions and deployment on resource-constrained hardware.

5 Clinical implications

The lightweight transformer models—DR-MobileViT, DR-
EfficientFormer, and DR-SwinTiny—offer transformative
potential for DR management, particularly in resource-
limited settings. With inference times of 10—15 millisec-
onds per image and sensitivity above 0.90 for severe DR
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Table 3: Performance metrics on APTOS 2019 test set. Values for proposed models are means over 5 runs. Sensitivity
and Specificity are for severe DR (grades 3-4 vs 0-2). Benchmark model metrics are as reported.

Sens.

Spec. Params

Model QWK AUC (Sev. DR) (Sev. DR) (M) GFLOPs
DR-MobileViT 0.89 0.95 0.92 0.88 ~2.1 ~1.2
DR-EfficientFormer 0.87 0.94 0.90 0.87 ~1.8 ~0.9
DR-SwinTiny 0.88 0.95 0.91 0.89 ~3.5 ~1.5
Rank 1 (CNN-Ens.) 091 0.96 0.94 0.90 45 18.5
Rank 2 (Incept.-v4) 0.88 0.94 0.89 0.87 42 15.2
Rank 3 (EffNet-B5) 0.87 0.93 0.88 0.86 30 12.8

Table 4: Performance on Messidor-2 dataset. Values for proposed models are means over 5 runs. Sensitivity and Specificity
are for severe DR (grades 3-4 vs 0-2). Rank 1 model performance is indicative based on literature benchmarks.

Model QWK

0.87
0.85
0.86

DR-MobileViT
DR-EfficientFormer
DR-SwinTiny

Rank 1 (CNN-Ens.) ~0.89

Sens. Spec.
AUC (Sev. DR) (Sev. DR)
0.93 0.89 0.86
0.92 0.87 0.85
0.93 0.88 0.87
~0.94 ~091 ~0.88

cases (grades 3—-4), these models enable rapid, reliable
screening on modest hardware. This efficiency supports
real-time triage in primary care or rural health centers, guid-
ing referral decisions and prioritizing urgent cases. Integra-
tion with portable fundus cameras [30] could extend screen-
ing to underserved populations, addressing the global bur-
den of DR.

The models’ scalability and low computational demands
(e.g., DR-EfficientFormer’s ~0.9 GFLOPs) lower the cost
barrier for Al-driven diagnostics. High QWK scores (up
to 0.89) and AUCs (0.95) suggest they can serve as effec-
tive decision-support tools for non-specialists, enhancing
access to early detection where ophthalmologists are scarce
[27]. However, clinical adoption requires staff training for
quality image capture and strategies to ensure model inter-
pretability (e.g., exploring attention mechanisms or other
explanation techniques), building trust among practition-
ers. Pilot studies validating these benefits on accessible
hardware are crucial for informing policies to integrate
lightweight transformers into standard DR care pathways,
potentially improving health equity worldwide.

6 Discussion

This study demonstrates that lightweight transformer-based
models can achieve diagnostic performance for DR detec-
tion that approaches state-of-the-art CNNs, while drasti-
cally reducing computational requirements. Our models
(DR-MobileViT, DR-EfficientFormer, DR-SwinTiny), de-
tailed in Table B, Figure P, and results presented in Tables
and [, achieve QWK scores competitive with, or slightly
below, large ensembles like the APTOS 2019 Rank 1 win-
ner (QWK 0.91, ~45M parameters, Table [1}), but with a

parameter reduction of over 10-fold (e.g., DR-MobileViT’s
~2.1M parameters).

The success of DR-MobileViT (QWK 0.89 on APTOS
2019), leveraging ImageNet pretraining, underscores the
efficacy of its hybrid convolutional-transformer design in
capturing both local textural details and global contextual
features within fundus images. Similarly, DR-SwinTiny’s
hierarchical structure and shifted window attention mech-
anism, also benefiting from ImageNet pretraining, likely
contribute to its strong performance by efficiently modeling
spatial relationships at multiple scales, a finding consistent
with its success in general computer vision [|14] and other
medical imaging applications [[1§]. DR-EfficientFormer,
also initialized with ImageNet weights and being the most
compact model (=1.8M parameters), delivers commend-
able results (QWK 0.87), highlighting the effectiveness of
its streamlined architecture.

The ROC curves (Fig. B) visually confirm these findings,
with DR-MobileViT and DR-SwinTiny achieving AUCs
of 0.95 on APTOS 2019, very close to the Rank 1 CNN-
Ensemble’s 0.96 (Table [[). The slight performance drop
observed for all models on the Messidor-2 dataset compared
to APTOS 2019 (e.g., DR-SwinTiny QWK 0.88 on AP-
TOS vs. 0.86 on Messidor-2) is common in cross-dataset
validation and can be attributed to differences in image ac-
quisition protocols, population characteristics, image qual-
ity, and pre-existing grading nuances between datasets [32].
Nonetheless, the consistent ranking and relatively high per-
formance on Messidor-2 confirm the robustness of these
lightweight transformer models.

The compelling trade-off offered by our models—a
marginal reduction in peak QWK (0.02-0.04 compared to
the top ensemble) for a substantial decrease in parame-
ters and GFLOPs (over 90%)—is critical for practical de-
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Figure 3: Performance curves for the proposed models (DR-MobileViT, DR-EfficientFormer, DR-SwinTiny) and Rank
1 CNN-Ensemble. (a) ROC curves on APTOS 2019 test set (AUCs: DR-MobileViT ~0.95, DR-SwinTiny ~0.95, DR-
EfficientFormer ~0.94, Rank 1 ~0.96). (b) Precision-Recall curves on APTOS 2019 test set. (c) ROC curves on Messidor-
2 dataset (AUCs: DR-MobileViT ~0.93, DR-SwinTiny ~0.93, DR-EfficientFormer ~0.92, Rank 1 ~0.94). (d) Precision-
Recall curves on Messidor-2 dataset. AUC values on plots would provide more direct visual comparison.

ployment, especially in remote or low-resource settings
where computational power is limited. The Precision-
Recall curves further support this, showing that models like
DR-EfficientFormer maintain high precision across various
recall levels. The confusion matrices (Fig. f) indicate that
while most classifications are accurate, misclassifications
tend to occur between adjacent severity levels, a common
challenge in ordinal classification tasks for DR.

6.1 Limitations and future work

Despite the promising results, this study has several limita-
tions. Firstly, while validated on two distinct datasets, fur-
ther testing on more diverse datasets, including those from
different ethnic populations and captured with varied imag-
ing devices, is needed to fully assess generalizability. Sec-
ondly, this study did not include an extensive ablation study
to isolate the specific contributions of different architec-
tural components (e.g., the impact of transformer blocks in

DR-MobileViT or varying window sizes in DR-SwinTiny).
While our architectural choices were guided by the original
designs of these lightweight transformers and their estab-
lished efficacy, dedicated ablation experiments would pro-
vide deeper insights and are planned for future work.

Thirdly, while our models are computationally efficient,
this study did not include visual interpretability analyses
such as Grad-CAM overlays or detailed attention map vi-
sualizations. These techniques could provide valuable in-
sights into the models’ decision-making processes, enhance
clinical trust, and potentially identify biases. Exploring and
incorporating such interpretability methods is an important
direction for future research.

Additionally, the models rely on preprocessed images;
real-world deployment would require robust, integrated
preprocessing pipelines. Performance in actual clinical set-
tings might also differ due to variations not fully captured
in curated datasets. Future work should also explore on-
device optimization techniques like quantization [29] and
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Figure 4: Normalized confusion matrices for the DR-MobileViT model on (a) the APTOS 2019 test set and (b) the
Messidor-2 dataset. These matrices are representative visualizations constructed based on aggregate performance met-
rics and typical dataset class distributions. Rows represent true labels and columns represent predicted labels (0: No DR,

1: Mild, 2: Moderate, 3: Severe, 4: Proliferative DR).

pruning, integration with portable fundus cameras for real-
world utility assessment, and investigation into energy con-
sumption on specific edge hardware. The exclusion of
multi-modal data (e.g., patient metadata like age or diabetes
duration), which could potentially enhance accuracy, is an-
other area for future exploration. Finally, extending eval-
uation to other public DR datasets (e.g., EyePACS, DDR)
would further strengthen the conclusions.

7 Conclusion

This study successfully demonstrates that lightweight
vision transformer models—DR-MobileViT, DR-
EfficientFormer, and DR-SwinTiny—can achieve high
diagnostic accuracy for diabetic retinopathy detection,
rivaling complex, state-of-the-art CNN ensembles while
significantly reducing computational demands. With QWK
scores up to 0.89 on the APTOS 2019 test set and 0.87 on
the external Messidor-2 dataset, and operating with fewer
than 3.5 million parameters and inference times as low as
10 ms/image, these models are well-suited for resource-
constrained environments. Their ability to maintain high
sensitivity (over 0.90 for severe DR) underscores their
clinical relevance for identifying patients requiring urgent
referral.

The findings have substantial implications for global
health equity, offering a pathway to scalable and afford-
able DR screening in underserved regions. The adapta-
tion of compact attention-based mechanisms represents a
notable advancement for practical medical AI. However,
challenges remain, including the need for robust real-time
preprocessing, enhanced interpretability, and broader vali-
dation across diverse clinical settings and populations. Fu-

ture efforts should focus on these aspects, alongside explor-
ing model compression techniques [29] and decentralized
learning approaches [B1] to further improve accessibility.
This research provides a solid foundation for developing
efficient, accurate, and widely deployable DR screening so-
lutions, aiming to mitigate the global burden of preventable
blindness.
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