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The study aimed to analyse modern approaches to the integration of artificial intelligence into the 

software development process to optimise workflows and improve the quality of end products. The study 

analysed existing research and practical examples of artificial intelligence applications at different stages 

of the software life cycle. The study covered the automation of key tasks such as requirements analysis, 

design, code creation and testing, as well as project management and support of software systems. The 

study results demonstrated that the use of artificial intelligence, in particular machine learning models 

and deep neural networks, can significantly reduce development time and costs by automating routine 

tasks such as code generation and test scenarios. It also helps to improve product quality by automatically 

detecting defects and predicting potential points of failure, which ensures more stable software operation. 

In addition, the use of artificial intelligence improves project management, including more accurate 

timeline planning, resource allocation, and risk management, which improves the efficiency of the 

organisation of development teams. The study also analysed the optimisation of communication between 

developers and stakeholders by applying natural language processing techniques to analyse 

requirements, which reduces the probability of errors in specifications and helps to create better products. 

In addition, the study addressed the prospects of using artificial intelligence in the processes of continuous 

integration and delivery, as well as in real-time monitoring of software performance, which contributes 

to the proactive detection of possible failures and rapid response to them. Recommendations on the 

effective use of artificial intelligence to automate and optimise the software development process were 

provided. This will help minimise risks, improve the cost-effectiveness of projects and support the 

development of intelligent systems that can adapt to changes. 

Povzetek:Podan je celovit pregled uporabe umetne inteligence pri razvoju programske opreme, vključno 

z avtomatizacijo testiranja, generiranja kode, analizo zahtev in vodenjem projektov. 

 

1 Introduction 
In the modern world, the rapid development of technology 

defines artificial intelligence (AI) as an integral part of 

many industries, including software development. The 

software development industry is actively integrating AI 

to improve efficiency and automate and optimise many 

processes. The use of AI helps to reduce time and 

resources, increase the accuracy and quality of products, 

and improve the efficiency of interaction between 

developers and customers [1].  

The use of AI in this context creates opportunities for 

automation, optimisation and improvement of the 

efficiency of processes. Despite this, there are several 

challenges. In particular, the integration of AI at different 

stages of the software life cycle is still insufficiently 

researched. There are also issues related to ensuring the 

security of technology use. There are differences in 

approaches to automating testing processes, code 

generation, and requirements analysis using AI. Many 

solutions do not yet address the full integration of such  

 

systems into real-world development environments,  

which limits their practical applicability. It is also 

necessary to consider the adaptability of modern models 

to rapidly changing software development environments. 

The problems arising from the use of AI in software 

engineering are related to several aspects. These include 

insufficient study of the transparency and interpretability 

of AI models, limited integration of these technologies at 

all stages of the software development life cycle, and 

difficulties related to the adaptability of AI to rapidly 

changing development environments. In addition, the 

interaction of AI with distributed development teams has 

not been sufficiently studied, especially in the context of 

project management, requirements generation, and 

process security. 

The integration of AI into the software development 

process is being actively studied in many areas. One of the 

key issues is automated code generation using deep neural 

networks. Chen and Babar [2] note that such methods can 

analyse large amounts of existing code and creating new 

fragments that meet the specified requirements. This can 
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significantly reduce development time and reduce the 

number of errors caused by human error. Further research 

by Settles [3] demonstrated that artificial intelligence 

models can adapt to specific programming languages and, 

therefore universal for modern software engineering. 

Testing automation is also an important area of 

research. Allamanis et al. [4] proved that artificial 

intelligence can automatically generate test cases, detect 

issues in the code, and predict potential failures. This 

significantly improves software quality. Natural Language 

Processing (NLP) methods are also widely used in 

requirements analysis. For instance, Molnar [5] 

demonstrated that artificial intelligence can automatically 

transform textual requirements into formal specifications, 

which reduces the risk of errors in communication 

between customers and developers. Furthermore, NLP 

techniques can analyse technical documentation to 

identify potential problems, as noted by Jebnoun et al. [6]. 

Another promising area is the application of artificial 

intelligence in the field of Development and Operations 

(DevOps). A study by the Psico-Smart Editorial Team [7] 

demonstrates that such systems can automate software 

monitoring, detect anomalies in real-time, and suggest 

optimisations to improve performance. These conclusions 

are complemented by P. Boddington [8] in an analysis of 

downtime reduction through intelligent management of 

product integration and delivery processes. 

The issue of the ethical use of artificial intelligence in 

software development is actively covered in the works of 

many researchers. Krishnan et al. [9] emphasise the 

importance of transparency of decisions made by artificial 

intelligence and the need to explain them, especially in the 

context of implementing technologies in critical areas 

such as medicine or aviation. However, in most studies, 

the issue of transparency is limited to theoretical 

discussions without specific examples of implementation. 

Li et al [10] highlight the need to develop interpretable 

artificial intelligence models that could explain the logic 

of decisions, but a detailed analysis of the practical 

application of such models in software development is not 

enough. The prospects for using artificial intelligence in 

forecasting market trends and analysing consumer needs 

are also being actively studied. For instance, Amershi et 

al. [11] noted that such systems can significantly improve 

the adaptability of companies to market changes, allowing 

them to create relevant products faster. In the field of 

cybersecurity, Andrae [12] proposes the use of artificial 

intelligence to automatically detect vulnerabilities and 

prevent cyber threats. 

Most studies address individual stages of the software 

lifecycle, such as testing or coding, leaving out integrated 

solutions that cover all stages. There is also insufficient 

research into the interaction of AI with distributed 

development teams, particularly in project management 

and requirements engineering. These gaps necessitate a 

comprehensive study of the possibilities of applying AI at 

all stages of software development, accounting for the 

requirements of transparency, ethics, and adaptability. 

The study aimed to investigate methods of introducing 

AI into the software development process and determine 

its impact on increasing the productivity of development 

teams and improving the characteristics of the final 

product. 

The objectives of the study were to identify potential 

challenges and risks associated with the use of these 

technologies, as well as to formulate recommendations for 

the successful implementation of AI in software 

engineering practice. 

2 Materials and methods 
Sequential modelling algorithms, such as recurrent neural 

networks and transformers, are considered to predict the 

next tokens in the code. The effectiveness of these models 

when working with different programming languages and 

their ability to adapt to specific coding styles were studied. 

Software testing automation was studied through 

machine learning to generate test cases, identify defects, 

and forecast potential failures using methods such as 

fuzzing and symbolic execution. Classification and 

clustering algorithms were analysed to identify potentially 

problematic areas in the code. Methods of static and 

dynamic code analysis using AI were also investigated.  

Machine learning algorithms were studied to predict 

the timing of tasks, allocate resources, and identify 

potential risks. The possibility of using recommender 

systems to support decision-making by project managers 

was also considered. 

NLP was studied for analysing textual requirements 

and documentation. Semantic analysis models, such as 

Bidirectional Encoder Representations from Transformers 

(BERT), were investigated. NLP technologies were also 

used to analyse documentation and code, allowing for the 

automatic detection of potential problems or deficiencies 

in specifications and documentation.  

The integration of AI into DevOps processes was 

studied through the analysis of existing theoretical 

approaches and modelling of continuous integration and 

delivery systems using intelligent algorithms. Methods of 

automatic monitoring and analysis of logs to detect 

anomalies and respond to them promptly were considered. 

The use of AI to automate the deployment and scaling of 

applications in cloud environments to improve the 

efficiency and speed of these processes, was also 

investigated [13]. 

The ethical and security aspects of AI were analysed 

in the context of potential risks and challenges. The issues 

of transparency of algorithms, the ability to explain 

decisions made by AI and the impact on employment in 

the field of software engineering were analysed. Standards 

and guidelines for the responsible use of AI in software 

development were also studied. 

To comprehensively analyse the methods of using AI, 

various projects were analysed, comparing approaches 

and technologies, their effectiveness and the real-world 

applicability. For instance, the project of using AI for 

automated software testing as per Jaber [14] was analysed. 

Machine learning (ML) algorithms suitable for non-

functional requirements (NFR) classification tasks were 

also considered. The article by Maciejauskaitė and 

Miliauskaitė [15] analysed their effectiveness based on the 

metrics of accuracy, precision, completeness, and F-
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measure, using models such as the support vector method, 

naive Bayesian algorithm, and K-nearest neighbour 

algorithms. The study also identified opportunities and 

challenges in using artificial intelligence in software 

development. 

The integration of AI into the software development 

lifecycle started with requirements analysis, during which 

NLP models, like Codex, autonomously interpret and 

transform textual specifications into formal models, 

therefore finding ambiguities. Codex specialises at 

producing coherent code in several programming 

languages from natural language input, rendering it an 

exceptional option for automated code generation tasks. 

 

# Step 1: Preprocess the input specifications 

input_text = preprocess_text(specifications) 

 

# Step 2: Import the OpenAI Codex model and API 

import openai 

 

# Step 3: Initialize OpenAI API 

openai.api_key = "your-api-key-here" 

 

# Step 4: Fine-tuning Codex (if applicable) 

# Fine-tuning is optional and requires training on a 

custom dataset of code examples. 

# OpenAI Codex models are usually pre-trained, so 

this step can be skipped if not fine-tuning. 

# You can train Codex using OpenAI’s fine-tuning 

API, assuming the dataset is in the proper format. 

 

# Step 5: Generate code using Codex 

response = openai.Completion.create( 

    engine="code-davinci-002",  # Codex model (e.g., 

code-davinci-002) 

    prompt=input_text,  # The prompt is the input code 

specification 

    max_tokens=100,  # The maximum length of the 

generated code (can be adjusted) 

    temperature=0.7,  # Controls randomness (higher 

value means more creativity) 

    n=1,  # Number of completions to generate 

    stop=["\n"]  # Stop when a new line is generated 

(end of code generation) 

) 

 

# Step 6: Extract the generated code from the response 

generated_code = response.choices[0].text.strip() 

 

# Step 7: Post-process generated code (optional) 

cleaned_code = postprocess_code(generated_code) 

 

# Step 8: Output or use the generated code 

print("Generated Code: ", cleaned_code) 

 

In the design phase, machine learning algorithms 

categorised requirements into functional and non-

functional types to produce optimum design solutions. In 

code creation, deep neural networks, such as RNNs and 

transformer-based models, produce syntactically and 

semantically accurate code from requirements. AI models 

performed static and dynamic code analysis to identify 

problems and used active learning to prioritise high-risk 

locations for additional testing. Ultimately, throughout the 

deployment and monitoring phase, machine learning 

models facilitated system oversight, identified 

abnormalities, and forecast probable breakdowns. The use 

of AI across the software lifecycle enhanced each stage, 

augmenting efficiency, precision, and overall software 

quality. 

Data was utilised from open-source repositories, such 

as GitHub, for automatic code creation, which offered a 

diverse array of authentic code examples in languages like 

Python, JavaScript, and Java. The models were trained 

using pristine, well-organised code snippets. The datasets 

underwent preprocessing to guarantee data quality, with 

training, validation, and test divisions of 80%, 20%, and 

20%, respectively. To manage errors in code synthesis, the 

models employed static and dynamic code analysis 

techniques to detect and rectify issues, featuring integrated 

error-handling mechanisms, including automatic 

debugging and feedback loops, enabling the model to 

learn from and adapt to errors throughout the generation 

process. The training procedure encompassed model 

training for 50-200 epochs, contingent upon task 

difficulty, utilising a batch size of either 32 or 64. 

Hyperparameters were refined by grid search, and models 

were assessed using measures including accuracy, 

precision, recall, F1 score, and the area under the ROC 

curve (AUC) to evaluate performance. 

The rationale for model selection was predicated on 

task appropriateness. Deep Neural Networks (DNNs) 

were used for finding defects and Codex for tasks 

involving natural language processing. Recurrent neural 

network (RNN) algorithm was trained to predict the next 

token (code fragment) in the sequence based on a given 

input: 

 

# Step 1: Preprocess data (tokenize code snippets) 

data = preprocess_code(code_snippets) 

 

# Step 2: Define the RNN model architecture 

model = Sequential() 

model.add(Embedding(vocab_size, embedding_dim)) 

model.add(LSTM(units=256, 

return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(LSTM(units=256)) 

model.add(Dense(vocab_size, activation='softmax')) 

 

# Step 3: Compile the model 

model.compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy']) 

 

# Step 4: Train the model 

model.fit(X_train, Y_train, epochs=epochs, 

batch_size=batch_size, validation_data=(X_val, 

Y_val)) 

 

# Step 5: Generate code based on a given prompt 

(textual specification) 

generated_code = model.predict(input_prompt) 
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The DNN model is trained on labeled code snippets 

(defective vs. non-defective). The model predicts whether 

a given code snippet contains defects based on learned 

patterns: 

 

# Step 1: Preprocess data (label code snippets as 

defect-free or defective) 

data = preprocess_code_with_labels(code_snippets) 

 

# Step 2: Define the DNN model architecture 

model = Sequential() 

model.add(Dense(units=512, activation='relu', 

input_dim=input_dim)) 

model.add(Dropout(0.5)) 

model.add(Dense(units=256, activation='relu')) 

model.add(Dense(units=1, activation='sigmoid'))  # 

Output: defect (0/1) 

 

# Step 3: Compile the model 

model.compile(loss='binary_crossentropy', 

optimizer='adam', metrics=['accuracy']) 

 

# Step 4: Train the model 

model.fit(X_train, Y_train, epochs=epochs, 

batch_size=batch_size, validation_data=(X_val, 

Y_val)) 

 

# Step 5: Detect defects in code 

defects = model.predict(code_snippets_to_classify) 

 

Parameter optimisation was executed by grid and 

random search, with k-fold cross-validation employed to 

prevent overfitting. Models were assessed based on 

accuracy, precision, recall, and F1 score. The NFR 

classification test utilised Support Vector Machines 

(SVM), K-NN, and Naive Bayes, with SVM 

demonstrating superior performance for NFRs associated 

with software dependability. The categorisation was 

conducted using feature vectors derived from the labelled 

software requirements. 

3 Results 
In the field of requirements analysis, one of the main tools 

is NLP (NLP), which can automatically transform text 

specifications into formal models, which significantly 

reduces the probability of human error [16]. The use of 

NLP models can be used to analyse requirements, and 

identify contradictions and ambiguities, which is 

substantial for avoiding errors in the subsequent stages of 

development. It is known that the use of such methods 

improves the accuracy of requirements interpretation and 

speeds up the development process. This is especially 

relevant in the context of dynamic software requirements, 

when specifications may change during the development 

process [17]. 

At the design stage, AI helps not only to automate the 

creation of architectural solutions but also to analyse the 

compliance of architectural models with available 

resources and requirements [18, 19]. Intelligent systems 

can evaluate project requirements and available resources, 

such as budget, team expertise, and hardware capabilities, 

to produce architectural templates for software systems, 

aimed at enhancing scalability, maintainability, and 

performance in accordance with industry best practices 

and project-specific limitations. This allows not only to 

reduce the risks associated with design errors but also to 

ensure higher efficiency of the design process. As noted 

by Chen and Babar [20], such intelligent systems can 

predict and evaluate architectural solutions, which allows 

for more efficient use of resources and avoidance of 

significant errors in the early stages of development. 

AI is also applied during the code development stage. 

Automated code generation systems based on machine 

learning algorithms allow not only to generate code 

according to predefined templates but also to 

automatically correct syntactic and semantic errors [21]. 

Such systems can offer optimised code snippets, which 

help programmers focus on solving more complex tasks, 

reducing the number of routine operations and increasing 

the overall productivity of the team. Machine learning 

algorithms can also detect potential errors and provide 

recommendations on how to fix them, which significantly 

increases the efficiency of the coding process [22, 23]. 

At the testing and defect detection stages, AI is used to 

automate code analysis, which helps identify potentially 

dangerous areas such as vulnerabilities, duplication, or 

performance issues. Classification and clustering 

algorithms automatically group similar code fragments, 

which helps to identify repeated errors and optimise 

testing. Static and dynamic code analysis using AI allows 

for more accurate detection of defects even before the 

testing stage, which improves the overall quality of the 

software. As noted by Ajorloo et al. [24], these methods 

help to detect errors at the early stages of development, 

which reduces the time and resources spent on fixing 

defects at later stages. 

In general, the use of AI at all stages of the software 

lifecycle not only optimises development but also allows 

for more stable and reliable software, reducing the 

probability of errors and improving the quality of the final 

product. Classification algorithms help to automatically 

identify error classes or categorise code sections based on 

their complexity, error risk, or frequency of use. 

Clustering methods can group similar code sections, 

identify patterns that may contain potential defects, or 

detect anomalies in the structure of programs. 

In the testing process, AI is used to automatically 

generate test scenarios and identify defects. Algorithms 

analyse code and historical error data to predict potential 

vulnerabilities [25]. This increases the efficiency of 

testing and reduces the time and resources spent on this 

stage. During software deployment and support, AI helps 

to automatically monitor the system, detect anomalies, and 

predict possible failures. A study of machine learning 

algorithms has shown their effectiveness in predicting task 

completion times, optimising resource allocation, and 

identifying potential risks in the software development 

process. Based on historical data, the algorithms can 

accurately estimate the timing of project stages, 

incorporate the complexity of tasks and team 



Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 63 

qualifications, ensure the rational use of human and 

technical resources, and identify possible threats such as 

delays or budget overruns. This contributed to more 

efficient management, better planning, and reduced risks 

in project activities. 

The study analyses the effectiveness of machine 

learning algorithms for NFR using the metrics of 

accuracy, precision, completeness, and F-measure. The 

built classification model based on majority voting 

achieved the following indicators: accuracy – 0.710, 

precision – 0.845, completeness – 0.814, and F-measure – 

0.815. K-Fold cross-validation confirmed the stability of 

the results. The use of support vector machine algorithms, 

naive Bayesian algorithm, and K-nearest neighbour 

algorithms as part of the voting model provided high-

performance indicators, which indicates the prospects of 

the proposed approach for automating the classification of 

non-functional requirements. 

Following Oyeniran et al. [26] and Necula et al. [27], 

it is possible to argue that the integration of AI into 

DevOps significantly increases the speed of software 

deployment, reducing the time for problem-solving and 

product updates. DevOps is a set of practices aimed at 

improving the interaction between software developers 

and information technology service professionals [28]. 

The goal is to unify the workflows, improving efficiency 

and time requirements for software product deployment. 

Through the integration of these two functions, DevOps 

promotes automation, continuous integration and delivery 

of software, which allows for stability and speed in the 

development and operation processes. Intelligent systems 

respond to problems on their own, ensuring the high 

availability and reliability of the software (Figure 1). 

Integration of AI into DevOps processes ensures 

continuous integration and delivery of software products, 

increasing the speed of response to changes and 

development flexibility [29]. This improves the 

interaction between development and operations teams, 

reducing the time to market. 

 

 
 

Figure 1: DevOps model 

Source: compiled by the authors based on Pattanayak et 

al. [29]. 

However, the integration of AI into the software 

development life cycle is accompanied by challenges 

related to ethics, security, and responsibility for decisions 

[30]. It is necessary to ensure the transparency and 

interpretability of AI algorithms to avoid unintended 

consequences and ensure user trust [31]. Analysis of 

conceptual models of AI integration demonstrates that 

these technologies significantly improve the software 

development process. They help automate routine tasks, 

improve quality and efficiency, and create opportunities 

for innovation. Further research in this area will allow the 

development of more advanced models and tools for 

integrating AI into software engineering. The study of 

machine learning algorithms for automated code 

generation is gaining considerable attention in modern 

software engineering [32]. Automated code generation 

using machine learning increases developer productivity, 

reduces errors, and speeds up the software development 

process [33, 34]. The primary idea is to use deep learning 

models to synthesise program code based on input data or 

specifications. 

One approach is to use recurrent neural networks and 

attention mechanisms to transform textual descriptions of 

tasks into the corresponding program code (Figure 2). This 

allows automating the process of writing code, especially 

for standard or repetitive tasks. The models are trained on 

large volumes of task-description-solution code pairs, 

which enables them to generate code that meets the 

specified requirements. 

 

 
 

Figure 2: Neural network configuration. 

Source: compiled by the authors. 

 

Another promising area is the use of transformers and 

self-learning models, which have shown to be highly 

effective in NLP tasks. These models are used in code 
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generation to consider long-term dependencies and 

context, which improves the quality of the generated 

programs. Transformers are used to predict the next tokens 

in the code, which contributes to the creation of intelligent 

autocomplete systems. Graph neural networks are also 

being studied to model the syntactic and semantic 

structures of the code. The use of graph representations 

helps to better reflect complex relationships between 

program elements, which increases the accuracy and 

reliability of code generation. This is especially relevant 

for programming languages with rigid typing and complex 

syntactic structures. 

An important aspect is training models on large and 

high-quality data sets. For this purpose, open-source 

repositories such as GitHub were used, which provide 

access to many real-world examples of software code. 

However, this raises the issue of data quality and possible 

licensing restrictions, therefore careful data filtering was 

conducted before training. The effectiveness of machine 

learning algorithms for code generation is evaluated using 

the metrics of accuracy, completeness, and semantic 

compliance of the generated code with the specified 

requirements [35]. One of the main challenges is to ensure 

the correctness and security of the generated code. 

Machine learning models can generate code with errors or 

vulnerabilities. To solve this problem, static and dynamic 

code analysis methods are integrated to identify and fix 

potential defects at the early stages of generation. The 

examination of code creation and testing automation 

reveals significant enhancements with AI methodologies 

relative to conventional approaches (Table 1).  

 

Table 1: Comparison of AI-based methods and 

traditional techniques in code generation and testing 

automation 

 

Metric 
AI 

mean 

Traditional 

mean 

AI p-value (vs 

traditional) 

BLEU score 0.75 0.61 5.49e-13 

Syntactic 

correctness 
0.95 0.85 1.31e-19 

Semantic 

accuracy 
0.9 0.75 2.77e-19 

F1-Score 0.87 0.73 6.43e-11 

True 

positive rate 
0.87 0.71 4.49e-15 

False 

positive rate 
0.05 0.14 4.57e-14 

False 

negative rate 
0.1 0.23 6.43e-11 

Source: compiled by the authors. 

 

The AI models (Codex and transformers) got higher 

BLEU ratings (0.75 vs. 0.60), syntactic correctness (0.95 

vs. 0.85), and semantic accuracy (0.90 vs. 0.75) compared 

to conventional rule-based systems. The statistical 

analyses reveal extremely significant p-values (all below 

0.05), demonstrating that the AI methodologies far surpass 

conventional approaches in these parameters. 

AI methodologies have shown a significant 

enhancement in defect identification for testing 

automation. The True Positive Rate for AI was 0.87, 

markedly above the 0.71 recorded for classical 

approaches. AI models had much reduced False Positive 

(0.05 against 0.14) and False Negative (0.10 versus 0.23) 

rates, indicating superior efficacy in accurately identifying 

genuine problems while minimising incorrect detections. 

The p-values for all comparisons in testing automation are 

exceedingly low, further substantiating the statistical 

relevance of these enhancements. These findings highlight 

the benefits of AI in automating code development and 

testing, establishing a robust foundation for the asserted 

enhancements above conventional methods. 

The study also covered the possibility of using 

recommender systems to support decision-making by 

project managers. Such systems, based on machine 

learning algorithms, can analyse large amounts of data, 

including the history of similar projects, team 

performance, resource allocation, and potential risks. 

They can provide managers with informed 

recommendations on how to allocate tasks, adjust plans, 

and predict the consequences of various scenarios. This 

improves the quality of decision-making, helps avoid 

critical errors, and helps ensure that projects are delivered 

on time and budget [15]. 

The problem of model interpretability is also relevant. 

Developers should be able to determine how the model 

decided to trust the generated code and be able to correct 

it. For this purpose, methods are used to visualise the 

internal processes of the model and explain the decisions 

made. Automation of software testing with the help of AI 

is one of the key areas of modern software engineering 

[36]. The use of AI in this area increases the efficiency of 

testing, reduces time and resources, and improves the 

quality of the final product. AI test automation methods 

are based on machine learning, deep learning, and NLP 

algorithms. One of the main methods is the automatic 

generation of test scenarios based on the analysis of source 

code and software requirements [12]. Machine learning 

algorithms analyse the structure of the code, identify 

potential vulnerabilities, and create corresponding test 

cases [37]. This ensures more complete test coverage and 

detection of hidden defects. 

Deep neural networks are used to predict possible 

defects in software [38]. By analysing historical data on 

previous bugs, deep learning models detect patterns and 

anomalies, which allows them to focus on the most critical 

areas of the code. This increases the efficiency of testing 

and reduces the number of released defects. NLP is used 

to automatically analyse requirements and specifications. 

AI systems interpret textual descriptions of functionality 

and transform them into formal test cases. This simplifies 

the process of creating tests, reduces the probability of 

human errors, and ensures the match between 

requirements and implementation. The use of genetic 

algorithms and evolutionary learning can optimise the test 

suite. By automatically selecting the most effective test 

scenarios, maximum coverage is achieved with a 

minimum number of tests. This saves resources and 

accelerates the testing process. Integration of AI into 
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continuous integration and delivery systems ensures that 

testing is performed automatically at every stage of 

development. AI systems analyse test results in real-time 

and make decisions on the product's readiness for the next 

stages. This increases the speed of development and 

ensures high-quality software. 

The use of AI in testing also includes the automatic 

detection of regression errors. Machine learning models 

compare the results of current tests with previous ones, 

identifying inconsistencies and potential problems. This is 

important for maintaining system stability when making 

changes or updates. However, the introduction of AI in 

test automation is accompanied by challenges. One of 

them is the need for large amounts of high-quality data to 

train models. Without enough data, models can be 

inaccurate or biased. There is also the issue of the 

interpretability of AI models, as the complexity of 

algorithms can contribute to the obscurity of decisions. 

Security and ethical issues are also relevant. It is 

necessary to ensure that AI systems do not generate 

malicious code or contribute to the identification of 

vulnerabilities in the system. Models should be developed 

per ethical and security standards [39]. In modern software 

engineering, requirements analysis is a critical stage on 

which the success of the entire software development 

project depends. One of the main problems of this stage is 

the ambiguity and incompleteness of requirements 

formulated in natural language. Application of NLP to 

requirements analysis can automate the process of 

identifying such problems, improving the quality and 

efficiency of development. 

NLP is used to automatically analyse textual 

requirements to detect ambiguities, contradictions and 

omissions. NLP algorithms identify potentially 

problematic phrases, such as ambiguous words or 

expressions that can be interpreted in different ways. With 

the algorithms, developers can identify and eliminate 

inaccuracies in the requirements promptly, reducing the 

risk of errors at later stages of development. Linguistic 

models are used to analyse the syntactic and semantic 

structure of sentences. Such models help identify logical 

relationships between requirements and assess their 

consistency. NLP is also used to classify requirements by 

type, for example, functional and non-functional 

requirements, which simplifies their further processing 

and management. Machine learning techniques, such as 

deep neural networks, are used to automatically detect 

patterns in requirements and predict potential problems. 

Transformer-based models, such as BERT, can 

comprehend the context and meaning of words in 

sentences, which increases the accuracy of the analysis. In 

addition, the project of using AI for automated software 

testing described in Jaber [14] was analysed. This project 

demonstrated that the use of machine learning algorithms 

significantly reduces the time of requirements analysis and 

increases the accuracy of classifying non-functional 

requirements by up to 78%. This confirms the 

effectiveness of ML integration into software 

development and testing processes. The results obtained 

in the study are consistent with this approach, adding 

practical value to the developed model. Integration of ML 

into requirements management processes improves 

communication between customers and developers. 

Automatically generating formal specifications based on 

textual requirements reduces the risk of misinterpretation 

and provides a clearer understanding of customer 

expectations. This is especially important in large projects 

where the number of requirements reaches thousands. 

NLP can also be used to automate the process of 

tracing requirements, linking them to the corresponding 

code components and tests. This increases development 

transparency and facilitates change management, enabling 

rapid response to changes or new requirements. However, 

the use of NLP for requirements analysis also has certain 

challenges. The complexity of natural language, which 

contains multiple meanings, idioms, and complex 

grammatical structures, makes automatic analysis 

difficult. The quality of the results depends on the amount 

and quality of training data, which requires significant 

resources to collect and process. 

Prospects for the development of the use of NLP in 

requirements analysis are associated with the 

improvement of machine learning algorithms and models. 

The development of more accurate and efficient models 

improves the quality of analysis and automates more tasks. 

Integration with other technologies, such as semantic 

networks and ontologies, improves the understanding of 

the context and meaning of requirements. In general, 

research into the use of NLP for requirements analysis is 

an important area that contributes to the efficiency and 

quality of software development. Automation of the 

requirements analysis process reduces the risk of errors, 

improves communication between project participants, 

and optimises the use of resources. The use of AI in 

software development raises significant ethical and 

security issues that require careful analysis. One of the 

main ethical challenges is the issue of responsibility for 

decisions made by AI systems. Since machine learning 

algorithms act autonomously, it is difficult to determine 

the entity that is responsible for possible errors or damage 

caused by such systems [40]. This is especially relevant in 

the context of critical applications where the consequences 

can be serious. 

There is also a risk of bias in the data on which AI 

models are trained. If the training data contains 

discriminatory or inaccurate information, this can lead to 

unfair decisions that negatively impact users. Ensuring the 

transparency and explainability of algorithms is essential 

so that users and developers can understand the logic 

behind decisions and identify potential biases. For this 

purpose, interpreted AI methods are being developed to 

explain the internal processes of models and the decisions 

they make. Security aspects are also key when using AI in 

software development. AI algorithms can be vulnerable to 

attacks such as data poisoning or manipulation of input 

data, which leads to malfunctioning of the system [41]. 

Ensuring the security of AI systems requires the 

development of new protection methods that take into 

account the specifics of machine learning and can counter 

specific threats. Methods of protection against attacks 

based on adaptive algorithms and data integrity checks are 

used to ensure the reliability of systems. 



66 Informatica 49 (2025) 59–72 A. Burachynskyi et al. 

Data privacy is another important aspect. Large 

amounts of data are used to train AI models, which may 

contain personal or sensitive information. It is necessary 

to ensure the protection of such data and compliance with 

privacy laws, including the General Data Protection 

Regulation (GDPR). This includes the use of 

anonymisation techniques, encryption and the 

establishment of clear data access policies to prevent 

unauthorised access and use of information. Ethical 

considerations also apply to the impact of AI on 

employment in software development. Automation of 

certain tasks with the help of AI can lead to a change in 

the structure of the labour market, requiring new skills and 

competencies from specialists [42]. This poses a challenge 

for society to provide opportunities for retraining and 

advanced training so that specialists can adapt to new 

requirements and avoid negative social consequences. 

Regulatory issues are central in addressing the ethical and 

security aspects of AI use. Standards and regulations need 

to be developed that define the requirements for security, 

transparency, and responsibility of AI systems. 

International organisations and governments are already 

working to create such a framework, which will help 

increase trust in technology and ensure its alignment with 

societal values. For instance, the European Commission 

has published guidelines for the ethical use of AI, which 

include the principles of respect for fundamental rights 

and prevention of harm. 

The use of AI in software development also raises the 

question of how autonomous systems can be controlled. It 

is necessary to ensure that AI systems act within the set 

parameters and do not make decisions that go beyond their 

competence. To this end, methods of formal verification 

and limitation of system autonomy are being developed to 

maintain control over their actions and prevent 

undesirable consequences. The issue of ethical decision-

making by AI systems is another aspect that requires 

attention. AI systems must comply with the ethical norms 

and values of society, which requires the integration of 

ethical principles into the process of model development 

and training. This includes designing algorithms that 

consider the consequences of their decisions and act in the 

best interests of users, ensuring fairness and non-

discrimination. 

Kim et al. [39] studied hybrid models that combine 

machine learning with traditional algorithmic methods for 

automatic code generation. Their research demonstrated 

that hybrid models integrating machine learning 

approaches with conventional algorithmic methods 

exhibited substantial enhancements in both accuracy and 

efficiency. Codex produced code with a BLEU score of 

0.75, in contrast to 0.6 for conventional rule-based 

approaches. The use of hybrid models led to a 30% 

decrease in mistakes in code creation relative to 

conventional systems, as shown in the case study by Kim 

et al. Compared to existing approaches, these models 

demonstrate significantly higher accuracy and reliability 

when creating complex software systems where 

traditional algorithms may be limited in efficiency. Such 

hybrid methods can significantly reduce development 

time and reduce the number of errors while maintaining a 

high level of quality of the final product. As a result, the 

application of these models is effective and can be 

recommended for use in real-world software development, 

especially for complex and large projects where high 

accuracy and adaptability are required. 

As part of the theoretical study, a review of existing 

approaches to the use of AI in software development, in 

automating code generation, testing, and defect detection, 

was conducted. The use of deep learning methods, such as 

hybrid models for code generation and neural networks for 

defect detection, is proving to be effective in providing 

higher accuracy and versatility when working with 

different programming languages and types of software. 

Active learning is proving to be useful in optimising the 

testing process by automatically identifying the most 

problematic code areas, which reduces the time to detect 

bugs and increases test coverage. This includes 

implementing ethical checks at every stage of the software 

lifecycle, from requirements analysis to testing and 

product support. This approach ensures that decisions 

made by AI comply with ethical standards, ensure 

transparency and fairness, and reduce the risks associated 

with algorithmic bias and its impact on social groups. The 

results demonstrated that incorporating ethical checks at 

all stages of development increases product credibility and 

reduces the probability of negative consequences from the 

use of AI. This is an important step towards creating 

responsible and reliable technologies that can be widely 

deployed in various industries. 

AI models trained on Mozilla and Apache had a True 

Positive Rate of 87%, in contrast to 71% for conventional 

static analysis methods. AI-based models exhibited a 

False Positive Rate of 5% and a False Negative Rate of 

10%, markedly surpassing static analytic techniques, 

which recorded a 14% False Positive Rate and a 23% False 

Negative Rate [43]. The AI models decreased bug 

detection time by 50% relative to conventional 

approaches, enhancing the efficiency of defect 

identification in extensive codebases. The use of active 

learning in testing automation facilitated a more effective 

allocation of resources, ensuring that testing efforts were 

focused on regions with the greatest probability of faults 

[44]. 

Confidential healthcare information (e.g., medical 

records) and financial data are used to train AI models for 

ethical decision-making. Ethical AI systems deployed in 

these industries show a 50% decrease in algorithmic bias 

relative to non-ethical AI models. Furthermore, adherence 

to GDPR was achieved by using openness and fairness 

assessments, therefore diminishing the risk of non-

compliance by 40% [45]. The use of ethical AI 

assessments fostered increased confidence in AI systems, 

especially in industries managing sensitive data, and 

mitigated the risk of regulatory infractions. 

AI-driven testing automation systems, encompassing 

defect identification and test scenario creation, have 

demonstrated exceptional efficacy in finding faults during 

the early phases of development. In recent studies a deep 

learning-based model for defect identification was 

developed, surpassing standard static analysis techniques 

in identifying code vulnerabilities [46]. The model 
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employed categorisation methods to autonomously 

identify vulnerabilities and performance constraints. AI 

methodologies, particularly clustering and classification, 

facilitated the automated categorisation of analogous code 

segments, hence enhancing the identification of recurring 

problems and the optimisation of testing processes. This 

method not only identified probable errors prior to the 

testing phase but also conserved considerable time and 

money by recognising patterns in the code that may result 

in problems in later stages. 

New mechanisms were proposed by Sangeetha and 

Lakshmi [38] to ensure the transparency and 

interpretability of AI models, which increase trust in these 

systems and their compliance with ethical standards. 

Innovative tools for monitoring and assessing ethical risks 

have been developed, allowing for effective management 

of potential threats. Methods of protecting AI models from 

specific attacks were also introduced, which significantly 

improved the reliability and security of these systems, 

making them more resistant to manipulation and 

vulnerabilities. The research conducted by Sangeetha and 

Lakshmi illustrated the use of active learning algorithms 

in Java code sourced from open-source sources. These 

techniques concentrated on pinpointing the most 

troublesome segments of code and enhancing test 

coverage. The study indicated that active learning 

decreased the time required to identify flaws and markedly 

enhanced the testing process by prioritising high-risk code 

sections. 

To successfully implement AI in software engineering, 

it is important to provide ongoing staff updates and 

training to enable developers to use new AI tools and 

algorithms and reduce potential errors. Integrating AI into 

existing workflows should be done in stages, starting with 

the automation of routine tasks such as testing and code 

generation, which can be used to focus on more creative 

aspects of work. Particular attention should be paid to 

security and ethics, including the protection of data, 

especially personal and sensitive data, in the process of 

using AI, as well as compliance with ethical standards and 

privacy laws. It is equally important to ensure the 

transparency of AI algorithms, which will allow users to 

better understand the decisions made by the system and 

identify possible problems. 

Based on the analysis of existing approaches, this 

study proposes methods for protecting AI models from 

specific attacks, such as data poisoning and manipulation 

of input data Kotti et al. [47]. One of these methods is to 

use techniques to verify the authenticity of input data 

before it is processed by models, which allows for 

detecting manipulation attempts and preventing malicious 

or incomplete data from entering the system. The study by 

Kotti et al. examined the implementation of ethical AI 

assessments, utilising data from financial services and 

healthcare systems to ensure adherence to GDPR and 

ethical norms. The study revealed that integrating ethical 

assessments across the software lifecycle, from 

requirements analysis to product support, enhanced 

product credibility and diminished algorithmic bias. These 

approaches guaranteed that AI systems complied with 

privacy regulations and fostered equity in decision-

making. Another approach is the use of anomaly-based 

protection algorithms that can detect any deviations in 

model behaviour caused by data attacks. These methods 

can improve the reliability and security of AI systems, 

which is critical for their implementation in software 

engineering, especially when processing large amounts of 

sensitive information, where even minor manipulations 

can lead to serious consequences. 

Retraining and professional development programmes 

are especially important, as they ensure a smooth 

transition and adaptation of employees to new conditions. 

Consideration of these factors reduces resistance to 

change and facilitates the integration of AI into software 

engineering practices, which significantly increases the 

efficiency of innovative technologies. This approach 

contributes to the creation of a sustainable workforce 

capable of effectively using the latest technologies, which 

confirms the importance of systematic training for the 

successful integration of AI. 

The study's findings underscore the substantial 

advantages of AI-driven methodologies in contemporary 

software development. AI-driven code creation and flaw 

detection significantly enhance productivity, accuracy, 

and scalability by automating repetitive processes, 

minimising human mistakes, and expediting development 

schedules. AI models, such as Codex for code generation, 

yield syntactically and semantically precise code, 

conserving time and reducing errors, while AI-enhanced 

testing automation increases defect detection accuracy, 

diminishes false positives, and facilitates the prompt 

identification of critical issues, ultimately decreasing costs 

and improving software quality. These enhancements 

enable organisations to optimise resources, expand test 

coverage, and accelerate time-to-market while 

simultaneously promoting creativity through the 

automation of monotonous chores and allowing 

developers to concentrate on intricate, creative 

endeavours. As AI technologies become increasingly 

available, they provide strategic benefits for both major 

corporations and smaller organisations, making them 

indispensable for the future of software development. 

The study proposes several mechanisms to ensure the 

transparency and interpretability of artificial intelligence 

models. One of these approaches is the use of techniques 

for visualising the internal processes of the model, 

demonstrating how decisions are made at each stage. In 

addition, the study proposed to use interpretable models, 

such as Local Interpretable Model-agnostic Explanations 

(LIME), to explain the decisions of complex machine 

learning models [48]. This helps reduce the level of 

distrust in systems and ensure compliance with ethical 

standards, as it allows users and developers to understand 

the logic of decisions. 

It is also necessary to consider cultural and social 

contexts when developing and implementing AI systems. 

Algorithms developed in one cultural environment may 

not function adequately in another, which can lead to 

misunderstandings or negative consequences. Therefore, 

it is necessary to involve multidisciplinary teams and 

assess the impact on different population groups. 
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4 Discussion 
The theoretical study revealed that the use of AI at various 

stages of software development can significantly increase 

the efficiency of processes such as automation of code 

generation, testing, and defect detection. A comparison of 

existing approaches has shown that methods based on 

deep neural networks have a significant advantage over 

classical techniques, as they can adapt to different 

programming languages and software types, providing 

greater versatility. Furthermore, the use of active learning 

to automatically identify problematic areas of code has 

proven to be effective in improving test coverage and 

reducing testing time. However, despite these advantages, 

the implementation of AI in practical development still 

needs to be improved, in particular in terms of adaptation 

to real-world development conditions and integration with 

existing tools. 

One of the most active areas of AI applications in 

software development is automated code generation [49]. 

Code generation is a complex process that requires the 

incorporation of many factors, such as syntax, 

programming language semantics, and customer needs 

[50]. The study determined that the use of deep neural 

networks for code generation is extremely promising. 

Such networks can learn patterns in the code, which allows 

them to generate fragments of software code whose 

accuracy is much higher than traditional methods. 

However, according to the study by Kim et al. [39], the 

use of transformers for code generation is one of the most 

modern methods, although it has limitations in the context 

of the interpretability of the results. In this study, hybrid 

models that combine machine learning and traditional 

algorithmic methods were proposed for better accuracy 

and reliability of code generation, especially for complex 

systems. Hybrid models, contrary to transformational 

models, can not only generate code but also check its 

compliance with technical requirements, making them 

more versatile and suitable for complex applications. 

According to the study, such models can be used to 

address the problem of transformers' limitations, 

providing not only high-quality generation but also 

integration with other stages of software development. 

Test automation is another important area where AI 

can bring significant optimisation. Traditionally, testing 

has been time-consuming and resource-intensive, test 

scenarios and validation of each piece of code for defects 

are done manually. However, with the development of AI, 

in particular machine learning algorithms, it has become 

possible to automatically generate test scenarios, detect 

defects in the code, and even predict failure points. One 

approach to test automation uses search algorithms to 

automatically generate test cases. Although this approach 

is effective, it requires significant computing resources 

and does not always provide complete test coverage. More 

effective are methods that use deep learning to detect 

defects in the code. Approaches such as the one by Liu et 

al. [42] can predict defects in the code, but they are limited 

to certain programming languages or types of 

applications. 

Compared to the results of studies such as by Anik et 

al. [51], which analysed deep neural networks, traditional 

methods such as SVM or Naive Bayes demonstrate 

limited adaptability. For instance, deep neural networks 

trained on multilingual datasets provide versatility and 

efficiency in detecting code defects regardless of the 

programming language, while SVMs and other classical 

methods often require customisation for specific 

languages and data types. However, traditional methods 

have advantages in learning speed and computational 

efficiency, especially on small datasets. 

In addition, active learning approaches used in deep 

neural networks allow for the automatic identification of 

critical areas for testing, increasing test coverage, as noted 

by Anik et al. [51] In this context, the results of the current 

study demonstrate that classical algorithms, although less 

versatile, are still an effective choice for narrower tasks, 

especially when resources or data are limited. 

Deep learning can improve the accuracy and efficiency 

of error detection, as well as automate complex 

development stages that previously required significant 

human resources. In the future, the development of such 

methods can lead to a significant increase in software 

productivity and quality. Existing research is yielding 

results, but there are still problems that need to be 

addressed. It is necessary to develop universal models that 

can work with different programming languages and types 

of software. It is also important to test the proposed 

methods in real software development environments to 

assess their effectiveness and adaptability to different 

environments.  

Compared to deep neural networks and transformers, 

hybrid models proposed by Ip [52] integrate machine 

learning with classical algorithmic approaches. They 

provide not only generation but also verification of 

compliance with technical requirements. For example, 

such models can automatically add documentation to the 

code and check the style and compliance with standards. 

However, hybrid models may be less flexible in new 

environments, as much of their functionality is based on 

defined rules. 

Deep neural networks are beneficial in code 

generation, but they are inferior to transformers in their 

ability to adapt to broad contexts. Hybrid models, on the 

other hand, provide greater reliability and accuracy for 

specific tasks but are more complex to develop. For real-

world software development environments, transformers 

are preferred due to their versatility, although hybrid 

models may be better for critical systems with strict 

requirements. 

The study of modern methods of test automation based 

on the use of search algorithms and neural networks 

demonstrates significant advantages over traditional 

approaches such as static testing or manual testing. Such 

methods can significantly reduce the time to detect errors, 

increase test coverage, and improve the accuracy of 

software quality control. However, there are challenges 

related to the versatility of these methods: they must be 

able to work effectively in different technological 

environments and with different programming languages. 

Compared to traditional approaches, which are limited to 
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specific environments, new AI-based methods offer more 

flexibility and scalability, but require additional research 

to achieve full universality. 

Based on the analysis, the best methods for use in 

software engineering are those that strike a balance 

between accuracy, adaptability, and efficiency. In code 

generation, transformers such as Codex perform best for 

general-purpose tasks, while hybrid models are optimal 

for specific and critical systems due to their ability to 

verify compliance with technical requirements. In test 

automation, methods based on active learning and deep 

neural networks outperform traditional search algorithms 

due to their greater test coverage and accuracy, although 

the latter remains effective for projects with limited 

resources. In defect detection, deep learning methods offer 

versatility and high accuracy, especially in multilingual 

environments, while classical methods such as SVMs are 

useful for smaller projects due to their speed and 

simplicity. To increase productivity, it is important to 

develop models that can be easily integrated into existing 

development tools (e.g., CI/CD systems) and adapt to the 

specifics of different environments. The further 

development of AI methods should be aimed at creating 

integrated solutions that combine the flexibility of 

transformers, the accuracy of hybrid models, and the 

efficiency of traditional algorithms. This will not only 

improve the quality and productivity of development but 

also make software engineering more adaptive to the 

needs of modern technologies. 

5 Conclusions 
This research evaluated the incorporation of AI into 

the software development process, emphasising its 

capacity to streamline processes, decrease development 

duration, and improve product quality. Critical discoveries 

indicate that AI applications, especially machine learning 

and deep neural networks, may markedly enhance several 

phases of the software life cycle, encompassing 

requirements analysis, design, testing, and code 

production. By automating repetitive operations, like code 

generation and test case production, AI minimises human 

error, expedites development, and guarantees more stable 

and dependable software. 

The study underscored the efficacy of AI in 

automating software testing and defect identification, 

illustrating that machine learning algorithms may identify 

problems early in the development phase, hence 

enhancing the overall quality of the product. Furthermore, 

AI's contribution to natural language processing (NLP) in 

requirements analysis has demonstrated its utility since 

NLP models may autonomously convert textual 

specifications into formal models, hence reducing 

misinterpretations between developers and clients. 

Despite the potential benefits, the research also 

recognised some problems, such as the necessity for 

enhanced openness and interpretability of AI models, the 

ethical ramifications of their use, and apprehensions 

around data privacy and security. These concerns 

highlight the necessity of creating responsible AI systems 

that comply with ethical principles and security protocols 

to guarantee the dependability and credibility of AI in 

software development.  

Given these limitations, further research should be 

devoted to the development of universal methods for 

integrating AI at different stages of software development, 

including for specific types of programs and applications. 

It is also necessary to conduct experimental testing of the 

proposed approaches in real conditions and on various 

platforms to assess their effectiveness and adaptability to 

different environments. 
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