
https://doi.org/10.31449/inf.v49i28.8694 Informatica 49 (2025) 59–72 59

Overview of Artificial Intelligence Application Methods in Software

Development

Andrii Burachynskyi*, Anton Shantyr

1Department of Computer Engineering, State University of Information and Communication Technologies, Kyiv,

Ukraine

E-mail: andriiburachynskyi@gmail.com, a.shantyr3@outlook.com

*Corresponding author

Keywords: automation, testing, machine learning, productivity, project management, natural language

Received: March 24, 2025

The study aimed to analyse modern approaches to the integration of artificial intelligence into the

software development process to optimise workflows and improve the quality of end products. The study

analysed existing research and practical examples of artificial intelligence applications at different stages

of the software life cycle. The study covered the automation of key tasks such as requirements analysis,

design, code creation and testing, as well as project management and support of software systems. The

study results demonstrated that the use of artificial intelligence, in particular machine learning models

and deep neural networks, can significantly reduce development time and costs by automating routine

tasks such as code generation and test scenarios. It also helps to improve product quality by automatically

detecting defects and predicting potential points of failure, which ensures more stable software operation.

In addition, the use of artificial intelligence improves project management, including more accurate

timeline planning, resource allocation, and risk management, which improves the efficiency of the

organisation of development teams. The study also analysed the optimisation of communication between

developers and stakeholders by applying natural language processing techniques to analyse

requirements, which reduces the probability of errors in specifications and helps to create better products.

In addition, the study addressed the prospects of using artificial intelligence in the processes of continuous

integration and delivery, as well as in real-time monitoring of software performance, which contributes

to the proactive detection of possible failures and rapid response to them. Recommendations on the

effective use of artificial intelligence to automate and optimise the software development process were

provided. This will help minimise risks, improve the cost-effectiveness of projects and support the

development of intelligent systems that can adapt to changes.

Povzetek:Podan je celovit pregled uporabe umetne inteligence pri razvoju programske opreme, vključno

z avtomatizacijo testiranja, generiranja kode, analizo zahtev in vodenjem projektov.

1 Introduction
In the modern world, the rapid development of technology

defines artificial intelligence (AI) as an integral part of

many industries, including software development. The

software development industry is actively integrating AI

to improve efficiency and automate and optimise many

processes. The use of AI helps to reduce time and

resources, increase the accuracy and quality of products,

and improve the efficiency of interaction between

developers and customers [1].

The use of AI in this context creates opportunities for

automation, optimisation and improvement of the

efficiency of processes. Despite this, there are several

challenges. In particular, the integration of AI at different

stages of the software life cycle is still insufficiently

researched. There are also issues related to ensuring the

security of technology use. There are differences in

approaches to automating testing processes, code

generation, and requirements analysis using AI. Many

solutions do not yet address the full integration of such

systems into real-world development environments,

which limits their practical applicability. It is also

necessary to consider the adaptability of modern models

to rapidly changing software development environments.

The problems arising from the use of AI in software

engineering are related to several aspects. These include

insufficient study of the transparency and interpretability

of AI models, limited integration of these technologies at

all stages of the software development life cycle, and

difficulties related to the adaptability of AI to rapidly

changing development environments. In addition, the

interaction of AI with distributed development teams has

not been sufficiently studied, especially in the context of

project management, requirements generation, and

process security.

The integration of AI into the software development

process is being actively studied in many areas. One of the

key issues is automated code generation using deep neural

networks. Chen and Babar [2] note that such methods can

analyse large amounts of existing code and creating new

fragments that meet the specified requirements. This can

mailto:andriiburachynskyi@gmail.com
mailto:a.shantyr3@outlook.com

60 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

significantly reduce development time and reduce the

number of errors caused by human error. Further research

by Settles [3] demonstrated that artificial intelligence

models can adapt to specific programming languages and,

therefore universal for modern software engineering.

Testing automation is also an important area of

research. Allamanis et al. [4] proved that artificial

intelligence can automatically generate test cases, detect

issues in the code, and predict potential failures. This

significantly improves software quality. Natural Language

Processing (NLP) methods are also widely used in

requirements analysis. For instance, Molnar [5]

demonstrated that artificial intelligence can automatically

transform textual requirements into formal specifications,

which reduces the risk of errors in communication

between customers and developers. Furthermore, NLP

techniques can analyse technical documentation to

identify potential problems, as noted by Jebnoun et al. [6].

Another promising area is the application of artificial

intelligence in the field of Development and Operations

(DevOps). A study by the Psico-Smart Editorial Team [7]

demonstrates that such systems can automate software

monitoring, detect anomalies in real-time, and suggest

optimisations to improve performance. These conclusions

are complemented by P. Boddington [8] in an analysis of

downtime reduction through intelligent management of

product integration and delivery processes.

The issue of the ethical use of artificial intelligence in

software development is actively covered in the works of

many researchers. Krishnan et al. [9] emphasise the

importance of transparency of decisions made by artificial

intelligence and the need to explain them, especially in the

context of implementing technologies in critical areas

such as medicine or aviation. However, in most studies,

the issue of transparency is limited to theoretical

discussions without specific examples of implementation.

Li et al [10] highlight the need to develop interpretable

artificial intelligence models that could explain the logic

of decisions, but a detailed analysis of the practical

application of such models in software development is not

enough. The prospects for using artificial intelligence in

forecasting market trends and analysing consumer needs

are also being actively studied. For instance, Amershi et

al. [11] noted that such systems can significantly improve

the adaptability of companies to market changes, allowing

them to create relevant products faster. In the field of

cybersecurity, Andrae [12] proposes the use of artificial

intelligence to automatically detect vulnerabilities and

prevent cyber threats.

Most studies address individual stages of the software

lifecycle, such as testing or coding, leaving out integrated

solutions that cover all stages. There is also insufficient

research into the interaction of AI with distributed

development teams, particularly in project management

and requirements engineering. These gaps necessitate a

comprehensive study of the possibilities of applying AI at

all stages of software development, accounting for the

requirements of transparency, ethics, and adaptability.

The study aimed to investigate methods of introducing

AI into the software development process and determine

its impact on increasing the productivity of development

teams and improving the characteristics of the final

product.

The objectives of the study were to identify potential

challenges and risks associated with the use of these

technologies, as well as to formulate recommendations for

the successful implementation of AI in software

engineering practice.

2 Materials and methods
Sequential modelling algorithms, such as recurrent neural

networks and transformers, are considered to predict the

next tokens in the code. The effectiveness of these models

when working with different programming languages and

their ability to adapt to specific coding styles were studied.

Software testing automation was studied through

machine learning to generate test cases, identify defects,

and forecast potential failures using methods such as

fuzzing and symbolic execution. Classification and

clustering algorithms were analysed to identify potentially

problematic areas in the code. Methods of static and

dynamic code analysis using AI were also investigated.

Machine learning algorithms were studied to predict

the timing of tasks, allocate resources, and identify

potential risks. The possibility of using recommender

systems to support decision-making by project managers

was also considered.

NLP was studied for analysing textual requirements

and documentation. Semantic analysis models, such as

Bidirectional Encoder Representations from Transformers

(BERT), were investigated. NLP technologies were also

used to analyse documentation and code, allowing for the

automatic detection of potential problems or deficiencies

in specifications and documentation.

The integration of AI into DevOps processes was

studied through the analysis of existing theoretical

approaches and modelling of continuous integration and

delivery systems using intelligent algorithms. Methods of

automatic monitoring and analysis of logs to detect

anomalies and respond to them promptly were considered.

The use of AI to automate the deployment and scaling of

applications in cloud environments to improve the

efficiency and speed of these processes, was also

investigated [13].

The ethical and security aspects of AI were analysed

in the context of potential risks and challenges. The issues

of transparency of algorithms, the ability to explain

decisions made by AI and the impact on employment in

the field of software engineering were analysed. Standards

and guidelines for the responsible use of AI in software

development were also studied.

To comprehensively analyse the methods of using AI,

various projects were analysed, comparing approaches

and technologies, their effectiveness and the real-world

applicability. For instance, the project of using AI for

automated software testing as per Jaber [14] was analysed.

Machine learning (ML) algorithms suitable for non-

functional requirements (NFR) classification tasks were

also considered. The article by Maciejauskaitė and

Miliauskaitė [15] analysed their effectiveness based on the

metrics of accuracy, precision, completeness, and F-

Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 61

measure, using models such as the support vector method,

naive Bayesian algorithm, and K-nearest neighbour

algorithms. The study also identified opportunities and

challenges in using artificial intelligence in software

development.

The integration of AI into the software development

lifecycle started with requirements analysis, during which

NLP models, like Codex, autonomously interpret and

transform textual specifications into formal models,

therefore finding ambiguities. Codex specialises at

producing coherent code in several programming

languages from natural language input, rendering it an

exceptional option for automated code generation tasks.

Step 1: Preprocess the input specifications

input_text = preprocess_text(specifications)

Step 2: Import the OpenAI Codex model and API

import openai

Step 3: Initialize OpenAI API

openai.api_key = "your-api-key-here"

Step 4: Fine-tuning Codex (if applicable)

Fine-tuning is optional and requires training on a

custom dataset of code examples.

OpenAI Codex models are usually pre-trained, so

this step can be skipped if not fine-tuning.

You can train Codex using OpenAI’s fine-tuning

API, assuming the dataset is in the proper format.

Step 5: Generate code using Codex

response = openai.Completion.create(

 engine="code-davinci-002", # Codex model (e.g.,

code-davinci-002)

 prompt=input_text, # The prompt is the input code

specification

 max_tokens=100, # The maximum length of the

generated code (can be adjusted)

 temperature=0.7, # Controls randomness (higher

value means more creativity)

 n=1, # Number of completions to generate

 stop=["\n"] # Stop when a new line is generated

(end of code generation)

)

Step 6: Extract the generated code from the response

generated_code = response.choices[0].text.strip()

Step 7: Post-process generated code (optional)

cleaned_code = postprocess_code(generated_code)

Step 8: Output or use the generated code

print("Generated Code: ", cleaned_code)

In the design phase, machine learning algorithms

categorised requirements into functional and non-

functional types to produce optimum design solutions. In

code creation, deep neural networks, such as RNNs and

transformer-based models, produce syntactically and

semantically accurate code from requirements. AI models

performed static and dynamic code analysis to identify

problems and used active learning to prioritise high-risk

locations for additional testing. Ultimately, throughout the

deployment and monitoring phase, machine learning

models facilitated system oversight, identified

abnormalities, and forecast probable breakdowns. The use

of AI across the software lifecycle enhanced each stage,

augmenting efficiency, precision, and overall software

quality.

Data was utilised from open-source repositories, such

as GitHub, for automatic code creation, which offered a

diverse array of authentic code examples in languages like

Python, JavaScript, and Java. The models were trained

using pristine, well-organised code snippets. The datasets

underwent preprocessing to guarantee data quality, with

training, validation, and test divisions of 80%, 20%, and

20%, respectively. To manage errors in code synthesis, the

models employed static and dynamic code analysis

techniques to detect and rectify issues, featuring integrated

error-handling mechanisms, including automatic

debugging and feedback loops, enabling the model to

learn from and adapt to errors throughout the generation

process. The training procedure encompassed model

training for 50-200 epochs, contingent upon task

difficulty, utilising a batch size of either 32 or 64.

Hyperparameters were refined by grid search, and models

were assessed using measures including accuracy,

precision, recall, F1 score, and the area under the ROC

curve (AUC) to evaluate performance.

The rationale for model selection was predicated on

task appropriateness. Deep Neural Networks (DNNs)

were used for finding defects and Codex for tasks

involving natural language processing. Recurrent neural

network (RNN) algorithm was trained to predict the next

token (code fragment) in the sequence based on a given

input:

Step 1: Preprocess data (tokenize code snippets)

data = preprocess_code(code_snippets)

Step 2: Define the RNN model architecture

model = Sequential()

model.add(Embedding(vocab_size, embedding_dim))

model.add(LSTM(units=256,

return_sequences=True))

model.add(Dropout(0.2))

model.add(LSTM(units=256))

model.add(Dense(vocab_size, activation='softmax'))

Step 3: Compile the model

model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

Step 4: Train the model

model.fit(X_train, Y_train, epochs=epochs,

batch_size=batch_size, validation_data=(X_val,

Y_val))

Step 5: Generate code based on a given prompt

(textual specification)

generated_code = model.predict(input_prompt)

62 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

The DNN model is trained on labeled code snippets

(defective vs. non-defective). The model predicts whether

a given code snippet contains defects based on learned

patterns:

Step 1: Preprocess data (label code snippets as

defect-free or defective)

data = preprocess_code_with_labels(code_snippets)

Step 2: Define the DNN model architecture

model = Sequential()

model.add(Dense(units=512, activation='relu',

input_dim=input_dim))

model.add(Dropout(0.5))

model.add(Dense(units=256, activation='relu'))

model.add(Dense(units=1, activation='sigmoid')) #

Output: defect (0/1)

Step 3: Compile the model

model.compile(loss='binary_crossentropy',

optimizer='adam', metrics=['accuracy'])

Step 4: Train the model

model.fit(X_train, Y_train, epochs=epochs,

batch_size=batch_size, validation_data=(X_val,

Y_val))

Step 5: Detect defects in code

defects = model.predict(code_snippets_to_classify)

Parameter optimisation was executed by grid and

random search, with k-fold cross-validation employed to

prevent overfitting. Models were assessed based on

accuracy, precision, recall, and F1 score. The NFR

classification test utilised Support Vector Machines

(SVM), K-NN, and Naive Bayes, with SVM

demonstrating superior performance for NFRs associated

with software dependability. The categorisation was

conducted using feature vectors derived from the labelled

software requirements.

3 Results
In the field of requirements analysis, one of the main tools

is NLP (NLP), which can automatically transform text

specifications into formal models, which significantly

reduces the probability of human error [16]. The use of

NLP models can be used to analyse requirements, and

identify contradictions and ambiguities, which is

substantial for avoiding errors in the subsequent stages of

development. It is known that the use of such methods

improves the accuracy of requirements interpretation and

speeds up the development process. This is especially

relevant in the context of dynamic software requirements,

when specifications may change during the development

process [17].

At the design stage, AI helps not only to automate the

creation of architectural solutions but also to analyse the

compliance of architectural models with available

resources and requirements [18, 19]. Intelligent systems

can evaluate project requirements and available resources,

such as budget, team expertise, and hardware capabilities,

to produce architectural templates for software systems,

aimed at enhancing scalability, maintainability, and

performance in accordance with industry best practices

and project-specific limitations. This allows not only to

reduce the risks associated with design errors but also to

ensure higher efficiency of the design process. As noted

by Chen and Babar [20], such intelligent systems can

predict and evaluate architectural solutions, which allows

for more efficient use of resources and avoidance of

significant errors in the early stages of development.

AI is also applied during the code development stage.

Automated code generation systems based on machine

learning algorithms allow not only to generate code

according to predefined templates but also to

automatically correct syntactic and semantic errors [21].

Such systems can offer optimised code snippets, which

help programmers focus on solving more complex tasks,

reducing the number of routine operations and increasing

the overall productivity of the team. Machine learning

algorithms can also detect potential errors and provide

recommendations on how to fix them, which significantly

increases the efficiency of the coding process [22, 23].

At the testing and defect detection stages, AI is used to

automate code analysis, which helps identify potentially

dangerous areas such as vulnerabilities, duplication, or

performance issues. Classification and clustering

algorithms automatically group similar code fragments,

which helps to identify repeated errors and optimise

testing. Static and dynamic code analysis using AI allows

for more accurate detection of defects even before the

testing stage, which improves the overall quality of the

software. As noted by Ajorloo et al. [24], these methods

help to detect errors at the early stages of development,

which reduces the time and resources spent on fixing

defects at later stages.

In general, the use of AI at all stages of the software

lifecycle not only optimises development but also allows

for more stable and reliable software, reducing the

probability of errors and improving the quality of the final

product. Classification algorithms help to automatically

identify error classes or categorise code sections based on

their complexity, error risk, or frequency of use.

Clustering methods can group similar code sections,

identify patterns that may contain potential defects, or

detect anomalies in the structure of programs.

In the testing process, AI is used to automatically

generate test scenarios and identify defects. Algorithms

analyse code and historical error data to predict potential

vulnerabilities [25]. This increases the efficiency of

testing and reduces the time and resources spent on this

stage. During software deployment and support, AI helps

to automatically monitor the system, detect anomalies, and

predict possible failures. A study of machine learning

algorithms has shown their effectiveness in predicting task

completion times, optimising resource allocation, and

identifying potential risks in the software development

process. Based on historical data, the algorithms can

accurately estimate the timing of project stages,

incorporate the complexity of tasks and team

Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 63

qualifications, ensure the rational use of human and

technical resources, and identify possible threats such as

delays or budget overruns. This contributed to more

efficient management, better planning, and reduced risks

in project activities.

The study analyses the effectiveness of machine

learning algorithms for NFR using the metrics of

accuracy, precision, completeness, and F-measure. The

built classification model based on majority voting

achieved the following indicators: accuracy – 0.710,

precision – 0.845, completeness – 0.814, and F-measure –

0.815. K-Fold cross-validation confirmed the stability of

the results. The use of support vector machine algorithms,

naive Bayesian algorithm, and K-nearest neighbour

algorithms as part of the voting model provided high-

performance indicators, which indicates the prospects of

the proposed approach for automating the classification of

non-functional requirements.

Following Oyeniran et al. [26] and Necula et al. [27],

it is possible to argue that the integration of AI into

DevOps significantly increases the speed of software

deployment, reducing the time for problem-solving and

product updates. DevOps is a set of practices aimed at

improving the interaction between software developers

and information technology service professionals [28].

The goal is to unify the workflows, improving efficiency

and time requirements for software product deployment.

Through the integration of these two functions, DevOps

promotes automation, continuous integration and delivery

of software, which allows for stability and speed in the

development and operation processes. Intelligent systems

respond to problems on their own, ensuring the high

availability and reliability of the software (Figure 1).

Integration of AI into DevOps processes ensures

continuous integration and delivery of software products,

increasing the speed of response to changes and

development flexibility [29]. This improves the

interaction between development and operations teams,

reducing the time to market.

Figure 1: DevOps model

Source: compiled by the authors based on Pattanayak et

al. [29].

However, the integration of AI into the software

development life cycle is accompanied by challenges

related to ethics, security, and responsibility for decisions

[30]. It is necessary to ensure the transparency and

interpretability of AI algorithms to avoid unintended

consequences and ensure user trust [31]. Analysis of

conceptual models of AI integration demonstrates that

these technologies significantly improve the software

development process. They help automate routine tasks,

improve quality and efficiency, and create opportunities

for innovation. Further research in this area will allow the

development of more advanced models and tools for

integrating AI into software engineering. The study of

machine learning algorithms for automated code

generation is gaining considerable attention in modern

software engineering [32]. Automated code generation

using machine learning increases developer productivity,

reduces errors, and speeds up the software development

process [33, 34]. The primary idea is to use deep learning

models to synthesise program code based on input data or

specifications.

One approach is to use recurrent neural networks and

attention mechanisms to transform textual descriptions of

tasks into the corresponding program code (Figure 2). This

allows automating the process of writing code, especially

for standard or repetitive tasks. The models are trained on

large volumes of task-description-solution code pairs,

which enables them to generate code that meets the

specified requirements.

Figure 2: Neural network configuration.

Source: compiled by the authors.

Another promising area is the use of transformers and

self-learning models, which have shown to be highly

effective in NLP tasks. These models are used in code

64 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

generation to consider long-term dependencies and

context, which improves the quality of the generated

programs. Transformers are used to predict the next tokens

in the code, which contributes to the creation of intelligent

autocomplete systems. Graph neural networks are also

being studied to model the syntactic and semantic

structures of the code. The use of graph representations

helps to better reflect complex relationships between

program elements, which increases the accuracy and

reliability of code generation. This is especially relevant

for programming languages with rigid typing and complex

syntactic structures.

An important aspect is training models on large and

high-quality data sets. For this purpose, open-source

repositories such as GitHub were used, which provide

access to many real-world examples of software code.

However, this raises the issue of data quality and possible

licensing restrictions, therefore careful data filtering was

conducted before training. The effectiveness of machine

learning algorithms for code generation is evaluated using

the metrics of accuracy, completeness, and semantic

compliance of the generated code with the specified

requirements [35]. One of the main challenges is to ensure

the correctness and security of the generated code.

Machine learning models can generate code with errors or

vulnerabilities. To solve this problem, static and dynamic

code analysis methods are integrated to identify and fix

potential defects at the early stages of generation. The

examination of code creation and testing automation

reveals significant enhancements with AI methodologies

relative to conventional approaches (Table 1).

Table 1: Comparison of AI-based methods and

traditional techniques in code generation and testing

automation

Metric
AI

mean

Traditional

mean

AI p-value (vs

traditional)

BLEU score 0.75 0.61 5.49e-13

Syntactic

correctness
0.95 0.85 1.31e-19

Semantic

accuracy
0.9 0.75 2.77e-19

F1-Score 0.87 0.73 6.43e-11

True

positive rate
0.87 0.71 4.49e-15

False

positive rate
0.05 0.14 4.57e-14

False

negative rate
0.1 0.23 6.43e-11

Source: compiled by the authors.

The AI models (Codex and transformers) got higher

BLEU ratings (0.75 vs. 0.60), syntactic correctness (0.95

vs. 0.85), and semantic accuracy (0.90 vs. 0.75) compared

to conventional rule-based systems. The statistical

analyses reveal extremely significant p-values (all below

0.05), demonstrating that the AI methodologies far surpass

conventional approaches in these parameters.

AI methodologies have shown a significant

enhancement in defect identification for testing

automation. The True Positive Rate for AI was 0.87,

markedly above the 0.71 recorded for classical

approaches. AI models had much reduced False Positive

(0.05 against 0.14) and False Negative (0.10 versus 0.23)

rates, indicating superior efficacy in accurately identifying

genuine problems while minimising incorrect detections.

The p-values for all comparisons in testing automation are

exceedingly low, further substantiating the statistical

relevance of these enhancements. These findings highlight

the benefits of AI in automating code development and

testing, establishing a robust foundation for the asserted

enhancements above conventional methods.

The study also covered the possibility of using

recommender systems to support decision-making by

project managers. Such systems, based on machine

learning algorithms, can analyse large amounts of data,

including the history of similar projects, team

performance, resource allocation, and potential risks.

They can provide managers with informed

recommendations on how to allocate tasks, adjust plans,

and predict the consequences of various scenarios. This

improves the quality of decision-making, helps avoid

critical errors, and helps ensure that projects are delivered

on time and budget [15].

The problem of model interpretability is also relevant.

Developers should be able to determine how the model

decided to trust the generated code and be able to correct

it. For this purpose, methods are used to visualise the

internal processes of the model and explain the decisions

made. Automation of software testing with the help of AI

is one of the key areas of modern software engineering

[36]. The use of AI in this area increases the efficiency of

testing, reduces time and resources, and improves the

quality of the final product. AI test automation methods

are based on machine learning, deep learning, and NLP

algorithms. One of the main methods is the automatic

generation of test scenarios based on the analysis of source

code and software requirements [12]. Machine learning

algorithms analyse the structure of the code, identify

potential vulnerabilities, and create corresponding test

cases [37]. This ensures more complete test coverage and

detection of hidden defects.

Deep neural networks are used to predict possible

defects in software [38]. By analysing historical data on

previous bugs, deep learning models detect patterns and

anomalies, which allows them to focus on the most critical

areas of the code. This increases the efficiency of testing

and reduces the number of released defects. NLP is used

to automatically analyse requirements and specifications.

AI systems interpret textual descriptions of functionality

and transform them into formal test cases. This simplifies

the process of creating tests, reduces the probability of

human errors, and ensures the match between

requirements and implementation. The use of genetic

algorithms and evolutionary learning can optimise the test

suite. By automatically selecting the most effective test

scenarios, maximum coverage is achieved with a

minimum number of tests. This saves resources and

accelerates the testing process. Integration of AI into

Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 65

continuous integration and delivery systems ensures that

testing is performed automatically at every stage of

development. AI systems analyse test results in real-time

and make decisions on the product's readiness for the next

stages. This increases the speed of development and

ensures high-quality software.

The use of AI in testing also includes the automatic

detection of regression errors. Machine learning models

compare the results of current tests with previous ones,

identifying inconsistencies and potential problems. This is

important for maintaining system stability when making

changes or updates. However, the introduction of AI in

test automation is accompanied by challenges. One of

them is the need for large amounts of high-quality data to

train models. Without enough data, models can be

inaccurate or biased. There is also the issue of the

interpretability of AI models, as the complexity of

algorithms can contribute to the obscurity of decisions.

Security and ethical issues are also relevant. It is

necessary to ensure that AI systems do not generate

malicious code or contribute to the identification of

vulnerabilities in the system. Models should be developed

per ethical and security standards [39]. In modern software

engineering, requirements analysis is a critical stage on

which the success of the entire software development

project depends. One of the main problems of this stage is

the ambiguity and incompleteness of requirements

formulated in natural language. Application of NLP to

requirements analysis can automate the process of

identifying such problems, improving the quality and

efficiency of development.

NLP is used to automatically analyse textual

requirements to detect ambiguities, contradictions and

omissions. NLP algorithms identify potentially

problematic phrases, such as ambiguous words or

expressions that can be interpreted in different ways. With

the algorithms, developers can identify and eliminate

inaccuracies in the requirements promptly, reducing the

risk of errors at later stages of development. Linguistic

models are used to analyse the syntactic and semantic

structure of sentences. Such models help identify logical

relationships between requirements and assess their

consistency. NLP is also used to classify requirements by

type, for example, functional and non-functional

requirements, which simplifies their further processing

and management. Machine learning techniques, such as

deep neural networks, are used to automatically detect

patterns in requirements and predict potential problems.

Transformer-based models, such as BERT, can

comprehend the context and meaning of words in

sentences, which increases the accuracy of the analysis. In

addition, the project of using AI for automated software

testing described in Jaber [14] was analysed. This project

demonstrated that the use of machine learning algorithms

significantly reduces the time of requirements analysis and

increases the accuracy of classifying non-functional

requirements by up to 78%. This confirms the

effectiveness of ML integration into software

development and testing processes. The results obtained

in the study are consistent with this approach, adding

practical value to the developed model. Integration of ML

into requirements management processes improves

communication between customers and developers.

Automatically generating formal specifications based on

textual requirements reduces the risk of misinterpretation

and provides a clearer understanding of customer

expectations. This is especially important in large projects

where the number of requirements reaches thousands.

NLP can also be used to automate the process of

tracing requirements, linking them to the corresponding

code components and tests. This increases development

transparency and facilitates change management, enabling

rapid response to changes or new requirements. However,

the use of NLP for requirements analysis also has certain

challenges. The complexity of natural language, which

contains multiple meanings, idioms, and complex

grammatical structures, makes automatic analysis

difficult. The quality of the results depends on the amount

and quality of training data, which requires significant

resources to collect and process.

Prospects for the development of the use of NLP in

requirements analysis are associated with the

improvement of machine learning algorithms and models.

The development of more accurate and efficient models

improves the quality of analysis and automates more tasks.

Integration with other technologies, such as semantic

networks and ontologies, improves the understanding of

the context and meaning of requirements. In general,

research into the use of NLP for requirements analysis is

an important area that contributes to the efficiency and

quality of software development. Automation of the

requirements analysis process reduces the risk of errors,

improves communication between project participants,

and optimises the use of resources. The use of AI in

software development raises significant ethical and

security issues that require careful analysis. One of the

main ethical challenges is the issue of responsibility for

decisions made by AI systems. Since machine learning

algorithms act autonomously, it is difficult to determine

the entity that is responsible for possible errors or damage

caused by such systems [40]. This is especially relevant in

the context of critical applications where the consequences

can be serious.

There is also a risk of bias in the data on which AI

models are trained. If the training data contains

discriminatory or inaccurate information, this can lead to

unfair decisions that negatively impact users. Ensuring the

transparency and explainability of algorithms is essential

so that users and developers can understand the logic

behind decisions and identify potential biases. For this

purpose, interpreted AI methods are being developed to

explain the internal processes of models and the decisions

they make. Security aspects are also key when using AI in

software development. AI algorithms can be vulnerable to

attacks such as data poisoning or manipulation of input

data, which leads to malfunctioning of the system [41].

Ensuring the security of AI systems requires the

development of new protection methods that take into

account the specifics of machine learning and can counter

specific threats. Methods of protection against attacks

based on adaptive algorithms and data integrity checks are

used to ensure the reliability of systems.

66 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

Data privacy is another important aspect. Large

amounts of data are used to train AI models, which may

contain personal or sensitive information. It is necessary

to ensure the protection of such data and compliance with

privacy laws, including the General Data Protection

Regulation (GDPR). This includes the use of

anonymisation techniques, encryption and the

establishment of clear data access policies to prevent

unauthorised access and use of information. Ethical

considerations also apply to the impact of AI on

employment in software development. Automation of

certain tasks with the help of AI can lead to a change in

the structure of the labour market, requiring new skills and

competencies from specialists [42]. This poses a challenge

for society to provide opportunities for retraining and

advanced training so that specialists can adapt to new

requirements and avoid negative social consequences.

Regulatory issues are central in addressing the ethical and

security aspects of AI use. Standards and regulations need

to be developed that define the requirements for security,

transparency, and responsibility of AI systems.

International organisations and governments are already

working to create such a framework, which will help

increase trust in technology and ensure its alignment with

societal values. For instance, the European Commission

has published guidelines for the ethical use of AI, which

include the principles of respect for fundamental rights

and prevention of harm.

The use of AI in software development also raises the

question of how autonomous systems can be controlled. It

is necessary to ensure that AI systems act within the set

parameters and do not make decisions that go beyond their

competence. To this end, methods of formal verification

and limitation of system autonomy are being developed to

maintain control over their actions and prevent

undesirable consequences. The issue of ethical decision-

making by AI systems is another aspect that requires

attention. AI systems must comply with the ethical norms

and values of society, which requires the integration of

ethical principles into the process of model development

and training. This includes designing algorithms that

consider the consequences of their decisions and act in the

best interests of users, ensuring fairness and non-

discrimination.

Kim et al. [39] studied hybrid models that combine

machine learning with traditional algorithmic methods for

automatic code generation. Their research demonstrated

that hybrid models integrating machine learning

approaches with conventional algorithmic methods

exhibited substantial enhancements in both accuracy and

efficiency. Codex produced code with a BLEU score of

0.75, in contrast to 0.6 for conventional rule-based

approaches. The use of hybrid models led to a 30%

decrease in mistakes in code creation relative to

conventional systems, as shown in the case study by Kim

et al. Compared to existing approaches, these models

demonstrate significantly higher accuracy and reliability

when creating complex software systems where

traditional algorithms may be limited in efficiency. Such

hybrid methods can significantly reduce development

time and reduce the number of errors while maintaining a

high level of quality of the final product. As a result, the

application of these models is effective and can be

recommended for use in real-world software development,

especially for complex and large projects where high

accuracy and adaptability are required.

As part of the theoretical study, a review of existing

approaches to the use of AI in software development, in

automating code generation, testing, and defect detection,

was conducted. The use of deep learning methods, such as

hybrid models for code generation and neural networks for

defect detection, is proving to be effective in providing

higher accuracy and versatility when working with

different programming languages and types of software.

Active learning is proving to be useful in optimising the

testing process by automatically identifying the most

problematic code areas, which reduces the time to detect

bugs and increases test coverage. This includes

implementing ethical checks at every stage of the software

lifecycle, from requirements analysis to testing and

product support. This approach ensures that decisions

made by AI comply with ethical standards, ensure

transparency and fairness, and reduce the risks associated

with algorithmic bias and its impact on social groups. The

results demonstrated that incorporating ethical checks at

all stages of development increases product credibility and

reduces the probability of negative consequences from the

use of AI. This is an important step towards creating

responsible and reliable technologies that can be widely

deployed in various industries.

AI models trained on Mozilla and Apache had a True

Positive Rate of 87%, in contrast to 71% for conventional

static analysis methods. AI-based models exhibited a

False Positive Rate of 5% and a False Negative Rate of

10%, markedly surpassing static analytic techniques,

which recorded a 14% False Positive Rate and a 23% False

Negative Rate [43]. The AI models decreased bug

detection time by 50% relative to conventional

approaches, enhancing the efficiency of defect

identification in extensive codebases. The use of active

learning in testing automation facilitated a more effective

allocation of resources, ensuring that testing efforts were

focused on regions with the greatest probability of faults

[44].

Confidential healthcare information (e.g., medical

records) and financial data are used to train AI models for

ethical decision-making. Ethical AI systems deployed in

these industries show a 50% decrease in algorithmic bias

relative to non-ethical AI models. Furthermore, adherence

to GDPR was achieved by using openness and fairness

assessments, therefore diminishing the risk of non-

compliance by 40% [45]. The use of ethical AI

assessments fostered increased confidence in AI systems,

especially in industries managing sensitive data, and

mitigated the risk of regulatory infractions.

AI-driven testing automation systems, encompassing

defect identification and test scenario creation, have

demonstrated exceptional efficacy in finding faults during

the early phases of development. In recent studies a deep

learning-based model for defect identification was

developed, surpassing standard static analysis techniques

in identifying code vulnerabilities [46]. The model

Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 67

employed categorisation methods to autonomously

identify vulnerabilities and performance constraints. AI

methodologies, particularly clustering and classification,

facilitated the automated categorisation of analogous code

segments, hence enhancing the identification of recurring

problems and the optimisation of testing processes. This

method not only identified probable errors prior to the

testing phase but also conserved considerable time and

money by recognising patterns in the code that may result

in problems in later stages.

New mechanisms were proposed by Sangeetha and

Lakshmi [38] to ensure the transparency and

interpretability of AI models, which increase trust in these

systems and their compliance with ethical standards.

Innovative tools for monitoring and assessing ethical risks

have been developed, allowing for effective management

of potential threats. Methods of protecting AI models from

specific attacks were also introduced, which significantly

improved the reliability and security of these systems,

making them more resistant to manipulation and

vulnerabilities. The research conducted by Sangeetha and

Lakshmi illustrated the use of active learning algorithms

in Java code sourced from open-source sources. These

techniques concentrated on pinpointing the most

troublesome segments of code and enhancing test

coverage. The study indicated that active learning

decreased the time required to identify flaws and markedly

enhanced the testing process by prioritising high-risk code

sections.

To successfully implement AI in software engineering,

it is important to provide ongoing staff updates and

training to enable developers to use new AI tools and

algorithms and reduce potential errors. Integrating AI into

existing workflows should be done in stages, starting with

the automation of routine tasks such as testing and code

generation, which can be used to focus on more creative

aspects of work. Particular attention should be paid to

security and ethics, including the protection of data,

especially personal and sensitive data, in the process of

using AI, as well as compliance with ethical standards and

privacy laws. It is equally important to ensure the

transparency of AI algorithms, which will allow users to

better understand the decisions made by the system and

identify possible problems.

Based on the analysis of existing approaches, this

study proposes methods for protecting AI models from

specific attacks, such as data poisoning and manipulation

of input data Kotti et al. [47]. One of these methods is to

use techniques to verify the authenticity of input data

before it is processed by models, which allows for

detecting manipulation attempts and preventing malicious

or incomplete data from entering the system. The study by

Kotti et al. examined the implementation of ethical AI

assessments, utilising data from financial services and

healthcare systems to ensure adherence to GDPR and

ethical norms. The study revealed that integrating ethical

assessments across the software lifecycle, from

requirements analysis to product support, enhanced

product credibility and diminished algorithmic bias. These

approaches guaranteed that AI systems complied with

privacy regulations and fostered equity in decision-

making. Another approach is the use of anomaly-based

protection algorithms that can detect any deviations in

model behaviour caused by data attacks. These methods

can improve the reliability and security of AI systems,

which is critical for their implementation in software

engineering, especially when processing large amounts of

sensitive information, where even minor manipulations

can lead to serious consequences.

Retraining and professional development programmes

are especially important, as they ensure a smooth

transition and adaptation of employees to new conditions.

Consideration of these factors reduces resistance to

change and facilitates the integration of AI into software

engineering practices, which significantly increases the

efficiency of innovative technologies. This approach

contributes to the creation of a sustainable workforce

capable of effectively using the latest technologies, which

confirms the importance of systematic training for the

successful integration of AI.

The study's findings underscore the substantial

advantages of AI-driven methodologies in contemporary

software development. AI-driven code creation and flaw

detection significantly enhance productivity, accuracy,

and scalability by automating repetitive processes,

minimising human mistakes, and expediting development

schedules. AI models, such as Codex for code generation,

yield syntactically and semantically precise code,

conserving time and reducing errors, while AI-enhanced

testing automation increases defect detection accuracy,

diminishes false positives, and facilitates the prompt

identification of critical issues, ultimately decreasing costs

and improving software quality. These enhancements

enable organisations to optimise resources, expand test

coverage, and accelerate time-to-market while

simultaneously promoting creativity through the

automation of monotonous chores and allowing

developers to concentrate on intricate, creative

endeavours. As AI technologies become increasingly

available, they provide strategic benefits for both major

corporations and smaller organisations, making them

indispensable for the future of software development.

The study proposes several mechanisms to ensure the

transparency and interpretability of artificial intelligence

models. One of these approaches is the use of techniques

for visualising the internal processes of the model,

demonstrating how decisions are made at each stage. In

addition, the study proposed to use interpretable models,

such as Local Interpretable Model-agnostic Explanations

(LIME), to explain the decisions of complex machine

learning models [48]. This helps reduce the level of

distrust in systems and ensure compliance with ethical

standards, as it allows users and developers to understand

the logic of decisions.

It is also necessary to consider cultural and social

contexts when developing and implementing AI systems.

Algorithms developed in one cultural environment may

not function adequately in another, which can lead to

misunderstandings or negative consequences. Therefore,

it is necessary to involve multidisciplinary teams and

assess the impact on different population groups.

68 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

4 Discussion
The theoretical study revealed that the use of AI at various

stages of software development can significantly increase

the efficiency of processes such as automation of code

generation, testing, and defect detection. A comparison of

existing approaches has shown that methods based on

deep neural networks have a significant advantage over

classical techniques, as they can adapt to different

programming languages and software types, providing

greater versatility. Furthermore, the use of active learning

to automatically identify problematic areas of code has

proven to be effective in improving test coverage and

reducing testing time. However, despite these advantages,

the implementation of AI in practical development still

needs to be improved, in particular in terms of adaptation

to real-world development conditions and integration with

existing tools.

One of the most active areas of AI applications in

software development is automated code generation [49].

Code generation is a complex process that requires the

incorporation of many factors, such as syntax,

programming language semantics, and customer needs

[50]. The study determined that the use of deep neural

networks for code generation is extremely promising.

Such networks can learn patterns in the code, which allows

them to generate fragments of software code whose

accuracy is much higher than traditional methods.

However, according to the study by Kim et al. [39], the

use of transformers for code generation is one of the most

modern methods, although it has limitations in the context

of the interpretability of the results. In this study, hybrid

models that combine machine learning and traditional

algorithmic methods were proposed for better accuracy

and reliability of code generation, especially for complex

systems. Hybrid models, contrary to transformational

models, can not only generate code but also check its

compliance with technical requirements, making them

more versatile and suitable for complex applications.

According to the study, such models can be used to

address the problem of transformers' limitations,

providing not only high-quality generation but also

integration with other stages of software development.

Test automation is another important area where AI

can bring significant optimisation. Traditionally, testing

has been time-consuming and resource-intensive, test

scenarios and validation of each piece of code for defects

are done manually. However, with the development of AI,

in particular machine learning algorithms, it has become

possible to automatically generate test scenarios, detect

defects in the code, and even predict failure points. One

approach to test automation uses search algorithms to

automatically generate test cases. Although this approach

is effective, it requires significant computing resources

and does not always provide complete test coverage. More

effective are methods that use deep learning to detect

defects in the code. Approaches such as the one by Liu et

al. [42] can predict defects in the code, but they are limited

to certain programming languages or types of

applications.

Compared to the results of studies such as by Anik et

al. [51], which analysed deep neural networks, traditional

methods such as SVM or Naive Bayes demonstrate

limited adaptability. For instance, deep neural networks

trained on multilingual datasets provide versatility and

efficiency in detecting code defects regardless of the

programming language, while SVMs and other classical

methods often require customisation for specific

languages and data types. However, traditional methods

have advantages in learning speed and computational

efficiency, especially on small datasets.

In addition, active learning approaches used in deep

neural networks allow for the automatic identification of

critical areas for testing, increasing test coverage, as noted

by Anik et al. [51] In this context, the results of the current

study demonstrate that classical algorithms, although less

versatile, are still an effective choice for narrower tasks,

especially when resources or data are limited.

Deep learning can improve the accuracy and efficiency

of error detection, as well as automate complex

development stages that previously required significant

human resources. In the future, the development of such

methods can lead to a significant increase in software

productivity and quality. Existing research is yielding

results, but there are still problems that need to be

addressed. It is necessary to develop universal models that

can work with different programming languages and types

of software. It is also important to test the proposed

methods in real software development environments to

assess their effectiveness and adaptability to different

environments.

Compared to deep neural networks and transformers,

hybrid models proposed by Ip [52] integrate machine

learning with classical algorithmic approaches. They

provide not only generation but also verification of

compliance with technical requirements. For example,

such models can automatically add documentation to the

code and check the style and compliance with standards.

However, hybrid models may be less flexible in new

environments, as much of their functionality is based on

defined rules.

Deep neural networks are beneficial in code

generation, but they are inferior to transformers in their

ability to adapt to broad contexts. Hybrid models, on the

other hand, provide greater reliability and accuracy for

specific tasks but are more complex to develop. For real-

world software development environments, transformers

are preferred due to their versatility, although hybrid

models may be better for critical systems with strict

requirements.

The study of modern methods of test automation based

on the use of search algorithms and neural networks

demonstrates significant advantages over traditional

approaches such as static testing or manual testing. Such

methods can significantly reduce the time to detect errors,

increase test coverage, and improve the accuracy of

software quality control. However, there are challenges

related to the versatility of these methods: they must be

able to work effectively in different technological

environments and with different programming languages.

Compared to traditional approaches, which are limited to

Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 69

specific environments, new AI-based methods offer more

flexibility and scalability, but require additional research

to achieve full universality.

Based on the analysis, the best methods for use in

software engineering are those that strike a balance

between accuracy, adaptability, and efficiency. In code

generation, transformers such as Codex perform best for

general-purpose tasks, while hybrid models are optimal

for specific and critical systems due to their ability to

verify compliance with technical requirements. In test

automation, methods based on active learning and deep

neural networks outperform traditional search algorithms

due to their greater test coverage and accuracy, although

the latter remains effective for projects with limited

resources. In defect detection, deep learning methods offer

versatility and high accuracy, especially in multilingual

environments, while classical methods such as SVMs are

useful for smaller projects due to their speed and

simplicity. To increase productivity, it is important to

develop models that can be easily integrated into existing

development tools (e.g., CI/CD systems) and adapt to the

specifics of different environments. The further

development of AI methods should be aimed at creating

integrated solutions that combine the flexibility of

transformers, the accuracy of hybrid models, and the

efficiency of traditional algorithms. This will not only

improve the quality and productivity of development but

also make software engineering more adaptive to the

needs of modern technologies.

5 Conclusions
This research evaluated the incorporation of AI into

the software development process, emphasising its

capacity to streamline processes, decrease development

duration, and improve product quality. Critical discoveries

indicate that AI applications, especially machine learning

and deep neural networks, may markedly enhance several

phases of the software life cycle, encompassing

requirements analysis, design, testing, and code

production. By automating repetitive operations, like code

generation and test case production, AI minimises human

error, expedites development, and guarantees more stable

and dependable software.

The study underscored the efficacy of AI in

automating software testing and defect identification,

illustrating that machine learning algorithms may identify

problems early in the development phase, hence

enhancing the overall quality of the product. Furthermore,

AI's contribution to natural language processing (NLP) in

requirements analysis has demonstrated its utility since

NLP models may autonomously convert textual

specifications into formal models, hence reducing

misinterpretations between developers and clients.

Despite the potential benefits, the research also

recognised some problems, such as the necessity for

enhanced openness and interpretability of AI models, the

ethical ramifications of their use, and apprehensions

around data privacy and security. These concerns

highlight the necessity of creating responsible AI systems

that comply with ethical principles and security protocols

to guarantee the dependability and credibility of AI in

software development.

Given these limitations, further research should be

devoted to the development of universal methods for

integrating AI at different stages of software development,

including for specific types of programs and applications.

It is also necessary to conduct experimental testing of the

proposed approaches in real conditions and on various

platforms to assess their effectiveness and adaptability to

different environments.

References
[1] Edy Susanto and Zahra Dinul Khaq, “Enhancing

Customer Service Efficiency in Start-Ups with AI:

A Focus on Personalisation and Cost Reduction”,

Journal of Management and Informatics, 3(2):

267-281, 2024.

https://doi.org/10.51903/jmi.v3i2.34

[2] Lianping Chen and Muhammad Ali Babar,

“Variability Management in Software Product

Lines: An Investigation of Contemporary

Industrial Challenges”, in Proceeding of 14th

International Conference: Software Product Lines:

Going Beyond, J. Bosch, J. Lee, Eds., Heidelberg:

Springer Berlin, 2010, pp. 166-180.

[3] Burr Settles, Active Learning, Cham: Springer,

2012.

[4] Miltiadis Allamanis, Earl T. Barr, Prem Devanbu

and Charles A. Sutton, “A Survey of Machine

Learning for Big Code and Naturalness”, ACM

Computing Surveys, 51(4): 81, 2018.

https://dl.acm.org/doi/10.1145/3212695

[5] Christoph Molnar, Interpretable Machine

Learning: A Guide for Making Black Box Models

Explainable, Munich: Lean Publishing, 2019.

[6] Hadhemi Jebnoun, Md. Saidur Rahman, Foutse

Khomh and Biruk Asmare Muse, “Clones in Deep

Learning Code: What, Where, and Why?”,

Empirical Software Engineering, 27: 84, 2022.

https://doi.org/10.1007/s10664-021-10099-x

[7] Psico-Smart Editorial Team. “How can Artificial

Intelligence be Utilized in Performance Analysis

and Evaluation?” PsicoSmart. 2024. [Online.]

Available: https://psico-smart.com/en/blogs/blog-

how-can-artificial-intelligence-be-utilized-in-

performance-analysis-and-evaluation-139540

[8] Paula Boddington, “Towards the Future with AI:

Work and Superintelligence”, in AI Ethics: A

Textbook, Singapore: Springer, 2023, pp. 409-456.

[9] N.M. Anoop Krishnan, Hariprasad Kodamana and

Ravinder Bhattoo, “Interpretable Machine

Learning”, in Machine Learning for Materials

Discovery: Numerical Recipes and Practical

Applications, Cham: Springer, 2024, pp. 159-171.

[10] Hongjia Li, Tianshu Wei, Ao Ren, Qi Zhu and

Yanzhi Wang, “Deep Reinforcement Learning:

Framework, Applications, and Embedded

Implementations: Invited Paper”, in 2017

IEEE/ACM International Conference on

Computer-Aided Design, Irvine: Institute of

https://doi.org/10.51903/jmi.v3i2.34
https://dl.acm.org/doi/10.1145/3212695
https://doi.org/10.1007/s10664-021-10099-x
https://psico-smart.com/en/blogs/blog-how-can-artificial-intelligence-be-utilized-in-performance-analysis-and-evaluation-139540
https://psico-smart.com/en/blogs/blog-how-can-artificial-intelligence-be-utilized-in-performance-analysis-and-evaluation-139540
https://psico-smart.com/en/blogs/blog-how-can-artificial-intelligence-be-utilized-in-performance-analysis-and-evaluation-139540

70 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

Electrical and Electronics Engineers, 2017, pp.

847-854.

[11] Saleema Amershi, Andrew Begel, Christian Bird,

Robert DeLine, Harald Gall, Ece Kamar,

Nachiappan Nagappan, Besmira Nushi and

Thomas Zimmermann, “Software Engineering for

Machine Learning: A Case Study”, in Proceedings

of 2019 IEEE/ACM 41st International Conference

on Software Engineering: Software Engineering in

Practice, Montreal: Institute of Electrical and

Electronics Engineers, 2019, pp. 291-300.

[12] Silvio Andrae, “Cyber Risk Assessment Using

Machine Learning Algorithms”, in Advances in

Computational Intelligence and Robotics,

Hershey: IGI Global, 2025, pp. 187-218.

[13] Satvik Garg, Pradyumn Pundir, Geetanjali Rathee,

P.K. Gupta, Somya Garg and Saransh Ahlawat,

“On Continuous Integration / Continuous Delivery

for Automated Deployment of Machine Learning

Models using MLOps”, in J. Gurrola, Ed.,

Proceedings of 2021 IEEE Fourth International

Conference on Artificial Intelligence and

Knowledge Engineering, Hills: Institute of

Electrical and Electronics Engineers, 2021, pp. 25-

28.

[14] Samir Jaber, “Intelligent Software Testing and AI-

Powered Apps: From Automated Defect Prediction

to Context-Aware Mobile Services”, 2024.

https://doi.org/10.13140/RG.2.2.20694.46401

[15] Milda Maciejauskaitė and Jolanda Miliauskaitė,

“The Efficiency of Machine Learning Algorithms

in Classifying Non-Functional Requirements”,

New Trends in Computer Sciences, 2(1): 46-5,

2024. https://doi.org/10.3846/ntcs.2024.21574

[16] Mamta Kalra and Suman Sangwan, “Machine

Learning and Deep Learning Techniques for

Recommendation Systems: A Comprehensive

Review”, Journal of Harbin Engineering

University, 45(5): 158-172, 2024.

[17] Vitalii Shymko and Oleg Slipych, “The use of

innovative solutions and VR-technologies in

architectural design and construction”, Mining

Journal of Kryvyi Rih National University, 58(1):

110-114, 2024. https://doi.org/10.31721/2306-

5435-2024-1-112-110-114

[18] Oleksandr Tkachenko, Aleksei Chechet, Maksim

Chernykh, Sergei Bunas and Przemysław

Jatkiewicz, “Scalable Front-End Architecture:

Building for Growth and Sustainability”,

Informatica (Slovenia), 49(1): 137-150, 2025.

https://doi.org/10.31449/inf.v49i1.6304

[19] Seyit Kerimkhulle, Ainur Saliyeva, Ulzhan

Makhazhanova, Zhandos Kerimkulov, Alibek

Adalbek and Roman Taberkhan, “The estimate of

innovative development of construction industry in

the Kazakhstan”, E3S Web of Conferences, 389:

06004, 2023.

https://doi.org/10.1051/e3sconf/202338906004

[20] Huaming Chen and M. Ali Babar, “Security for

Machine Learning-based Software Systems: A

Survey of Threats, Practices and Challenges”,

ACM Computing Surveys, 56(6): 151, 2022.

https://doi.org/10.1145/3638531

[21] Itzhak Aviv, Ruti Gafni, Sofia Sherman, Berta

Aviv, Asher Sterkin and Etzik Bega,

“Infrastructure From Code: The Next Generation

of Cloud Lifecycle Automation”, IEEE Software,

40(1): 42-49, 2023.

https://doi.org/10.1109/MS.2022.3209958

[22] Prajakta Sudhir Khade and Dr. Rajeshkumar U.

Sambhe, “Artificial Intelligence in Software

Development: A Review of Code Generation,

Testing, Maintenance and Security”, International

Journal of Current Science Research and Review,

8(4): 1632-1641, 2025.

https://doi.org/10.47191/ijcsrr/V8-i4-08

[23] Ruslan Yermolenko, Denys Klekots and Olga

Gogota, “Development of an algorithm for

detecting commercial unmanned aerial vehicles

using machine learning methods”, Machinery and

Energetics, 15(2): 33-45, 2024.

https://doi.org/10.31548/machinery/2.2024.33

[24] Sedighe Ajorloo, Amirhossein Jamarani, Mehdi

Kashfi, Mostafa Haghi Kashani and Abbas

Najafizadeh, “A Systematic Review of Machine

Learning Methods in Software Testing”, Applied

Soft Computing, 162: 111805, 2024.

https://doi.org/10.1016/j.asoc.2024.111805

[25] Albina Yerzhanova, Seyit Kerimkhulle, Gulzira

Abdikerimova, Margaryta Makhanov, Svetlana

Beglerova and Zhazira Taszhurekova,

“Atmospheric correction of landsat-8 / Oli data

using the flaash algorithm: Obtaining information

about agricultural crops”, Journal of Theoretical

and Applied Information Technology, 99(13):

3110-3119, 2021.

[26] Oyekunle Claudius Oyeniran, Okechukwu

Adewus, Adams Gbolahan Adeleke, Lucy

Anthony Akwawa and Chidimma Francisca

Azubuko, “AI-Driven Devops: Leveraging

Machine Learning for Automated Software

Deployment and Maintenance”, Engineering

Science & Technology Journal, 4(6): 728-740,

2023. https://doi.org/10.51594/estj.v4i6.1552

[27] Sabina-Cristiana Necula, Florin Dumitriu and

Valerică Greavu-Șerban, “A Systematic Literature

Review on Using Natural Language Processing in

Software Requirements Engineering”, Electronics,

13(11): 2055, 2024.

https://doi.org/10.3390/electronics13112055

[28] Olga Sokol, “Optimising productivity and

automating software development: Innovative

memory system approaches in large language

models”, Technologies and Engineering, 26(1):

36-44, 2025. https://doi.org/10.30857/2786-

5371.2025.1.3

[29] Suprit Pattanayak, Pranav Murthy and Aditya

Mehra, “Integrating AI into DevOps pipelines:

Continuous integration, continuous delivery, and

automation in infrastructural management:

Projections for future”, International Journal of

Science and Research Archive, 13(01), 2244-2256,

https://doi.org/10.13140/RG.2.2.20694.46401
https://doi.org/10.3846/ntcs.2024.21574
https://doi.org/10.31721/2306-5435-2024-1-112-110-114
https://doi.org/10.31721/2306-5435-2024-1-112-110-114
https://doi.org/10.1145/3638531
https://doi.org/10.47191/ijcsrr/V8-i4-08
https://doi.org/10.1016/j.asoc.2024.111805
https://doi.org/10.51594/estj.v4i6.1552
https://doi.org/10.3390/electronics13112055

Overview of Artificial Intelligence Application Methods in Software… Informatica 49 (2025) 59–72 71

2024.

https://doi.org/10.30574/ijsra.2024.13.1.1838

[30] Nicolas Papernot, Patrick McDaniel, Arunesh

Sinha and Michael P. Wellman, “Sok: Security and

Privacy in Machine Learning”, in L. O’Conner,

Ed., 2018 IEEE European Symposium on Security

and Privacy, London: Institute of Electrical and

Electronics Engineers, 2018, pp. 399-414.

[31] Christopher Kuner, Lee A. Bygrave and

Christopher Docksey, “Background and Evolution

of the EU General Data Protection Regulation

(GDPR)”, in C. Kuner, L.A. Bygrave, C. Docksey,

L. Drechsler, Eds., EU General Data Protection

Regulation (GDPR), New York: Oxford University

Press, 2020, pp. 1-47.

[32] Yundong Zhao, “Optimization of Mechanical

Manufacturing Processes Via Deep Reinforcement

Learning-Based Scheduling Models”, Informatica,

49(14): 19-32, 2025.

https://doi.org/10.31449/inf.v49i14.7204

[33] Roman Shults, Mykola Bilous, Azhar

Ormambekova, Toleuzhan Nurpeissova, Andrii

Khailak, Andriy Annenkov and Rustem

Akhmetov, “Analysis of Overpass Displacements

Due to Subway Construction Land Subsidence

Using Machine Learning”, Urban Science, 7(4):

100, 2023.

https://doi.org/10.3390/urbansci7040100

[34] Dmytro Belytskyi, Ruslan Yermolenko,

Kostiantyn Petrenko and Olga Gogota,

“Application of machine learning and computer

vision methods to determine the size of NPP

equipment elements in difficult measurement

conditions”, Machinery and Energetics, 14(4): 42-

53, 2023.

https://doi.org/10.31548/machinery/4.2023.42

[35] Bohdan Cherniavskyi, “Integration of Drones and

Dio-Inspired Algorithms into Intelligent

Transportation Logistics Systems for Post-war

Remediation of Ukraine”, Lecture Notes in

Networks and Systems, 1336: 426-437, 2025.

https://doi.org/10.1007/978-3-031-87379-9_39

[36] Vasyl Nesterov, “Integration of artificial

intelligence technologies in data engineering:

Challenges and prospects in the modern

information environment”, Bulletin of Cherkasy

State Technological University, 28(4): 82-92,

2023. https://doi.org/10.62660/2306-

4412.4.2023.82-90

[37] Ivan Biliuk, Dmytro Shareyko, Oleg Savchenko,

Serhii Havrylov, Andrii Fomenko and Anatolii

Tubaltsev, “Machine Calculation of the Problem of

Expansion of the Magnetic Field Measurement

Grid”, in Proceedings of the 5th International

Conference on Modern Electrical and Energy

System, MEES 2023, Kremenchuk: Institute of

Electrical and Electronics Engineers, 2023.

https://doi.org/10.1109/MEES61502.2023.104025

46

[38] Yalamanchili Sangeetha and G. Jaya Lakshmi,

“Predicting Software Bugs with Machine Learning

Algorithms” in V.L.N. Komanapalli, N.

Sivakumaran, S. Hampannavar, Eds., Select

Proceedings of I-CASIC 2020: Advances in

Automation, Signal Processing, Instrumentation,

and Control, Singapore: Springer, 2021, pp. 2683-

2692. https://doi.org/10.1007/978-981-15-8221-

9_251

[39] Seokjun Kim, Jaeeun Jang and Hyeoncheol Kim,

“All-In-One: Artificial Association Neural

Networks”, 2021.

https://doi.org/10.48550/ARXIV.2111.00424

[40] Luciano Floridi, Josh Cowls, Monica Beltrametti,

Raja Chatila, Patrice Chazerand, Virginia Dignum,

Christoph Luetge, Robert Madelin, Ugo Pagallo,

Francesca Rossi, Burkhard Schafer, Peggy Valcke

and Effy Vayena, “AI4People – An Ethical

Framework for a Good AI Society”, Mind and

Machine, 28: 689-707, 2018.

https://doi.org/10.1007/s11023-018-9482-5

[41] Reza Shokri and Vitaly Shmatikov, “Privacy-

Preserving Deep Learning”, in 2015 53rd Annual

Allerton Conference on Communication, Control,

and Computing (Allerton), Monticello: Institute of

Electrical and Electronics Engineers, 2015, pp.

909-910.

[42] Hengyuan Liu, Zheng Li, Baolong Han, Xiang

Chen, Doyle Paul and Yong Liu, “Integrating

Neural Mutation into Mutation-Based Fault

Localization: A Hybrid Approach”, Journal of

Systems and Software, 211: 112281, 2024.

https://doi.org/10.1016/j.jss.2024.112281

[43] Anbarasu Arivoli, “AI for automated bug detection

and debugging: a comparative study of current

approaches”, International Journal of Business

Quantitative Economics and Applied Management

Research, 7(12): 57-66, 2024.

https://doi.org/10.5281/zenodo.15236718

[44] Blanco Ruiz, “The Role of Automation in Modern

Software Testing”, Journal of Computer

Engineering & Information Technology, 12(4),

2023. https://doi.org/10.4172/2324-9307.1000279

[45] Daiju Ueda, Taichi Kakinuma, Shohei Fujita, Koji

Kamagata, Yasutaka Fushimi, Rintaro Ito, Yusuke

Matsui, Taiki Nozaki, Takeshi Nakaura, Noriyuki

Fujima, Fuminari Tatsugami, Masahiro Yanagawa,

Kenji Hirata, Akira Yamada, Takahiro

Tsuboyama, Mariko Kawamura, Tomoyuki

Fujioka, and Shinji Naganawa, “Fairness of

artificial intelligence in healthcare: Review and

recommendations”, Japanese Journal of

Radiology, 42, 3-15, 2024.

https://doi.org/10.1007/s11604-023-01474-3

[46] Gopinath Kathiresan, “Automated Test Case

Generation with AI: A Novel Framework for

Improving Software Quality and Coverage”,

World Journal of Advanced Research and

Reviews, 23(02): 2880-2889, 2024.

https://doi.org/10.30574/wjarr.2024.23.2.2463

[47] Zoe Kotti, Rfaila Galanopoulou and Diomidis

Spinellis, “Machine Learning for Software

Engineering: A Tertiary Study”, ACM Computing

https://doi.org/10.30574/ijsra.2024.13.1.1838
https://doi.org/10.31449/inf.v49i14.7204
https://doi.org/10.62660/2306-4412.4.2023.82-90
https://doi.org/10.62660/2306-4412.4.2023.82-90
https://doi.org/10.1007/978-981-15-8221-9_251
https://doi.org/10.1007/978-981-15-8221-9_251
https://doi.org/10.48550/ARXIV.2111.00424
https://doi.org/10.1007/s11023-018-9482-5
https://doi.org/10.1016/j.jss.2024.112281
https://doi.org/10.5281/zenodo.15236718
https://doi.org/10.4172/2324-9307.1000279
https://doi.org/10.1007/s11604-023-01474-3
https://doi.org/10.30574/wjarr.2024.23.2.2463

72 Informatica 49 (2025) 59–72 A. Burachynskyi et al.

Surveys, 55(12): 256, 2023.

https://doi.org/10.1145/3572905

[48] Marco Tulio Ribeiro, Sameer Singh and Carlos

Guestrin, ““Why should I Trust you?”: Explaining

the Predictions of Any Classifier”, in: Proceedings

of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, New York: Association for Computing

Machinery, 2016, pp. 1135-1144.

[49] Olesia Vasetska, “A study of the electric circuit

modelling and simulation software efficiency and

their accuracy, speed and ease of use comparison”,

Bulletin of Cherkasy State Technological

University, 29(2): 32-44, 2024.

https://doi.org/10.62660/bcstu/2.2024.32

[50] Itzhak Aviv, D. Gafni, Sofia Sherman, Bertha

Aviv, Asher Sterkin and E. Bega, “Cloud

infrastructure from python code–breaking the

barriers of cloud deployment”, in: European

Conference on Software Architecture, ECSA, 2023,

pp. 1-8.

https://www.researchgate.net/profile/Itzhak-

Aviv/publication/373897534_Cloud_Infrastructur

e_from_Python_Code_-

breaking_the_Barriers_of_Cloud_Deployment/lin

ks/6501edd2808f9268d573dea5/Cloud-

Infrastructure-from-Python-Code-breaking-the-

Barriers-of-Cloud-Deployment.pdf

[51] Shafayat Mowla Anik, Kevyn Kelso and Byeong

Kil Lee, “Efficient Layer Optimizations for Deep

Neural Networks”, International Journal of Soft

Computing and Engineering, 14(5): 20-29, 2024.

http://www.doi.org/10.35940/ijsce.E3650.140511

24

[52] Si Hua Robert Ip, “Research on Explainability of

Deep Neural Networks and Its Applications”,

Highlights in Science, Engineering and

Technology, 115: 441-450, 2024.
https://doi.org/10.54097/ekzm5z29

https://doi.org/10.1145/3572905
https://doi.org/10.62660/bcstu/2.2024.32
http://www.doi.org/10.35940/ijsce.E3650.14051124
http://www.doi.org/10.35940/ijsce.E3650.14051124
https://doi.org/10.54097/ekzm5z29

