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This paper presents a supervised machine learning framework for automated assessment of second-
language (L2) English fluency and pronunciation, using audio recordings from Latin-American English
learners. The framework extracts key acoustic features, including Mel-Frequency Cepstral Coefficients
(MFCCs), Zero Crossing Rate (ZCR), root mean square energy, and spectral features, from segmented
audio samples. Multiple classification models — such as Support Vector Machines (SVM), Random
Forests (RF), k-Nearest Neighbors (kNN), and Convolutional Neural Networks (CNN), were trained to
classify proficiency levels (basic, intermediate, advanced) and detect specific pronunciation errors. In
addition, regression models, including Random Forest Regressor, were applied to predict continuous
pronunciation quality scores. The study used a carefully curated dataset comprising over 18,000 audio
segments, expanded through data augmentation techniques such as time shifting and playback speed
variation. Experimental results show that the SVM classifier achieved over 94% accuracy in fluency
classification, while the kKNN model reached up to 99.9% accuracy in pronunciation evaluation. The
Random Forest Regressor achieved a coefficient of determination (R?) exceeding 0.92 for predicting
continuous pronunciation scores, demonstrating the framework’s robustness and scalability. These
findings highlight the potential of data-driven, non-speech-recognition-based approaches for scalable,
automated, and accurate L2 speech assessment.

Povzetek: Narejena je metoda za analizo naglasov in kvalitete govora ne-angleskih jezikov s pomodjo
nadzorovanega zvocnega okvira brez ASR, z MFCC ipd.; SVM/k-NN/RF v testih dosegajo visoko kvaliteto.

1 Introduction

Today, an L2-English is quickly becoming important in
being considered the pivot around success at the
workplace or in personal development. It is gaining
recognition as the language of globalization; English now
forms the contact language in several professional fields
including business, education, and technology. Though
grammatical items and vocabularies are available through
several resource materials, spoken proficiency remains
tough to develop owing to its intricate nature of delivery
[1]. Pronunciation, fluency, and intonation require
specific feedback by professional teachers in order to find
out the mistakes and correct them. This is far from
becoming scalable for millions of learners, especially in
those regions of the world where the number of qualified
teachers is very small. This has resulted in a very
significant need for automated, affordable solutions to
assess and improve speaking skills, thereby making
language learning more accessible to everybody [2][3].
Although much work is still in its infancy, with the rapid
growth of language learning technology, automatic
assessment of L2 speaking proficiency remains a
challenging task. Speech quality is a multi-dimensional
construct that comprises such aspects as pronunciation

accuracy, fluency, and rhythm. The majority of existing
approaches compare the learners' speech to native
speakers' idealized utterances by making use of either
speech recognition systems or probabilistic models, such
as Hidden Markov Models [4]. However, these methods
include significant errors while processing non-native
speech. These inaccuracies of the systems result in most
assessments that are unreliable and thus unsuitable for
wide usage in real-life language learning [5]. This
limitation brings about encouragement towards a
paradigm shift in a direction where direct, data-driven
approaches will enable avoiding the pitfalls of those error-
prone intermediate technologies [6].

This paper presents a supervised machine learning
framework for L2 speaking proficiency assessment with
a special emphasis on fluency and pronunciation. Our
approach will extract the key features from segmented
audio samples of learners' speech, thus creating a rich
dataset for training the classification models. These
models classify proficiency levels like basic,
intermediate, and advanced, based on the characteristics
of fluency and pronunciation [7]. Our approach directly
analyzes the acoustic features without using speech
recognition or complex probabilistic models, hence more
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reliable and scalable. Results obtained from experiments
verify the correctness of this framework by obtaining
fluency ratings with an accuracy rate above 90% and
going high up to 99% on pronunciation evaluation, which
evidences data-driven, machine learning-based solution
feasibility and significant efficiency; this was such
transformation brought in by the automation for the large-
scale evaluation of L2 speech. This approach reduces not
only the reliance on human instructors but also instantly
provides learners with actionable feedback that will help
improve their speaking skills and bridge a very critical
gap in language education.

This paper proposes a new Teaching Evaluation Method
(TEM) based on the integration of Convolutional Neural
Networks (CNNs) with a Grey Correlation-Based Genetic
Algorithm (GCBGA) for the improvement of college
English teaching evaluation. GCBGA can identify and
eliminate some of the psychosocial biases inherent in
traditional evaluation models, hence further increasing
objectivity and accuracy. Such a proposal combines the
strengths of both the CNNs and the GCBGA to offer a
holistic, rational framework in evaluating teaching
quality. These overcome the various shortcomings
associated with the existing models. This approach is not
only effective at neutralizing the influence of subjective
human factors but also lays a much stronger, objective
foundation in assessing the effectiveness of teaching
methods. Thus, the new model can really make a large
contribution to improving the standards of college
English teaching assessment and adapting them to the
new requirements of the quickly changing global world.
The primary objectives of this study are as follows:
(i) to build an ASR-free fluency evaluation classifier that
assesses spontaneous speech without relying on automatic
speech recognition systems;
(ii) to develop a multi-class pronunciation quality
classifier capable of categorizing pronunciation levels
across low, intermediate, and high classes;
(iii) to detect specific S-impura pronunciation errors, a
common issue among Latin-American English learners,
using a binary classification framework; and
(iv) to test and validate regression-based approaches for
predicting continuous pronunciation quality scores,
providing learners with fine-grained quantitative
feedback.

2 Literature review

Many of the supervised machine learning applications
have focused on audio-based classification, such as music
genre identification, general audio signal categorization,
and environmental noise detection. Other points of
interest also include voice skill analyses, to which
machine learning models have shown their adaptability in
processing audio features [8]. However, pronunciation
assessment and evaluation of fluency in the speech of
language learners have drawn rather limited efforts so far,
with a lot of the developments in that domain being
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Figure 1: Workflow for fluency and pronunciation
evaluation, illustrating the classification of audio
samples into low (red), medium (blue), and high
(green) fluency levels using a supervised machine

learning approach.
proprietary. For example, commercial systems such as
Rosetta Stone include pronunciation scoring, but them

algorithms are proprietary and cannot be meaningfully
compared to academic work.

Most of the research on speech-related topics has targeted
speech recognition applications, where the learner's
pronunciation is matched against idealized native-speaker
pronunciations. For example, Zechner et al. [9] applied
HMMs for this task, extracting timing and confidence
scores as input for feature computation. The work that did
the best-incorporated speech recognition to determine
where improvements were required used their system and
showed a reasonable advance against human evaluations,
a score of 0.57. However, using speech recognition
brought its challenges, especially among non-native
speakers with strong foreign-sounding accents or
unpredictable pronunciation. The method proposed by
Wang et al. [10] combined deep learning and GMMs
within the standard framework of speech recognition but
suffered under the inherent inaccuracies of speech
recognition from a learner with inadequate pronunciation
[11]. Another important distinction in pronunciation
research involves the approach to classification. For
instance, Yang [12] explored binary classification, where
specific pronunciation patterns were classified as either
"correct” or "incorrect.” While this can be a very effective
means of conducting targeted evaluations, it generally
requires a priori knowledge of likely mistakes. In contrast,
our method uses both binary classification and multi-level
assessment, such as Low, Medium, and High, to give a
more fine-grained evaluation [13]. While most prior
methods evaluate their performance by using the root
mean square error, we focus on accuracy and precision
metrics to clearly present the effectiveness of the models.
Although works on intonation analysis, like that of Arias,
use pre-defined patterns for assessment, our current work
has experimented with more open spontaneous speech for
freer assessment of learners' performance in the real world
[14].
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Recently, there have been attempts to grade spontaneous
speech in recent literature without using speech
recognition; these works are gravitating toward stronger
and more adaptive methods. Fu et al., [15] for example,
used the combination of DNN, GMM, and HMM to
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evaluate unscripted speech without going through speech
recognition. However, they have a Pearson correlation of
about 0.8 between the model predictions and human
evaluations, which can be further improved. In this work,
coefficient of determination (R?) is considered as a better

Table 1: Comparative summary of related work on L2 speech assessment

Study / Dataset / Input Features Used Classifiers / Quantitative Limitations / Gaps
Approach Models Results
[9] Speech samples Timing, confidence HMM-based, Pearsonr = 0.57 High ASR errors with
compared to ASR scores (via ASR) ASR- with human non-native speech
outputs dependent ratings
models
[10] Standard speech Acoustic + ASR GMM + DNN Moderate gains ASR dependency;
corpus features, GMM-Deep in ASR over HMM-ASR struggles with accented
Learning framework methods speech
[11] Japanese learners’ DNN acoustic DNN, GMM, Pearson r =~ 0.8 Limited accuracy; no
unscripted English models (ASR-free) HMM with human regression or fine-
speech combinations ratings grained feedback
[14] Predefined Pattern-matching, Rule-based or N/A Focus on scripted tasks;
intonation patterns prosodic features simple not generalizable
classifiers
[12] Small L2 learner Hand-engineered Binary Binary Limited to known
datasets pronunciation classifiers classification only mistake patterns; no
patterns (correct vs. fluency gradation
incorrect)
This work 18,794 segments MFCCs, ZCR, SVM, RF, Fluency: SVM ASR-free, multi-level
(current) from Latin- energy, spectral kNN, CNN, 94.4% acc; classification,
American learners centroid, flux, roll- RNN; RF Pronunciation: regression-enabled;
(augmented) off regressor kNN 99.9%; generalizable approach
Regression: RF R2
~0.93

metric to evaluate model performance than the Pearson
correlation, as R2 provides a more complete metric of
evaluation for regression-based predictions [16]. While
prior work has laid the foundation for automated speech
evaluation, most existing methods rely heavily on speech
recognition or predefined patterns, hence limiting their
applicability to diverse learner populations. Our approach
builds on these efforts by introducing a fully data-driven
machine learning framework that avoids the pitfalls of
speech recognition systems. Our approach focuses on
features directly derived from the audio segments
themselves, achieving high accuracy and scalability, thus
providing a quantum leap in pronunciation and fluency
assessment for second-language learners. This therefore
places our contribution in the development of automated
language learning tools [17]. Table 1 summarizes prior
works, comparing their datasets, features, models, and
results. Most relied on ASR systems or binary
classifications, limiting generalizability. In contrast, our
ASR-free framework applies MFCCs and other acoustic
features with multi-level classification and regression,
achieving superior accuracy (e.g., SVM 94.4%, RF
regression R? = 0.93) and addressing key gaps in previous
research.

3 Methodology

This paper investigates the use of machine learning
models in the assessment of fluency and pronunciation
quality in the speech of English learners, based on a
supervised data-driven methodology as depicted in Fig. 1.
The null hypothesis assumes that the model predictions
are no better than random guessing based on class
proportions, whereas the alternative hypothesis assumes
that the model is able to attain accuracy comparable to
human evaluations at over 90%. The methodology, based
on a dataset of audio recordings annotated by human
assessors for fluency and pronunciation quality, involves
structured experiments focused on fluency assessment,
pronunciation evaluation, and binary classification for
certain pronunciation errors [18]. These aspects are to be
covered separately in experiments performed by graduate
students to ensure that all aspects of the proposed
approach are evaluated in depth (see methodology).

A) Audio collection construction
The first step in the process is to construct a

comprehensive dataset usable for supervised machine
learning training using speech recordings from non-native
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speakers of English. It starts with the gathering of a
reasonable number of raw audio files in formats like
WAV or MP3. The term "reasonable" is context-
dependent and is determined iteratively by analyzing
learning curves to ensure sufficient data coverage (see
experiments section). The pronunciation evaluation
collected audio recordings from undergraduates between
18-25 years old, predominantly from Mexico and other
Latin American countries. Subjects were asked to speak
in English for at least 30 seconds on their experience of
learning the language [19]. This is very useful data but
limits the generalizability of the results due to the
demographic bias toward young Latin American
speakers.

Next, the dataset has to be cleaned by removing audio
files with excessive noise, filtering out unwanted
environmental disturbances, or trimming noisy sections.
While subjective, this step is very important in ensuring
data quality and improving model training. Additionally,
dataset augmentation techniques, such as speeding up or
slowing down audio files, are applied if learning curves
suggest that the data volume is insufficient [20].
Enhancements provide the diversity of the dataset and
contribute to the reduction in overfitting (Section
Pronunciation evaluation). This iterative process
guarantees a high-quality dataset, which forms a base for
an accurate and reliable training of machine learning
models.

B) Audio segmentation

The methodology of segmentation of raw audio into
fixed-length sequences of duration d is a subsequent step.
An optimum value for d is obtained experimentally after
trying different segment sizes and running machine
learning algorithms in search of the best performance.
Audio segmentation can be carried out in two ways:
overlapping, in which consecutive segments share parts
of the audio, or nonoverlapping, where segments are
completely independent. Thus, for methodological rigor
reasons, the segments had to be nonoverlapping,
excluding partial occurrences of portions of audio that
may appear in training and test data as possibly biased
material.

Further, the time-shifting technique at segmentation will
yield a larger version of augmentation. That is, for any
original audio with a length of 40 seconds being
segmented into 5-second segments, it would be at default
settings starting at 0, 5, 10s,. However, further segments
can be generated by time-shifting the starting points, for
instance, from 2.5 seconds to 7.5 seconds [21]. While this
approach increases the data, one should be aware that
time-shifted segments are not fully independent since
they partially overlap with the original segments. These
techniques ensure robust segmentation and sufficient data
for training a machine-learning model. To prevent data
leakage during model training and evaluation, we
carefully designed the cross-validation procedure to
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operate at the speaker level, not at the segment level.
Although the original 30-second audio recordings were
segmented into overlapping 5-second chunks for feature
extraction and model input, we ensured that all segments
from the same speaker were kept entirely within a single
fold (either training or testing) for each cross-validation
split. This strict grouping guaranteed that no speaker’s
voice characteristics appeared in both the training and
testing sets simultaneously, eliminating any risk of
contamination or artificial performance inflation due to
overlap. This design ensures that the reported results
reflect the model’s true ability to generalize to unseen
speakers

C) Feature extraction and selection

The third stage of our methodology is feature extraction,
which transforms audio segments into feature vectors. For
a set of audio recordings A = {ay,a,,..,a,} %, we
generate a corresponding set of feature vectors F =
{fi, f2r -, fn}, Where each f; has m dimensions,
representing the features extracted from raw audio.
Feature selection begins with a broad set of standard
features, later narrowed down through dimensionality
reduction to optimize classification performance. Sound-
related features are grouped into two categories: time-
domain and frequency-domain features. Time-domain
features include energy (integral over intensity), zero-
crossing rate (rate of sign changes), and entropy (sudden
energy changes). Frequency-domain features, derived
from the Discrete Fourier Transform, include spectral
centroid (spectrum's center of gravity), spectral spread
(distribution of spectrum), spectral entropy, spectral flux,
and spectral roll-off. Additionally, the Chroma Vector
and the widely used Mel-Frequency Cepstral Coefficients
(MFCCs) are considered. MFCCs, effective for speech
applications, are computed by applying filters to the
power spectrum and taking the logarithm of the resulting
energies, with commonly 20--40 filters being used. Only
the most relevant MFCC features are selected for the
model [22].

Further, feature selection, reduces the dimensionality of
feature vectors to improve computational efficiency and
sometimes classification performance. Methods include
individual feature elimination, where features are
removed iteratively based on their impact on
performance, or simpler algorithms that rank feature
relevance. Principal Component Analysis (PCA) is
another common method, though not used in this study.
This step ensures only the most critical features are
retained for optimal results.

D) Dataset Partitioning and Validation

The next step in our approach was to partition the data
into training and testing sets, with an optional validation
set. This step is very important regarding prediction
integrity. In our speech assessment task, we had to take
care of the following methodological drawback: since
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many audio segments came from the same subject, all
segments of an individual went either to the training or to
the testing set in order to avoid any kind of indirect data
leakage. Most of the experiments employed the k-fold
cross-validation for robustness of the evaluation, where
the k -fold cross-validation divides a dataset into k
random partitions. Then, it trains on k — 1 of these
partitions while testing on the remaining one [23]. This is
repeated k times, each time on a different partition used
for testing. A common choice for k is 10, and in this way,
the final performance metrics are averages of all
iterations. This ensures unbiased and reliable
performance appraisal.

E) Classifier Training

Afterwards, once training set is prepared, it serves as the
input for such standard classification algorithms as
Random Forest, Classification Trees, Naive Bayes, and k-
Nearest Neighbors (kNN). The actual classifiers used
during each experiment are discussed in a detailed
explanation to follow. Immediately after training is
complete, it is ready for activity with unseen data, based
on well-established ways of making its predictions.
Moreover, in the fluency evaluation experiments we also
include a deep learning classifier, which-as we will show
below-is outperformed by traditional methods. We note
that CNN and RNN architectures were evaluated using
common optimizers (such as Adam) and standard
regularization techniques (e.g., dropout), but given the
relatively limited dataset size, their performance was
constrained, aligning with known limitations of deep
learning on small datasets. All feature extraction was
performed using the librosa Python library, and all
machine learning models and evaluations were
implemented using scikit-learn. We applied commonly
accepted default parameters unless otherwise specified.

F) Performance Evaluation and validation

Accordingly, the classifier performance must be
measured in terms of metrics such as accuracy (proportion
of data correctly classified), precision (proportion of
matches of the predicted class that are correct), recall
(proportion of instances of the actual class correctly
predicted), and F1-score (harmonic mean of precision and
recall). Other relevant metrics include sensitivity and
specificity, commonly utilized medical research metrics
that can comprehensively depict the performance [24]. A
combination of these metrics provides a comprehensive
approach towards assessing the model's performance. The
final

Table 2: Performance comparison of classifiers (SVM,
RF, MLP, CNN, RNN) with varying N_mel values for
MFCC parameter adjustment, showing accuracy
percentages at 5, 10, 12, and 20 coefficients.

[ Model [5(%) [10(%) | 12(%) |20 (%) |
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MLP 78 88.78 89.01 92.05
RNN 78.9 85.04 86.44 87
CNN 80 85.04 87.61 93.69
RF 84.8 89 90.42 92.29
SVM 86 89.49 92.06 94.39
step, after performance metrics calculation, was

confirmation of the non-null hypothesis on the validation
that the classification results are significantly superior to
random distribution. These findings were also compared
to state-of-the-art results reported in the literature to
justify the contribution made with merit.

4 Experiments and discussion

In the following we are going to present the experiments
we performed in order to measure first speech fluency,
then

pronunciation quality, and finally binary pronunciation
mistakes detection.

A) Speech Fluency Measurement

This work is dedicated to the prediction of fluency for a
non-native English speaker from an unseen audio
segment. Fluency means the ability to speak continuously
without unnatural pauses or hesitation; hence, it shows a
regular flow of speech. Since publicly available datasets
designed especially for non-native English learners with
spontaneous speech were unavailable, we decided to
develop our dataset. This dataset was constructed based
on recordings at a university involving Latin-American
students, with speech recorded for approximately 118
unscripted spontaneous minutes. This set of recordings
was made from random topics, which ensured that the
content differed. The conversation was recorded in the
presence of less noise, meaning the audio output is clean
for analysis. These raw recordings were then segmented
into 1,420 non-overlapping five-second audio clips, each
labeled into one of six fluency levels, ranging from 0 for
absolute beginners to 5 for native-level fluency. Feature
extraction was then conducted using the Python library
LibROSA. A combination of well-established features
was used, including Mel-Frequency Cepstral Coefficients
(MFCCs), zero-crossing rate, root mean square energy,
and spectral flux. These features, most especially MFCCs,
are widely recognized in the fields of audio and speech
for their representation of important characteristics in
human speech. After several experiments, it was
determined that 20 MFCC coefficients provided the best
balance between computational complexity and
prediction accuracy with N_mel=20 shown in Table 2,
resulting in a 23-dimensional feature space.
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Figure 3: Confusion matrix for the SVM classifier,
highlighting its performance in predicting fluency levels
with minimal misclassification errors.

Table 3: Accuracy comparison of classifiers (SVM, RF,
MLP, CNN, RNN) in predicting speech fluency, showing
the percentage of correctly classified data for each model.

Classifier Accuracy (%)

CNN 92.75
RNN 89.01
RF 93.45
SVM 94.39
MLP 92.52

Then, the various machine learning classifiers were
trained using the segmented and labeled dataset. These
included both traditional models, such as Support Vector
Machines and Random Forests, and neural network-based
models, including Multilayer Perceptrons, Convolutional
Neural Networks, and Recurrent Neural Networks. The
dataset was split into 70% training and 30% testing.
During experimentation, SVM and RF emerged as the
top-performing classifiers and outperformed the neural
network models by a significant margin. The best overall
accuracy of less than 1% was achieved by SVM in terms
of big mistakes-for example, low fluency misclassified as
high. It finally means that the traditional classifiers have
been more suitable for the task, most probably due to the
size and nature of this dataset. Feature importance
analysis was also done for some of these [25]. While
MFCCs remained the most impactful, the addition of
ZCR, RMSE, and SF showed further
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Table 4: Distribution of grades and corresponding
segment counts after adjustment, showing a range of
grades from 5 to 10 with segment values.

Grade Segments
5 15
55 8
6 33
6.5 29
7 240
7.5 97
8 66
8.5 162
9 102
9.5 13
10 12

improvements. These results confirm that feature and
model selection is crucial for obtaining robust
performance in fluency prediction tasks. The detailed
performance metrics of the classifiers are given in Table
3 and the confusion matrix of the best performing SVM
model is depicted in Figure 2. These findings therefore
point toward the reliability of traditional machine learning
approaches in providing accurate fluency evaluations to
non-native English learners.

B) Pronunciation Evaluation

The purpose of pronunciation evaluation was to
approximate speech quality from a phoneme point of
view. Since there is no standard definition of
pronunciation quality, there are various interpretations.
Chen et al. [7], for instance, describe it as the "quality of
vowels, consonants, and word-level stress," but such
definitions need further clarification of what "quality”
entails. Traditional approaches normally take the learners'
pronunciation against models of ideal patterns of native-
speaking patterns, with the task more scripted by reading
predefined word-lists. These approaches failed to provide
such a basis or criteria for rating spontaneous speech
situations, which made up the emphasis of this research
activity. We followed a rubric-based evaluation where
human raters assigned numeric scores on either full audio
clips or individual 5-second clips. The data-driven
approach described above in Section was followed with
regards to preparing datasets, training, and testing. The
following sections provide further specifics for these
tasks. This framework thus allowed us to conduct a
scalable yet robust pronunciation quality assessment on
unscripted speech.

Audio collection and pronunciation grading: For the
evaluation of pronunciation quality, a dataset of 104 audio
recordings was collected from randomly selected students
on campus. Students were chosen without the prerequisite
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of studying English courses and were asked to tell in their
speech, for at least 30 seconds, something about their
experiences of learning English. The recordings were
made by smartphones including standard microphones,
and the file format used was MP3. This resulted in a very
homogeneous, and hence highly unbalanced, English
proficiency level for this dataset, which presents a
challenge that should be improved upon to enhance
classification performance. Recordings were then
segmented into 10-second audio clips; initially, this
provided a total of 808 segments. Incomplete segments at
the end of recordings were not kept, giving a final dataset
of 771 segments. Each segment was shuffled to minimize
sequential effects; in other words, consecutive segments
almost never contained speech from the same speaker. For
groundtruth labeling, six human judges listened to every
segment and rated its pronunciation quality on a
numerical scale from O-for unintelligible-to 10-for native-
like pronunciation. For this task, detailed guidelines were
provided. For instance, level 7 was defined as: "Rather
good pronunciation of individual sounds, word stress,
word endings, intonation, and rhythm. Occasionally
difficult to understand."

There was huge variability in the grades assigned by the
judges both for individual segments and across judges for
the same segment. For example, a single segment might
receive grades as disparate as 4 and 8 from different
judges. In this respect, the median of all grades for a
segment was used since it is resistant to outliers and is a
better estimator of central tendency compared to the
mean. While the investigation of reasons for inter-judge
variability is an interesting topic, in this study only the
derivation of consistent evaluations for training purposes
was considered. The grades were divided into three levels
to define the target classes of classification: between low
grades 5 and 7, intermediate grades between 7.5 and 8.5,
and high grades between 9 and 10. It was aimed, by doing
this, at a balance of number of segments in each class, as
perfect balancing could not be achieved given the nature
of grades distribution. Table 4 shows the frequency
distribution of grades with their class assignment.
Resulting class ranges guaranteed the reasonable
balancing required for effective training of classifiers.
This structured process has created a robust dataset for
later classification experiments faced by challenges such
as variability in grading and class imbalance.
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Dataset Construction and feature extraction: The next
step consisted of the creation of the dataset: based on the
original 10-second audio segments, the authors decided to
split the samples into two 5-second segments in order to
double the number of samples. This decision is justified
by previous experiments (see Speech fluency
measurement section) where segments of this length
worked well for the feature extraction step. Hence, the
dataset counted 1,616 rows, which is less than twice as
much because some incomplete segments were excluded.
We computed a total of 34 features for feature extraction,
both in the time-domain and frequency-domain
characteristics using the pyAudio Analysis library. These
include Zero Crossing Rate, energy, energy entropy,
spectral centroid, spectral spread, spectral entropy,
spectral flux, and spectral roll-off. Other features
extracted were 13 MFCCs,

Table 5: Accuracy comparison of classifiers (RF, KNN,
SVM, GNB), with reordered rows to highlight the
variation in performance.

Classifier Accuracy
RF 0.937684
GNB 0.790988
KNN 0.977985
SVM 0.950606

chroma vectors of 12 semitones of the Western music
scale, and chroma deviation. It is important to mention
that the number of MFCCs varied from 20, as in the case
of fluency experiments (see Speech fluency measurement
section), because some hyperparameters were dataset
specific. Finally, the resulting dataset consisted of 34
features over 1,616 segments and was ready for further
processing and classification.

<

. gue

<

Silence
Insertion

< Audio Shifting

Figure 5: Illustration of audio pre-processing, showing left
alignment of the word start and silence padding to ensure
fixed-length audio segments for classification.
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Figure 3: Learning curve for the Random Forest classifier, showing accuracy
improvement as the dataset size increases, indicating the potential for further
performance gains with additional data.

Classification: We used a number of machine learning
algorithms for the classification task. The rest were the
Random Forest with 100 trees, using entropy as a quality
measure; KNN-3-Neighbors with Euclidean distance,
since this setting yielded the best results after trying other
values of k; the SVM classifier was run with an RBF
kernel and gamma equal to 0.05, while the Naive Bayes
Gaussian required no tuning of parameters. In a way, the
experiments from Section (Speech fluency measurement)
had showed that the deep learning classifiers were out of
place on this relatively small dataset, for which their
appetite is in the range of millions, far higher than the
count in this present data.

For the experiments, training and testing were done by
tenfold cross-validation. The accuracies of the classifiers
are presented in Table 5. Among the algorithms, the best
performing classifier was KNN. In general, the accuracy
was over 93% for the Random Forest, KNN, and SVM
algorithms, indicating a very good performance when
compared with related state-of-the-art methods discussed
in literature review. Learning curves were used to see if
the size of the data was enough for the best performance
or if more data would lead to higher accuracy. The
performance of the classifier is plotted against the size of
the data used for training in these curves. For example,
Figure 3 shows that the Random Forest classifier still
improves its accuracy with an increase in dataset size and
therefore should benefit from further data collection.
Hence, further collection of data can be done for the
proper optimization of classifiers.

Dataset Augmentation: Two augmentation techniques
have been used for betterment of the dataset and providing
ample data to the classifiers, as discussed in methodology.
First, the alternate segmentation is done by shifting the
starting point of the segments by 2.5 seconds. Second,
variations of the original audios are created by changing
the playback speed of the same. In order to slow down the
audio, the following speed factors were used: 0.9, 0.8, 0.7,
0.6, and 0.5; to speed up, the factors used were 1.1, 1.2,
1.3,1.4,and 1.5. All audios in an augmented version were
segmented into fixed segments of 5 seconds. These
techniques vyielded an improved dataset of 18,794
segments, a factor of more than 10 over the original
dataset. This expanded dataset enabled us to create
learning curves that were flat on the right side, meaning
the training had converged. Indeed, Figure 4 shows the
test curve leveling off as the size of the dataset increases,
confirming the quality of the augmentation process.

Feature selection and final improvements: Feature
selection was also used to further improve the accuracy of
classification by reducing the noise that may come from
perhaps irrelevant features. Two straightforward methods
were
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Figure 4: Learning curve demonstrating training
convergence with the enhanced dataset, as indicated by
the flat slope of the test accuracy curve on the right.

Table 6: Accuracy comparison of classifiers (RF, KNN,
SVM, GNB) on the augmented dataset, including speed
variations and shifted starting points, highlighting the
performance across different configurations.

All speeds All speeds

included included Complete
Classifier | (Start: 0 s) (Start: 2.5s) | dataset
SVM 0.987124 0.987018 | 0.987762
GNB 0.762266 0.761098 | 0.762851
KNN 0.998085 0.997659 | 0.999042
RF 0.986804 0.986592 | 0.993402
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corresponding pronunciation class for each segment.
Regression performance was evaluated using metrics
such as Root Mean Squared Error (RMSE), Coefficient of
Determination R? , and Pearson Correlation. Among
these, $R"2$ was favored for its domain-independent
nature, with values ranging from 0 (worst) to 1 (best).
Various regression algorithms were tested, including
Linear Regression (LR), Lasso, Ridge, Support Vector
Regressor (SVR), and Random Forest Regressor (RFR).
The results, shown in Table 7, revealed that most
regressors performed poorly, except for Random Forest,
which achieved an $R"2$ value exceeding 0.9. To further
improve performance, classification results were used to
restrict the regression range within each pronunciation
category. This approach aimed to mitigate the effects of
data non-linearity by focusing on smaller, more uniform
ranges (e.g., low, intermediate, or high classes). The
results, presented in Table 8, confirmed this hypothesis.
Linear Regression, in particular, showed significant
improvement within restricted ranges, especially in the
high and intermediate classes. The weighted R? for class-
specific regression reached 0.955, outperforming the
0.929 obtained for the entire dataset. These findings
demonstrate that combining classification and regression
can provide detailed and accurate pronunciation
evaluations, enabling meaningful progress tracking for
learners.

Table 7: Egression performance (R?) of various
algorithms (LR, Lasso, Ridge, SVR, and RFR),
highlighting Random Forest Regressor (RFR) as the top-
performing model.

used: univariate selection, removing the least effective
features for a given classifier, and feature importance
based on tree-based methods. Indeed, the best results were
obtained by removing Energy for kNN and SVVM, and in
addition discarding Chroma-8 for Random Forest. With
the improved dataset, including the two suggested
modifications, namely speed modification and changing
the starting point of the segment, the classifier results
were very good, as can be seen from Table 6. In fact, KNN
reached an accuracy of 0.999, setting a new record in
pronunciation classification. The learning curves for the
improved dataset indeed showed convergence in all the
top classifiers, as shown in Figure 4, a sample being the
Random Forest. These results therefore indicate the
efficiency of both dataset augmentation and feature
selection in optimizing model performance.

Regression analysis for pronunciation evaluation:
While our classification experiments provided a rough
estimation of pronunciation quality across three
categories (low, intermediate, high), they lacked the
granularity to monitor gradual progress. To address this,
we reframed the task as a regression problem to predict
continuous scores (ranging from 0 to 10) for each audio
segment. The ground-truth values for regression were
calculated as the median of the scores assigned by human
judges, and the dataset included 34 features alongside the

Regressor R? Std

0.403 £ 0.025
LR 0.025

0.403 £ 0.028
Ridge 0.028

0.929 + 0.010
RFR 0.014

0.406 £ 0.030
SVR 0.030

0.393+ 0.027
Lasso 0.027

Table 8: performance of
intermediate, and low classes.

regressors across high,

Class Regressor | R?

High class SVR 0.934694
High class RFR 0.982742
High class Ridge 0.923475
High class Lasso 0.903978
High class LR 0.924273
Intermediate class | SVR 0.822177
Intermediate class | RFR 0.95891
Intermediate class | Ridge 0.815213
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Intermediate class | Lasso 0.784467
Intermediate class | LR 0.823106
Low class RFR 0.937915
Low class Lasso 0.65183
Low class SVR 0.680059
Low class Ridge 0.677136
Low class LR 0.67993

C) Pronunciation Mistake Detection

We have conducted experiments for the detection of a
specific pronunciation mistake common among Latin-
American English learners, where words beginning with
"s" followed by a consonant are mispronounced with an
additional vowel sound, such as "space" being
pronounced as "espace”. The detection of such mistakes
is important to avoid reinforcing bad pronunciation
habits, which traditionally relies on human instructors.
Our goal was to automate this feedback process. Unlike
other speech assessments, the task was a binary
classification task-a mistake or not. Audio recordings
were collected from 20 Mexican participants, aged
between 15 and 40 years old, who uttered 100 words
divided into three categories: 40 S-impure words,
commonly mispronounced, 40 generic words, and 20
words that started with "es" like in the word "estimate,"
included to prevent valid pronunciations from being
confused. Recordings were made by the participants using
smartphones in quiet environments. After pre-processing,
1,953 audio segments were generated.

Table 9: Classifications by three judges (J1, J2, J3) for
audio segments, showing the distribution across error
(‘e"), correct ('s"), neutral ('n’), and poor-quality ('r")

classes.
Class J1 J2 J3
S 926 995 1031
n 57 55 41
e 804 816 881
r 166 87 0

The data were labeled in four classes: "e" for S-impure
errors, 's" for correctly pronounced S-impure words, "n"
for words without "s" sounds, and "r" for poor-quality
audio. Results are illustrated in Table 9. Only segments
which were labeled unanimously were retained, leaving
1,732 segments to analyze. Pre-processing of the audio
segments included shifting to align the start of the word
and inserting silence at the end to fit fixed-length
windows, as in Figure 5. MFCC, RMSE, Spectral Flux,
and ZCR were some of the features extracted for
classification. The dataset was split into 70% training and
30% testing sets. For the best performance, the Support
Vector Machine, Random Forest, and KNN classifiers
were tuned by grid search. SVM gave the best results with
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an accuracy of 84%, and precision, recall, and F1-scores
of 85%. These results are comparable to deep learning
approaches but were achieved with significantly less data.
To ensure the robustness and validity of the reported
results, all performance metrics presented in this study
(e.g., fluency classification accuracy of 94.39% using
SVM, pronunciation classification accuracy of 99.9%
using KNN) were obtained as averages over 10-fold cross-
validation runs. This cross-validation procedure helps
minimize the risk of overfitting and ensures that the
results are not dependent on a particular train-test split.
While the tables report the mean accuracies for clarity, we
observed low variance across folds, which is consistent
with the stable learning curves presented. Additionally,
we conducted ablation analyses (summarized in the
Discussion) to compare models using only MFCC
features versus models using the full feature set (including
ZCR, energy, and spectral features), finding that the
combined feature models consistently outperformed
MFCC-only baselines. We also compared classifiers
beyond raw accuracy, considering their stability,
computational efficiency, and generalization behavior,
which further confirmed the strengths of the selected
models. These analyses collectively strengthen the
validity and reliability of the reported findings.

5 Conclusion

The current study presents three experimental approaches
to the evaluation of English fluency, pronunciation
quality, and specific pronunciation error detection in
Spanish-speaking learners. Our current research
demonstrated that, for the three investigated tasks, a
conventional machine learning classifier could function
well by merely using the popular audio features-MFCC,
ZCR, and Energy-with results either comparable or better
than those for state-of-the-art approaches utilizing speech
recognition or Hidden Markov Models. We have
emphasized how data augmentation techniques specific to
audio, such as playback speed changes and segmentation
start point changes, have greatly improved classifier and
regressor performance. While our methods are designed
for Spanish-speaking learners, they can be extended to
other native-target language pairs with appropriate
datasets, although accuracy may vary. Accordingly, our
nonspeech recognition-based approach makes it fit for
spontaneous speech evaluation and provides the ability
for developing practical online tools related to language
learning assessment. The implementation of these speech
evaluation accessibility and scalability will be pursued in
the future work.
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