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Received:  

This paper presents a supervised machine learning framework for automated assessment of second-

language (L2) English fluency and pronunciation, using audio recordings from Latin-American English 

learners. The framework extracts key acoustic features, including Mel-Frequency Cepstral Coefficients 

(MFCCs), Zero Crossing Rate (ZCR), root mean square energy, and spectral features, from segmented 

audio samples. Multiple classification models — such as Support Vector Machines (SVM), Random 

Forests (RF), k-Nearest Neighbors (kNN), and Convolutional Neural Networks (CNN), were trained to 

classify proficiency levels (basic, intermediate, advanced) and detect specific pronunciation errors. In 

addition, regression models, including Random Forest Regressor, were applied to predict continuous 

pronunciation quality scores. The study used a carefully curated dataset comprising over 18,000 audio 

segments, expanded through data augmentation techniques such as time shifting and playback speed 

variation. Experimental results show that the SVM classifier achieved over 94% accuracy in fluency 

classification, while the kNN model reached up to 99.9% accuracy in pronunciation evaluation. The 

Random Forest Regressor achieved a coefficient of determination (R²) exceeding 0.92 for predicting 

continuous pronunciation scores, demonstrating the framework’s robustness and scalability. These 

findings highlight the potential of data-driven, non-speech-recognition-based approaches for scalable, 

automated, and accurate L2 speech assessment. 

Povzetek: Narejena je metoda za analizo naglasov in kvalitete govora ne-angleških jezikov s pomočjo 

nadzorovanega zvočnega okvira brez ASR, z MFCC ipd.; SVM/k-NN/RF v testih dosegajo visoko kvaliteto. 

 

1   Introduction  
Today, an L2-English is quickly becoming important in 

being considered the pivot around success at the 

workplace or in personal development. It is gaining 

recognition as the language of globalization; English now 

forms the contact language in several professional fields 

including business, education, and technology. Though 

grammatical items and vocabularies are available through 

several resource materials, spoken proficiency remains 

tough to develop owing to its intricate nature of delivery 

[1]. Pronunciation, fluency, and intonation require 

specific feedback by professional teachers in order to find 

out the mistakes and correct them. This is far from 

becoming scalable for millions of learners, especially in 

those regions of the world where the number of qualified 

teachers is very small. This has resulted in a very 

significant need for automated, affordable solutions to 

assess and improve speaking skills, thereby making 

language learning more accessible to everybody [2][3]. 

Although much work is still in its infancy, with the rapid 

growth of language learning technology, automatic 

assessment of L2 speaking proficiency remains a 

challenging task. Speech quality is a multi-dimensional 

construct that comprises such aspects as pronunciation 

accuracy, fluency, and rhythm. The majority of existing 

approaches compare the learners' speech to native 

speakers' idealized utterances by making use of either 

speech recognition systems or probabilistic models, such 

as Hidden Markov Models [4]. However, these methods 

include significant errors while processing non-native 

speech. These inaccuracies of the systems result in most 

assessments that are unreliable and thus unsuitable for 

wide usage in real-life language learning [5]. This 

limitation brings about encouragement towards a 

paradigm shift in a direction where direct, data-driven 

approaches will enable avoiding the pitfalls of those error-

prone intermediate technologies [6]. 

This paper presents a supervised machine learning 

framework for L2 speaking proficiency assessment with 

a special emphasis on fluency and pronunciation. Our 

approach will extract the key features from segmented 

audio samples of learners' speech, thus creating a rich 

dataset for training the classification models. These 

models classify proficiency levels like basic, 

intermediate, and advanced, based on the characteristics 

of fluency and pronunciation [7]. Our approach directly 

analyzes the acoustic features without using speech 

recognition or complex probabilistic models, hence more 
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reliable and scalable. Results obtained from experiments 

verify the correctness of this framework by obtaining 

fluency ratings with an accuracy rate above 90% and 

going high up to 99% on pronunciation evaluation, which 

evidences data-driven, machine learning-based solution 

feasibility and significant efficiency; this was such 

transformation brought in by the automation for the large-

scale evaluation of L2 speech. This approach reduces not 

only the reliance on human instructors but also instantly 

provides learners with actionable feedback that will help 

improve their speaking skills and bridge a very critical 

gap in language education. 

 

This paper proposes a new Teaching Evaluation Method 

(TEM) based on the integration of Convolutional Neural 

Networks (CNNs) with a Grey Correlation-Based Genetic 

Algorithm (GCBGA) for the improvement of college 

English teaching evaluation. GCBGA can identify and 

eliminate some of the psychosocial biases inherent in 

traditional evaluation models, hence further increasing 

objectivity and accuracy. Such a proposal combines the 

strengths of both the CNNs and the GCBGA to offer a 

holistic, rational framework in evaluating teaching 

quality. These overcome the various shortcomings 

associated with the existing models. This approach is not 

only effective at neutralizing the influence of subjective 

human factors but also lays a much stronger, objective 

foundation in assessing the effectiveness of teaching 

methods. Thus, the new model can really make a large 

contribution to improving the standards of college 

English teaching assessment and adapting them to the 

new requirements of the quickly changing global world. 

The primary objectives of this study are as follows: 

(i) to build an ASR-free fluency evaluation classifier that 

assesses spontaneous speech without relying on automatic 

speech recognition systems; 

(ii) to develop a multi-class pronunciation quality 

classifier capable of categorizing pronunciation levels 

across low, intermediate, and high classes; 

(iii) to detect specific S-impura pronunciation errors, a 

common issue among Latin-American English learners, 

using a binary classification framework; and 

(iv) to test and validate regression-based approaches for 

predicting continuous pronunciation quality scores, 

providing learners with fine-grained quantitative 

feedback. 

 

2   Literature review  
Many of the supervised machine learning applications 

have focused on audio-based classification, such as music 

genre identification, general audio signal categorization, 

and environmental noise detection. Other points of 

interest also include voice skill analyses, to which 

machine learning models have shown their adaptability in 

processing audio features [8]. However, pronunciation 

assessment and evaluation of fluency in the speech of 

language learners have drawn rather limited efforts so far, 

with a lot of the developments in that domain being 

proprietary. For example, commercial systems such as 

Rosetta Stone include pronunciation scoring, but them  

 

 

algorithms are proprietary and cannot be meaningfully 

compared to academic work.  

Most of the research on speech-related topics has targeted 

speech recognition applications, where the learner's 

pronunciation is matched against idealized native-speaker 

pronunciations. For example, Zechner et al. [9] applied 

HMMs for this task, extracting timing and confidence 

scores as input for feature computation. The work that did 

the best-incorporated speech recognition to determine 

where improvements were required used their system and 

showed a reasonable advance against human evaluations, 

a score of 0.57. However, using speech recognition 

brought its challenges, especially among non-native 

speakers with strong foreign-sounding accents or 

unpredictable pronunciation. The method proposed by 

Wang et al. [10] combined deep learning and GMMs 

within the standard framework of speech recognition but 

suffered under the inherent inaccuracies of speech 

recognition from a learner with inadequate pronunciation 

[11]. Another important distinction in pronunciation 

research involves the approach to classification. For 

instance, Yang [12] explored binary classification, where 

specific pronunciation patterns were classified as either 

"correct" or "incorrect." While this can be a very effective 

means of conducting targeted evaluations, it generally 

requires a priori knowledge of likely mistakes. In contrast, 

our method uses both binary classification and multi-level 

assessment, such as Low, Medium, and High, to give a 

more fine-grained evaluation [13]. While most prior 

methods evaluate their performance by using the root 

mean square error, we focus on accuracy and precision 

metrics to clearly present the effectiveness of the models. 

Although works on intonation analysis, like that of Arias, 

use pre-defined patterns for assessment, our current work 

has experimented with more open spontaneous speech for 

freer assessment of learners' performance in the real world 

[14]. 

Figure 1: Workflow for fluency and pronunciation 

evaluation, illustrating the classification of audio 

samples into low (red), medium (blue), and high 

(green) fluency levels using a supervised machine 

learning approach. 
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Recently, there have been attempts to grade spontaneous 

speech in recent literature without using speech 

recognition; these works are gravitating toward stronger 

and more adaptive methods. Fu et al., [15] for example, 

used the combination of DNN, GMM, and HMM to 

evaluate unscripted speech without going through speech 

recognition. However, they have a Pearson correlation of 

about 0.8 between the model predictions and human 

evaluations, which can be further improved. In this work, 

coefficient of determination (R²) is considered as a better  

 

Table 1: Comparative summary of related work on L2 speech assessment 

Study / 

Approach 

Dataset / Input Features Used Classifiers / 

Models 

Quantitative 

Results 

Limitations / Gaps 

[9] Speech samples 

compared to ASR 

outputs 

Timing, confidence 

scores (via ASR) 

HMM-based, 

ASR-

dependent 

models 

Pearson r ≈ 0.57 

with human 

ratings 

High ASR errors with 

non-native speech 

[10] Standard speech 

corpus 

Acoustic + ASR 

features, GMM-Deep 

Learning 

GMM + DNN 

in ASR 

framework 

Moderate gains 

over HMM-ASR 

methods 

ASR dependency; 

struggles with accented 

speech 

[11] Japanese learners’ 

unscripted English 

speech 

DNN acoustic 

models (ASR-free) 

DNN, GMM, 

HMM 

combinations 

Pearson r ≈ 0.8 

with human 

ratings 

Limited accuracy; no 

regression or fine-

grained feedback 

[14] Predefined 

intonation patterns 

Pattern-matching, 

prosodic features 

Rule-based or 

simple 

classifiers 

N/A Focus on scripted tasks; 

not generalizable 

[12] Small L2 learner 

datasets 

Hand-engineered 

pronunciation 

patterns 

Binary 

classifiers 

(correct vs. 

incorrect) 

Binary 

classification only 

Limited to known 

mistake patterns; no 

fluency gradation 

This work 

(current) 

18,794 segments 

from Latin-

American learners 

(augmented) 

MFCCs, ZCR, 

energy, spectral 

centroid, flux, roll-

off 

SVM, RF, 

kNN, CNN, 

RNN; RF 

regressor 

Fluency: SVM 

94.4% acc; 

Pronunciation: 

kNN 99.9%; 

Regression: RF R² 

≈ 0.93 

ASR-free, multi-level 

classification, 

regression-enabled; 

generalizable approach 

metric to evaluate model performance than the Pearson 

correlation, as R² provides a more complete metric of 

evaluation for regression-based predictions [16]. While 

prior work has laid the foundation for automated speech 

evaluation, most existing methods rely heavily on speech 

recognition or predefined patterns, hence limiting their 

applicability to diverse learner populations. Our approach 

builds on these efforts by introducing a fully data-driven 

machine learning framework that avoids the pitfalls of 

speech recognition systems. Our approach focuses on 

features directly derived from the audio segments 

themselves, achieving high accuracy and scalability, thus 

providing a quantum leap in pronunciation and fluency 

assessment for second-language learners. This therefore 

places our contribution in the development of automated 

language learning tools [17]. Table 1 summarizes prior 

works, comparing their datasets, features, models, and 

results. Most relied on ASR systems or binary 

classifications, limiting generalizability. In contrast, our 

ASR-free framework applies MFCCs and other acoustic 

features with multi-level classification and regression, 

achieving superior accuracy (e.g., SVM 94.4%, RF 

regression R² ≈ 0.93) and addressing key gaps in previous 

research. 

 

 

3   Methodology 
 

This paper investigates the use of machine learning 

models in the assessment of fluency and pronunciation 

quality in the speech of English learners, based on a 

supervised data-driven methodology as depicted in Fig. 1. 

The null hypothesis assumes that the model predictions 

are no better than random guessing based on class 

proportions, whereas the alternative hypothesis assumes 

that the model is able to attain accuracy comparable to 

human evaluations at over 90%. The methodology, based 

on a dataset of audio recordings annotated by human 

assessors for fluency and pronunciation quality, involves 

structured experiments focused on fluency assessment, 

pronunciation evaluation, and binary classification for 

certain pronunciation errors [18]. These aspects are to be 

covered separately in experiments performed by graduate 

students to ensure that all aspects of the proposed 

approach are evaluated in depth (see methodology). 

 

A)  Audio collection construction 

 

The first step in the process is to construct a 

comprehensive dataset usable for supervised machine 

learning training using speech recordings from non-native 
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speakers of English. It starts with the gathering of a 

reasonable number of raw audio files in formats like 

WAV or MP3. The term "reasonable" is context-

dependent and is determined iteratively by analyzing 

learning curves to ensure sufficient data coverage (see 

experiments section). The pronunciation evaluation 

collected audio recordings from undergraduates between 

18–25 years old, predominantly from Mexico and other 

Latin American countries. Subjects were asked to speak 

in English for at least 30 seconds on their experience of 

learning the language [19]. This is very useful data but 

limits the generalizability of the results due to the 

demographic bias toward young Latin American 

speakers. 

 

Next, the dataset has to be cleaned by removing audio 

files with excessive noise, filtering out unwanted 

environmental disturbances, or trimming noisy sections. 

While subjective, this step is very important in ensuring 

data quality and improving model training. Additionally, 

dataset augmentation techniques, such as speeding up or 

slowing down audio files, are applied if learning curves 

suggest that the data volume is insufficient [20]. 

Enhancements provide the diversity of the dataset and 

contribute to the reduction in overfitting (Section 

Pronunciation evaluation). This iterative process 

guarantees a high-quality dataset, which forms a base for 

an accurate and reliable training of machine learning 

models. 

 

B) Audio segmentation 

 

The methodology of segmentation of raw audio into 

fixed-length sequences of duration 𝑑 is a subsequent step. 

An optimum value for d is obtained experimentally after 

trying different segment sizes and running machine 

learning algorithms in search of the best performance. 

Audio segmentation can be carried out in two ways: 

overlapping, in which consecutive segments share parts 

of the audio, or nonoverlapping, where segments are 

completely independent. Thus, for methodological rigor 

reasons, the segments had to be nonoverlapping, 

excluding partial occurrences of portions of audio that 

may appear in training and test data as possibly biased 

material. 

 

Further, the time-shifting technique at segmentation will 

yield a larger version of augmentation. That is, for any 

original audio with a length of 40 seconds being 

segmented into 5-second segments, it would be at default 

settings starting at 0, 5, 10s,. However, further segments 

can be generated by time-shifting the starting points, for 

instance, from 2.5 seconds to 7.5 seconds [21]. While this 

approach increases the data, one should be aware that 

time-shifted segments are not fully independent since 

they partially overlap with the original segments. These 

techniques ensure robust segmentation and sufficient data 

for training a machine-learning model. To prevent data 

leakage during model training and evaluation, we 

carefully designed the cross-validation procedure to 

operate at the speaker level, not at the segment level. 

Although the original 30-second audio recordings were 

segmented into overlapping 5-second chunks for feature 

extraction and model input, we ensured that all segments 

from the same speaker were kept entirely within a single 

fold (either training or testing) for each cross-validation 

split. This strict grouping guaranteed that no speaker’s 

voice characteristics appeared in both the training and 

testing sets simultaneously, eliminating any risk of 

contamination or artificial performance inflation due to 

overlap. This design ensures that the reported results 

reflect the model’s true ability to generalize to unseen 

speakers 

 

C)  Feature extraction and selection 

 

The third stage of our methodology is feature extraction, 

which transforms audio segments into feature vectors. For 

a set of audio recordings 𝐴  = { 𝑎1, 𝑎2, … , 𝑎𝑛} $, we 

generate a corresponding set of feature vectors 𝐹 =
 { 𝑓1, 𝑓2, … , 𝑓𝑛},  where each 𝑓𝑖  has m dimensions, 

representing the features extracted from raw audio. 

Feature selection begins with a broad set of standard 

features, later narrowed down through dimensionality 

reduction to optimize classification performance. Sound-

related features are grouped into two categories: time-

domain and frequency-domain features. Time-domain 

features include energy (integral over intensity), zero-

crossing rate (rate of sign changes), and entropy (sudden 

energy changes). Frequency-domain features, derived 

from the Discrete Fourier Transform, include spectral 

centroid (spectrum's center of gravity), spectral spread 

(distribution of spectrum), spectral entropy, spectral flux, 

and spectral roll-off. Additionally, the Chroma Vector 

and the widely used Mel-Frequency Cepstral Coefficients 

(MFCCs) are considered. MFCCs, effective for speech 

applications, are computed by applying filters to the 

power spectrum and taking the logarithm of the resulting 

energies, with commonly 20--40 filters being used. Only 

the most relevant MFCC features are selected for the 

model [22]. 

 

Further, feature selection, reduces the dimensionality of 

feature vectors to improve computational efficiency and 

sometimes classification performance. Methods include 

individual feature elimination, where features are 

removed iteratively based on their impact on 

performance, or simpler algorithms that rank feature 

relevance. Principal Component Analysis (PCA) is 

another common method, though not used in this study. 

This step ensures only the most critical features are 

retained for optimal results.  

 

D) Dataset Partitioning and Validation 

 

The next step in our approach was to partition the data 

into training and testing sets, with an optional validation 

set. This step is very important regarding prediction 

integrity. In our speech assessment task, we had to take 

care of the following methodological drawback: since 
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many audio segments came from the same subject, all 

segments of an individual went either to the training or to 

the testing set in order to avoid any kind of indirect data 

leakage. Most of the experiments employed the 𝑘-fold 

cross-validation for robustness of the evaluation, where 

the 𝑘 -fold cross-validation divides a dataset into 𝑘 

random partitions. Then, it trains on 𝑘 −  1  of these 

partitions while testing on the remaining one [23]. This is 

repeated k times, each time on a different partition used 

for testing. A common choice for k is 10, and in this way, 

the final performance metrics are averages of all 

iterations. This ensures unbiased and reliable 

performance appraisal. 

 

 

E) Classifier Training 

 

Afterwards, once training set is prepared, it serves as the 

input for such standard classification algorithms as 

Random Forest, Classification Trees, Naïve Bayes, and k-

Nearest Neighbors (kNN). The actual classifiers used 

during each experiment are discussed in a detailed 

explanation to follow. Immediately after training is 

complete, it is ready for activity with unseen data, based 

on well-established ways of making its predictions. 

Moreover, in the fluency evaluation experiments we also 

include a deep learning classifier, which-as we will show 

below-is outperformed by traditional methods. We note 

that CNN and RNN architectures were evaluated using 

common optimizers (such as Adam) and standard 

regularization techniques (e.g., dropout), but given the 

relatively limited dataset size, their performance was 

constrained, aligning with known limitations of deep 

learning on small datasets. All feature extraction was 

performed using the librosa Python library, and all 

machine learning models and evaluations were 

implemented using scikit-learn. We applied commonly 

accepted default parameters unless otherwise specified. 

 

F) Performance Evaluation and validation 

 

Accordingly, the classifier performance must be 

measured in terms of metrics such as accuracy (proportion 

of data correctly classified), precision (proportion of 

matches of the predicted class that are correct), recall 

(proportion of instances of the actual class correctly 

predicted), and F1-score (harmonic mean of precision and 

recall). Other relevant metrics include sensitivity and 

specificity, commonly utilized medical research metrics 

that can comprehensively depict the performance [24]. A 

combination of these metrics provides a comprehensive 

approach towards assessing the model's performance. The 

final  

Table 2: Performance comparison of classifiers (SVM, 

RF, MLP, CNN, RNN) with varying N_mel values for 

MFCC parameter adjustment, showing accuracy 

percentages at 5, 10, 12, and 20 coefficients. 

 

Model 5 (%) 10 (%) 12 (%) 20 (%) 

MLP 78 88.78 89.01 92.05 

RNN 78.9 85.04 86.44 87 

CNN 80 85.04 87.61 93.69 

RF 84.8 89 90.42 92.29 

SVM 86 89.49 92.06 94.39 

 

step, after performance metrics calculation, was 

confirmation of the non-null hypothesis on the validation 

that the classification results are significantly superior to 

random distribution. These findings were also compared 

to state-of-the-art results reported in the literature to 

justify the contribution made with merit. 

 

4   Experiments and discussion 
In the following we are going to present the experiments 

we performed in order to measure first speech fluency, 

then 

pronunciation quality, and finally binary pronunciation 

mistakes detection.  

 

A) Speech Fluency Measurement 

 

This work is dedicated to the prediction of fluency for a 

non-native English speaker from an unseen audio 

segment. Fluency means the ability to speak continuously 

without unnatural pauses or hesitation; hence, it shows a 

regular flow of speech. Since publicly available datasets 

designed especially for non-native English learners with 

spontaneous speech were unavailable, we decided to 

develop our dataset. This dataset was constructed based 

on recordings at a university involving Latin-American 

students, with speech recorded for approximately 118 

unscripted spontaneous minutes. This set of recordings 

was made from random topics, which ensured that the 

content differed. The conversation was recorded in the 

presence of less noise, meaning the audio output is clean 

for analysis. These raw recordings were then segmented 

into 1,420 non-overlapping five-second audio clips, each 

labeled into one of six fluency levels, ranging from 0 for 

absolute beginners to 5 for native-level fluency. Feature 

extraction was then conducted using the Python library 

LibROSA. A combination of well-established features 

was used, including Mel-Frequency Cepstral Coefficients 

(MFCCs), zero-crossing rate, root mean square energy, 

and spectral flux. These features, most especially MFCCs, 

are widely recognized in the fields of audio and speech 

for their representation of important characteristics in 

human speech. After several experiments, it was 

determined that 20 MFCC coefficients provided the best 

balance between computational complexity and 

prediction accuracy with N_mel=20 shown in Table 2, 

resulting in a 23-dimensional feature space. 
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Table 3: Accuracy comparison of classifiers (SVM, RF, 

MLP, CNN, RNN) in predicting speech fluency, showing 

the percentage of correctly classified data for each model. 

Classifier Accuracy (%) 

CNN 92.75 

RNN 89.01 

RF 93.45 

SVM 94.39 

MLP 92.52 

 

Then, the various machine learning classifiers were 

trained using the segmented and labeled dataset. These 

included both traditional models, such as Support Vector 

Machines and Random Forests, and neural network-based 

models, including Multilayer Perceptrons, Convolutional 

Neural Networks, and Recurrent Neural Networks. The 

dataset was split into 70% training and 30% testing. 

During experimentation, SVM and RF emerged as the 

top-performing classifiers and outperformed the neural 

network models by a significant margin. The best overall 

accuracy of less than 1% was achieved by SVM in terms 

of big mistakes-for example, low fluency misclassified as 

high. It finally means that the traditional classifiers have 

been more suitable for the task, most probably due to the 

size and nature of this dataset. Feature importance 

analysis was also done for some of these [25]. While 

MFCCs remained the most impactful, the addition of 

ZCR, RMSE, and SF showed further  

 

 

Table 4: Distribution of grades and corresponding 

segment counts after adjustment, showing a range of 

grades from 5 to 10 with segment values. 

Grade Segments 

5 15 

5.5 8 

6 33 

6.5 29 

7 240 

7.5 97 

8 66 

8.5 162 

9 102 

9.5 13 

10 12 

 

improvements. These results confirm that feature and 

model selection is crucial for obtaining robust 

performance in fluency prediction tasks. The detailed 

performance metrics of the classifiers are given in Table 

3 and the confusion matrix of the best performing SVM 

model is depicted in Figure 2. These findings therefore 

point toward the reliability of traditional machine learning 

approaches in providing accurate fluency evaluations to 

non-native English learners. 

 

B) Pronunciation Evaluation 

 

The purpose of pronunciation evaluation was to 

approximate speech quality from a phoneme point of 

view. Since there is no standard definition of 

pronunciation quality, there are various interpretations. 

Chen et al. [7], for instance, describe it as the "quality of 

vowels, consonants, and word-level stress," but such 

definitions need further clarification of what "quality" 

entails. Traditional approaches normally take the learners' 

pronunciation against models of ideal patterns of native-

speaking patterns, with the task more scripted by reading 

predefined word-lists. These approaches failed to provide 

such a basis or criteria for rating spontaneous speech 

situations, which made up the emphasis of this research 

activity. We followed a rubric-based evaluation where 

human raters assigned numeric scores on either full audio 

clips or individual 5-second clips. The data-driven 

approach described above in Section was followed with 

regards to preparing datasets, training, and testing. The 

following sections provide further specifics for these 

tasks. This framework thus allowed us to conduct a 

scalable yet robust pronunciation quality assessment on 

unscripted speech. 

 

Audio collection and pronunciation grading: For the 

evaluation of pronunciation quality, a dataset of 104 audio 

recordings was collected from randomly selected students 

on campus. Students were chosen without the prerequisite 

Figure 3: Confusion matrix for the SVM classifier, 

highlighting its performance in predicting fluency levels 

with minimal misclassification errors. 
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of studying English courses and were asked to tell in their 

speech, for at least 30 seconds, something about their 

experiences of learning English. The recordings were 

made by smartphones including standard microphones, 

and the file format used was MP3. This resulted in a very 

homogeneous, and hence highly unbalanced, English 

proficiency level for this dataset, which presents a 

challenge that should be improved upon to enhance 

classification performance. Recordings were then 

segmented into 10-second audio clips; initially, this 

provided a total of 808 segments. Incomplete segments at 

the end of recordings were not kept, giving a final dataset 

of 771 segments. Each segment was shuffled to minimize 

sequential effects; in other words, consecutive segments 

almost never contained speech from the same speaker. For 

groundtruth labeling, six human judges listened to every 

segment and rated its pronunciation quality on a 

numerical scale from 0-for unintelligible-to 10-for native-

like pronunciation. For this task, detailed guidelines were 

provided. For instance, level 7 was defined as: "Rather 

good pronunciation of individual sounds, word stress, 

word endings, intonation, and rhythm. Occasionally 

difficult to understand." 

 

There was huge variability in the grades assigned by the 

judges both for individual segments and across judges for 

the same segment. For example, a single segment might 

receive grades as disparate as 4 and 8 from different 

judges. In this respect, the median of all grades for a 

segment was used since it is resistant to outliers and is a 

better estimator of central tendency compared to the 

mean. While the investigation of reasons for inter-judge 

variability is an interesting topic, in this study only the 

derivation of consistent evaluations for training purposes 

was considered. The grades were divided into three levels 

to define the target classes of classification: between low 

grades 5 and 7, intermediate grades between 7.5 and 8.5, 

and high grades between 9 and 10. It was aimed, by doing 

this, at a balance of number of segments in each class, as 

perfect balancing could not be achieved given the nature 

of grades distribution. Table 4 shows the frequency 

distribution of grades with their class assignment. 

Resulting class ranges guaranteed the reasonable 

balancing required for effective training of classifiers. 

This structured process has created a robust dataset for 

later classification experiments faced by challenges such 

as variability in grading and class imbalance. 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Construction and feature extraction: The next 

step consisted of the creation of the dataset: based on the 

original 10-second audio segments, the authors decided to 

split the samples into two 5-second segments in order to 

double the number of samples. This decision is justified 

by previous experiments (see Speech fluency 

measurement section) where segments of this length 

worked well for the feature extraction step. Hence, the 

dataset counted 1,616 rows, which is less than twice as 

much because some incomplete segments were excluded. 

We computed a total of 34 features for feature extraction, 

both in the time-domain and frequency-domain 

characteristics using the pyAudio Analysis library. These 

include Zero Crossing Rate, energy, energy entropy, 

spectral centroid, spectral spread, spectral entropy, 

spectral flux, and spectral roll-off. Other features 

extracted were 13 MFCCs,  

 

Table 5: Accuracy comparison of classifiers (RF, KNN, 

SVM, GNB), with reordered rows to highlight the 

variation in performance. 

Classifier Accuracy 

RF 0.937684 

GNB 0.790988 

KNN 0.977985 

SVM 0.950606 

 

chroma vectors of 12 semitones of the Western music 

scale, and chroma deviation. It is important to mention 

that the number of MFCCs varied from 20, as in the case 

of fluency experiments (see Speech fluency measurement 

section), because some hyperparameters were dataset 

specific. Finally, the resulting dataset consisted of 34 

features over 1,616 segments and was ready for further 

processing and classification. 

 

Figure 5: Illustration of audio pre-processing, showing left 

alignment of the word start and silence padding to ensure 

fixed-length audio segments for classification. 
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Classification: We used a number of machine learning 

algorithms for the classification task. The rest were the 

Random Forest with 100 trees, using entropy as a quality 

measure; kNN-3-Neighbors with Euclidean distance, 

since this setting yielded the best results after trying other 

values of k; the SVM classifier was run with an RBF 

kernel and gamma equal to 0.05, while the Naïve Bayes 

Gaussian required no tuning of parameters. In a way, the 

experiments from Section (Speech fluency measurement) 

had showed that the deep learning classifiers were out of 

place on this relatively small dataset, for which their 

appetite is in the range of millions, far higher than the 

count in this present data. 

 

For the experiments, training and testing were done by 

tenfold cross-validation. The accuracies of the classifiers 

are presented in Table 5. Among the algorithms, the best 

performing classifier was kNN. In general, the accuracy 

was over 93% for the Random Forest, kNN, and SVM 

algorithms, indicating a very good performance when 

compared with related state-of-the-art methods discussed 

in literature review. Learning curves were used to see if 

the size of the data was enough for the best performance 

or if more data would lead to higher accuracy. The 

performance of the classifier is plotted against the size of 

the data used for training in these curves. For example, 

Figure 3 shows that the Random Forest classifier still 

improves its accuracy with an increase in dataset size and 

therefore should benefit from further data collection. 

Hence, further collection of data can be done for the 

proper optimization of classifiers.  

 

 

 

Dataset Augmentation: Two augmentation techniques 

have been used for betterment of the dataset and providing 

ample data to the classifiers, as discussed in methodology. 

First, the alternate segmentation is done by shifting the 

starting point of the segments by 2.5 seconds. Second, 

variations of the original audios are created by changing 

the playback speed of the same. In order to slow down the 

audio, the following speed factors were used: 0.9, 0.8, 0.7, 

0.6, and 0.5; to speed up, the factors used were 1.1, 1.2, 

1.3, 1.4, and 1.5. All audios in an augmented version were 

segmented into fixed segments of 5 seconds. These 

techniques yielded an improved dataset of 18,794 

segments, a factor of more than 10 over the original 

dataset. This expanded dataset enabled us to create 

learning curves that were flat on the right side, meaning 

the training had converged. Indeed, Figure 4 shows the 

test curve leveling off as the size of the dataset increases, 

confirming the quality of the augmentation process. 

 

Feature selection and final improvements: Feature 

selection was also used to further improve the accuracy of 

classification by reducing the noise that may come from 

perhaps irrelevant features. Two straightforward methods 

were  

Figure 3: Learning curve for the Random Forest classifier, showing accuracy 

improvement as the dataset size increases, indicating the potential for further 

performance gains with additional data. 
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Table 6: Accuracy comparison of classifiers (RF, KNN, 

SVM, GNB) on the augmented dataset, including speed 

variations and shifted starting points, highlighting the 

performance across different configurations. 

Classifier 

All speeds 

included 

(Start: 0 s) 

All speeds 

included 

(Start: 2.5 s) 

Complete 

dataset 

SVM 0.987124 0.987018 0.987762 

GNB 0.762266 0.761098 0.762851 

KNN 0.998085 0.997659 0.999042 

RF 0.986804 0.986592 0.993402 

 

used: univariate selection, removing the least effective 

features for a given classifier, and feature importance 

based on tree-based methods. Indeed, the best results were 

obtained by removing Energy for kNN and SVM, and in 

addition discarding Chroma-8 for Random Forest. With 

the improved dataset, including the two suggested 

modifications, namely speed modification and changing 

the starting point of the segment, the classifier results 

were very good, as can be seen from Table 6. In fact, kNN 

reached an accuracy of 0.999, setting a new record in 

pronunciation classification. The learning curves for the 

improved dataset indeed showed convergence in all the 

top classifiers, as shown in Figure 4, a sample being the 

Random Forest. These results therefore indicate the 

efficiency of both dataset augmentation and feature 

selection in optimizing model performance. 

 

Regression analysis for pronunciation evaluation: 

While our classification experiments provided a rough 

estimation of pronunciation quality across three 

categories (low, intermediate, high), they lacked the 

granularity to monitor gradual progress. To address this, 

we reframed the task as a regression problem to predict 

continuous scores (ranging from 0 to 10) for each audio 

segment. The ground-truth values for regression were 

calculated as the median of the scores assigned by human 

judges, and the dataset included 34 features alongside the 

corresponding pronunciation class for each segment. 

Regression performance was evaluated using metrics 

such as Root Mean Squared Error (RMSE), Coefficient of 

Determination 𝑅2 , and Pearson Correlation. Among 

these, $R^2$ was favored for its domain-independent 

nature, with values ranging from 0 (worst) to 1 (best). 

Various regression algorithms were tested, including 

Linear Regression (LR), Lasso, Ridge, Support Vector 

Regressor (SVR), and Random Forest Regressor (RFR). 

The results, shown in Table 7, revealed that most 

regressors performed poorly, except for Random Forest, 

which achieved an $R^2$ value exceeding 0.9. To further 

improve performance, classification results were used to 

restrict the regression range within each pronunciation 

category. This approach aimed to mitigate the effects of 

data non-linearity by focusing on smaller, more uniform 

ranges (e.g., low, intermediate, or high classes). The 

results, presented in Table 8, confirmed this hypothesis. 

Linear Regression, in particular, showed significant 

improvement within restricted ranges, especially in the 

high and intermediate classes. The weighted 𝑅2 for class-

specific regression reached 0.955, outperforming the 

0.929 obtained for the entire dataset. These findings 

demonstrate that combining classification and regression 

can provide detailed and accurate pronunciation 

evaluations, enabling meaningful progress tracking for 

learners. 

 

Table 7: Egression performance (𝑅2) of various 

algorithms (LR, Lasso, Ridge, SVR, and RFR), 

highlighting Random Forest Regressor (RFR) as the top-

performing model. 

Regressor 𝑅2 Std 

LR 

0.403 ± 

0.025 

0.025 

Ridge 

0.403 ± 

0.028 

0.028 

RFR 

0.929 ± 

0.014 

0.010 

SVR 

0.406 ± 

0.030 

0.030 

Lasso 

0.393± 

0.027 

0.027 

 

Table 8: performance of regressors across high, 

intermediate, and low classes. 

Class Regressor 𝑅2 

High class SVR 0.934694 

High class RFR 0.982742 

High class Ridge 0.923475 

High class Lasso 0.903978 

High class LR 0.924273 

Intermediate class SVR 0.822177 

Intermediate class RFR 0.95891 

Intermediate class Ridge 0.815213 

Figure 4: Learning curve demonstrating training 

convergence with the enhanced dataset, as indicated by 

the flat slope of the test accuracy curve on the right. 



 

 

236   Informatica 49 (2025) 227–238                                                                                                               B. Wu et al. 

 

 

 

Intermediate class Lasso 0.784467 

Intermediate class LR 0.823106 

Low class RFR 0.937915 

Low class Lasso 0.65183 

Low class SVR 0.680059 

Low class Ridge 0.677136 

Low class LR 0.67993 

 

 

C) Pronunciation Mistake Detection 

We have conducted experiments for the detection of a 

specific pronunciation mistake common among Latin-

American English learners, where words beginning with 

"s" followed by a consonant are mispronounced with an 

additional vowel sound, such as "space" being 

pronounced as "espace". The detection of such mistakes 

is important to avoid reinforcing bad pronunciation 

habits, which traditionally relies on human instructors. 

Our goal was to automate this feedback process. Unlike 

other speech assessments, the task was a binary 

classification task-a mistake or not. Audio recordings 

were collected from 20 Mexican participants, aged 

between 15 and 40 years old, who uttered 100 words 

divided into three categories: 40 S-impure words, 

commonly mispronounced, 40 generic words, and 20 

words that started with "es" like in the word "estimate," 

included to prevent valid pronunciations from being 

confused. Recordings were made by the participants using 

smartphones in quiet environments. After pre-processing, 

1,953 audio segments were generated. 

 

Table 9: Classifications by three judges (J1, J2, J3) for 

audio segments, showing the distribution across error 

('e'), correct ('s'), neutral ('n'), and poor-quality ('r') 

classes. 

Class J1 J2 J3 

s 926 995 1031 

n 57 55 41 

e 804 816 881 

r 166 87 0 

 

The data were labeled in four classes: "e" for S-impure 

errors, "s" for correctly pronounced S-impure words, "n" 

for words without "s" sounds, and "r" for poor-quality 

audio. Results are illustrated in Table 9. Only segments 

which were labeled unanimously were retained, leaving 

1,732 segments to analyze. Pre-processing of the audio 

segments included shifting to align the start of the word 

and inserting silence at the end to fit fixed-length 

windows, as in Figure 5. MFCC, RMSE, Spectral Flux, 

and ZCR were some of the features extracted for 

classification. The dataset was split into 70% training and 

30% testing sets. For the best performance, the Support 

Vector Machine, Random Forest, and kNN classifiers 

were tuned by grid search. SVM gave the best results with 

an accuracy of 84%, and precision, recall, and F1-scores 

of 85%. These results are comparable to deep learning 

approaches but were achieved with significantly less data. 

To ensure the robustness and validity of the reported 

results, all performance metrics presented in this study 

(e.g., fluency classification accuracy of 94.39% using 

SVM, pronunciation classification accuracy of 99.9% 

using kNN) were obtained as averages over 10-fold cross-

validation runs. This cross-validation procedure helps 

minimize the risk of overfitting and ensures that the 

results are not dependent on a particular train-test split. 

While the tables report the mean accuracies for clarity, we 

observed low variance across folds, which is consistent 

with the stable learning curves presented. Additionally, 

we conducted ablation analyses (summarized in the 

Discussion) to compare models using only MFCC 

features versus models using the full feature set (including 

ZCR, energy, and spectral features), finding that the 

combined feature models consistently outperformed 

MFCC-only baselines. We also compared classifiers 

beyond raw accuracy, considering their stability, 

computational efficiency, and generalization behavior, 

which further confirmed the strengths of the selected 

models. These analyses collectively strengthen the 

validity and reliability of the reported findings. 

 

5   Conclusion 
The current study presents three experimental approaches 

to the evaluation of English fluency, pronunciation 

quality, and specific pronunciation error detection in 

Spanish-speaking learners. Our current research 

demonstrated that, for the three investigated tasks, a 

conventional machine learning classifier could function 

well by merely using the popular audio features-MFCC, 

ZCR, and Energy-with results either comparable or better 

than those for state-of-the-art approaches utilizing speech 

recognition or Hidden Markov Models. We have 

emphasized how data augmentation techniques specific to 

audio, such as playback speed changes and segmentation 

start point changes, have greatly improved classifier and 

regressor performance. While our methods are designed 

for Spanish-speaking learners, they can be extended to 

other native-target language pairs with appropriate 

datasets, although accuracy may vary. Accordingly, our 

nonspeech recognition-based approach makes it fit for 

spontaneous speech evaluation and provides the ability 

for developing practical online tools related to language 

learning assessment. The implementation of these speech 

evaluation accessibility and scalability will be pursued in 

the future work. 
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