
https://doi.org/10.31449/inf.v49i15.8654                                                                                    Informatica 49 (2025) 329–342 329 

 

Reverse-Time Event Sequence Prediction Using Summary Markov 

Models and Denoising Diffusion Processes 
 

 

Jiao Wu 

School of Computer Engineering, Shangqiu University, He Nan, Shang Qiu, 476000, China 

E-mail：wujiao555888@126.com 

 

Keywords: reverse time prediction, event sequences, stochastic systems, Markov Models 

 

Recieved: March 19, 2025 

 

Choosing a suitable subset of the event information is the first step in using the framework.  We are unable 

to provide assistance with this endeavor since it is very customized and requires creativity.  With any luck, 

the event data will be adequately represented by a probabilistic framework that is fitted using a learning 

algorithm once a dataset has been constructed.  The algorithm's output is a representation suitable for 

use in prediction.  This can only be achieved by feeding the framework event data from execution process 

instances.  With the use of the probabilistic model, we can assess the chances of the procedure continuing 

using various event sequences given the current sequence of occurrences.  Specifically, this feature may 

be used to foretell the process's continuation-inducing event type with the highest probability.  Verifying 

that the prediction model does not go against common sense is something a framework user may want to 

undertake.  The first step of this study is to use a transformation method to derive the conceptual 

framework from the probabilistic model.  It is possible to see and understand this conceptual paradigm.  

A user may check how well the model matches his expectations.  The outcome would depend on his 

expectations; he may find behavior that goes against them or decide that the probabilistic framework is 

sufficient.  In the second scenario, a problem analysis might be conducted to determine whether the 

expectations were incorrect or if the probabilistic framework is insufficient.  When the model's 

transformation algorithm produces a conceptual model that is too complicated for humans to understand, 

the framework offers algorithmic assistance to those who need it.  To be more specific, one may utilize 

model query techniques to check for certain patterns in the model.  The user's expectations on the presence 

or absence of model structure may be represented by the patterns.  Any model, no matter how complicated, 

may be tested through comparing this expectation to the query results. The capacity of Markov Chain 

Models is used to handle sequential data—that is, to "remember" information from earlier events in the 

sequence as they go backwards through time—makes them ideal for reverse time prediction.  Finally, we 

evaluate the order model (or memory) of time series related to electrocorticographic (ECG) data recorded 

epileptic episodes by making use of the latter attribute.   Improved prediction accuracy and correlation 

efficiency are the results of a novel method that merges estimates from forward predictors and backward 

predictors.  We prove that events may be informed by changes on Markov Chain Systems by analyzing 

dynamic graphs built from time-series data, i.e., time-series fluctuation.  In a stochastic model known as 

a Markov chain, the previous state is irrelevant to determining the subsequent state; instead, the present 

state is used exclusively.  This served as inspiration for the suggested encoding technique, which aims to 

provide accurate and interpretable predictions of time-series events.  In a process that is fundamentally 

inverted from the conventional Markov chain prediction, the conditional likelihood of the prior state is 

computed given the present state.  The experimental findings from five real-world datasets demonstrate 

that our method outperforms baselines and offers other explanations for the outcomes of event prediction. 

 

Povzetek: Študija uvaja pristop obratnega napovedovanja zaporedij dogodkov z združevanjem 

povzetkovnih Markovih modelov in difuzijskih postopkov. Metoda izračuna verjetnosti preteklih stanj 

glede na trenutno stanje, izboljša napovedovanje časovnih serij in preseže primerjalne modele na petih 

realnih podatkovnih zbirkah. 

 

1 Introduction 
The goal of sequential event prediction is to forecast the 

subsequent event in a current event sequence by using a 

"sequence database" of previous event sequences as a 

learning resource [1], [2]. We concentrate on applications 

where the collection of historical occurrences, rather than 

the precise sequence of those occurrences, has predictive 

potential. These kinds of applications may be found in 

medical informatics, equipment maintenance [3], [4], 

recommender systems, and other fields. Forecasting 
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purchase timings, transaction patterns, and social media 

activity are just a few of the numerous real-world uses for 

sequence prediction. Since the challenge entails the 

difficult job of concurrently modeling two difficult data 

types—categorical data for event categories and strictly 

positive continuous data for inter-arrival times—it calls 

for a specialized model [5], [6]. Our method improves 

efficiency and performs noticeably better than current 

baselines for long-term forecasting. Our experimental 

research sheds light on how the model does this, showing 

that it is more effective at forecasting distant events and 

can capture more intricate association patterns. The 

objective is to guess the remaining (hidden) events in the 

sequence using the set of disclosed events—not 

necessarily their order. To create the forecasts, we may 

consult a "sequence database" of historical event 

sequences [7]. Every time a new event is announced, 

predictions for the next one are updated. Sequential 

prediction issues have numerous instances. Medical 

illnesses develop throughout time, and those that a patient 

has already encountered might be utilized to forecast 

future problems. The time-series prediction issues that one 

may solve using a Markov chain are not the same as the 

sequential event prediction problems that we examine here 

[8], [9]. For example, there is no inherent order in the 

online grocery shop recommender system dilemma about 

which items should be put to the basket, and the order of 

the addresses is probably not very important when it 

comes to email recipient recommendations [10], [11]. The 

remaining sequence can only be predicted with the set of 

previous elements. We approach the sequential event 

prediction process as a supervised ranking problem at each 

stage [12], [13]. Our algorithms rate all other potential 

events based on their probability of becoming a following 

event in the sequence, given a set of disclosed events from 

the present sequence. How far down the list we must 

search to locate the next item or items to be added 

determines how accurate our forecast is [14], [15]. A 

substantial body of literature has focused on solving these 

problems, which include complicated relationships (e.g., 

geographical, temporal, and semantic), heterogeneous 

multi-faceted outputs, and streaming data feeds.  Since 

event prediction issues are highly multidisciplinary, the 

majority of current event prediction techniques were 

developed to handle particular application domains [16]. 

However, the concepts and evaluation processes used are 

often applicable to other domains as well.  In the lack of 

an exhaustive literature review for event prediction, 

however, cross-referencing the methods across domains is 

both necessary and challenging [17].  Much effort has 

been put into developing and using event prediction 

techniques in order to tackle these problems in recent 

years.  Though event prediction methods are often still in 

their early stages, there has been a recent upsurge of 

research that suggests and implements novel ways across 

several domains [18]. Although most current event 

prediction systems have been developed for particular use 

cases, their underlying principles are often generic enough 

to address issues in other use cases as well.  Regrettably, 

it is challenging to use these methods in varied contexts 

for different groups.  The unique characteristics of the 

subject matter necessitate complex and purpose-built 

evaluation strategies to ensure high-quality event 

prediction results. These features include, but are not 

limited to, the fact that the subject matter is multi-

objective (e.g., focused on accuracy, resolution, efficiency, 

while lead time) and that the prediction results are 

heterogeneous (e.g., with multiple outputs).  

Unfortunately, there are currently no methods for 

systematically standardizing and summarizing the several 

suggested event prediction models. 

 

1.1 Challenges 

• Data sparsity: Precisely predicting the chain of 

events that leads to a given result may be 

challenging in the absence of sufficiently rich data. 

• Events association: While the model is good at 

seeing patterns of association, it isn't perfect at 

capturing the linkages that really drive the events. 

Within seconds, contemporary network settings 

produce a massive amount of network events.  

Consequently, there is a lot of labor involved in analyzing 

network events, especially when there are a lot of collected 

network variables.  It is essential to convert the 

information into time series forms with equal intervals in 

order to examine data from time series network events.  A 

huge number of streaming intrusion signals were 

previously analyzed using aggregation [6].  Nevertheless, 

due to the large number of events occurring at time 𝑏𝑖ti, 

the aggregation method used to time-stamped events can 

be prone to significant variance.  To better predict when a 

network will be healthy or under assault, we provide a 

method that can transform several sequences of network 

activity into time series representations.  In particular, our 

strategy applies statistical measures and computational 

approaches to transform network events into time series 

data over a desired time scale, allowing us to extract 

temporal properties. When representing data with several 

dimensions in a two-dimensional space, PCA is a common 

dimension reduction method used in visualization.  All 

data instances are mapped into the x- and y-axis of the 2D 

space using the first and second main components that are 

calculated.  By using the Fisher-Jenks algorithm, also 

known as Jenks' natural breaks categorization approach, to 

create clusters, the predicted network events may be more 

accurately represented.  The optimal classification of 

values into several groups is found by it.  Three separate 

groups were established from the various normal and 

assault occurrences via the use of a categorization 

procedure. Our suggested technique is shown to be 

successful in detecting attack patterns and projecting 
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probable future assaults using a publicly accessible 

network traffic dataset acquired in a honeypot system.  We 

tested two-time scales for network attack event prediction 

and attacker temporal pattern understanding to find out 

how well they worked.  To further test the efficacy of our 

suggested method, we conducted a battery of data 

analysis.  Ultimately, this research adds the following to 

the existing body of knowledge: 

• A state-of-the-art method for extracting time-related 

characteristics from network events is presented, 

which combines statistical measures with wavelet 

transform and permutation entropy.  Additionally, we 

provide an innovative approach to retrieving time-

related characteristics from categorical information 

pertaining to network traffic. 

•  The suggested method's efficacy is assessed by 

performance evaluations with varying time scales 

(𝑍𝑠=60ts=60 and 120 s). 

•  The characteristics are evaluated and numerous 

outputs (such as network normal along with attack 

events) are forecasted using DL. 

•  The efficacy of evaluating network events using the 

retrieved temporal characteristics is determined by 

visual analysis using several visualization 

approaches. 

 

In Section 2 of this publication, the relevant work is 

described.  Section 3 follows with an explanation of our 

methodology and the dataset consisting of network traffic.  

Section 4 presents the outcomes of the experiments.  

Finally, Section 5 and Section 6 cover the study's and 

future research's implications. 

 

2 Related works 
   The focus of the study conducted by the authors of [19] 

is on analyzing the performance of different machine 

learning algorithms using recorded EEG data.  The goal of 

that research is to identify the optimal model for use in 

developing an ensemble model to enhance learning.  

Logistic regression, the Naive Bayes model, and the K-

nearest neighbors Random Forest are examples of 

traditional machine learning approaches; artificial neural 

networks, convolutional neural networks, autoencoders, 

and long short-term memory are examples of deep 

learning techniques.  When comparing the sensitivity and 

specificity of all the models in that investigation, Random 

Forest with Long Short-Term Memory stood out. 

   That study systematically examines the impact of 

varying noise levels on the accuracy of forecasting of 

different load components and compares four recurrent 

neural network frameworks [20].  When it comes to 

horizontal bending moment and torsional moment 

prediction, the GRU network excels, whereas the LSTM 

network excels in vertical bending moment prediction.  

Despite applying filters to the initial noise information, the 

prediction accuracy continued to decline with increasing 

noise levels.  In comparison to the torsional moment, the 

vertical and horizontal bending moments are better at 

predicting future behavior. 

 

    Finding an efficient method for handling time series 

data with missing values and volatility is the goal of the 

authors of [21].  For accuracy evaluation, they used 

RMSE, and to estimate execution time, they used the 

Python Timeit module.  According to the results, the 

LSTM model outperforms the ARIMA model with respect 

to accuracy in a dataset of 60 data points (RMSE 

0.037618).  The situation changes, however, when they 

look at a bigger dataset with 228 pieces of data and see 

that the ARIMA model outperforms the LSTM model in 

terms of accuracy (RMSE 0.006949 vs. 0.036025).  The 

LSTM model often beats the ARIMA model in missing 

data settings, although both models' performance drops 

down as the total amount of missing values increases.  In 

terms of speed, the ARIMA model is light years ahead of 

the LSTM model. 

    Using data from 299 individuals suffering from left 

ventricular systolic dysfunction and class III/IV heart 

failure, the authors of [22] want to do a comprehensive 

survival analysis with survival prediction.  In a survival 

analysis, the number of participants who managed to stay 

alive after a mediation is tracked over time to determine 

the impact of that mediation.  Survival time is defined as 

the amount of time it takes to get from a certain starting 

point to an endpoint, such as death, and survival analysis 

is the study of that time.  Cox Potential Hazard regression 

and Kaplan-Meier estimations were used to conduct the 

study.  KM plots displayed the estimated survival rates vs 

each clinical trait, as well as the impact of each feature at 

different levels on survival over time.  The study's clinical 

characteristics were utilized to estimate the hazard of 

mortality event using Cox regression.  Time, age, ejection 

fraction, and serum creatinine were shown to be 

substantial risk factors for advanced heart failure based on 

the research.  The likelihood of survival decreases with 

age and increases in serum creatinine levels.  The 

likelihood of a fatal incident decreasing by around 5.2% is 

directly correlated with the EF level, which has a positive 

impact on survival.  Early postdiagnosis days have a 

higher death rate, but once a specific amount of time has 

passed, the risk begins to decline.  Additional risk factors 

include hypertension and anemia. 

    Researchers in [23] conducted multi-step-ahead 

predictions of network bandwidth use using statistical 

techniques, such as auto-regressive integrated moving 

average, and machine learning algorithms, such as multi-

layer perceptron as well as short-term memory.  In order 

to anticipate the network's bandwidth, use one, two, and 

three hours in the future, they suggest comparing several 

methods, including recursive, regulate, multiple-in 

multiple-out, or variants on these themes.  According to 
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the results, MIMO was superior for forecasts two and three 

hours in advance, whereas the direct method was superior 

for predictions one hour in advance.  Additionally, the 

multi-stage methods were beneficial to all three prediction 

algorithms.  They emphasize the significance of their 

findings for telecom network long-term forecasts. 

    The forecasting of time series of total everyday solar 

energy output has been investigated by the researchers of 

[24] using approaches based on machine learning.  Prior 

to comparing its performance to two other common 

machine learning techniques, support vector machine, 

while artificial neural network, the time series is first 

modeled using the seasonal variant of the well-known 

classical approach auto regressive integrating moving 

average.  The impressive results achieved by SVM 

showcase the promise of machine learning-based 

approaches in that field.  Nevertheless, in order to have a 

better understanding, they need to investigate the causes 

of ANN's poor yield.  Although SVM has shown some 

success in predicting solar production, there is still room 

for improvement in terms of overall accuracy. Future 

research should focus on finding ways to do that. 

   A technique for predicting when flights would take off 

using deep learning was suggested in [25].  The first 

section of that study is an analysis of the variables that 

affect flight departure time as well as what those factors 

are.  Second, the article builds a GRU model, analyses 

how various hyperparameters affect network performance, 

and uses parameter tweaking to find the best 

hyperparameter combination.  Lastly, ZSNJ's actual flight 

data is used for model verification and comparison 

analysis.  The established model has the following 

evaluation values: an RMSE of0.42, a MAPE of6.07, and 

an MAE of 0.3.  The model presented in that research 

reduces RMSE by 16%, MAPE by 34%, and MAE by 86% 

when compared to existing delay prediction models.  Due 

to the model's excellent forecast accuracy, airport 

scheduling with collaborative decision-making may be 

implemented with confidence. Table 1 shows the cons and 

pros of the model, 

 

Table 1: Comparison analysis models 

 

Model Cons Pros 

Reference 

[19] 

Very attuned to extreme cases.  Firm 

presumptions. 

Competence in managing various time 

series elements and characteristics.  

Excellent comprehensibility. 

Reference 

[20] 

 

Very attuned to extreme cases.  

Compact intervals of certainty. 

Aptitude for dealing with level, trend, along 

with seasonality components that are 

changeable.  Optimization via automation. 

Reference 

[21] 

 

Further information is needed.  Rigid 

guidelines and presumptions.  Not 

easily automatable. 

Excellent comprehensibility.  Is confidence 

interval realistic?  Objective predictions. 

Reference 

[22] 

 

The holdout error is higher.  Extended 

periods of instruction and assessment. 

Excellent comprehensibility.  Clearer than 

competing models.  Handles unknowns 

with ease.  Manage the component 

variance. 

Reference 

[23] 

 

Not really easy to understand.  

Creating confidence intervals for the 

predictions is a challenging task.  

Further information is needed. 

Minimal presumptions and constraints.  

Capability to manage intricate nonlinear 

situations.  Extremely accurate forecasting 

capabilities.  Is amenable to automation. 

Reference 

[24] 

 

- The weight initiation is a 

determining factor. 

-Problems with hardware reliance, 

overfitting, and generalizability 

- An issue with local minima 

It is more generic and versatile, can handle 

numerous input variables, supports 

multivariate inputs, has excellent results for 

nonlinear time series, and can properly map 

input and output connections. It may not 

need a scaled or stationary time series as an 

input. 

Reference 

[25] 

- Strictly limited in its ability to 

handle real-world issues 

- I am unable to manage corrupt or 

missing files. 

Makes use of lag and shift in previous data 

"Increase precision" with the use of a 

regression model and a moving average 
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3 Methodology 

 
A. Event sequence dynamics 

A knowledge graph that describes events, event 

classes, as well as event (class) interactions using "events" 

as its unit of knowledge.  In addition, the event knowledge 

graph represents the norms and trends of event occurrence 

or progression via a series of scenario models.  All of this 

information forms the basis of our suggested strategy for 

predicting future events.  To ensure that this work is 

comprehensive, this part provides the necessary concepts 

of an occurrence knowledge graph and describes the event 

prediction. 

 

Event knowledge graph model 

The event knowledge graph depicts a scenario in which 

an event takes place at a given instant in time inside a 

certain setting, with several actors and displaying distinct 

action traits and state transitions.  To define an event in 

the event knowledge network, we refer to the definition 

in. 

 

E: : = ⟨Λ, P, O, L, T⟩    (1) 

 

The five components that make up an event are the 

building blocks of knowledge.  The event's collection of 

activities is denoted by A.  P stands for the set of people 

who took part in the event.  O is the collection of things 

that are carriers of the event.  The event takes place at 

venue L.  Time, denoted as T, is the duration of the event.  

Among the elemental connections that may be found 

between events and their elements are has Participant, 

hasObject, hasAction, hasLocation, and hasTime. 

 With an event ontology and many event instances, the 

event knowledge graph is a knowledge base that is 

constructed around events and designed for various 

application domains.  Here is a description of what it 

means. 

 

EKG:== ⟨EOs, EIs⟩    (2) 

 

EOs stand for the event ontology, whereas EIs stand for 

the event instance library.  Concepts of event classes, 

connections between event classes, and rules for assertion 

and inference about event classes make up the event 

ontology.  This is the best way to explain what the event 

ontology is. 

 

∣  EOs : = ⟨ ECs, Event −  Relations, Rules ⟩  (3) 

 

ECs stand for the collection of event types.  A taxonomic 

relation (is _ a) while logical relations (such as causal, 

isComposedOf, follow, while concurrence) are all part of 

the collection of event class relations that are represented 

by Event _ Relations.  Rules are a set of inference rules 

that may be used to construct different types of reasoning 

for event classes.  Among the models included in the 

event ontology are those representing event hierarchies 

and event scenarios.  Connecting the various event types 

via logical relationships creates the event scenario model.  

Aside from that, it mirrors the pattern of the happening of 

a first occurrence and a series of following events that are 

put in motion by it.  A taxonomy connection and event 

classes make up the event hierarchy model. 

 Numerous event instances, described as follows, are 

housed in the event instance library. 

 

 Els : : = ⟨ Events, Event −  Relations ⟩  (4) 

 

in which the collection of event occurrences is 

represented by Events and the relations between those 

instances are represented by Event _ Relations.  A 

particular event is represented by an event instance, which 

is a concrete implementation of the idea of an event class.  

It is usual practice to get event instances from databases 

or text.  The inherent logic and evolutionary trends 

between events are expressed by the identical logical 

relations among event instances as among event classes. 

 It is our hope that the computer, given the present 

situation, can comprehend "what happened" and provide 

"what will happen ahead" when it comes to event 

prediction using event knowledge graphs.  Allow me to 

paint a picture to help clarify.  The boy's keen perception 

alerts them to certain happenings the moment he enters 

the door to his house.  First, his instructor is chatting with 

his parents; second, his parents' faces reveal their 

frustration.  Maybe the lad has been through this before 

and knows it's not a good sign; maybe a "storm" is on the 

horizon.  We want to provide robots with this capacity to 

learn from experiences and respond appropriately.  The 

first occurrence and any potential concurrent events are 

used to extract the characteristics of the occurrence 

scenario information, as previously stated.  What follows 

is a more formalized version of the event scenario details: 

 

ES = EIe(Ae, Oe, Le, Te, Pe) +
∑  n EIec(Aec, Oec, Lec, Tec, Pec)   (5) 

 

EIc signifies the first event e that contains the argument 

data, while EIc stands for the data associated with the 

event ec that occurs concurrently with e. ES represents the 

scenario information's feature vector.  We represented the 

goal of predicting the occurrence of an event using scene 

data as a multilabel classification problem.  In order to 

determine the likelihood of each event type, we developed 

prediction algorithms to analyze the scenario data.  To get 

the result vector, we first projected the scenario data into 

several result spaces using a linear function.  The next step 
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was to create an analytical function that would take the 

result vector and return the occurrence probabilities of 

each event type. 

 

WR = Linear(ESe)    (6) 

 

P(ℓ) = Sigmoid(log−⁡ softmax(WR))  (7) 

 

  The global fluctuations in the multivariate events 

sequence are conditionally homogenous given the history, 

and this may be expressed by a probabilistic 

parameterization of an ordered procedure over labels in L 

Θ = {Θ𝑋: 𝑋 ∈ ℒ}, Θ𝑋 = {𝜃𝑥∣ℎ} s.t. ∑  𝑋∈ℒ 𝜃𝑥∣ℎ = 1 for 

every distinct history h, where 𝜃𝑥∣ℎ denotes the likelihood 

of occurrence label X happening at any point in the given 

history's sequence.  With just a portion of the event labels' 

dynamics taken into account 𝐗 ⊆ ℒ, Assuming that the set 

L∖X is not empty, we create a matching random variable 

X that has one state for every tag in X and one state for if 

the label belongs to L∖X.  If X is a complete subset of all 

labels, then (𝐗 ⊂ ℒ), there are |𝐗| + 1 states of 𝑋; we 

denote these as 𝑥. We use Θ̃𝐗 to represent the total of all 

possible outcomes across all labels 𝐗 ⊆ ℒ, i.e. Θ̃𝐗 =

{𝜃̃𝑥∣ℎ} where 𝜃̃𝑥∣ℎ = ∑  𝑋∈𝐗 𝜃𝑥∣ℎ, which is given in Fig 1. 

 

(i). Missing data imputation  

We provide an ensemble approach to the missing 

data issue in time series forecasting by combining two 

forecasting models with advantageous diversity—that is, 

models that function on various time series dynamics—

into a single model.  Time series values may be related to 

earlier time series values due to a certain dynamic that 

controls the forward flow of information.  Time series 

values may also be stated in terms of future values thanks 

to the backward dynamic.  Since the two dynamics are 

distinct, they will provide the ensemble with variety.  Take 

the interval from t=M + 1 to t=M +J and assume it is 

absent from the time series.  

 We take into account the forward-looking model 

that estimates the missing variable at time t by predicting 

it using the lagged prior values.  

t = M + 1⁡      (8) 

 

we use xM−L−1, ..., x ˙ M as a parameter for our 

model.  In addition, we create a "backcaster" model for 

backward forecasting that uses future values of the time 

series to predict missing values; for example, if we want 

to estimate the missing value at epoch t=M+J, we may 

utilize the following inputs: xM+J+1,..., x ˙ M+J+L.  The 

next step is to put up an ensemble that includes both the 

forecaster as well as the back caster.  To be sure, this is 

just the beginning.  After the missing values have been 

estimated for the time series, we combine the initial 

training patterns with the new ones to form an augmented 

training set.  To get stronger models, we retrain the 

forward and backcasting systems using this more 

comprehensive training data.  This cycle of iterative 

improvement continues until the additional benefit is no 

longer noticeable. 

 

B. Markov Models (MMs) 
  To identify the minimum influencing set, it is sometimes 

necessary to model the dynamics of a single or small set 

of labels that are important to the modeler. This is the case 

in many applications.  In the context of knowledge 

discovery using events sequence datasets, this is very 

relevant.  For every label set X∈L and every SMM 

function s(⋅), the unique minimum influencing set exists. 

 Consequently, we provide a set of models that associates 

the frequency of labels from past events that belong to a 

subset U with the randomized variable X that corresponds 

to a label set X L.  In order to make a confined history 

conditionally independent from all other histories given a 

SMM at any location, we want to allow Memorizing it 

with regard to these influential labels U for the random 

variable X. Thus, 𝑃(𝑥 ∣ ℎ𝑖) = 𝑃(𝑥 ∣ ℎ𝑖
U) = 𝑃(𝑥 ∣ 𝑠𝐔) 

where 𝑠𝐔 is the SMM state, and for every state x of the X 

random variable and every location i in an event 

sequence, which is given in Table 1.  
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Figure1: Event Analysis using MMsThe time series 

forecasting technique can ly describe the framework of 

the variable's sequence without considering other 

related factors, while the causal prediction technique 

can only use the causal relationship among a variable 

along with additional variables. 

 

Neither method can describe the framework of the 

variable's own time series.  A string of variables that are 

not all known at the outset A set {xN} may be used to 

represent xN, which is referred to as a random sequence.  

It is also possible to create a random vector X in a 

multidimensional random space, with each component 

denoted by xi.  Afterwards, the so-called time sequences 

are arranged chronologically; that is, the subscript in xi 

denotes the time variable t, wherein t is an integer 

representing the growth of the time interval, that is 

referred to as a random sequence.  It is a time series as 

well.  The standard way to express it is with {xt}.  

Because it is relative to the present instant, the time 

series' time variable t may take on either a positive or 

negative integer value.  A negative number indicates that 

its generation occurred before to the present instant, 

whereas a positive number indicates that its generation 

occurred subsequent to the current moment.  For this 

reason, in order to put the forward-backward algorithm 

discussed in this article into practice, one must first train 

the hidden Markov model's parameters using the 

definitions provided here. Only then can one determine 

and foresee the hidden state of the financial time series 

at different points in time. 

 Once the hidden state of the series at time 1..., T has been 

obtained and predicted for time T + 1, the next step is to 

choose an appropriate technique for forecasting the 

financial time series.  Models based on least squares 

support vector machines and nonparametric kernel 

regression continue to form the backbone of this work.  

Two subsequences, the normal state sequence as well as 

the abnormal state sequence, were created from the 

initial financial time series.  To get superior prediction 

results for these two subsequent sequences, it is 

necessary to pick prediction techniques based on their 

unique qualities. 

Let us assume that the initial network sequence provided 

consists of a string of observations made at certain times 

O = {(Ti, Xi, Yi)}, i = 1,2,⋯ , N includes events related 

to network traffic (where n is the total events).  In the 

initial network traffic sequences, X represents time, Y 

indicates network events, with nominal, real, and binary 

values.  A regular interval time series data transformation 

is necessary for identifying the underlying patterns of 

network activities over time from the time sequence 

observation series (O).  There are three stages to our 

method:  Creating one-hot encoded variables, building 

time series using pre-defined time scale t_s, and creating 

forecasting models are the three main tasks.  The 

suggested method was tested using two different time 

scales (t_s=60 and 120 s) in order to find out how well it 

worked. 

 A collection of network traffic series of data in t_s is 

transformed into time series data by extracting temporal 

characteristics and translating them to values across 

time.  The first step is to use a pre-established time scale 

to divide the raw data ts. The pre-established time scale 

determines the creation of a new time index ts over time, 

∇ti = (ts ∗ c) − ∇ti−1, c = 2,⋯ , tN, i = 2,⋯ , tN, ∇t1 =

ts where tN =
mt

ts
, mt serves as a cap.  This results in the 

creation of a fresh time index as ∇ti = {t1
′ , t2

′ , ⋯ , tN
′ }. 

Within each time index, ∇ti comprises a series of tuples 

{(Xi, Yi)} creating M× J matrix (Xi ∈ RM×f) and M× D 

matrix (Yi ∈ RM×D), where M(M ≥ 1) shows how many 

observations there were at time ∇ti, where J is the total 

amount of variables and D(D≥1) is the size of the 

dependent variables.  The size of M may change over 

time due to variations in the amount of network events. 

The number of network events per second for the 

dependent variables that are one-hot encoded across ∇ti 

is computed as C(Yi
k) = Σ1

ntIYt(δi), If every network 

event is considered normal or an attack, it is indicated by 

δi.  In addition, for the nominal variables, we quantify 

the frequency of every one-hot encoded variable across 

∇ti.  For example, the count of utilized port numbers over 

∇ti is taken into consideration for the variables (source 

along with destination port numbers).  In order to provide 

time-series information with similar intervals for the 

other factors, an appropriate value is measured for every 

M-dimensional vector across ∇ti.  We provide a 

technique in this work that converts values from the 

initial time sequences into time series elements by use of 

the wavelet transform with permutation entropy.  Using 

both methods (DWT and PE) have many benefits, such 

as being able to spot unexpected changes in network 

events and showing how behaviors of these events have 

changed over time.  Network traffic and other non-

stationary data types are good candidates for DWT's 
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temporal and frequency domain analyses.  It does this by 

repeatedly splitting the data into its component bands.  

That is, data is passed through highpass and lowpass 

filters in a preset order to create approximation and detail 

coefficients.  At each level of decomposition, the 

coefficients reflect the time and frequency data by which 

the level is informed. 

 

wε = ⟨d(t), ϕ(r,r)⟩ = ∫  
∞

−∞
d(t)ϕ(r,r)dt                                                               

(9) 

 

where d(t) shows data, ϕ(τ,γ)(t) stands for a mother 

wavelet function, whereas τ describes the frequency 

resolution (also known as scale) and γ stands for the shift 

parameters.  Rounded estimate values (a(τ,γ)) display 

data at low frequencies, but the precise coefficients ( 

d(τ,γ) ) display the metrics that are very relevant to the 

data.  The wavelet coefficients are analyzed using PE.  It 

combines entropy with symbolic patterns to provide a 

measure of complexity.  The coefficients were 

specifically used a(τ,γ), d(τ,γ), and a(τ,γ) + d(τ,γ) 

characteristics to be extracted.  The purpose of PE is to 

build subsequences (s_i ) with an embedding dimension 

(ed ) that has already been established.  After that, in 

order to get the order, every subsequence is transformed 

into a different permutation π(i) = {0,1,⋯ , ed}. We can 

calculate the permutation's probability distribution as 

pπ(i) =
δπ(i)

|xi|
, where δπ(i) displays the pattern π(i) as it 

occurs.  In conclusion.  To get the permutation entropy, 

we use Shannon's rule as Σf − pπ(f) × log⁡(pπ(f)). 

 

In addition, statistical feature ( 𝒫 ) is removed as 

χ(wq1 , oi), where χ(⋅) designates the ANOVA test, wq1  

signifies the thorough coefficients of oi, also oi 

symbolizes the i-th vector of the initial sequences O at 

∇ti.  If the original sequences with the wavelet 

coefficients vary statistically in any way, this 

characteristic will indicate it as a p-value.  In addition, 

we use the initial moment to calculate an extra feature 

(ℰ) as 
1

|ai|
∑ ⁡ oi in ∇ti. Method 1 introduces a pseudo-

code that normalizes a time series of network data to a 

specified interval ( ts ). 

C. Feature selection 

  When working with a target variable, feature selection 

involves picking out the discriminative attributes that 

have the most impact.  By eliminating features that do 

not contribute to the identification of the target variable, 

the goal of feature selection is to lower the computational 

cost of the model. 

 

 

PCA and p-value-based filtering for event sequence 

prediction 

The size of the feature space, which includes things like 

the number of event kinds or time intervals, may be 

reduced using principal component analysis in event 

sequence prediction.  This may be particularly helpful 

when working with intricate event sequences including 

a wide variety of event kinds or when working with 

very fine-grained time intervals.  When using p-value 

filtering, features are chosen according to how well 

they statistically predict the target variable, which is the 

event sequence in our example.  Finding out which 

traits are most tightly linked to the event sequence 

while other ones are less important is aided by this.  

When using p-value filtering, features are chosen 

according to how well they statistically predict the 

target variable, which is the event sequence in our 

example.  Finding out which traits are most tightly 

linked to the event sequence while other ones are less 

important is aided by this.  The p-value of each attribute 

is found by running a statistical test on it, such as a t-

test or a chi-square test.  If the characteristic didn't 

significantly impact the event sequence, then the p-

value indicates the likelihood of seeing the given 

outcome (or an even more extreme result).  If the p-

value is little, below a certain threshold (e.g., 0.05), 

then the characteristic is statistically significant along 

with can be valuable for making predictions.  If you 

want to know what kinds of events or patterns of 

occurrences are most likely to happen in a given event 

or sequence, you may use p-value filtering in event 

sequence prediction.  We suggest PCA as a viable 

option for reducing the temporal dimensionality of 

duplicated time series and identifying important 

characteristics.  Particularly, PCA reduces the 

likelihood of overfitting in deep-learning algorithms by 

eliminating redundant and irrelevant variables and by 

decreasing correlations across various time steps.  

Additionally, PCA maps time series data onto principle 

components that reflect similar characteristics by 

examining the complete training dataset. This allows it 

to identify shared patterns.  While reducing the length 

of the original series, this method maintains important 

statistical details.  To reduce computing demands, time 

series may be preprocessed using PCA prior to being 

fed into deep-learning models.  Feature space 

dimensionality reduction is possible using PCA.  To 

extract the most useful information from the condensed 

set of characteristics, p-value filtering may be used.  

The accuracy of predictions and the interpretability of 

models may both be enhanced by combining these two 

factors.  With its many benefits, principal component 

analysis (PCA) is a powerful tool for reducing time 

series data.   
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By removing characteristics with low variance and 

keeping those with large variance, it is a powerful 

technique for noise reduction.  The essential statistical 

properties of the initial series are also preserved by 

PCA. 

 PCA is a powerful method for reducing noise in time 

series.  Using a fresh collection of orthogonal 

components, PCA successfully removes the noise from 

the lower variance components while keeping the 

original historical series' main information.  By re-

creating the initial time series using the principal 

components, PCA-inverse transforms make this noise 

reduction visually apparent. 

  For this study, we analyzed the input-output connection 

using p-value and correlation metrics.  As an indicator of 

how likely it is that an observation will be made, we have 

the p-value.  The hypothesis is either accepted or rejected 

based on this likelihood.  The following is the procedure 

for calculating the p-value using Equation (7): 

 

𝑧 =
𝑃̂−𝑃0

√𝑃0(1−𝑃0)

𝑛

                              (10) 

 

Here, the sample size is denoted by n, the presumed 

population under the null hypothesis is denoted by P0, 

and the sample percentage is denoted by 𝑃̂. Then, using 

the z-value as a starting point, we can calculate the p-

value.  Since the p-value did not provide the desired 

outcomes, we resorted to correlation metrics in our 

feature selection process. 

 A statistical tool for determining the degree of 

association between two variables by comparing their 

relative moments is the correlation coefficient.  There is 

a range of +1 to -1 for its value. A very positive 

relationship among two variables is shown by a 

correlation coefficient value of +1, whereas an extremely 

negative association is represented by a value of -1.  A 

correlation coefficient of 0 indicates that the two 

variables are unrelated. 

 

r =
∑ ⁡(xi−x‾)(yi−y‾)

√∑ ⁡(xi−x‾)
2∑ ⁡(yi−y‾)

2
                              

    (11) 

 

In Equation (4), xi the sample's X variable values, with x‾ 

being the mean of the X variable; the sample's Y variable 

values, with y ‾ being the mean of the Y variable. 

 

 

 Algorithm 1: PCA 

a. Locate the data set's midpoint. 

b. Do the square correlation calculation 

(c) in 𝑁 × 𝑁. 

c. The eigenvalues and eigenvectors of 

the covariance matrix can be 

calculated. 

d. Find the initial element by selecting 

the matrix's biggest eigenvector c 

e. Find the second part by selecting the 

eigenvector that is the next biggest in 

the matrix 𝐜. 

f. Create a new 𝑁 ×𝑀 matrices in the 

features the domain, where M is the 

desired number of elements. 

 

Two key points are to be kept in mind when working with 

PCA, though: first, the second element of PCA should be 

orthogonal to the first component. PCA doesn't change 

the number of samples, but it can change the value of the 

samples to highlight the differences between datasets. 

For instance, let's say that a Markov chain describes the 

existence of certain irregularities in ℓ items coming in at 

a store, and that the first item in it undergoes an 

examination of these irregularities to determine its state 

(when that passes through the queue). By following the 

queue rule and counting the items as it exits the queue, 

we have information "with anticipation" on the state of 

the ℓ-th item. This example shows that observation with 

the excitement does not always require future occurrence 

prediction. 

4. Results & discussion  

 We evaluate our learning technique and two proposed 

MMs in the following trials. Our research is based on 

actual occurrences and event sequences taken from 

actual texts, numerous event sequence datasets found in 

books and musical compositions. We test Python's 

learning capabilities using fake data in an experiment. In 

this study, we examine the dynamics of a basic event 

sequence MMs across five event labels, with the one 

label of interest having two additional labels as its 

minimum influencing set. As a function of the number of 

sequences (K) created, Table 1 illustrates the mean F1 

scores comparing the estimated and ground truth 

influences over several generated sequence datasets. As 

the tendency continues to rise, it will inevitably 

converge. 

 

A. Implementation details  

All of the necessary libraries were utilized 

during the implementation in Python 3.9. These included 

PyTorch 1.11.0 for DGNN model building and training, 

NumPy 1.21.0 and pandas 1.3.3 for numerical operations 

and information handling, tqdm 4.62.3 for progress 

visualization, DyGLib for DGNN executions while link 

prediction components, and Matplotlib 3.4.3 for result 

visualization.  The server used for all the trials had the 

following specs: Ubuntu 20.04 OS, 256 GB RAM, 2 TB 

NVMe SSD, 32 GB VRAM, Intel Xeon Gold 6230 CPU 

(2.10 GHz), and NVIDIA Tesla V100 GPU. 

A 200-unit batch size, two attention heads, a 

learning rate of 0.0001, ten iterations, a 100-unit time 



338 Informatica 49 (2025) 329-342                                                                                                                                            J. Wu 
 

 

 
embedding dimension, a 0.1-unit dropout rate, and a 15% 

validation/test set ratio were all part of the conventional 

experimental configuration.  To guarantee temporal 

relevance, historical neighbors were selected using the 

"recent" technique, whereas negative edge sampling 

applied a "random" strategy.  The settings supplied by 

DyGLib were used to optimize parameters for each 

DGNN model, including the total amount of neighbors 

and layers. 

 Multivariate time series information with 

periodic patterns are the target of our model.  When 

identifying periodic events is crucial, like in link 

forecasting event detection, as well as temporal 

connection analysis, it works very well.  Having said 

that, the model is subject to the following restrictions and 

limitations.  Input data for the model should have aspects 

of time, nodes, and edges.  It works well with datasets 

characterized by a high degree of periodicity.  Datasets 

that are neither periodic or irregular could lead to worse 

performance.  The available computing resources 

determine the model's scalability.  By applying an 

NVIDIA Tesla V100 GPU, we ran our tests on datasets 

that included up to 33 nodes with 175,360 edges.  

Memory and processing power may need to be increased 

for datasets that are larger.  Issues with periodic patterns 

and temporal dynamics are well-suited to the approach.  

Different methods could work better with static data or 

graph issues that aren't time-dependent. 

 

B. Dataset 

Using the five real-world datasets, we do 

experiments.  At the 0.8 mark on the time line, we divide 

the train/test set in half, with the segments to the left 

being utilized for training with the segments to the right 

for testing.  We further divide 10% of the train set into a 

validation set to prevent overfitting.  Starting using a rate 

of learning of 0.001 and decreasing it by roughly a factor 

of 10 every 20 iterations, we train the models we create 

for 100 iterations on a single GPU and a batch size of 

1000. There are two sources of this enhancement.  To 

begin, the Markov model is a powerful tool for 

decomposing time series into their component hidden 

states; second, the subsequence of the decomposed 

normal state mitigates the impact of outliers.  Second, the 

model's prediction error is effectively reduced by the 

process of conversion hybrid prediction model. 

 

B. Datasets 

We take into account the following organized 

datasets, some of which are extracted from event datasets 

with time stamps that are disregarded (thought to be 

inaccurate or absent).  

In our studies, we use five real-world datasets. 

Two of them are publicly available ones (DJIA30 as well 

as WebTraffic) from Kaggle1. The other three are 

obtained from China Telecom2 (NetFlow), State Grid3 

(ClockErr), and Alibaba Cloud4 (AbServe).  The 

statistics for the whole dataset are shown in Table 1.  

• Web Traffic Time Series Forecasting 

(WebTraffic) - We find this dataset on Kaggle.  It 

keeps track of the number of views for a particular 

Wikipedia page and includes around 3 million daily 

reads.  The goal is to use the most current data from 

the last 12 months to forecast if there will be a 

significant increase (curve slope > 1.0) in the next 

30 days.  We find around 2 million false positives 

and 900,000 positives (rapid increase).  

• DJIA 30 Stock Time Series (DJIA30) - We find 

this dataset on Kaggle.  Every one of its fifteen 

thousand daily readings documents four 

observations made throughout a trading day: three 

types of trade prices and a trade number.  The 

objective is to use the most up-to-date data from the 

last year (50 weeks) to forecast five trading days 

with abnormally volatile prices (variance more than 

1.0).  Approximately 12,000 typical examples and 

3,000 outliers are found by us.  

• Information Networks Supervision (NetFlow) - 

China Telecom is the source of this dataset.  Each of 

the approximately 238K measurements documents 

the incoming and outgoing data from a network 

equipment on an hourly basis.  The gadget will 

record an alert if it detects an anomalous flow via its 

ports.  Based on information from the last 15 days, 

our objective is to forecast future anomalies (next 

day).  We find around 200,000 typical examples and 

20,000 outliers in total.  

• Abnormal Server Response (AbServe) - Alibaba 

Cloud has made this dataset available.  The system 

is comprised of over 12,000 server monitoring 

series, with each series recording the minute-to-

minute readings of various metrics such as CPU, 

disk, memory, and more.  An anomaly will be 

recorded in the log if a server doesn't reply.  Our 

objective is to use the data from the last hour to 

forecast outliers within the next five minutes.  We 

find 11.8K typical examples and 0.2K outliers 

overall. 

• Watt-hour Meter Clock Error (ClockErr) - The 

Chinese State Grid was kind enough to provide this 

dataset.  The data is comprised of around 6 million 

measurements taken weekly, with each reading 

documenting the watt-hour meters' deviation time 

and delay.  The meter is considered to be 

malfunctioning if the deviation time is more than 

120.  We aim to forecast next month's anomalies 

using data from the previous 12 months.  We find 

around 5 million typical examples and 1 million 

outliers altogether. 
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 We emphasize that the selected event sequence dataset 

determines the learned MMs. Every single influencer in 

these case studies was trained using very little domain-

specific data. In order to successfully implement the 

models in reality, this must be remembered at all times 

throughout the analysis. We verified the model's 

prediction accuracy, as illustrated in Figure 2, to assess 

its reliability. We calculated the model's overall 

prediction accuracy by averaging the final accuracies 

after finding the accuracy for each scenario 

independently. Each case had a sequence randomly 

eliminated during testing. In order to fit the model, the 

remaining sequences were used. Once the fitting was 

finished, the model used the deleted sequence's 

beginning sequence to forecast the next two steps. The 

model had a 90% success rate in predicting one of the 

phases, according to the findings. The model consistently 

properly predicted the following two steps in every 

single example. A whopping 96.7% of the time, the 

model gets the predictions right. Because it drastically 

reduces the amount of useable data, missing information 

in time series is a major hurdle to the effective operation 

of forecasting models.  To estimate the missing values of 

a time series, we provide a paradigm similar to multiple 

imputation.  The foundation of this framework is the 

construction of ensembles of predictions that are iterative 

and subsequent, with the goal of filling in the missing 

data.  The algorithm's iterative nature enables the 

prediction accuracy to be improved over time.  

Furthermore, the ensemble benefits from the time series' 

diverse forward and backward dynamics.  The created 

framework is versatile enough to use any underlying 

model for traditional or machine learning forecasting.  

Using both linear and nonlinear underlying forecasting 

algorithms, we successfully evaluated the suggested 

technique on large data sets. 

 

 
 

Figure 2: Total delay 

 

 
Figure 3: Accuracy analysis 

 

 
Figure 4: Precision analysis 

 

 
Figure 5: Recall analysis 
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Figure 6: F-score analysis 

 

Table 2: Prediction analysis 

Scenario Overall Prediction Accuracy 

Topic 1 91.25% 

Topic 2 92.15% 

Topic 3 93.14% 

Topic 4 94.14% 

Topic 5 91.25% 

Topic 6 93.14% 

Topic 7 94.75% 

Topic 8 94.15% 

 

Fig 4, 5, and 6 shows the precision, recall and f-score for 

precision, recall and f-score, respectively. Table 2 

illustrates the overall prediction accuracy for different 

topics using markov models.  

 

Ablation Study 

Here, we establish ablation experiments to 

examine how various event representations impact the 

outcomes of the predictions.  Eliminating arguments and 

relations from the event graph was part of this process.  

Experiments with relation-level ablation preserved just 

the arguments while removing the edges of concurrent 

event relations from the graph.  While keeping the graph 

structure and other characteristics, the argument-level 

ablation tests eliminated the events' spatial and temporal 

dimensions.  You can see the outcomes of the ablation 

tests in Table 3. 

 

 

 

 

 

 

 

 

Table 3: Comparisons with standards and ablation trials 

Model Accurate 

Matching 

Recall Precision F1-

Score 

[19] 87.13 91.97 86.87 89.03 

[22] 88.76 87.78 89.06 87.07 

[20] 89.79 88.85 84.96 88.12 

[23] 83.94 86.85 89.08 86.97 

[24] 87.15 89.97 89.82 86.05 

[25] 84.84 86.32 86.88 85.88 

Proposed 

model 

96.86 98 94 92.56 

Various ablation tests showed that the model's 

performance dropped somewhat, as can be observed in 

the results of the experiment.  Recall values increased 

more noticeably in the relation-level ablation trials, 

suggesting that although concurrent event inclusion did 

enhance accuracy in forecasting, it was also a major 

contributor to the model's more cautious forecasts.  

Reducing metrics in the argument-level ablation trials 

demonstrated that geographical and temporal 

information improved performance on the event 

prediction test. To test the efficacy of the event prediction 

model we presented in this paper—one that relies on 

event knowledge graphs—we built an event knowledge 

graph by hand in the transportation sector.  We 

investigated the potential of a model-based graph 

attention neural network to validate the utility of a 

heterogeneous graph transformer for occurrence scenario 

characterisation, with the aim of better integrating the 

data contained in various arguments and concurrent 

events.  The significance of spatial and temporal aspects 

in event representation was also confirmed by our tests. 

 More prediction approaches will be investigated 

and the possibility of building more complicated event 

linkages will be considered in future investigations.  

There are several sorts of entities represented by event 

arguments.  To further enhance the forecast, it may be 

helpful to consider the impact of various entity kinds on 

the model.  We will think about adding multimodal data 

to the event knowledge graph enabling real-time 

monitoring of unexpected occurrences and quick 

decision-making in the future.  We are thinking about 

adding IoT to get additional data for decision-making, 

which will make the model better at making decisions. 
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5  Conclusion  
For dynamics in a sequential event dataset, we have 

suggested summary Markov models. Two of these 

models use different summary mappings to determine 

which event labels are influential. We demonstrate the 

robustness of our models compared to previous 

techniques via experiments on structured datasets and 

event sequences derived from text. The suggested 

model’s key benefit is that they find influencing sets and 

achieve prediction performance that is on par with 

baselines. By combining parameter sharing concepts 

from variable order Markov models with other methods 

for summary mapping, including counting-based 

models, and by adjusting the size of the summary range 

for expressive models, the scope of summary Markov 

models might be enlarged. An obstacle for future 

research is the management of noisy event sequence 

datasets including many event labels that are not 

meaningful. This work presents a one-step approach for 

predicting the subsequent hidden state of a time sequence 

when the sequence comprises two kinds of hidden states, 

based on the premise that the hidden Markov model's 

hidden state is a first-order Markov process.  This 

research suggests using several models to forecast the 

concealed state's value based on varied amounts of time 

series sample information after obtaining the prediction 

result. 
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