
https://doi.org/10.31449/inf.v49i15.8654 Informatica 49 (2025) 329–342 329

Reverse-Time Event Sequence Prediction Using Summary Markov

Models and Denoising Diffusion Processes

Jiao Wu

School of Computer Engineering, Shangqiu University, He Nan, Shang Qiu, 476000, China

E-mail：wujiao555888@126.com

Keywords: reverse time prediction, event sequences, stochastic systems, Markov Models

Recieved: March 19, 2025

Choosing a suitable subset of the event information is the first step in using the framework. We are unable

to provide assistance with this endeavor since it is very customized and requires creativity. With any luck,

the event data will be adequately represented by a probabilistic framework that is fitted using a learning

algorithm once a dataset has been constructed. The algorithm's output is a representation suitable for

use in prediction. This can only be achieved by feeding the framework event data from execution process

instances. With the use of the probabilistic model, we can assess the chances of the procedure continuing

using various event sequences given the current sequence of occurrences. Specifically, this feature may

be used to foretell the process's continuation-inducing event type with the highest probability. Verifying

that the prediction model does not go against common sense is something a framework user may want to

undertake. The first step of this study is to use a transformation method to derive the conceptual

framework from the probabilistic model. It is possible to see and understand this conceptual paradigm.

A user may check how well the model matches his expectations. The outcome would depend on his

expectations; he may find behavior that goes against them or decide that the probabilistic framework is

sufficient. In the second scenario, a problem analysis might be conducted to determine whether the

expectations were incorrect or if the probabilistic framework is insufficient. When the model's

transformation algorithm produces a conceptual model that is too complicated for humans to understand,

the framework offers algorithmic assistance to those who need it. To be more specific, one may utilize

model query techniques to check for certain patterns in the model. The user's expectations on the presence

or absence of model structure may be represented by the patterns. Any model, no matter how complicated,

may be tested through comparing this expectation to the query results. The capacity of Markov Chain

Models is used to handle sequential data—that is, to "remember" information from earlier events in the

sequence as they go backwards through time—makes them ideal for reverse time prediction. Finally, we

evaluate the order model (or memory) of time series related to electrocorticographic (ECG) data recorded

epileptic episodes by making use of the latter attribute. Improved prediction accuracy and correlation

efficiency are the results of a novel method that merges estimates from forward predictors and backward

predictors. We prove that events may be informed by changes on Markov Chain Systems by analyzing

dynamic graphs built from time-series data, i.e., time-series fluctuation. In a stochastic model known as

a Markov chain, the previous state is irrelevant to determining the subsequent state; instead, the present

state is used exclusively. This served as inspiration for the suggested encoding technique, which aims to

provide accurate and interpretable predictions of time-series events. In a process that is fundamentally

inverted from the conventional Markov chain prediction, the conditional likelihood of the prior state is

computed given the present state. The experimental findings from five real-world datasets demonstrate

that our method outperforms baselines and offers other explanations for the outcomes of event prediction.

Povzetek: Študija uvaja pristop obratnega napovedovanja zaporedij dogodkov z združevanjem

povzetkovnih Markovih modelov in difuzijskih postopkov. Metoda izračuna verjetnosti preteklih stanj

glede na trenutno stanje, izboljša napovedovanje časovnih serij in preseže primerjalne modele na petih

realnih podatkovnih zbirkah.

1 Introduction
The goal of sequential event prediction is to forecast the

subsequent event in a current event sequence by using a

"sequence database" of previous event sequences as a

learning resource [1], [2]. We concentrate on applications

where the collection of historical occurrences, rather than

the precise sequence of those occurrences, has predictive

potential. These kinds of applications may be found in

medical informatics, equipment maintenance [3], [4],

recommender systems, and other fields. Forecasting

https://doi.org/10.31449/inf.v49i15.
mailto:wujiao555888@126.com

330 Informatica 49 (2025) 329-342 J. Wu

purchase timings, transaction patterns, and social media

activity are just a few of the numerous real-world uses for

sequence prediction. Since the challenge entails the

difficult job of concurrently modeling two difficult data

types—categorical data for event categories and strictly

positive continuous data for inter-arrival times—it calls

for a specialized model [5], [6]. Our method improves

efficiency and performs noticeably better than current

baselines for long-term forecasting. Our experimental

research sheds light on how the model does this, showing

that it is more effective at forecasting distant events and

can capture more intricate association patterns. The

objective is to guess the remaining (hidden) events in the

sequence using the set of disclosed events—not

necessarily their order. To create the forecasts, we may

consult a "sequence database" of historical event

sequences [7]. Every time a new event is announced,

predictions for the next one are updated. Sequential

prediction issues have numerous instances. Medical

illnesses develop throughout time, and those that a patient

has already encountered might be utilized to forecast

future problems. The time-series prediction issues that one

may solve using a Markov chain are not the same as the

sequential event prediction problems that we examine here

[8], [9]. For example, there is no inherent order in the

online grocery shop recommender system dilemma about

which items should be put to the basket, and the order of

the addresses is probably not very important when it

comes to email recipient recommendations [10], [11]. The

remaining sequence can only be predicted with the set of

previous elements. We approach the sequential event

prediction process as a supervised ranking problem at each

stage [12], [13]. Our algorithms rate all other potential

events based on their probability of becoming a following

event in the sequence, given a set of disclosed events from

the present sequence. How far down the list we must

search to locate the next item or items to be added

determines how accurate our forecast is [14], [15]. A

substantial body of literature has focused on solving these

problems, which include complicated relationships (e.g.,

geographical, temporal, and semantic), heterogeneous

multi-faceted outputs, and streaming data feeds. Since

event prediction issues are highly multidisciplinary, the

majority of current event prediction techniques were

developed to handle particular application domains [16].

However, the concepts and evaluation processes used are

often applicable to other domains as well. In the lack of

an exhaustive literature review for event prediction,

however, cross-referencing the methods across domains is

both necessary and challenging [17]. Much effort has

been put into developing and using event prediction

techniques in order to tackle these problems in recent

years. Though event prediction methods are often still in

their early stages, there has been a recent upsurge of

research that suggests and implements novel ways across

several domains [18]. Although most current event

prediction systems have been developed for particular use

cases, their underlying principles are often generic enough

to address issues in other use cases as well. Regrettably,

it is challenging to use these methods in varied contexts

for different groups. The unique characteristics of the

subject matter necessitate complex and purpose-built

evaluation strategies to ensure high-quality event

prediction results. These features include, but are not

limited to, the fact that the subject matter is multi-

objective (e.g., focused on accuracy, resolution, efficiency,

while lead time) and that the prediction results are

heterogeneous (e.g., with multiple outputs).

Unfortunately, there are currently no methods for

systematically standardizing and summarizing the several

suggested event prediction models.

1.1 Challenges

• Data sparsity: Precisely predicting the chain of

events that leads to a given result may be

challenging in the absence of sufficiently rich data.

• Events association: While the model is good at

seeing patterns of association, it isn't perfect at

capturing the linkages that really drive the events.

Within seconds, contemporary network settings

produce a massive amount of network events.

Consequently, there is a lot of labor involved in analyzing

network events, especially when there are a lot of collected

network variables. It is essential to convert the

information into time series forms with equal intervals in

order to examine data from time series network events. A

huge number of streaming intrusion signals were

previously analyzed using aggregation [6]. Nevertheless,

due to the large number of events occurring at time 𝑏𝑖ti,

the aggregation method used to time-stamped events can

be prone to significant variance. To better predict when a

network will be healthy or under assault, we provide a

method that can transform several sequences of network

activity into time series representations. In particular, our

strategy applies statistical measures and computational

approaches to transform network events into time series

data over a desired time scale, allowing us to extract

temporal properties. When representing data with several

dimensions in a two-dimensional space, PCA is a common

dimension reduction method used in visualization. All

data instances are mapped into the x- and y-axis of the 2D

space using the first and second main components that are

calculated. By using the Fisher-Jenks algorithm, also

known as Jenks' natural breaks categorization approach, to

create clusters, the predicted network events may be more

accurately represented. The optimal classification of

values into several groups is found by it. Three separate

groups were established from the various normal and

assault occurrences via the use of a categorization

procedure. Our suggested technique is shown to be

successful in detecting attack patterns and projecting

Reverse-Time Event Sequence Prediction Using Summary Markov… Informatica 49 (2025) 329-342 331

probable future assaults using a publicly accessible

network traffic dataset acquired in a honeypot system. We

tested two-time scales for network attack event prediction

and attacker temporal pattern understanding to find out

how well they worked. To further test the efficacy of our

suggested method, we conducted a battery of data

analysis. Ultimately, this research adds the following to

the existing body of knowledge:

• A state-of-the-art method for extracting time-related

characteristics from network events is presented,

which combines statistical measures with wavelet

transform and permutation entropy. Additionally, we

provide an innovative approach to retrieving time-

related characteristics from categorical information

pertaining to network traffic.

• The suggested method's efficacy is assessed by

performance evaluations with varying time scales

(𝑍𝑠=60ts=60 and 120 s).

• The characteristics are evaluated and numerous

outputs (such as network normal along with attack

events) are forecasted using DL.

• The efficacy of evaluating network events using the

retrieved temporal characteristics is determined by

visual analysis using several visualization

approaches.

In Section 2 of this publication, the relevant work is

described. Section 3 follows with an explanation of our

methodology and the dataset consisting of network traffic.

Section 4 presents the outcomes of the experiments.

Finally, Section 5 and Section 6 cover the study's and

future research's implications.

2 Related works
 The focus of the study conducted by the authors of [19]

is on analyzing the performance of different machine

learning algorithms using recorded EEG data. The goal of

that research is to identify the optimal model for use in

developing an ensemble model to enhance learning.

Logistic regression, the Naive Bayes model, and the K-

nearest neighbors Random Forest are examples of

traditional machine learning approaches; artificial neural

networks, convolutional neural networks, autoencoders,

and long short-term memory are examples of deep

learning techniques. When comparing the sensitivity and

specificity of all the models in that investigation, Random

Forest with Long Short-Term Memory stood out.

 That study systematically examines the impact of

varying noise levels on the accuracy of forecasting of

different load components and compares four recurrent

neural network frameworks [20]. When it comes to

horizontal bending moment and torsional moment

prediction, the GRU network excels, whereas the LSTM

network excels in vertical bending moment prediction.

Despite applying filters to the initial noise information, the

prediction accuracy continued to decline with increasing

noise levels. In comparison to the torsional moment, the

vertical and horizontal bending moments are better at

predicting future behavior.

 Finding an efficient method for handling time series

data with missing values and volatility is the goal of the

authors of [21]. For accuracy evaluation, they used

RMSE, and to estimate execution time, they used the

Python Timeit module. According to the results, the

LSTM model outperforms the ARIMA model with respect

to accuracy in a dataset of 60 data points (RMSE

0.037618). The situation changes, however, when they

look at a bigger dataset with 228 pieces of data and see

that the ARIMA model outperforms the LSTM model in

terms of accuracy (RMSE 0.006949 vs. 0.036025). The

LSTM model often beats the ARIMA model in missing

data settings, although both models' performance drops

down as the total amount of missing values increases. In

terms of speed, the ARIMA model is light years ahead of

the LSTM model.

 Using data from 299 individuals suffering from left

ventricular systolic dysfunction and class III/IV heart

failure, the authors of [22] want to do a comprehensive

survival analysis with survival prediction. In a survival

analysis, the number of participants who managed to stay

alive after a mediation is tracked over time to determine

the impact of that mediation. Survival time is defined as

the amount of time it takes to get from a certain starting

point to an endpoint, such as death, and survival analysis

is the study of that time. Cox Potential Hazard regression

and Kaplan-Meier estimations were used to conduct the

study. KM plots displayed the estimated survival rates vs

each clinical trait, as well as the impact of each feature at

different levels on survival over time. The study's clinical

characteristics were utilized to estimate the hazard of

mortality event using Cox regression. Time, age, ejection

fraction, and serum creatinine were shown to be

substantial risk factors for advanced heart failure based on

the research. The likelihood of survival decreases with

age and increases in serum creatinine levels. The

likelihood of a fatal incident decreasing by around 5.2% is

directly correlated with the EF level, which has a positive

impact on survival. Early postdiagnosis days have a

higher death rate, but once a specific amount of time has

passed, the risk begins to decline. Additional risk factors

include hypertension and anemia.

 Researchers in [23] conducted multi-step-ahead

predictions of network bandwidth use using statistical

techniques, such as auto-regressive integrated moving

average, and machine learning algorithms, such as multi-

layer perceptron as well as short-term memory. In order

to anticipate the network's bandwidth, use one, two, and

three hours in the future, they suggest comparing several

methods, including recursive, regulate, multiple-in

multiple-out, or variants on these themes. According to

332 Informatica 49 (2025) 329-342 J. Wu

the results, MIMO was superior for forecasts two and three

hours in advance, whereas the direct method was superior

for predictions one hour in advance. Additionally, the

multi-stage methods were beneficial to all three prediction

algorithms. They emphasize the significance of their

findings for telecom network long-term forecasts.

 The forecasting of time series of total everyday solar

energy output has been investigated by the researchers of

[24] using approaches based on machine learning. Prior

to comparing its performance to two other common

machine learning techniques, support vector machine,

while artificial neural network, the time series is first

modeled using the seasonal variant of the well-known

classical approach auto regressive integrating moving

average. The impressive results achieved by SVM

showcase the promise of machine learning-based

approaches in that field. Nevertheless, in order to have a

better understanding, they need to investigate the causes

of ANN's poor yield. Although SVM has shown some

success in predicting solar production, there is still room

for improvement in terms of overall accuracy. Future

research should focus on finding ways to do that.

 A technique for predicting when flights would take off

using deep learning was suggested in [25]. The first

section of that study is an analysis of the variables that

affect flight departure time as well as what those factors

are. Second, the article builds a GRU model, analyses

how various hyperparameters affect network performance,

and uses parameter tweaking to find the best

hyperparameter combination. Lastly, ZSNJ's actual flight

data is used for model verification and comparison

analysis. The established model has the following

evaluation values: an RMSE of0.42, a MAPE of6.07, and

an MAE of 0.3. The model presented in that research

reduces RMSE by 16%, MAPE by 34%, and MAE by 86%

when compared to existing delay prediction models. Due

to the model's excellent forecast accuracy, airport

scheduling with collaborative decision-making may be

implemented with confidence. Table 1 shows the cons and

pros of the model,

Table 1: Comparison analysis models

Model Cons Pros

Reference

[19]

Very attuned to extreme cases. Firm

presumptions.

Competence in managing various time

series elements and characteristics.

Excellent comprehensibility.

Reference

[20]

Very attuned to extreme cases.

Compact intervals of certainty.

Aptitude for dealing with level, trend, along

with seasonality components that are

changeable. Optimization via automation.

Reference

[21]

Further information is needed. Rigid

guidelines and presumptions. Not

easily automatable.

Excellent comprehensibility. Is confidence

interval realistic? Objective predictions.

Reference

[22]

The holdout error is higher. Extended

periods of instruction and assessment.

Excellent comprehensibility. Clearer than

competing models. Handles unknowns

with ease. Manage the component

variance.

Reference

[23]

Not really easy to understand.

Creating confidence intervals for the

predictions is a challenging task.

Further information is needed.

Minimal presumptions and constraints.

Capability to manage intricate nonlinear

situations. Extremely accurate forecasting

capabilities. Is amenable to automation.

Reference

[24]

- The weight initiation is a

determining factor.

-Problems with hardware reliance,

overfitting, and generalizability

- An issue with local minima

It is more generic and versatile, can handle

numerous input variables, supports

multivariate inputs, has excellent results for

nonlinear time series, and can properly map

input and output connections. It may not

need a scaled or stationary time series as an

input.

Reference

[25]

- Strictly limited in its ability to

handle real-world issues

- I am unable to manage corrupt or

missing files.

Makes use of lag and shift in previous data

"Increase precision" with the use of a

regression model and a moving average

Reverse-Time Event Sequence Prediction Using Summary Markov… Informatica 49 (2025) 329-342 333

3 Methodology

A. Event sequence dynamics

A knowledge graph that describes events, event

classes, as well as event (class) interactions using "events"

as its unit of knowledge. In addition, the event knowledge

graph represents the norms and trends of event occurrence

or progression via a series of scenario models. All of this

information forms the basis of our suggested strategy for

predicting future events. To ensure that this work is

comprehensive, this part provides the necessary concepts

of an occurrence knowledge graph and describes the event

prediction.

Event knowledge graph model

The event knowledge graph depicts a scenario in which

an event takes place at a given instant in time inside a

certain setting, with several actors and displaying distinct

action traits and state transitions. To define an event in

the event knowledge network, we refer to the definition

in.

E: : = ⟨Λ, P, O, L, T⟩ (1)

The five components that make up an event are the

building blocks of knowledge. The event's collection of

activities is denoted by A. P stands for the set of people

who took part in the event. O is the collection of things

that are carriers of the event. The event takes place at

venue L. Time, denoted as T, is the duration of the event.

Among the elemental connections that may be found

between events and their elements are has Participant,

hasObject, hasAction, hasLocation, and hasTime.

 With an event ontology and many event instances, the

event knowledge graph is a knowledge base that is

constructed around events and designed for various

application domains. Here is a description of what it

means.

EKG:== ⟨EOs, EIs⟩ (2)

EOs stand for the event ontology, whereas EIs stand for

the event instance library. Concepts of event classes,

connections between event classes, and rules for assertion

and inference about event classes make up the event

ontology. This is the best way to explain what the event

ontology is.

∣ EOs : = ⟨ ECs, Event − Relations, Rules ⟩ (3)

ECs stand for the collection of event types. A taxonomic

relation (is _ a) while logical relations (such as causal,

isComposedOf, follow, while concurrence) are all part of

the collection of event class relations that are represented

by Event _ Relations. Rules are a set of inference rules

that may be used to construct different types of reasoning

for event classes. Among the models included in the

event ontology are those representing event hierarchies

and event scenarios. Connecting the various event types

via logical relationships creates the event scenario model.

Aside from that, it mirrors the pattern of the happening of

a first occurrence and a series of following events that are

put in motion by it. A taxonomy connection and event

classes make up the event hierarchy model.

 Numerous event instances, described as follows, are

housed in the event instance library.

 Els : : = ⟨ Events, Event − Relations ⟩ (4)

in which the collection of event occurrences is

represented by Events and the relations between those

instances are represented by Event _ Relations. A

particular event is represented by an event instance, which

is a concrete implementation of the idea of an event class.

It is usual practice to get event instances from databases

or text. The inherent logic and evolutionary trends

between events are expressed by the identical logical

relations among event instances as among event classes.

 It is our hope that the computer, given the present

situation, can comprehend "what happened" and provide

"what will happen ahead" when it comes to event

prediction using event knowledge graphs. Allow me to

paint a picture to help clarify. The boy's keen perception

alerts them to certain happenings the moment he enters

the door to his house. First, his instructor is chatting with

his parents; second, his parents' faces reveal their

frustration. Maybe the lad has been through this before

and knows it's not a good sign; maybe a "storm" is on the

horizon. We want to provide robots with this capacity to

learn from experiences and respond appropriately. The

first occurrence and any potential concurrent events are

used to extract the characteristics of the occurrence

scenario information, as previously stated. What follows

is a more formalized version of the event scenario details:

ES = EIe(Ae, Oe, Le, Te, Pe) +
∑  n EIec(Aec, Oec, Lec, Tec, Pec) (5)

EIc signifies the first event e that contains the argument

data, while EIc stands for the data associated with the

event ec that occurs concurrently with e. ES represents the

scenario information's feature vector. We represented the

goal of predicting the occurrence of an event using scene

data as a multilabel classification problem. In order to

determine the likelihood of each event type, we developed

prediction algorithms to analyze the scenario data. To get

the result vector, we first projected the scenario data into

several result spaces using a linear function. The next step

334 Informatica 49 (2025) 329-342 J. Wu

was to create an analytical function that would take the

result vector and return the occurrence probabilities of

each event type.

WR = Linear(ESe) (6)

P(ℓ) = Sigmoid(log−⁡ softmax(WR)) (7)

 The global fluctuations in the multivariate events

sequence are conditionally homogenous given the history,

and this may be expressed by a probabilistic

parameterization of an ordered procedure over labels in L

Θ = {Θ𝑋: 𝑋 ∈ ℒ}, Θ𝑋 = {𝜃𝑥∣ℎ} s.t. ∑  𝑋∈ℒ 𝜃𝑥∣ℎ = 1 for

every distinct history h, where 𝜃𝑥∣ℎ denotes the likelihood

of occurrence label X happening at any point in the given

history's sequence. With just a portion of the event labels'

dynamics taken into account 𝐗 ⊆ ℒ, Assuming that the set

L∖X is not empty, we create a matching random variable

X that has one state for every tag in X and one state for if

the label belongs to L∖X. If X is a complete subset of all

labels, then (𝐗 ⊂ ℒ), there are |𝐗| + 1 states of 𝑋; we

denote these as 𝑥. We use Θ̃𝐗 to represent the total of all

possible outcomes across all labels 𝐗 ⊆ ℒ, i.e. Θ̃𝐗 =

{𝜃̃𝑥∣ℎ} where 𝜃̃𝑥∣ℎ = ∑  𝑋∈𝐗 𝜃𝑥∣ℎ, which is given in Fig 1.

(i). Missing data imputation

We provide an ensemble approach to the missing

data issue in time series forecasting by combining two

forecasting models with advantageous diversity—that is,

models that function on various time series dynamics—

into a single model. Time series values may be related to

earlier time series values due to a certain dynamic that

controls the forward flow of information. Time series

values may also be stated in terms of future values thanks

to the backward dynamic. Since the two dynamics are

distinct, they will provide the ensemble with variety. Take

the interval from t=M + 1 to t=M +J and assume it is

absent from the time series.

 We take into account the forward-looking model

that estimates the missing variable at time t by predicting

it using the lagged prior values.

t = M + 1⁡ (8)

we use xM−L−1, ..., x ˙ M as a parameter for our

model. In addition, we create a "backcaster" model for

backward forecasting that uses future values of the time

series to predict missing values; for example, if we want

to estimate the missing value at epoch t=M+J, we may

utilize the following inputs: xM+J+1,..., x ˙ M+J+L. The

next step is to put up an ensemble that includes both the

forecaster as well as the back caster. To be sure, this is

just the beginning. After the missing values have been

estimated for the time series, we combine the initial

training patterns with the new ones to form an augmented

training set. To get stronger models, we retrain the

forward and backcasting systems using this more

comprehensive training data. This cycle of iterative

improvement continues until the additional benefit is no

longer noticeable.

B. Markov Models (MMs)
 To identify the minimum influencing set, it is sometimes

necessary to model the dynamics of a single or small set

of labels that are important to the modeler. This is the case

in many applications. In the context of knowledge

discovery using events sequence datasets, this is very

relevant. For every label set X∈L and every SMM

function s(⋅), the unique minimum influencing set exists.

 Consequently, we provide a set of models that associates

the frequency of labels from past events that belong to a

subset U with the randomized variable X that corresponds

to a label set X L. In order to make a confined history

conditionally independent from all other histories given a

SMM at any location, we want to allow Memorizing it

with regard to these influential labels U for the random

variable X. Thus, 𝑃(𝑥 ∣ ℎ𝑖) = 𝑃(𝑥 ∣ ℎ𝑖
U) = 𝑃(𝑥 ∣ 𝑠𝐔)

where 𝑠𝐔 is the SMM state, and for every state x of the X

random variable and every location i in an event

sequence, which is given in Table 1.

Reverse-Time Event Sequence Prediction Using Summary Markov… Informatica 49 (2025) 329-342 335

Y1 Y2 Y3
Yπ

-1
Yπ

Yπ

+1

Yπ

+2
Yk

X1 X2 X3
Xπ-

1
Xπ

Xπ

+1

Xπ

+2
Xk

Tπ1 Tπ2

A1 A2

B1 B2

Figure1: Event Analysis using MMsThe time series

forecasting technique can ly describe the framework of

the variable's sequence without considering other

related factors, while the causal prediction technique

can only use the causal relationship among a variable

along with additional variables.

Neither method can describe the framework of the

variable's own time series. A string of variables that are

not all known at the outset A set {xN} may be used to

represent xN, which is referred to as a random sequence.

It is also possible to create a random vector X in a

multidimensional random space, with each component

denoted by xi. Afterwards, the so-called time sequences

are arranged chronologically; that is, the subscript in xi

denotes the time variable t, wherein t is an integer

representing the growth of the time interval, that is

referred to as a random sequence. It is a time series as

well. The standard way to express it is with {xt}.

Because it is relative to the present instant, the time

series' time variable t may take on either a positive or

negative integer value. A negative number indicates that

its generation occurred before to the present instant,

whereas a positive number indicates that its generation

occurred subsequent to the current moment. For this

reason, in order to put the forward-backward algorithm

discussed in this article into practice, one must first train

the hidden Markov model's parameters using the

definitions provided here. Only then can one determine

and foresee the hidden state of the financial time series

at different points in time.

 Once the hidden state of the series at time 1..., T has been

obtained and predicted for time T + 1, the next step is to

choose an appropriate technique for forecasting the

financial time series. Models based on least squares

support vector machines and nonparametric kernel

regression continue to form the backbone of this work.

Two subsequences, the normal state sequence as well as

the abnormal state sequence, were created from the

initial financial time series. To get superior prediction

results for these two subsequent sequences, it is

necessary to pick prediction techniques based on their

unique qualities.

Let us assume that the initial network sequence provided

consists of a string of observations made at certain times

O = {(Ti, Xi, Yi)}, i = 1,2,⋯ , N includes events related

to network traffic (where n is the total events). In the

initial network traffic sequences, X represents time, Y

indicates network events, with nominal, real, and binary

values. A regular interval time series data transformation

is necessary for identifying the underlying patterns of

network activities over time from the time sequence

observation series (O). There are three stages to our

method: Creating one-hot encoded variables, building

time series using pre-defined time scale t_s, and creating

forecasting models are the three main tasks. The

suggested method was tested using two different time

scales (t_s=60 and 120 s) in order to find out how well it

worked.

 A collection of network traffic series of data in t_s is

transformed into time series data by extracting temporal

characteristics and translating them to values across

time. The first step is to use a pre-established time scale

to divide the raw data ts. The pre-established time scale

determines the creation of a new time index ts over time,

∇ti = (ts ∗ c) − ∇ti−1, c = 2,⋯ , tN, i = 2,⋯ , tN, ∇t1 =

ts where tN =
mt

ts
, mt serves as a cap. This results in the

creation of a fresh time index as ∇ti = {t1
′ , t2

′ , ⋯ , tN
′ }.

Within each time index, ∇ti comprises a series of tuples

{(Xi, Yi)} creating M× J matrix (Xi ∈ RM×f) and M× D

matrix (Yi ∈ RM×D), where M(M ≥ 1) shows how many

observations there were at time ∇ti, where J is the total

amount of variables and D(D≥1) is the size of the

dependent variables. The size of M may change over

time due to variations in the amount of network events.

The number of network events per second for the

dependent variables that are one-hot encoded across ∇ti

is computed as C(Yi
k) = Σ1

ntIYt(δi), If every network

event is considered normal or an attack, it is indicated by

δi. In addition, for the nominal variables, we quantify

the frequency of every one-hot encoded variable across

∇ti. For example, the count of utilized port numbers over

∇ti is taken into consideration for the variables (source

along with destination port numbers). In order to provide

time-series information with similar intervals for the

other factors, an appropriate value is measured for every

M-dimensional vector across ∇ti. We provide a

technique in this work that converts values from the

initial time sequences into time series elements by use of

the wavelet transform with permutation entropy. Using

both methods (DWT and PE) have many benefits, such

as being able to spot unexpected changes in network

events and showing how behaviors of these events have

changed over time. Network traffic and other non-

stationary data types are good candidates for DWT's

336 Informatica 49 (2025) 329-342 J. Wu

temporal and frequency domain analyses. It does this by

repeatedly splitting the data into its component bands.

That is, data is passed through highpass and lowpass

filters in a preset order to create approximation and detail

coefficients. At each level of decomposition, the

coefficients reflect the time and frequency data by which

the level is informed.

wε = ⟨d(t), ϕ(r,r)⟩ = ∫  
∞

−∞
d(t)ϕ(r,r)dt

(9)

where d(t) shows data, ϕ(τ,γ)(t) stands for a mother

wavelet function, whereas τ describes the frequency

resolution (also known as scale) and γ stands for the shift

parameters. Rounded estimate values (a(τ,γ)) display

data at low frequencies, but the precise coefficients (

d(τ,γ)) display the metrics that are very relevant to the

data. The wavelet coefficients are analyzed using PE. It

combines entropy with symbolic patterns to provide a

measure of complexity. The coefficients were

specifically used a(τ,γ), d(τ,γ), and a(τ,γ) + d(τ,γ)

characteristics to be extracted. The purpose of PE is to

build subsequences (s_i) with an embedding dimension

(ed) that has already been established. After that, in

order to get the order, every subsequence is transformed

into a different permutation π(i) = {0,1,⋯ , ed}. We can

calculate the permutation's probability distribution as

pπ(i) =
δπ(i)

|xi|
, where δπ(i) displays the pattern π(i) as it

occurs. In conclusion. To get the permutation entropy,

we use Shannon's rule as Σf − pπ(f) × log⁡(pπ(f)).

In addition, statistical feature (𝒫) is removed as

χ(wq1 , oi), where χ(⋅) designates the ANOVA test, wq1

signifies the thorough coefficients of oi, also oi

symbolizes the i-th vector of the initial sequences O at

∇ti. If the original sequences with the wavelet

coefficients vary statistically in any way, this

characteristic will indicate it as a p-value. In addition,

we use the initial moment to calculate an extra feature

(ℰ) as
1

|ai|
∑ ⁡ oi in ∇ti. Method 1 introduces a pseudo-

code that normalizes a time series of network data to a

specified interval (ts).

C. Feature selection

 When working with a target variable, feature selection

involves picking out the discriminative attributes that

have the most impact. By eliminating features that do

not contribute to the identification of the target variable,

the goal of feature selection is to lower the computational

cost of the model.

PCA and p-value-based filtering for event sequence

prediction

The size of the feature space, which includes things like

the number of event kinds or time intervals, may be

reduced using principal component analysis in event

sequence prediction. This may be particularly helpful

when working with intricate event sequences including

a wide variety of event kinds or when working with

very fine-grained time intervals. When using p-value

filtering, features are chosen according to how well

they statistically predict the target variable, which is the

event sequence in our example. Finding out which

traits are most tightly linked to the event sequence

while other ones are less important is aided by this.

When using p-value filtering, features are chosen

according to how well they statistically predict the

target variable, which is the event sequence in our

example. Finding out which traits are most tightly

linked to the event sequence while other ones are less

important is aided by this. The p-value of each attribute

is found by running a statistical test on it, such as a t-

test or a chi-square test. If the characteristic didn't

significantly impact the event sequence, then the p-

value indicates the likelihood of seeing the given

outcome (or an even more extreme result). If the p-

value is little, below a certain threshold (e.g., 0.05),

then the characteristic is statistically significant along

with can be valuable for making predictions. If you

want to know what kinds of events or patterns of

occurrences are most likely to happen in a given event

or sequence, you may use p-value filtering in event

sequence prediction. We suggest PCA as a viable

option for reducing the temporal dimensionality of

duplicated time series and identifying important

characteristics. Particularly, PCA reduces the

likelihood of overfitting in deep-learning algorithms by

eliminating redundant and irrelevant variables and by

decreasing correlations across various time steps.

Additionally, PCA maps time series data onto principle

components that reflect similar characteristics by

examining the complete training dataset. This allows it

to identify shared patterns. While reducing the length

of the original series, this method maintains important

statistical details. To reduce computing demands, time

series may be preprocessed using PCA prior to being

fed into deep-learning models. Feature space

dimensionality reduction is possible using PCA. To

extract the most useful information from the condensed

set of characteristics, p-value filtering may be used.

The accuracy of predictions and the interpretability of

models may both be enhanced by combining these two

factors. With its many benefits, principal component

analysis (PCA) is a powerful tool for reducing time

series data.

Reverse-Time Event Sequence Prediction Using Summary Markov… Informatica 49 (2025) 329-342 337

By removing characteristics with low variance and

keeping those with large variance, it is a powerful

technique for noise reduction. The essential statistical

properties of the initial series are also preserved by

PCA.

 PCA is a powerful method for reducing noise in time

series. Using a fresh collection of orthogonal

components, PCA successfully removes the noise from

the lower variance components while keeping the

original historical series' main information. By re-

creating the initial time series using the principal

components, PCA-inverse transforms make this noise

reduction visually apparent.

 For this study, we analyzed the input-output connection

using p-value and correlation metrics. As an indicator of

how likely it is that an observation will be made, we have

the p-value. The hypothesis is either accepted or rejected

based on this likelihood. The following is the procedure

for calculating the p-value using Equation (7):

𝑧 =
𝑃̂−𝑃0

√𝑃0(1−𝑃0)

𝑛

 (10)

Here, the sample size is denoted by n, the presumed

population under the null hypothesis is denoted by P0,

and the sample percentage is denoted by 𝑃̂. Then, using

the z-value as a starting point, we can calculate the p-

value. Since the p-value did not provide the desired

outcomes, we resorted to correlation metrics in our

feature selection process.

 A statistical tool for determining the degree of

association between two variables by comparing their

relative moments is the correlation coefficient. There is

a range of +1 to -1 for its value. A very positive

relationship among two variables is shown by a

correlation coefficient value of +1, whereas an extremely

negative association is represented by a value of -1. A

correlation coefficient of 0 indicates that the two

variables are unrelated.

r =
∑ ⁡(xi−x‾)(yi−y‾)

√∑ ⁡(xi−x‾)
2∑ ⁡(yi−y‾)

2

 (11)

In Equation (4), xi the sample's X variable values, with x‾

being the mean of the X variable; the sample's Y variable

values, with y ‾ being the mean of the Y variable.

 Algorithm 1: PCA

a. Locate the data set's midpoint.

b. Do the square correlation calculation

(c) in 𝑁 × 𝑁.

c. The eigenvalues and eigenvectors of

the covariance matrix can be

calculated.

d. Find the initial element by selecting

the matrix's biggest eigenvector c

e. Find the second part by selecting the

eigenvector that is the next biggest in

the matrix 𝐜.

f. Create a new 𝑁 ×𝑀 matrices in the

features the domain, where M is the

desired number of elements.

Two key points are to be kept in mind when working with

PCA, though: first, the second element of PCA should be

orthogonal to the first component. PCA doesn't change

the number of samples, but it can change the value of the

samples to highlight the differences between datasets.

For instance, let's say that a Markov chain describes the

existence of certain irregularities in ℓ items coming in at

a store, and that the first item in it undergoes an

examination of these irregularities to determine its state

(when that passes through the queue). By following the

queue rule and counting the items as it exits the queue,

we have information "with anticipation" on the state of

the ℓ-th item. This example shows that observation with

the excitement does not always require future occurrence

prediction.

4. Results & discussion

 We evaluate our learning technique and two proposed

MMs in the following trials. Our research is based on

actual occurrences and event sequences taken from

actual texts, numerous event sequence datasets found in

books and musical compositions. We test Python's

learning capabilities using fake data in an experiment. In

this study, we examine the dynamics of a basic event

sequence MMs across five event labels, with the one

label of interest having two additional labels as its

minimum influencing set. As a function of the number of

sequences (K) created, Table 1 illustrates the mean F1

scores comparing the estimated and ground truth

influences over several generated sequence datasets. As

the tendency continues to rise, it will inevitably

converge.

A. Implementation details

All of the necessary libraries were utilized

during the implementation in Python 3.9. These included

PyTorch 1.11.0 for DGNN model building and training,

NumPy 1.21.0 and pandas 1.3.3 for numerical operations

and information handling, tqdm 4.62.3 for progress

visualization, DyGLib for DGNN executions while link

prediction components, and Matplotlib 3.4.3 for result

visualization. The server used for all the trials had the

following specs: Ubuntu 20.04 OS, 256 GB RAM, 2 TB

NVMe SSD, 32 GB VRAM, Intel Xeon Gold 6230 CPU

(2.10 GHz), and NVIDIA Tesla V100 GPU.

A 200-unit batch size, two attention heads, a

learning rate of 0.0001, ten iterations, a 100-unit time

338 Informatica 49 (2025) 329-342 J. Wu

embedding dimension, a 0.1-unit dropout rate, and a 15%

validation/test set ratio were all part of the conventional

experimental configuration. To guarantee temporal

relevance, historical neighbors were selected using the

"recent" technique, whereas negative edge sampling

applied a "random" strategy. The settings supplied by

DyGLib were used to optimize parameters for each

DGNN model, including the total amount of neighbors

and layers.

 Multivariate time series information with

periodic patterns are the target of our model. When

identifying periodic events is crucial, like in link

forecasting event detection, as well as temporal

connection analysis, it works very well. Having said

that, the model is subject to the following restrictions and

limitations. Input data for the model should have aspects

of time, nodes, and edges. It works well with datasets

characterized by a high degree of periodicity. Datasets

that are neither periodic or irregular could lead to worse

performance. The available computing resources

determine the model's scalability. By applying an

NVIDIA Tesla V100 GPU, we ran our tests on datasets

that included up to 33 nodes with 175,360 edges.

Memory and processing power may need to be increased

for datasets that are larger. Issues with periodic patterns

and temporal dynamics are well-suited to the approach.

Different methods could work better with static data or

graph issues that aren't time-dependent.

B. Dataset

Using the five real-world datasets, we do

experiments. At the 0.8 mark on the time line, we divide

the train/test set in half, with the segments to the left

being utilized for training with the segments to the right

for testing. We further divide 10% of the train set into a

validation set to prevent overfitting. Starting using a rate

of learning of 0.001 and decreasing it by roughly a factor

of 10 every 20 iterations, we train the models we create

for 100 iterations on a single GPU and a batch size of

1000. There are two sources of this enhancement. To

begin, the Markov model is a powerful tool for

decomposing time series into their component hidden

states; second, the subsequence of the decomposed

normal state mitigates the impact of outliers. Second, the

model's prediction error is effectively reduced by the

process of conversion hybrid prediction model.

B. Datasets

We take into account the following organized

datasets, some of which are extracted from event datasets

with time stamps that are disregarded (thought to be

inaccurate or absent).

In our studies, we use five real-world datasets.

Two of them are publicly available ones (DJIA30 as well

as WebTraffic) from Kaggle1. The other three are

obtained from China Telecom2 (NetFlow), State Grid3

(ClockErr), and Alibaba Cloud4 (AbServe). The

statistics for the whole dataset are shown in Table 1.

• Web Traffic Time Series Forecasting

(WebTraffic) - We find this dataset on Kaggle. It

keeps track of the number of views for a particular

Wikipedia page and includes around 3 million daily

reads. The goal is to use the most current data from

the last 12 months to forecast if there will be a

significant increase (curve slope > 1.0) in the next

30 days. We find around 2 million false positives

and 900,000 positives (rapid increase).

• DJIA 30 Stock Time Series (DJIA30) - We find

this dataset on Kaggle. Every one of its fifteen

thousand daily readings documents four

observations made throughout a trading day: three

types of trade prices and a trade number. The

objective is to use the most up-to-date data from the

last year (50 weeks) to forecast five trading days

with abnormally volatile prices (variance more than

1.0). Approximately 12,000 typical examples and

3,000 outliers are found by us.

• Information Networks Supervision (NetFlow) -

China Telecom is the source of this dataset. Each of

the approximately 238K measurements documents

the incoming and outgoing data from a network

equipment on an hourly basis. The gadget will

record an alert if it detects an anomalous flow via its

ports. Based on information from the last 15 days,

our objective is to forecast future anomalies (next

day). We find around 200,000 typical examples and

20,000 outliers in total.

• Abnormal Server Response (AbServe) - Alibaba

Cloud has made this dataset available. The system

is comprised of over 12,000 server monitoring

series, with each series recording the minute-to-

minute readings of various metrics such as CPU,

disk, memory, and more. An anomaly will be

recorded in the log if a server doesn't reply. Our

objective is to use the data from the last hour to

forecast outliers within the next five minutes. We

find 11.8K typical examples and 0.2K outliers

overall.

• Watt-hour Meter Clock Error (ClockErr) - The

Chinese State Grid was kind enough to provide this

dataset. The data is comprised of around 6 million

measurements taken weekly, with each reading

documenting the watt-hour meters' deviation time

and delay. The meter is considered to be

malfunctioning if the deviation time is more than

120. We aim to forecast next month's anomalies

using data from the previous 12 months. We find

around 5 million typical examples and 1 million

outliers altogether.

Reverse-Time Event Sequence Prediction Using Summary Markov… Informatica 49 (2025) 329-342 339

 We emphasize that the selected event sequence dataset

determines the learned MMs. Every single influencer in

these case studies was trained using very little domain-

specific data. In order to successfully implement the

models in reality, this must be remembered at all times

throughout the analysis. We verified the model's

prediction accuracy, as illustrated in Figure 2, to assess

its reliability. We calculated the model's overall

prediction accuracy by averaging the final accuracies

after finding the accuracy for each scenario

independently. Each case had a sequence randomly

eliminated during testing. In order to fit the model, the

remaining sequences were used. Once the fitting was

finished, the model used the deleted sequence's

beginning sequence to forecast the next two steps. The

model had a 90% success rate in predicting one of the

phases, according to the findings. The model consistently

properly predicted the following two steps in every

single example. A whopping 96.7% of the time, the

model gets the predictions right. Because it drastically

reduces the amount of useable data, missing information

in time series is a major hurdle to the effective operation

of forecasting models. To estimate the missing values of

a time series, we provide a paradigm similar to multiple

imputation. The foundation of this framework is the

construction of ensembles of predictions that are iterative

and subsequent, with the goal of filling in the missing

data. The algorithm's iterative nature enables the

prediction accuracy to be improved over time.

Furthermore, the ensemble benefits from the time series'

diverse forward and backward dynamics. The created

framework is versatile enough to use any underlying

model for traditional or machine learning forecasting.

Using both linear and nonlinear underlying forecasting

algorithms, we successfully evaluated the suggested

technique on large data sets.

Figure 2: Total delay

Figure 3: Accuracy analysis

Figure 4: Precision analysis

Figure 5: Recall analysis

0

5

10

15

20

0 5 10 15 20

T
o

ta
l

d
el

a
y

 (
s)

Topics

Proposed algorithm ANN
SVM LSTM
GRU

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Topics

GRU LSTM

SVM ANN

Proposed algorithm

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 (
%

)

Topics

GRU LSTM

SVM ANN

Proposed algorithm

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

R
e

ca
ll

(%
)

Topics

GRU LSTM

SVM ANN

Proposed algorithm

340 Informatica 49 (2025) 329-342 J. Wu

Figure 6: F-score analysis

Table 2: Prediction analysis

Scenario Overall Prediction Accuracy

Topic 1 91.25%

Topic 2 92.15%

Topic 3 93.14%

Topic 4 94.14%

Topic 5 91.25%

Topic 6 93.14%

Topic 7 94.75%

Topic 8 94.15%

Fig 4, 5, and 6 shows the precision, recall and f-score for

precision, recall and f-score, respectively. Table 2

illustrates the overall prediction accuracy for different

topics using markov models.

Ablation Study

Here, we establish ablation experiments to

examine how various event representations impact the

outcomes of the predictions. Eliminating arguments and

relations from the event graph was part of this process.

Experiments with relation-level ablation preserved just

the arguments while removing the edges of concurrent

event relations from the graph. While keeping the graph

structure and other characteristics, the argument-level

ablation tests eliminated the events' spatial and temporal

dimensions. You can see the outcomes of the ablation

tests in Table 3.

Table 3: Comparisons with standards and ablation trials

Model Accurate

Matching

Recall Precision F1-

Score

[19] 87.13 91.97 86.87 89.03

[22] 88.76 87.78 89.06 87.07

[20] 89.79 88.85 84.96 88.12

[23] 83.94 86.85 89.08 86.97

[24] 87.15 89.97 89.82 86.05

[25] 84.84 86.32 86.88 85.88

Proposed

model

96.86 98 94 92.56

Various ablation tests showed that the model's

performance dropped somewhat, as can be observed in

the results of the experiment. Recall values increased

more noticeably in the relation-level ablation trials,

suggesting that although concurrent event inclusion did

enhance accuracy in forecasting, it was also a major

contributor to the model's more cautious forecasts.

Reducing metrics in the argument-level ablation trials

demonstrated that geographical and temporal

information improved performance on the event

prediction test. To test the efficacy of the event prediction

model we presented in this paper—one that relies on

event knowledge graphs—we built an event knowledge

graph by hand in the transportation sector. We

investigated the potential of a model-based graph

attention neural network to validate the utility of a

heterogeneous graph transformer for occurrence scenario

characterisation, with the aim of better integrating the

data contained in various arguments and concurrent

events. The significance of spatial and temporal aspects

in event representation was also confirmed by our tests.

 More prediction approaches will be investigated

and the possibility of building more complicated event

linkages will be considered in future investigations.

There are several sorts of entities represented by event

arguments. To further enhance the forecast, it may be

helpful to consider the impact of various entity kinds on

the model. We will think about adding multimodal data

to the event knowledge graph enabling real-time

monitoring of unexpected occurrences and quick

decision-making in the future. We are thinking about

adding IoT to get additional data for decision-making,

which will make the model better at making decisions.

0

50

100

150

10 20 30 40 50 60 70 80 90 100

F-
sc

o
re

 (
%

)

Topics

GRU

LSTM

SVM

Reverse-Time Event Sequence Prediction Using Summary Markov… Informatica 49 (2025) 329-342 341

5 Conclusion
For dynamics in a sequential event dataset, we have

suggested summary Markov models. Two of these

models use different summary mappings to determine

which event labels are influential. We demonstrate the

robustness of our models compared to previous

techniques via experiments on structured datasets and

event sequences derived from text. The suggested

model’s key benefit is that they find influencing sets and

achieve prediction performance that is on par with

baselines. By combining parameter sharing concepts

from variable order Markov models with other methods

for summary mapping, including counting-based

models, and by adjusting the size of the summary range

for expressive models, the scope of summary Markov

models might be enlarged. An obstacle for future

research is the management of noisy event sequence

datasets including many event labels that are not

meaningful. This work presents a one-step approach for

predicting the subsequent hidden state of a time sequence

when the sequence comprises two kinds of hidden states,

based on the premise that the hidden Markov model's

hidden state is a first-order Markov process. This

research suggests using several models to forecast the

concealed state's value based on varied amounts of time

series sample information after obtaining the prediction

result.

Acknowledgement
Ministry of Education Production and education

cooperation project：The reform of the course

“Probability theory and mathematical statistics” under

the background of new engineering.

(230719114307227）

References
[1] Işık, Y.E., & Aydın, Z. (2023). Comparative

analysis of machine learning approaches for

predicting respiratory virus infection and symptom

severity. PeerJ, 11. DOI:10.7717/peerj.15552
[2] Aalikhani, R., Fathian, M., & Reza Rasouli, M.

(2024). Comparative Analysis of Classification-
Based and Regression-Based Predictive Process
Monitoring Models for Accurate and Time-Efficient
Remaining Time Prediction. IEEE Access, 12,
67063-67093. DOI:
10.1109/CONIT51480.2021.9498451

[3] Qi, D.L., & Bure, V.M. (2024). Explanatory

comparative analysis of time series forecasting

algorithms for air quality prediction. Vestnik of

Saint Petersburg University. Applied Mathematics.

Computer Science. Control Processes.

https://doi.org/10.1007/s42979-020-00180-5

[4] Wahyuni, S.N., Sediono, E., Sembiring, I., & Nahar

Khanom, N. (2022). Comparative analysis of time

series prediction model for forecasting COVID-19

trend. Indonesian Journal of Electrical Engineering

and Computer Science.

http://doi.org/10.11591/ijeecs.v28.i1.pp600-610
[5] Widiputra, H., & Juwono, E. (2024). Parallel

multivariate deep learning models for time-series
prediction: A comparative analysis in Asian stock
markets. IAES International Journal of Artificial
Intelligence (IJ-AI). DOI:
10.11591/ijai.v13.i1.pp475-486

[6] Benevento, E., Aloini, D., & Squicciarini, N. (2021).

Towards a real-time prediction of waiting times in

emergency departments: A comparative analysis of

machine learning techniques. International Journal

of

Forecasting.https://doi.org/10.1016/j.ijforecast.202

1.10.006
[7] Pande, K., Divayana, D.G., & Indrawan, G. (2021).

Comparative analysis of naïve bayes and knn on
prediction of forex price movements for gbp/usd
currency at time frame daily. Journal of Physics:
Conference Series, 1810. doi:10.1088/1742-
6596/1810/1/012012

[8] Pedraza, N.H., Villegas, C.M., Aqueveque, D.C., &

Das, R. (2024). A Comparative Analysis of Time

Series Data Augmentation Methods in the

Identification of Diabetic Neuropathies Based on

Deep Learning Algorithms. 2024 43rd International

Conference of the Chilean Computer Science

Society (SCCC), 1-8.

DOI:10.1109/SCCC63879.2024.10767645.
[9] Boddu, M.S., Reddy, M.K., Sahitya, G.L., Afrin, S.,

& Sudha, K. (2024). Exploring Predictive Models
for Airfare Forecasting: A Comparative Analysis of
Time Series and Machine Learning Approaches.
International Research Journal of Modernization in
Engineering Technology and Science. DOI:
10.1109/ACCESS.2020.2980942.

[10] Anand, S., Sandhu, S.K., Biswas, B., & Bala, R.

(2024). Comparative analysis of different Karnal

bunt disease prediction models developed by

machine learning techniques for Punjab conditions.

International journal of biometeorology. DOI:

10.1007/s00484-024-02707-4
[11] Rosita, Y.D., & Moonlight, L.S. (2024).

Comparative Analysis of LSTM Neural Network
and SVM for USD Exchange Rate Prediction: A
Study on Different Training Data Scenarios.
Scientific Journal of Informatics.
https://doi.org/10.15294/sji.v11i1.49975

[12] Riyadi, S., & Fahmi, F. (2024). Comparative

Analysis of Cryptocurrency Prediction based on

Deep Learning, Decision Tree, Gradient Boosted

Tree, Random Tree, and k-NN Model. International

Journal of Advances in Data and Information

Systems. DOI:10.59395/ijadis.v5i2.1338
[13] Aryal, S., Nadarajah, D., Rupasinghe, P.L.,

Jayawardena, C., & Kasthurirathna, D. (2020).
Comparative Analysis of Deep Learning Models for
Multi-Step Prediction of Financial Time Series.
Journal of Computer Science. DOI:
10.3844/jcssp.2020.1401.1416

[14] Othman, S.A., Jameel, H.H., & Abdulazeez, S.T.
(2024). Comparative Analysis of Univariate
SARIMA and Multivariate VAR Models for Time
Series Forecasting: A Case Study of Climate

http://dx.doi.org/10.7717/peerj.15552
http://doi.org/10.11591/ijeecs.v28.i1.pp600-610
https://doi.org/10.1016/j.ijforecast.2021.10.006
https://doi.org/10.1016/j.ijforecast.2021.10.006
https://doi.org/10.1109/SCCC63879.2024.10767645
https://doi.org/10.1007/s00484-024-02707-4
http://dx.doi.org/10.59395/ijadis.v5i2.1338

342 Informatica 49 (2025) 329-342 J. Wu

Variables in Ninahvah City, Iraq. Mathematical
Problems of Computer Science.
https://doi.org/10.51408/1963-0113

[15] Sun, H. (2024). Forecasting Washington State's

Housing Market: A Comparative Analysis of Time

Series Models and Economic Indicators. Emirati

Journal of Business, Economics, & Social Studies.

Doi:10.54878/zg7crb70

[16] Buragadda, S., Rao, G.M., Lavanya, M., & Gopi, A.

(2024). Development and Impact Analysis of a

Multi-Pandemic Real-Time Data Dashboard: A

Comparative Analytical Approach. Journal of

Electrical Systems.

https://doi.org/10.52783/jes.3377

[17] Tripathy, N., Mishra, D., Hota, S., Priyadarshani

Behera, M., Chandra Das, G., Sekhar Dalai, S., &

Nayak, S.K. (2025). A comparative analysis of

exponential smoothing method and deep learning

models for bitcoin price prediction. IAES

International Journal of Artificial Intelligence (IJ-

AI). DOI:10.11591/ijai.v14.i2.pp1401-1409

[18] Li, X., Li, K., Shen, S., & Tian, Y. (2023). Exploring

Time Series Models for Wind Speed Forecasting: A

Comparative Analysis.

Energies. https://doi.org/10.3390/en16237785

[19] Lekshmy, H.O., Panickar, D., & Harikumar, S.

(2022). Comparative analysis of multiple machine

learning algorithms for epileptic seizure prediction.

Journal of Physics: Conference Series, 2161.

DOI 10.1088/1742-6596/2161/1/012055

[20] Wang, Q., Wu, L., Li, C., Chang, X., & Zhang, B.

(2024). Research on a Real-Time Prediction Method

of Hull Girder Loads Based on Different Recurrent

Neural Network Models. Journal of Marine Science

and Engineering.

https://doi.org/10.3390/jmse12050746

[21] Taslim, D.G., & Murwantara, I.M. (2024).

Comparative analysis of ARIMA and LSTM for

predicting fluctuating time series data. Bulletin of

Electrical Engineering and Informatics.

https://doi.org/10.11591/eei.v13i3.6034

[22] Mishra, S. (2022). A Comparative Study for Time-

to-Event Analysis and Survival Prediction for Heart

Failure Condition using Machine Learning

Techniques. Journal of Electronics, Electromedical

Engineering, and Medical

Informatics. https://doi.org/10.35882/jeeemi.v4i3.2

25

[23] Sahoo, D., Sood, N., Rani, U., Abraham, G., Dutt,

V., & A.D., D. (2020). Comparative Analysis of

Multi-Step Time-Series Forecasting for Network

Load Dataset. 2020 11th International Conference

on Computing, Communication and Networking

Technologies (ICCCNT), 1-7.

DOI:10.1109/ICCCNT49239.2020.9225449

[24] Atique, S., Noureen, S., Roy, V., Bayne, S.B., &

Macfie, J. (2020). Time series forecasting of total

daily solar energy generation: A comparative

analysis between ARIMA and machine learning

techniques. 2020 IEEE Green Technologies

Conference(GreenTech), 175-180.

DOI:10.1109/GreenTech46478.2020.9289796
[25] Zhou, H., Li, W., Jiang, Z., Cai, F., & Xue, Y.

(2022). Flight Departure Time Prediction Based on
Deep Learning. Aerospace.
https://doi.org/10.3390/aerospace9070394.

https://doi.org/10.52783/jes.3377
http://dx.doi.org/10.11591/ijai.v14.i2.pp1401-1409
https://doi.org/10.3390/en16237785
https://doi.org/10.3390/jmse12050746
https://doi.org/10.11591/eei.v13i3.6034
https://doi.org/10.35882/jeeemi.v4i3.225
https://doi.org/10.35882/jeeemi.v4i3.225
http://dx.doi.org/10.1109/ICCCNT49239.2020.9225449
http://dx.doi.org/10.1109/GreenTech46478.2020.9289796

