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This study proposes an improved Spatiotemporal Attention-enhanced Vision Transformer (STA-ViT) 

model to enhance the accuracy of learning behavior recognition and optimize intervention strategies. This 

model combines Vision Transformer (ViT) with a spatiotemporal self-attention feature flow buffer. The 

model incorporates a feature flow caching mechanism that effectively alleviates memory usage issues in 

long video processing while enhancing spatiotemporal feature modeling capabilities. Experiments are 

conducted on three public datasets: Human Motion Database 51 (HMDB51), University of Central 

Florida 101 Actions (UCF101), and Something-Something V1 (Sth-Sth V1). Each sample in the dataset 

contains 32 to 64 frames on average, with Top-1 accuracy and Top-5 accuracy serving as evaluation 

indicators. Compared to the baseline ViT model, STA-ViT achieves improvements of 13.5%, 9.37%, and 

5.41% in Top-1 accuracy, and 2.04%, 0.82%, and 4.63% in Top-5 accuracy on these three datasets, 

respectively. Furthermore, on a self-collected dataset of student learning behaviors, SAT-ViT 

demonstrates high recognition accuracy, with Top-1 accuracy and Top-5 accuracy reaching 83.2% and 

96.5%, respectively, proving its advantage in learning behavior recognition tasks. Based on the 

recognition capabilities of this model, three intervention strategies are proposed: real-time feedback 

mechanisms, personalized learning path planning, and classroom management optimization. It aims to 

improve student learning efficiency and optimize classroom management, particularly suitable for 

intelligent education and remote teaching scenarios. The findings of this study offer effective technical 

support and application prospects for learning behavior analysis and intervention in intelligent education 

and remote teaching. 

Povzetek: STA-ViT je izboljšani vizualni transformator s prostorsko-časovno samopozornostjo, namenjen 

prepoznavanju učnih vedenj in optimizaciji pedagoških intervencij. Z medpomnilnikom tokov značilk 

učinkovito modelira kratko- in dolgoročne odvisnosti, zmanjša porabo pomnilnika ter doseže visoko 

kvaliteto v inteligentnem izobraževanju. 

 

1 Introduction 
With the rapid development of artificial intelligence (AI) 

and computer vision technology, video behavior 

recognition has become a vital research direction, widely 

used in education, security, health monitoring, and other 

fields. Especially in learning behavior recognition, 

accurately capturing and analyzing learners' behavior 

patterns can provide powerful support for personalized 

education, learning progress monitoring, and intelligent 

intervention [1,2]. However, the existing learning 

behavior recognition algorithms often rely on traditional 

feature extraction methods and shallow learning models, 

and they fail to mine the spatiotemporal information in the 

video. Especially in the complex learning environment, 

the temporal dependence between behaviors and long-

time scale pattern recognition is still a challenge [3-5]. 

In recent years, the Transformer-based model has 

made remarkable progress in computer vision, especially 

in image classification and target detection tasks [6].  

 

Among them, Vision Transformer (ViT) can capture the 

global information through the self-attention mechanism, 

and has shown excellent performance in various visual  

tasks. Despite the outstanding performance of ViT in static 

image tasks, its application in dynamic video behavior 

recognition still faces the challenge of spatiotemporal 

information fusion [7,8]. 

To solve the above problems, this study proposes a 

video behavior recognition model based on ViT. The 

proposed model effectively models the short and long-

term temporal dependencies in video by introducing the 

spatiotemporal self-attention feature flow buffer. By 

combining the spatiotemporal self-attention mechanism, 

this model can better capture the subtle behavior changes 

in the learning process and show strong robustness in 

complex learning scenarios. 

Based on this background, the study addresses the 

following questions. Can STA-ViT achieve higher 

accuracy than traditional ViT in long-sequence video 

recognition tasks? Can STA-ViT significantly reduce 
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memory usage while optimizing learning behavior 

recognition? Can effective intervention strategies for 

improving learning efficiency be designed based on STA-

ViT's recognition results? The main contributions and 

objectives are as follows: 

(1) A video behavior recognition algorithm based on 

ViT spatiotemporal self-attention feature flow buffer is 

proposed. The ability of learning behavior recognition in 

short and long-term time series modeling is improved by 

introducing a spatiotemporal self-attention feature flow 

buffer. 

(2) Experiments on multiple behavior datasets are 

designed and implemented, verifying the model's 

effectiveness and superiority in video behavior 

recognition tasks. 

(3) Through experimental analysis, this study 

discusses the improvement of this model on the 

performance of learning behavior recognition, introducing 

the intervention strategy. This provides new methods and 

ideas for intelligent education and learning behavior 

monitoring. 

2 Related work 
Since AlexNet won the ImageNet competition in 2012, 

deep learning (DL) technology has achieved great success 

in image recognition. In the field of video recognition, 

with the development of DL technology, researchers 

began to explore how to use it to extract features from 

video frames for behavior recognition. Zhang and Li 

proposed a classroom teaching behavior recognition 

solution based on a dual-stream convolutional neural 

network (CNN) model. They incorporate knowledge 

distillation technology to optimize model efficiency and 

combine attention mechanisms to improve recognition 

accuracy. The model achieved recognition accuracies of 

88.1% and 89.4% on the UCF-101 and STUDENT 

datasets, respectively, with processing speeds more than 2 

and 1.5 times faster than traditional models [9]. Yan 

developed a spatiotemporal neural network based on a 

dual-stream fusion algorithm to enhance athletes' posture 

adjustment capabilities through action recognition, 

applied in basketball player training and game analysis. 

Experiments demonstrated that the model reached an 

accuracy of 95.4% with a recognition speed of 20 frames 

per second. Compared to other models, this solution 

showed a 25% improvement in recognition speed and a 

47.27% reduction in average recognition time [10]. Azmat 

et al. proposed a human motion recognition system in red-

green-blue (RGB) video shot by Unmanned Aerial 

Vehicles (UAVs). This system combined bilateral filtering, 

fast displacement segmentation, key point extraction, 

Three-Dimensional (3D) point cloud modeling, and deep 

CNN for classification. Through experiments on three 

datasets, the system showed excellent motion recognition 

performance [11]. 

Transformers were first proposed in natural language 

processing (NLP), achieving great success. Over the years, 

the application of Transformers in computer vision has 

gradually expanded, especially in video behavior 

recognition. Transformer architecture has shown good 

performance. Yang et al. proposed a new DL model- 

Spatial Temporal Relation Transformer (STR-

Transformer) to automatically identify unsafe behaviors 

on construction sites. The model extracted and fused 

spatial and temporal features through parallel video 

streams, which significantly improved the accuracy of 

safety monitoring, and was expected to reduce the 

accident rate and management cost [12]. Zhao et al. 

proposed an efficient real-time target detection network. 

By introducing an efficient transformer module and a 

convolution module, the recognition ability of occluded 

objects and small objects was improved, and the 

calculation cost was reduced. Experiments showed that 

this network performed well in the classroom behavior 

recognition tasks, with an accuracy of 82.9% and good 

generalization ability [13]. Yang et al. proposed a human 

behavior recognition method based on ViT, which solved 

the dependence problems on massive data. Through the 

core weight entropy data evaluation and redundant 

information elimination strategy, the data consumption 

was reduced, while maintaining high performance, and the 

selected data was not redundant and had high efficiency 

[14]. The main contents of the above-mentioned research 

are summarized in Table 1. 
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Among existing video behavior recognition methods, 

although Transformer architectures demonstrate certain 

advantages in spatiotemporal modeling, several 

challenges remain, including high computational and 

memory overheads, and insufficient modeling of long-

term temporal dependencies. In contrast, the proposed 

spatiotemporal self-attention feature flow buffer model 

based on ViT introduces several architectural innovations. 

First, the spatiotemporal self-attention mechanism more 

effectively captures both short-term and long-term 

temporal dependencies in videos, overcoming the 

limitations of traditional Transformer methods in 

modeling long-term dependencies. Second, the design of 

the feature flow buffer enhances the model's ability to fuse 

spatiotemporal information across video segments. Also, 

it significantly reduces computational and memory 

overhead for long videos, improving computational 

efficiency and performance. Compared to other 

Transformer-based spatiotemporal modeling methods, the 

proposed model demonstrates greater flexibility and 

generalizability, enabling better handling of complex and 

diverse behavior recognition tasks while achieving an 

optimal balance between accuracy and efficiency. 

3 Construction of behavior model 

3.1 Analysis of the ViT Principle 

The ViT model is a Transformer-based encoder structure, 

which aims to expand the success of the Transformer 

model from the NLP field to computer vision tasks. 

Compared with the traditional CNN, ViT has stronger 

global context modeling ability, especially after pre-

training on large-scale datasets. Thus, it performs well in 

transfer learning tasks, and its structure is displayed in 

Figure 1 [15,16]. 
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Figure 1: Structural diagram of ViT encoder 

 

The core of ViT is to process one-dimensional 

sequence data. However, in video, image data is originally 

in a two-dimensional (2D) format, so it needs to be 

preprocessed and converted into a sequence format 

suitable for Transformer input. Firstly, the non-

overlapping image blocks with the size of 𝑋 ∈ ℝ𝐻×𝑊×3 of 

the input image are divided into P×P, and a total of 𝑁 =
𝐻𝑊

𝑃2
 image slices are obtained. After flattening, each slice 

is transformed into a one-dimensional vector 𝑥𝑖 ∈ ℝ3𝑃2 . 

Each flattened image slice is transformed into a feature 

vector with a fixed dimension D by linear mapping, and a 

learnable classification vector 𝑥𝑐𝑙𝑎𝑠𝑠 ∈ ℝ𝐷  is added to 

capture the global image features. At the same time, a 

learnable position coding vector 𝑊𝑝𝑜𝑠 ∈ ℝ(𝑁+1)×𝐷  is 

incorporated to preserve the spatial position information 

of the image block. The input sequence is expressed as: 

𝑍 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥1𝑊𝑒; 𝑥2𝑊𝑒; ⋯ 𝑥𝑁𝑊𝑒] + 𝑊𝑝𝑜𝑠 (1) 

𝑊𝑒 ∈ ℝ3𝑃2×𝐷 is a linear mapping matrix. 

The core module of ViT is the self-attention 

mechanism, which models the global context by 

calculating the correlation between the parts of the input 

sequence [17]. The specific calculation process of self-

attention mechanism in ViT reads: 

The first step is to generate query, key and value 

vector. The input features generate Query, Key and Value 

vectors through three linear mappings: 

𝑄 = 𝑍𝑊𝑄 ,𝑊𝑄 ∈ ℝ𝐷×𝐷ℎ    (2) 

𝐾 = 𝑍𝑊𝐾 ,𝑊𝐾 ∈ ℝ𝐷×𝐷ℎ    (3) 

𝑉 = 𝑍𝑊𝑉 ,𝑊𝑉 ∈ ℝ𝐷×𝐷ℎ    (4) 

𝐷ℎ =
𝐷

𝑅
. 𝑅 is the number of heads of attention. 

The second step is to calculate the attention weight. 

The similarity is calculated by the dot product of query 

and key, and the result is scaled and normalized: 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝐷ℎ
)   (5) 
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𝐴 ∈ ℝ(𝑁+1)×(𝑁+1) is the attention weight matrix. 

The third step is weighted feature output. Attention 

weight is used to sum the value vectors: 

𝑆𝐴(𝑍) = 𝐴𝑉    (6) 

The fourth step is that multi-head self-attention. To 

enhance the expressive ability of the model, the multi-

head attention mechanism repeats the above operations for 

R times, and linearly maps the outputs of all heads after 

splicing: 

𝑀𝑆𝐴(𝑍) = 𝐶𝑜𝑛𝑐𝑎𝑡[𝑆𝐴1(𝑍), 𝑆𝐴2(𝑍),⋯ , 𝑆𝐴𝑅(𝑍)]𝑊𝑂 (7) 

𝑊𝑂 ∈ ℝ𝑅𝐷ℎ×𝐷 is a mapping matrix. 

ViT encoder is composed of multi-head self-attention 

(𝑀𝑆𝐴) module and multi-layer perceptron (MLP) module, 

and features are fused and transmitted through residual 

connection. The calculation steps of each layer are as 

follows: 

𝑍′ = 𝑀𝑆𝐴(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍)) + 𝑍  (8) 

𝑍𝑜𝑢𝑡 = 𝑀𝐿𝑃(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍′)) + 𝑍′ (9) 

MLP is composed of two fully connected layers and 

the GeLU activation function. The nonlinear expression 

ability is enhanced by expanding the feature space and 

then projecting it back to the original dimension. 

The advantage of ViT is that it can capture the long-

distance dependence between image blocks through the 

self-attention mechanism, thus integrating feature 

information on a global scale [18,19]. This ability enables 

it to fully express the global semantics of images even in 

shallow networks. Moreover, unlike CNNs, which rely on 

local perception, ViT can establish global dependence in 

the initial feature extraction stage, so it has stronger 

generalization ability. Especially after pre-training on 

large-scale datasets, it can still maintain excellent 

performance when migrating to small-scale tasks. 

Through these characteristics, ViT provides a powerful 

tool for spatiotemporal feature modeling in behavior 

recognition tasks. 

3.2 Video behavior recognition model 

based on vision transformer 

In recent years, the video behavior recognition model 

based on ViT has attracted wide attention because of its 

powerful feature extraction ability. The existing video 

behavior recognition model based on Transformer is 

depicted in Figure 2. 
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Figure 2: Existing ViT-based video behavior recognition model 

 

However, the existing behavior recognition model 

based on ViT has some limitations, which are mainly 

reflected in the following aspects. (1) It lacks the temporal 

perception field between video frames and cannot capture 

the fine-grained action relationship. (2) The global 

average pooling is performed on the output of the last 

layer, which leads to insufficient modeling ability of 

complex long-term time series dependencies. (3) Since the 

memory usage of the Transformer is proportional to the 

number of input tokens, the training process is highly 

demanding on hardware resources [20-22]. 

To solve the above problems, this study proposes an 

improved model: Spatiotemporal Attention-enhanced ViT 

(STA-ViT) based on spatiotemporal self-attention feature 

flow buffer, and its overall architecture is expressed in 

Figure 3. 
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Figure 3: STA-ViT video behavior recognition model 

 

Figure 3 shows that this model consists of three core 

components: ViT encoder, temporal convolution module, 

and spatiotemporal self-attention feature flow buffer. ViT 

encoder is used to extract the spatial features of video, and 

the temporal convolution module models the short-term 

local temporal relationship by frame-by-frame operation. 

The spatiotemporal self-attention feature flow buffer 

gradually integrates the spatiotemporal features across 

segments to realize the long-term global time-dependent 

modeling. 

CNN is excellent at capturing local features, 

especially for extracting short-term dependencies in the 

time dimension. Therefore, a Temporal Patch-Conv 

(TPConv) module is embedded in each layer of the ViT 

model. Moreover, the relationship between video frames 

is modeled by the convolutional check sliding along the 

time dimension. Specifically, after each layer in ViT, a 

TPConv layer is inserted, with the convolution kernel size 

set to 𝑇𝑠𝑖𝑧𝑒 × 1 (three in the temporal direction and one in 

the spatial direction), a stride of 1. Meanwhile, padding 

uses the same strategy to maintain the temporal dimension. 

All layers of TPConv share the same convolution kernel 

size, but the convolution parameters of different layers are 

trained independently without parameter sharing. 

Assuming the input video segment is 𝑋𝑖, which contains T 

frames of RGB image frames with dimensions (𝐻 ×𝑊), 

the equation for temporal convolution calculation is: 

𝑧𝑖,(𝑠,𝑡)
(𝑙)

= ∑ 𝑊𝑘𝑒𝑟𝑛𝑒𝑙
(𝑙)

𝑧𝑖,(𝑠,𝑡−𝜏)
(𝑙−1)𝑇𝑠𝑖𝑧𝑒−1

𝜏=0   (10) 

𝑧𝑖,(𝑠,𝑡)
(𝑙)

 represents the characteristics of the s image 

block of the t frame in the i-th segment of the l layer. 

𝑊𝑘𝑒𝑟𝑛𝑒𝑙
(𝑙)

 refers to the time convolution kernel of the l layer. 

By introducing TPConv module layer by layer, the model 

gradually expands the temporal perception field, thus 

effectively capturing short-term action relations and fine 

behavior characteristics. In STA-ViT, TPConv connects 

sequentially with the self-attention module, where each 

layer first performs temporal convolution to model local 

short-term relationships. Subsequently, it is fed into the 

multi-head self-attention module of ViT for spatial feature 

interaction. This alternating operation simultaneously 

models short-term temporal information and spatial 

dependencies, enhancing the collaborative capability of 

spatiotemporal feature extraction. 

Although short-term temporal modeling can extract 

fine temporal features, it is critical to model long-term 

temporal-spatial dependencies across video clips in 

complex behavior recognition tasks. Therefore, a 

dynamically updated spatiotemporal self-attention feature 

flow buffer is designed to integrate contextual information 

across video segments layer by layer, achieving global 

temporal relationship modeling. The feature flow buffer is 

a critical component in STA-ViT, addressing the cross-

frame flow problem of spatiotemporal information in 

video sequences. At each timestep, the buffer preserves 

spatiotemporal features from previous frames and fuses 

them with current frame features through a cache update 

mechanism. Specifically, the buffer employs 

convolutional operations to extract important features 

from historical frames and concatenates them with the 

current frame. This approach maintains spatiotemporal 

continuity across multiple video segments, thereby 

improving behavior recognition performance. Figure 4 

illustrates the structure of the feature flow buffer. 
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Figure 4: Spatiotemporal self-attention feature flow buffer 

In Figure 4, specifically, for the l-layer output feature 

𝑍𝑖−1
(𝑙)

 of time segment 𝑋𝑖−1 , the last u-frame feature is 

cached and merged with the current segment 𝑍𝑖
(𝑙)

 to form 

a fusion feature 𝐹(𝑍𝑖
(𝑙)): 

𝐹(𝑍𝑖
(𝑙)) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑍𝑖−1,𝑇−𝑢:𝑇

(𝑙) , 𝑍𝑖
(𝑙)
)  (11) 

 𝐶𝑜𝑛𝑐𝑎𝑡(∙)  represents a feature stitching operation 

along the time dimension. The cache has a queue behavior, 

and the cache size is 𝑢. When it is exceeded, it is 

dynamically updated according to the first-in, first-out 

policy. The caching mechanism ensures the continuity of 

features and long-term context modeling. After feature 

fusion, the spatiotemporal self-attention mechanism is 

introduced to process the fusion feature 𝐹(𝑍𝑖
(𝑙)), which is 

calculated as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)𝑉 (12) 

Among them, 

𝑄 = 𝐹(𝑍𝑖
(𝑙))𝑊𝑄   (13) 

𝐾 = 𝐹(𝑍𝑖
(𝑙))𝑊𝐾   (14) 

𝑉 = 𝐹(𝑍𝑖
(𝑙))𝑊𝑉   (15) 

𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉  are the learnable parameters; d 

refers to the scaling factor. In STA-ViT, the computation 

of queries, keys, and values incorporates current frame 

spatial features and temporal positional encoding to 

reinforce temporal dimension information. The 

spatiotemporal self-attention mechanism utilizes 

positional encoding to introduce temporal information. 

Differing from traditional Transformer positional 

encoding, a specialized temporal positional encoding is 

designed for video data's sequential characteristics. This 

encoding contains both spatial position information for 

each video frame and inter-frame temporal intervals. 

Specifically, the temporal positional encoding is generated 

through sine and cosine functions and element-wise added 

to input visual features, embedding temporal dimension 

information into each frame's features. The positional 

encoding is applied after concatenation and fusion to 

𝐹(𝑍𝑖
(𝑙))  for preserving sequential information, ensuring 

correct capture of temporal relationships among features 

from different source segments. In the initial stage of the 

model, the unused video frames in the buffer are initialized 

to zero vectors. As the network depth increases, the 

spatiotemporal self-attention feature flow buffer can 

integrate features from different segments to the last layer. 

The final output is a high-level spatiotemporal feature 

with a global temporal perception field, which effectively 

captures complex behavioral temporal dependencies. 

Compared to standard ViT, STA-ViT exhibits increased 

computational complexity after incorporating the 

spatiotemporal self-attention mechanism and feature flow 

buffer. Specifically, the standard ViT's self-attention 

mechanism has a computational complexity of O(N²), 

where N represents the input image sequence length. In 

STA-ViT, the spatiotemporal self-attention mechanism 

introduces a buffer that makes each frame's computation 

dependent not only on the current frame but also on 

historical frames in the cache. The cache size directly 

determines the computational overhead of the 

spatiotemporal self-attention mechanism, meaning both 

cache size and video sequence length affect the model's 

computational efficiency. However, the feature flow 

buffer effectively reduces redundant calculations while 
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preserving critical spatiotemporal information. This 

enables STA-ViT to maintain relatively low 

computational overhead when processing long videos, 

demonstrating higher efficiency than standard ViT for 

long-sequence video processing tasks. 

The training process of the Transformer structure in 

video tasks usually needs to store the gradient information 

of all video clips, which leads to huge memory overhead. 

To alleviate this problem, a step-by-step training strategy 

based on segmented backpropagation is proposed. Unlike 

traditional methods that store complete video segments 

simultaneously, this approach retains gradient information 

only for the currently processed segment during each 

forward and backward propagation. Meanwhile, it 

immediately releases unnecessary cache after completing 

backpropagation for that segment, significantly reducing 

memory overhead during training. Each segment 

independently completes forward computation, loss 

calculation, and backward propagation, with parameter 

updates occurring immediately after each segment's 

backpropagation without maintaining cross-segment 

intermediate states. The system promptly releases cached 

memory after processing each segment. Furthermore, the 

segment-by-segment backpropagation strategy preserves 

long-term dependency continuity by caching essential 

feature contexts. Consequently, this strategy introduces no 

noticeable gradient inconsistency nor significant 

convergence speed reduction, while enabling larger batch 

training through more efficient memory management, 

indirectly accelerating the convergence process. This 

optimization strategy improves the hardware adaptability 

of the model while reducing the computational cost of 

large-scale video tasks. The core process pseudocode is 

listed in Figure 5. 

# Pseudocode: Segment-by-Segment Backpropagation

Initialize model parameters θ

Set segment size S

for each video V in training dataset:

    Initialize feature flow buffer Feature Flow Buffer = empty

    for i in range(0, len(V), S):

        # Extract segment

        segment = V[i : i+S]

        

        # Forward pass

        output, Feature Flow Buffer = Model(segment, Feature Flow Buffer)

        

        # Compute loss

        loss = LossFunction(output, ground_truth[i : i+S])

        

        # Backward pass

        loss.backward()

        

        # Update parameters

        Optimizer.step()

        Optimizer.zero_grad()

        

        # Free memory from processed segment

        del segment, output, loss

 
Figure 5: Pseudocode for training based on segment-wise 

backpropagation. 

To sum up, the video behavior recognition model 

based on ViT overcomes the limitations of traditional 

methods by combining a short-term time convolution 

module and a long-term spatiotemporal self-attention 

feature flow buffer. Meanwhile, this model can efficiently 

model short-term details and long-term global 

relationships in video behavior, significantly improving 

behavior recognition performance. The pseudocode of the 

entire STA-VIT model is depicted in Figure 6. 

 
# STA-ViT Simplified Pseudocode

import torch

import torch.nn as nn

class STA_ViT(nn.Module):

    def __init__(self, num_layers=12, d_model=768):

        super().__init__()

        self.patch_embed = nn.Linear(3 * 16 * 16, d_model)  # Example patch embedding

        self.tpconvs = nn.ModuleList([nn.Conv1d(d_model, d_model, 3, padding=1) for _ in 

range(num_layers)])

        self.encoder_layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model, 8) for _ in 

range(num_layers)])

        self.buffer = None

    def forward(self, x):

        # x shape: [B, T, C, H, W]

        B, T = x.shape[:2]

        x = self.patch_embed(x.flatten(2))  # [B, T, N, D]

        

        for layer_idx in range(len(self.encoder_layers)):

            # Temporal convolution

            x = self.tpconvs[layer_idx](x.permute(0,3,1,2)).permute(0,2,3,1)

            

            # Spatiotemporal buffer

            if self.buffer is not None:

                x = torch.cat([self.buffer, x], dim=1)

            

            # Transformer encoding

            x = self.encoder_layers[layer_idx](x.flatten(1,2)).view(B, -1, x.size(2), x.size(3))

            

            # Update buffer

            self.buffer = x[:, -3:] if x.size(1) > 3 else x

        

        return x.mean([1,2])

# Training snippet

model = STA_ViT()

opt = torch.optim.Adam(model.parameters())

for video_stream in dataset:

    model.buffer = None  # Reset buffer between videos

    for clip in split_into_clips(video_stream):

        pred = model(clip)

        loss = loss_fn(pred, label)

        

        opt.zero_grad()

        loss.backward()

        opt.step()

        

        model.buffer = model.buffer.detach()  # Memory optimization
 

Figure 6: The pseudocode of the STA-VIT model 

3.3 Experimental dataset and 

experimental setup 

To verify the STA-ViT model's video behavior 

recognition performance, experiments are conducted on 

three widely used standard video behavior recognition 

datasets. These datasets encompass Human Motion 

Database 51 (HMDB51), University of Central Florida 

101 Actions (UCF 101), and Something-Something V1 

(STH-STH V1). Among them, the HMDB51 dataset 

contains 51 categories of human action videos, such as 

running, jumping, and playing ball, with 6,766 clips. The 

number of samples in each category is roughly balanced, 

and the video sources are diverse, including movie clips 

and network resources, which have strong action diversity 

and complexity. The UCF101 dataset is a large video 

dataset that encompasses 101 action categories and 

contains over 13,000 video clips. UCF101 is widely used 

in video classification and motion recognition research, 

which involves sports activities, daily activities, and the 

interaction between human beings and objects. The 

diversity and richness of this dataset make it a standard 
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test set in video recognition tasks. The Sth-Sth V1 dataset 

is a large-scale dataset designed for dynamic object 

interaction behavior recognition, encompassing 174 

categories and approximately 108,000 video samples. 

Unlike the traditional motion recognition dataset, Sth-Sth 

V1 focuses on capturing the complex interaction between 

human beings and objects, such as taking, pushing, and 

picking, and is especially suitable for studying fine-

grained object behavior recognition. 

In addition, this study collects videos of students' 

learning behavior in a university to verify the model's 

performance in the actual educational scene. The dataset 

comprises four main categories: listening, writing, 

questioning, and discussing. The detailed statistics are 

outlined in Table 2. 

 

Table 2: Category distribution of self-collected 

datasets 

Category Sample size 

Listening 5400 

Writing 4800 

Questioning 2200 

Discussing 2600 

Total 15000 

 

Two education researchers independently perform 

data annotation, with a third-party review ensuring 

consistency through a dual-labeling verification process to 

guarantee accurate and reliable data labels. For data 

augmentation, random cropping, horizontal flipping, 

temporal jittering, and other methods enhance model 

generalization. Each video clip randomly selects starting 

frames during training to increase sample diversity. To 

address class imbalance in classroom datasets, weighted 

cross-entropy loss applies normalized inverse class 

frequency weights, mitigating training bias toward 

dominant classes and improving recognition of minority 

behaviors. All datasets are split into training, testing, and 

validation sets following an 8:1:1 ratio. 

The experimental framework is based on the PyTorch 

DL framework, and all experiments are carried out on a 

computing platform equipped with an NVIDIA GTX 3090 

GPU (32GB of video memory) and 32GB of memory. The 

experimental parameter settings are shown in Table 3. 

 

Table 3: Experimental parameter settings 

Parameter name Setting value 

Self-attention layer 12 

Number of attention heads per 

layer 

12 

Convolution kernel size of time 

convolution module 

3×1 

Step length 1 

Video clip frame number {4,8,16,32} 

Learning rate 0.001 

Optimizer Adam 

Batch size 32 

Training epochs 50 

 

In terms of evaluation indicators, this study uses the 

accuracy of Top-1 and Top-5 to evaluate the model's 

performance in video behavior recognition tasks. The two 

indicators indicate whether the model contains the correct 

labels in the Top-1 and Top-5 predictions, to reflect the 

classification ability and robustness of the model. 

4 Results and analysis 

4.1 Model memory usage analysis 

The SAT-ViT model is compared with the traditional ViT 

model, Temporal Shift Module (TSM), and Inflated 3D 

Convolutional Network (I3D) to test the memory ratio of 

a single video training on 8, 16, 24, 32, and 40 frames. The 

results are plotted in Figure 7. 
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Figure 7: Memory ratio during training of different 

models 

 

In Figure 7, compared with the traditional ViT model, 

the SAT-ViT model exhibits significant advantages. In the 

training process, the SAT-ViT model uses backward 

propagation between video segments and only needs to 

store the gradient information of a single video segment. 

Its memory usage is always the same, significantly lower 

than the traditional ViT model. In contrast, although the 

memory growth of TSM and I3D models is slow, there is 

still a certain upward trend when the number of frames 

increases, especially TSM based on 2D convolution. 

When the number of sampling frames reaches 40, the 

traditional ViT model's memory usage exceeds 9GB, 

which is significantly higher than other models, indicating 

that it is difficult to process long videos efficiently. 

Therefore, the memory efficiency of SAT-ViT makes it 

more suitable for processing long-term video data and 

complex behavior dependence modeling tasks. 

4.2 Performance analysis of model 

recognition 

The SAT-ViT model's performance is tested on three 

datasets (HMDB51, UCF101, and Sth-Sth V1), and 

compared with ViT, Temporal Difference Network (TDN), 

Temporal Excitation and Aggregation Networks (TEA), 
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TSM, and I3D models. These methods represent typical 

approaches in video behavior recognition, covering 

diverse temporal modeling and network architectures. ViT 

serves as the standard ViT architecture widely adopted in 

current research. TDN primarily models temporal 

information through temporal difference networks with 

strong dependency modeling capabilities. TEA enhances 

temporal feature extraction via time incentives and 

aggregation mechanisms, and is suitable for the learning 

of long sequences. TSM employs the temporal shift 

operations in spatiotemporal feature modeling, optimizing 

the processing efficiency of video sequences. I3D utilizes 

an extended 3D convolutional network, which can capture 

the spatiotemporal information in videos more effectively. 

The results are illustrated in Figure 8. 
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Figure 8: Performance comparison of different models on 

different datasets 

 

Figure 8 shows that the SAT-ViT model outperforms 

other models on HMDB51, UCF101, and Something-

Something V1 datasets, especially in the accuracy of Top-

1 and Top-5. Specifically, the Top-1 accuracy of SAT-ViT 

on HMDB51 and UCF101 datasets reaches 61.4% and 

76.6%, and the Top-1 accuracy on the Something-

Something V1 dataset achieves 60.4%, significantly 

exceeding the contrast model. In addition, SAT-ViT also 

maintains a significant advantage in the Top-5 accuracy, 

especially on the UCF101 dataset, reaching 98%. These 

results reveal that SAT-ViT has strong generalization 

ability and excellent performance in spatiotemporal 

modeling, and can effectively capture the spatiotemporal 

features in video, thus achieving more accurate behavior 

recognition. This fully verifies its superiority in complex 

video behavior recognition tasks. Experimental results 

show average standard deviations of ±0.7, ±1.1, ±1.2, ±1.5, 

±1.4, and ±1.6 for SAT-ViT, ViT, TDN, TEA, TSM, and 

I3D across three datasets, respectively. These values 

demonstrate SAT-ViT's consistently lower standard 

deviation across all test datasets, confirming its superior 

stability in spatiotemporal modeling. Comparative models 

like I3D and TEA exhibit greater performance variability, 

particularly on complex datasets, as evidenced by their 

larger standard deviations. 

To further verify the SAT-ViT model's performance 

in practical application scenarios, the SAT-VIT model and 

other models are tested on the self-collected dataset of 

students' learning behavior. The results are demonstrated 

in Figure 9. 
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Figure 9: Test results of students' learning behavior 

 

In Figure 9, the Top-1 and Top-5 accuracy of SAT-

ViT reach 83.2% and 96.5%, respectively, which are 

superior to other models. This shows that SAT-ViT can 

more accurately capture the spatiotemporal dependence 

characteristics in students' learning behavior. Due to the 

lack of special time modeling ability, the traditional ViT 

model's performance is slightly worse than SAT-ViT, but 

still better than TEA and I3D models. Although TDN and 

TEA have some advantages in extracting time features, 

they are not as good as SAT-ViT in capturing complex 

behavior features. These results further confirm the 

superiority of the SAT-ViT model in actual educational 

scenarios, providing a solid basis for its application in the 

learning behavior analysis and intervention system. 

To demonstrate the comprehensive performance of 

different models, the UCF101 dataset serves as a 

benchmark for comparing Top-1 accuracy, Top-5 

accuracy, parameter count, computational load, memory 

usage per training video, and inference speed. The same 

indicators are presented for the self-collected student 

learning behavior dataset. Detailed comparisons are 

denoted in Tables 4 and 5. 

 

 

 

 

 

Table 4: Performance and resource consumption 

comparison of different models on the UCF101 dataset 
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Table 5: Performance and resource consumption 

comparison of various models on the self-collected 

student learning behavior dataset 
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Tables 4 and 5 reveal that SAT-ViT achieves optimal 

Top-1 and Top-5 accuracy on both the UCF101 dataset 

and the student learning behavior dataset. Concurrently, 

ViT maintains superior balance in parameter size, 

floating-point operations per second (FLOPs), memory 

usage, and inference speed, demonstrating its 

effectiveness and efficiency in complex behavior 

recognition tasks. 

 

 

 

 

To better evaluate the generalization ability of the 

model and its performance on the latest or professional 

datasets, experiments are conducted on a new dataset, 

Kinetics. The Kinetics dataset is a widely used behavior 

recognition dataset that contains diverse human behavior 

activities extracted from YouTube videos, covering more 

than 400 distinct action categories. The Kinetics dataset 

provides extensively annotated videos suitable for training 

and evaluating video behavior recognition models. The 

proposed STA-ViT model is compared against advanced 

video recognition models, including SlowFast, eXtreme 

3D Convolutions (X3D), Time Space Transformer 

(TimeSformer), and Video Vision Transformer (ViViT) to 

further validate its advantages in spatiotemporal modeling 

and diverse video behavior recognition. The comparative 

results are presented in Figure 10. 
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Figure 10: Performance comparison of different models 

on the Kinetics dataset 

 

Figure 10 reveals that the STA-ViT model achieves 

outstanding performance on the new dataset, exhibiting 

superior advantages in spatiotemporal feature modeling 

and processing compared to other methods. These results 

validate STA-ViT's excellence in handling complex video 

behavior recognition tasks and confirm its broad 

applicability across diverse datasets. 

4.3 Learning behavior intervention 

strategy 

Learning behavior intervention aims to provide 

personalized guidance and support by accurately 

identifying students' behavior patterns, thus improving 

learning efficiency and learning effect. Building upon 

SAT-ViT's efficient learning behavior recognition 

capabilities and existing learning analytics literature, the 

following specific intervention strategies are designed: 

(1) Real-time feedback mechanism. Leveraging SAT-

ViT's real-time monitoring capability, immediate 

feedback can be provided for students and teachers. 

Through accurate recognition of student behaviors, 

particularly critical indicators like attention, posture, and 

engagement, teachers gain real-time insights into learning 

states. For instance, when the model detects a decline in 

students' attention, it can provide personalized suggestions 

through the integrated intelligent feedback system within 

the learning management platform. Technically, feedback 

latency is maintained within 1-2 seconds through model 

optimization and hardware acceleration, ensuring timely 

responses. The visualization interface displays current 

behavioral patterns of students and offers real-time 

decision support, enabling teachers to dynamically adjust 

teaching pace or content. 
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(2) Personalized learning path planning. Through 

long-term behavioral data accumulation and analysis, the 

SAT-ViT model reveals students’ individual learning 

needs and supports personalized learning path design. The 

model identifies learning bottlenecks by analyzing 

attention fluctuations and study habits. The model can 

identify learning bottlenecks based on students' attention 

fluctuations and learning habits. By combining the 

existing literature, the intervention strategy based on the 

student behavior prediction model can formulate 

personalized learning plans for them [23,24]. Technically, 

the formulation of personalized paths is based on students' 

historical behavior analysis and is dynamically adjusted in 

real time to achieve an efficient learning experience. 

(3) Classroom management optimization. The SAT-

ViT model can provide teachers with data support for 

classroom dynamic behaviors, helping to grasp students' 

learning conditions in real time, including the attention 

levels and interaction frequencies of individuals and 

groups. This technology proves particularly valuable in 

remote or hybrid learning environments. Through 

integration with existing learning management systems, 

teachers can gain immediate insights into classroom 

engagement levels and students' behavioral trends through 

interactive dashboards, allowing dynamic adjustment of 

teaching pace and strategies. Technically, the integrated 

learning management system automatically analyzes 

behavioral data and presents visualized analytics to inform 

instructional decisions, effectively enhancing teaching 

outcomes. Real-time data analysis in classroom 

management enables timely teaching strategy adjustments 

that improve student engagement and interaction. 

By applying the SAT-ViT model to the design of 

learning behavior intervention strategies, people can 

realize the fine recognition and intervention of learning 

behavior, effectively improving learning efficiency and 

education quality. Real-time feedback mechanism can 

correct students' behavior deviation in time; personalized 

learning path planning can help students overcome 

individual learning bottlenecks; and classroom 

management optimization can support teachers to improve 

teaching effect in diversified teaching scenarios.  

Implementing these strategies provides new ideas for the 

development of an intelligent education system and helps 

to promote the popularization of personalized and efficient 

education modes. 

5 Discussion 
To investigate each module's contribution to model 

performance, ablation studies are conducted with four 

comparative models. ① ViT: It contains only standard 

ViT architecture without TPConv or spatiotemporal 

feature flow buffer; ② ViT + TPConv: TPConv is added 

based on the standard ViT to examine the impact of the 

modeling capability in the time dimension on performance. 

③ ViT + Flow buffer: Standard ViT is enhanced with a 

spatiotemporal feature flow buffer to test cross-segment 

feature integration; ④ Complete STA-ViT. Experiments 

on the UCF101 dataset yield Top-1 and Top-5 accuracy 

under different configurations, as shown in Table 6. 

 

Table 6: Performance and Resource Consumption 

Comparison of Diverse Models on the UCF101 Dataset 

Model 
Top-1 

Accuracy (%) 

Top-5 

Accuracy (%) 

ViT Baseline 70.1 97.2 

ViT + TPConv 71.8 97.8 

ViT + Flow 

buffer 
73.4 98.1 

Complete STA-

ViT 
76.6 98.0 

 

Table 6 demonstrates that the ViT baseline model 

achieves the lowest performance. However, after adding 

TPConv and the spatiotemporal feature flow buffer, the 

model performance gradually improves, thus achieving 

the optimal Top-1 and Top-5 accuracy in the STA-ViT 

model. This confirms that both the temporal convolution 

module and spatiotemporal feature flow buffer markedly 

enhance model capability for complex video behavior 

recognition tasks. 

When comparing the STA-ViT model with existing 

methods in literature, Zhang and Li [9] proposed a dual-

stream CNN combined with knowledge distillation and 

attention mechanism, achieving 88.1% accuracy on the 

UCF-101 dataset. This approach enhanced temporal 

information fusion through dual-stream convolutional 

networks but lacked in-depth modeling of spatiotemporal 

relationships. In contrast, STA-ViT achieves 76.6% Top-

1 accuracy on the UCF-101 dataset by effectively 

modeling complex spatiotemporal features through 

TPConv and spatiotemporal feature flow buffers, 

demonstrating superior spatiotemporal modeling 

capabilities. Yan [10] developed a spatiotemporal neural 

network that attained 95.4% accuracy on a basketball 

training dataset. While this method combined dual-stream 

fusion features and spatiotemporal convolution, its 

performance improvement mainly stemmed from domain-

specific task design. STA-ViT exhibits stronger 

generalization ability, handling a wider range of video 

behavior recognition tasks, particularly excelling in 

complex behavior recognition scenarios. Azmat et al. [11] 

proposed a combination of 3D point clouds and deep 

CNNs that performed well on multiple datasets. However, 

their approach lacked effective temporal modeling for 

complex time dependencies, being limited to static frame 

features. STA-ViT significantly enhances temporal 

modeling through the TPConv module, achieving superior 

performance in dynamic behavior recognition. The STR-

Transformer proposed by Yang et al. [12] could model the 

spatial-temporal relationships through parallel video 

stream features, improving accuracy in security 

monitoring. Comparatively, STA-ViT demonstrates 

advantages in finer-grained spatiotemporal feature 

modeling, delivering outstanding performance in complex 

video behavior recognition tasks while maintaining 

balanced recognition accuracy and computational 

efficiency. Zhao et al. [13] presented an efficient 
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combination of Transformer and convolutional networks 

that achieved 82.9% accuracy in classroom behavior 

recognition. Although this method improved recognition 

capability through local temporal modeling, its ability to 

model long sequences and complex spatiotemporal 

interactions fell short of STA-ViT. This demonstrated 

higher efficiency in processing long videos through 

comprehensive spatiotemporal feature flow buffers and 

TPConv modules. Yang et al. [14] proposed a ViT-based 

behavior recognition method that reduced dependence on 

large-scale data through data refinement strategies. 

However, this approach primarily relied on ViT's static 

feature extraction without fully exploiting temporal 

information. In comparison, STA-ViT captures 

spatiotemporal dependencies more comprehensively 

through the integration of TPConv and spatiotemporal 

feature flow buffers, exhibiting stronger recognition 

performance. 

Overall, the innovation of STA-ViT in spatiotemporal 

feature modeling has enabled it to demonstrate remarkable 

advantages in complex video behavior recognition tasks. 

By introducing TPConv and spatiotemporal feature flow 

buffers, STA-ViT can capture temporal dependencies 

more accurately and handle complex behaviors in long 

time series. Compared with the existing methods, STA-

ViT not only improves the accuracy but also shows better 

generalization ability and efficiency in various video 

behavior recognition tasks. Hence, STA-ViT provides an 

effective direction for future intelligent video analysis. 

6 Conclusion 
This study proposes a novel video behavior recognition 

model called SAT-ViT, which combines the ViT 

architecture with a spatiotemporal self-attention feature 

flow buffer to enhance accuracy and efficiency in complex 

video behavior recognition tasks. Based on this model, 

multiple intervention strategies are further designed to 

improve learning behavior analysis and intelligent 

education applications. Experimental validation yields the 

following conclusions: 

(1) Memory optimization and long video processing: 

Compared to traditional ViT models, SAT-ViT 

significantly reduces memory usage through its segment-

wise backpropagation mechanism, maintaining constant 

memory requirements that make it particularly suitable for 

long-sequence video processing. This characteristic gives 

SAT-ViT distinct advantages when handling large-scale 

video data, especially for efficient video behavior analysis 

tasks. 

(2) Performance superiority and generalization ability: 

SAT-ViT demonstrates excellent performance on multiple 

standard public datasets (including HMDB51, UCF101, 

and Something-Something V1) and self-collected student 

learning behavior datasets. The accuracy of Top-1 and 

Top-5 surpasses existing mainstream models such as ViT, 

I3D, and TSM. Particularly in complex spatiotemporal 

feature modeling, SAT-ViT exhibits strong generalization 

ability to effectively capture temporal and spatial 

information in videos for more precise behavior 

recognition. This superior performance indicates that 

SAT-ViT is applicable to traditional video behavior 

recognition tasks while holding significant potential for 

learning behavior analysis in intelligent education and 

related fields. 

(3) Effectiveness of intervention strategies: Based on 

SAT-ViT's learning behavior recognition capability, three 

intervention strategies are proposed: real-time feedback 

mechanisms, personalized learning path planning, and 

classroom management optimization. Experimental 

results demonstrate that these intervention strategies 

effectively enhance student learning efficiency, 

personalize learning experiences, and optimize classroom 

management, showing particular application value in 

intelligent education and distance learning scenarios. 

Through intelligent learning behavior analysis, educators 

can adjust teaching strategies in real-time and intervene in 

student learning processes with greater precision, thus 

improving educational outcomes. 

While the proposed SAT-ViT model demonstrates 

excellent performance in spatiotemporal feature modeling 

and learning behavior recognition tasks, certain 

limitations remain. The model may face challenges when 

processing extremely complex behavioral patterns, and its 

adaptability to large-scale datasets requires further 

improvement. Future research could enhance model 

performance through multimodal data fusion, 

architectural optimization, and algorithmic efficiency 

improvements. SAT-ViT holds broad application 

prospects across multiple scenarios, particularly in 

intelligent education, personalized learning path 

recommendation, and behavior prediction. 
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Appendix 
The hyperparameter settings used for the ViT, TDN, TEA, 

TSM, and I3D models in the experiment are detailed in 

Table 7: 

 

Table 7: The hyperparameter settings of different models 

Mod

el 

Learni

ng 

rate 

Bat

ch 

size 

Optimi

zer 

Traini

ng 

epoch

s 

Other 

paramet

ers 

ViT 1e-4 32 
Adam

W 
50 

Weight 

decay: 

1e-2; 

Moment

um: 0.9; 

Learning 

rate 

scheduler

: Cosine. 

TD

N 
1e-3 16 Adam 50 

Weight 

decay: 
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0.1, 

decaying 

every 10 

epochs 

TE

A 
5e-5 32 

Adam

W 
80 

Weight 

decay: 

1e-5; 

Moment

um: 0.9; 

Learning 

rate 

scheduler

: Cosine 

TS

M 
1e-3 16 SGD 30 

Moment

um= 0.9. 

The 

learning 

rate 

decay is 

halved 

every 5 

epochs. 

I3D 1e-4 16 
Adam

W 
50 

Weight 

decay: 

1e-4; 

Moment

um: 0.9; 

Learning 

rate 

scheduler

: Cosine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


