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This study proposes an improved Spatiotemporal Attention-enhanced Vision Transformer (STA-ViT)
model to enhance the accuracy of learning behavior recognition and optimize intervention strategies. This
model combines Vision Transformer (ViT) with a spatiotemporal self-attention feature flow buffer. The
model incorporates a feature flow caching mechanism that effectively alleviates memory usage issues in
long video processing while enhancing spatiotemporal feature modeling capabilities. Experiments are
conducted on three public datasets: Human Motion Database 51 (HMDB51), University of Central
Florida 101 Actions (UCF101), and Something-Something V1 (Sth-Sth V1). Each sample in the dataset
contains 32 to 64 frames on average, with Top-1 accuracy and Top-5 accuracy serving as evaluation
indicators. Compared to the baseline ViT model, STA-VIiT achieves improvements of 13.5%, 9.37%, and
5.41% in Top-1 accuracy, and 2.04%, 0.82%, and 4.63% in Top-5 accuracy on these three datasets,
respectively. Furthermore, on a self-collected dataset of student learning behaviors, SAT-ViT
demonstrates high recognition accuracy, with Top-1 accuracy and Top-5 accuracy reaching 83.2% and
96.5%, respectively, proving its advantage in learning behavior recognition tasks. Based on the
recognition capabilities of this model, three intervention strategies are proposed: real-time feedback
mechanisms, personalized learning path planning, and classroom management optimization. It aims to
improve student learning efficiency and optimize classroom management, particularly suitable for
intelligent education and remote teaching scenarios. The findings of this study offer effective technical
support and application prospects for learning behavior analysis and intervention in intelligent education
and remote teaching.

Povzetek: STA-ViT je izboljSani vizualni transformator s prostorsko-casovno samopozornostjo, namenjen
prepoznavanju ucnih vedenj in optimizaciji pedagoskih intervencij. Z medpomnilnikom tokov znacilk
ucinkovito modelira kratko- in dolgorocne odvisnosti, zmanjsa porabo pomnilnika ter doseze visoko

kvaliteto v inteligentnem izobrazevanju.

1 Introduction

With the rapid development of artificial intelligence (Al)
and computer vision technology, video behavior
recognition has become a vital research direction, widely
used in education, security, health monitoring, and other
fields. Especially in learning behavior recognition,
accurately capturing and analyzing learners' behavior
patterns can provide powerful support for personalized
education, learning progress monitoring, and intelligent
intervention [1,2]. However, the existing learning
behavior recognition algorithms often rely on traditional
feature extraction methods and shallow learning models,
and they fail to mine the spatiotemporal information in the
video. Especially in the complex learning environment,
the temporal dependence between behaviors and long-
time scale pattern recognition is still a challenge [3-5].

In recent years, the Transformer-based model has
made remarkable progress in computer vision, especially
in image classification and target detection tasks [6].

Among them, Vision Transformer (ViT) can capture the
global information through the self-attention mechanism,
and has shown excellent performance in various visual
tasks. Despite the outstanding performance of ViT in static
image tasks, its application in dynamic video behavior
recognition still faces the challenge of spatiotemporal
information fusion [7,8].

To solve the above problems, this study proposes a
video behavior recognition model based on ViT. The
proposed model effectively models the short and long-
term temporal dependencies in video by introducing the
spatiotemporal self-attention feature flow buffer. By
combining the spatiotemporal self-attention mechanism,
this model can better capture the subtle behavior changes
in the learning process and show strong robustness in
complex learning scenarios.

Based on this background, the study addresses the
following questions. Can STA-VIiT achieve higher
accuracy than traditional ViT in long-sequence video
recognition tasks? Can STA-VIT significantly reduce
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memory usage while optimizing learning behavior
recognition? Can effective intervention strategies for
improving learning efficiency be designed based on STA-
ViT's recognition results? The main contributions and
objectives are as follows:

(1) A video behavior recognition algorithm based on
ViT spatiotemporal self-attention feature flow buffer is
proposed. The ability of learning behavior recognition in
short and long-term time series modeling is improved by
introducing a spatiotemporal self-attention feature flow
buffer.

(2) Experiments on multiple behavior datasets are
designed and implemented, verifying the model's
effectiveness and superiority in video behavior
recognition tasks.

(3) Through experimental analysis, this study
discusses the improvement of this model on the
performance of learning behavior recognition, introducing
the intervention strategy. This provides new methods and
ideas for intelligent education and learning behavior
monitoring.

2 Related work

Since AlexNet won the ImageNet competition in 2012,
deep learning (DL) technology has achieved great success
in image recognition. In the field of video recognition,
with the development of DL technology, researchers
began to explore how to use it to extract features from
video frames for behavior recognition. Zhang and Li
proposed a classroom teaching behavior recognition
solution based on a dual-stream convolutional neural
network (CNN) model. They incorporate knowledge
distillation technology to optimize model efficiency and
combine attention mechanisms to improve recognition
accuracy. The model achieved recognition accuracies of
88.1% and 89.4% on the UCF-101 and STUDENT
datasets, respectively, with processing speeds more than 2
and 1.5 times faster than traditional models [9]. Yan
developed a spatiotemporal neural network based on a
dual-stream fusion algorithm to enhance athletes' posture
adjustment capabilities through action recognition,
applied in basketball player training and game analysis.
Experiments demonstrated that the model reached an
accuracy of 95.4% with a recognition speed of 20 frames
per second. Compared to other models, this solution
showed a 25% improvement in recognition speed and a
47.27% reduction in average recognition time [10]. Azmat
et al. proposed a human motion recognition system in red-
green-blue (RGB) video shot by Unmanned Aerial
Vehicles (UAVS). This system combined bilateral filtering,
fast displacement segmentation, key point extraction,
Three-Dimensional (3D) point cloud modeling, and deep
CNN for classification. Through experiments on three
datasets, the system showed excellent motion recognition
performance [11].

Transformers were first proposed in natural language
processing (NLP), achieving great success. Over the years,
the application of Transformers in computer vision has
gradually expanded, especially in video behavior
recognition. Transformer architecture has shown good
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performance. Yang et al. proposed a new DL model-
Spatial Temporal Relation  Transformer (STR-
Transformer) to automatically identify unsafe behaviors
on construction sites. The model extracted and fused
spatial and temporal features through parallel video
streams, which significantly improved the accuracy of
safety monitoring, and was expected to reduce the
accident rate and management cost [12]. Zhao et al.
proposed an efficient real-time target detection network.
By introducing an efficient transformer module and a
convolution module, the recognition ability of occluded
objects and small objects was improved, and the
calculation cost was reduced. Experiments showed that
this network performed well in the classroom behavior
recognition tasks, with an accuracy of 82.9% and good
generalization ability [13]. Yang et al. proposed a human
behavior recognition method based on ViT, which solved
the dependence problems on massive data. Through the
core weight entropy data evaluation and redundant
information elimination strategy, the data consumption
was reduced, while maintaining high performance, and the
selected data was not redundant and had high efficiency
[14]. The main contents of the above-mentioned research
are summarized in Table 1.
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Among existing video behavior recognition methods,
although Transformer architectures demonstrate certain
advantages in spatiotemporal ~modeling, several
challenges remain, including high computational and
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term temporal dependencies. In contrast, the proposed
spatiotemporal self-attention feature flow buffer model
based on ViT introduces several architectural innovations.
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First, the spatiotemporal self-attention mechanism more

effectively captures both short-term and long-term
temporal dependencies in videos, overcoming the
limitations of traditional Transformer methods in

modeling long-term dependencies. Second, the design of
the feature flow buffer enhances the model's ability to fuse
spatiotemporal information across video segments. Also,
it significantly reduces computational and memory
overhead for long videos, improving computational
efficiency and performance. Compared to other
Transformer-based spatiotemporal modeling methods, the
proposed model demonstrates greater flexibility and
generalizability, enabling better handling of complex and
diverse behavior recognition tasks while achieving an
optimal balance between accuracy and efficiency.

3 Construction of behavior model

3.1 Analysis of the ViT Principle

The ViT model is a Transformer-based encoder structure,
which aims to expand the success of the Transformer
model from the NLP field to computer vision tasks.
Compared with the traditional CNN, ViT has stronger
global context modeling ability, especially after pre-
training on large-scale datasets. Thus, it performs well in
transfer learning tasks, and its structure is displayed in
Figure 1 [15,16].

Layer Linear Linear

normalization

Figure 1: Structural diagram of ViT encoder

The core of ViT is to process one-dimensional
sequence data. However, in video, image data is originally
in a two-dimensional (2D) format, so it needs to be
preprocessed and converted into a sequence format
suitable for Transformer input. Firstly, the non-
overlapping image blocks with the size of X € RFXW*3 of
the input image are divided into PxP, and a total of N =

I;—‘f image slices are obtained. After flattening, each slice

is transformed into a one-dimensional vector x; € R3P”.
Each flattened image slice is transformed into a feature
vector with a fixed dimension D by linear mapping, and a
learnable classification vector x., € RP is added to
capture the global image features. At the same time, a
learnable position coding vector W,,s € RW+¥D*D s
incorporated to preserve the spatial position information
of the image block. The input sequence is expressed as:
Z = [xc1ass; X3 Wes X Wes -+ Xy Wel + Whos (1)

W, € R3P**P s a linear mapping matrix.

The core module of ViT is the self-attention
mechanism, which models the global context by
calculating the correlation between the parts of the input
sequence [17]. The specific calculation process of self-
attention mechanism in ViT reads:

The first step is to generate query, key and value
vector. The input features generate Query, Key and Value
vectors through three linear mappings:

Q = ZWQ, WQ € RDXDh’ (2)
K = ZWy, Wy € RP*Pn 3)
V =ZW,, W, € RP*Pnr (4

Dy, = %- R is the number of heads of attention.

The second step is to calculate the attention weight.
The similarity is calculated by the dot product of query
and key, and the result is scaled and normalized:

A = softmax (\Q/%_Z) (5)
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A € RW+D*(V+1) s the attention weight matrix.

The third step is weighted feature output. Attention
weight is used to sum the value vectors:

SA(Z) = AV (6)

The fourth step is that multi-head self-attention. To
enhance the expressive ability of the model, the multi-
head attention mechanism repeats the above operations for
R times, and linearly maps the outputs of all heads after
splicing:

MSA(Z) = Concat[SA,(Z),SA,(Z), -+
W, € RRPrXD js a mapping matrix.
ViT encoder is composed of multi-head self-attention

(MSA) module and multi-layer perceptron (MLP) module,

and features are fused and transmitted through residual

connection. The calculation steps of each layer are as
follows:

Z' = MSA(LayerNorm(Z)) + Z (8)

z°ut = MLP(LayerNorm(Z")) + Z' 9)

MLP is composed of two fully connected layers and
the GeLU activation function. The nonlinear expression
ability is enhanced by expanding the feature space and
then projecting it back to the original dimension.

,SAR(Z)IW, (7)
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The advantage of VIiT is that it can capture the long-
distance dependence between image blocks through the
self-attention mechanism, thus integrating feature
information on a global scale [18,19]. This ability enables
it to fully express the global semantics of images even in
shallow networks. Moreover, unlike CNNs, which rely on
local perception, ViT can establish global dependence in
the initial feature extraction stage, so it has stronger
generalization ability. Especially after pre-training on
large-scale datasets, it can still maintain excellent
performance when migrating to small-scale tasks.
Through these characteristics, ViT provides a powerful
tool for spatiotemporal feature modeling in behavior
recognition tasks.

3.2 Video behavior recognition model
based on vision transformer

In recent years, the video behavior recognition model
based on VIT has attracted wide attention because of its
powerful feature extraction ability. The existing video
behavior recognition model based on Transformer is
depicted in Figure 2.
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Figure 2: Existing ViT-based video behavior recognition model

However, the existing behavior recognition model
based on ViT has some limitations, which are mainly
reflected in the following aspects. (1) It lacks the temporal
perception field between video frames and cannot capture
the fine-grained action relationship. (2) The global
average pooling is performed on the output of the last
layer, which leads to insufficient modeling ability of
complex long-term time series dependencies. (3) Since the

memory usage of the Transformer is proportional to the
number of input tokens, the training process is highly
demanding on hardware resources [20-22].

To solve the above problems, this study proposes an
improved model: Spatiotemporal Attention-enhanced ViT
(STA-VIT) based on spatiotemporal self-attention feature
flow buffer, and its overall architecture is expressed in
Figure 3.
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Figure 3: STA-VIT video behavior recognition model

Figure 3 shows that this model consists of three core
components: ViT encoder, temporal convolution module,
and spatiotemporal self-attention feature flow buffer. ViT
encoder is used to extract the spatial features of video, and
the temporal convolution module models the short-term
local temporal relationship by frame-by-frame operation.
The spatiotemporal self-attention feature flow buffer
gradually integrates the spatiotemporal features across
segments to realize the long-term global time-dependent
modeling.

CNN is excellent at capturing local features,
especially for extracting short-term dependencies in the
time dimension. Therefore, a Temporal Patch-Conv
(TPConv) module is embedded in each layer of the ViT
model. Moreover, the relationship between video frames
is modeled by the convolutional check sliding along the
time dimension. Specifically, after each layer in ViT, a
TPConv layer is inserted, with the convolution kernel size
set to Ty, X 1 (three in the temporal direction and one in
the spatial direction), a stride of 1. Meanwhile, padding

uses the same strategy to maintain the temporal dimension.

All layers of TPConv share the same convolution kernel
size, but the convolution parameters of different layers are
trained independently without parameter sharing.
Assuming the input video segment is X;, which contains T
frames of RGB image frames with dimensions (H x W),

the equation for temporal convolution calculation is:
-1

@O _ yTsize=1,O
Zi,(s,t) - Zriloe VVkernelZi,(s,t—r) (10)
7Y represents the characteristics of the s image

i,(s,t)
block of the t frame in the i-th segment of the | layer.

O} i i
W,ime: Tefers to the time convolution kernel of the I layer.

By introducing TPConv module layer by layer, the model
gradually expands the temporal perception field, thus
effectively capturing short-term action relations and fine
behavior characteristics. In STA-VIiT, TPConv connects
sequentially with the self-attention module, where each
layer first performs temporal convolution to model local
short-term relationships. Subsequently, it is fed into the
multi-head self-attention module of ViT for spatial feature
interaction. This alternating operation simultaneously
models short-term temporal information and spatial
dependencies, enhancing the collaborative capability of
spatiotemporal feature extraction.

Although short-term temporal modeling can extract
fine temporal features, it is critical to model long-term
temporal-spatial dependencies across video clips in
complex behavior recognition tasks. Therefore, a
dynamically updated spatiotemporal self-attention feature
flow buffer is designed to integrate contextual information
across video segments layer by layer, achieving global
temporal relationship modeling. The feature flow buffer is
a critical component in STA-VIT, addressing the cross-
frame flow problem of spatiotemporal information in
video sequences. At each timestep, the buffer preserves
spatiotemporal features from previous frames and fuses
them with current frame features through a cache update
mechanism.  Specifically, the buffer employs
convolutional operations to extract important features
from historical frames and concatenates them with the
current frame. This approach maintains spatiotemporal
continuity across multiple video segments, thereby
improving behavior recognition performance. Figure 4
illustrates the structure of the feature flow buffer.
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Figure 4: Spatiotemporal self-attention feature flow buffer

In Figure 4, specifically, for the I-layer output feature
Zi(f)l of time segment X;_,, the last u-frame feature is
cached and merged with the current segment Z™" to form
a fusion feature F(Z"):

F(z®) = concat(ZL, ;. Z) (11)

Concat(-) represents a feature stitching operation
along the time dimension. The cache has a queue behavior,
and the cache size is u. When it is exceeded, it is
dynamically updated according to the first-in, first-out
policy. The caching mechanism ensures the continuity of

features and long-term context modeling. After feature
fusion, the spatiotemporal self-attention mechanism is

introduced to process the fusion feature F(Z"), which is
calculated as follows:
. QKT
Attention(Q,K,V) = Softmax (ﬁ) Vo (12)
Among them,

Q=F(z")we (13)
K = F(zP)w¥ (14)
v =r(z®)wv (15)

We, WX, and WY are the learnable parameters; d
refers to the scaling factor. In STA-VIT, the computation
of queries, keys, and values incorporates current frame
spatial features and temporal positional encoding to
reinforce  temporal dimension information. The
spatiotemporal  self-attention  mechanism  utilizes
positional encoding to introduce temporal information.
Differing from traditional Transformer positional
encoding, a specialized temporal positional encoding is
designed for video data's sequential characteristics. This

encoding contains both spatial position information for
each video frame and inter-frame temporal intervals.
Specifically, the temporal positional encoding is generated
through sine and cosine functions and element-wise added
to input visual features, embedding temporal dimension
information into each frame's features. The positional
encoding is applied after concatenation and fusion to
F(Zi(l)) for preserving sequential information, ensuring
correct capture of temporal relationships among features
from different source segments. In the initial stage of the
model, the unused video frames in the buffer are initialized
to zero vectors. As the network depth increases, the
spatiotemporal self-attention feature flow buffer can
integrate features from different segments to the last layer.
The final output is a high-level spatiotemporal feature
with a global temporal perception field, which effectively
captures complex behavioral temporal dependencies.
Compared to standard ViT, STA-VIT exhibits increased
computational complexity after incorporating the
spatiotemporal self-attention mechanism and feature flow
buffer. Specifically, the standard ViT's self-attention
mechanism has a computational complexity of O(N?),
where N represents the input image sequence length. In
STA-VIT, the spatiotemporal self-attention mechanism
introduces a buffer that makes each frame's computation
dependent not only on the current frame but also on
historical frames in the cache. The cache size directly
determines the computational overhead of the
spatiotemporal self-attention mechanism, meaning both
cache size and video sequence length affect the model's
computational efficiency. However, the feature flow
buffer effectively reduces redundant calculations while
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preserving critical spatiotemporal information. This
enables STA-VIT to maintain relatively low
computational overhead when processing long videos,
demonstrating higher efficiency than standard ViT for
long-sequence video processing tasks.

The training process of the Transformer structure in
video tasks usually needs to store the gradient information
of all video clips, which leads to huge memory overhead.
To alleviate this problem, a step-by-step training strategy
based on segmented backpropagation is proposed. Unlike
traditional methods that store complete video segments
simultaneously, this approach retains gradient information
only for the currently processed segment during each
forward and backward propagation. Meanwhile, it
immediately releases unnecessary cache after completing
backpropagation for that segment, significantly reducing
memory overhead during training. Each segment
independently completes forward computation, loss
calculation, and backward propagation, with parameter
updates occurring immediately after each segment's
backpropagation without maintaining cross-segment
intermediate states. The system promptly releases cached
memory after processing each segment. Furthermore, the
segment-by-segment backpropagation strategy preserves
long-term dependency continuity by caching essential
feature contexts. Consequently, this strategy introduces no
noticeable gradient inconsistency nor significant
convergence speed reduction, while enabling larger batch
training through more efficient memory management,
indirectly accelerating the convergence process. This
optimization strategy improves the hardware adaptability
of the model while reducing the computational cost of
large-scale video tasks. The core process pseudocode is
listed in Figure 5.

# Pseudocode: Segment-by-Segment Backpropagation
Initialize model parameters 6
Set segment size S
for each video V in training dataset:
Initialize feature flow buffer Feature Flow Buffer = empty
for i in range(0, len(V), S):
# Extract segment
segment = V[i : i+S]

# Forward pass
output, Feature Flow Buffer = Model(segment, Feature Flow Buffer)

# Compute loss
loss = LossFunction(output, ground_truthli : i+S])

# Backward pass
loss.backward()

# Update parameters
Optimizer.step()
Optimizer.zero_grad()

# Free memory from processed segment
del segment, output, loss

Figure 5: Pseudocode for training based on segment-wise
backpropagation.

To sum up, the video behavior recognition model
based on ViT overcomes the limitations of traditional
methods by combining a short-term time convolution
module and a long-term spatiotemporal self-attention
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feature flow buffer. Meanwhile, this model can efficiently
model short-term details and long-term global
relationships in video behavior, significantly improving
behavior recognition performance. The pseudocode of the
entire STA-VIT model is depicted in Figure 6.

# STA-VIT Simplified Pseudocode
import torch
import torch.nn as nn
class STA_ViT (nn.Module):
def __init__(self, num_layers=12, d_model=768):
super().__init__()
self.patch_embed = nn.Linear(3 * 16 * 16, d_model) # Example patch embedding
self.tpconvs = nn.ModuleL ist([nn.Conv1d(d_model, d_model, 3, padding=1) for _ in
range(num_layers)])
self.encoder_layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model, 8) for _in
range(num_layers)])
self.buffer = None
def forward(self, x):
# x shape: [B, T, C, H, W]
B, T = x.shape[:2]
x = self.patch_embed(x.flatten(2)) # [B, T, N, D]
for layer_idx in range(len(self.encoder_layers)):
# Temporal convolution
x = self.tpconvs[layer_idx](x.permute(0,3,1,2)).permute(0,2,3,1)
# Spatiotemporal buffer
if self.buffer is not None:
x = torch.cat([self.buffer, x], dim=1)

# Transformer encoding
x = self.encoder_layers[layer_idx](x.flatten(1,2)).view(B, -1, x.size(2), x.size(3))

# Update buffer
self.buffer = x[:, -3:] if x.size(1) > 3 else x

return x.mean([1,2])
# Training snippet
model = STA_ViT()
opt = torch.optim.Adam(model.parameters())
for video_stream in dataset:
model.buffer = None # Reset buffer between videos
for clip in split_into_clips(video_stream):
pred = model(clip)
loss = loss_fn(pred, label)
opt.zero_grad()
loss.backward()
opt.step()

model.buffer = model.buffer.detach() # Memory optimization

Figure 6: The pseudocode of the STA-VIT model

3.3 Experimental dataset and
experimental setup

To verify the STA-VIiT model's video behavior
recognition performance, experiments are conducted on
three widely used standard video behavior recognition
datasets. These datasets encompass Human Motion
Database 51 (HMDB51), University of Central Florida
101 Actions (UCF 101), and Something-Something V1
(STH-STH V1). Among them, the HMDB51 dataset
contains 51 categories of human action videos, such as
running, jumping, and playing ball, with 6,766 clips. The
number of samples in each category is roughly balanced,
and the video sources are diverse, including movie clips
and network resources, which have strong action diversity
and complexity. The UCF101 dataset is a large video
dataset that encompasses 101 action categories and
contains over 13,000 video clips. UCF101 is widely used
in video classification and motion recognition research,
which involves sports activities, daily activities, and the
interaction between human beings and objects. The
diversity and richness of this dataset make it a standard
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test set in video recognition tasks. The Sth-Sth V1 dataset
is a large-scale dataset designed for dynamic object
interaction behavior recognition, encompassing 174
categories and approximately 108,000 video samples.
Unlike the traditional motion recognition dataset, Sth-Sth
V1 focuses on capturing the complex interaction between
human beings and objects, such as taking, pushing, and
picking, and is especially suitable for studying fine-
grained object behavior recognition.

In addition, this study collects videos of students'
learning behavior in a university to verify the model's
performance in the actual educational scene. The dataset
comprises four main categories: listening, writing,
questioning, and discussing. The detailed statistics are
outlined in Table 2.

Table 2: Category distribution of self-collected

datasets
Category Sample size
Listening 5400
Writing 4800
Questioning 2200
Discussing 2600
Total 15000

Two education researchers independently perform
data annotation, with a third-party review ensuring
consistency through a dual-labeling verification process to
guarantee accurate and reliable data labels. For data
augmentation, random cropping, horizontal flipping,
temporal jittering, and other methods enhance model
generalization. Each video clip randomly selects starting
frames during training to increase sample diversity. To
address class imbalance in classroom datasets, weighted
cross-entropy loss applies normalized inverse class
frequency weights, mitigating training bias toward
dominant classes and improving recognition of minority
behaviors. All datasets are split into training, testing, and
validation sets following an 8:1:1 ratio.

The experimental framework is based on the PyTorch
DL framework, and all experiments are carried out on a
computing platform equipped with an NVIDIA GTX 3090
GPU (32GB of video memory) and 32GB of memory. The
experimental parameter settings are shown in Table 3.

Table 3: Experimental parameter settings
Parameter name Setting value

Self-attention layer 12
Number of attention heads per | 12
layer

Convolution kernel size of time | 3x1
convolution module

Step length 1

Video clip frame number {4,8,16,32}
Learning rate 0.001
Optimizer Adam
Batch size 32
Training epochs 50
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In terms of evaluation indicators, this study uses the
accuracy of Top-1 and Top-5 to evaluate the model's
performance in video behavior recognition tasks. The two
indicators indicate whether the model contains the correct
labels in the Top-1 and Top-5 predictions, to reflect the
classification ability and robustness of the model.

4 Results and analysis

4.1 Model memory usage analysis

The SAT-VIT model is compared with the traditional ViT
model, Temporal Shift Module (TSM), and Inflated 3D
Convolutional Network (13D) to test the memory ratio of
asingle video training on 8, 16, 24, 32, and 40 frames. The
results are plotted in Figure 7.
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Figure 7: Memory ratio during training of different
models

In Figure 7, compared with the traditional ViT model,
the SAT-ViT model exhibits significant advantages. In the
training process, the SAT-VIiT model uses backward
propagation between video segments and only needs to
store the gradient information of a single video segment.
Its memory usage is always the same, significantly lower
than the traditional ViT model. In contrast, although the
memory growth of TSM and 13D models is slow, there is
still a certain upward trend when the number of frames
increases, especially TSM based on 2D convolution.
When the number of sampling frames reaches 40, the
traditional ViT model's memory usage exceeds 9GB,
which is significantly higher than other models, indicating
that it is difficult to process long videos efficiently.
Therefore, the memory efficiency of SAT-VIT makes it
more suitable for processing long-term video data and
complex behavior dependence modeling tasks.

4.2 Performance analysis of model
recognition

The SAT-VIT model's performance is tested on three
datasets (HMDB51, UCF101, and Sth-Sth V1), and

compared with ViT, Temporal Difference Network (TDN),
Temporal Excitation and Aggregation Networks (TEA),
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TSM, and 13D models. These methods represent typical
approaches in video behavior recognition, covering
diverse temporal modeling and network architectures. ViT
serves as the standard ViT architecture widely adopted in
current research. TDN primarily models temporal
information through temporal difference networks with
strong dependency modeling capabilities. TEA enhances
temporal feature extraction via time incentives and
aggregation mechanisms, and is suitable for the learning
of long sequences. TSM employs the temporal shift
operations in spatiotemporal feature modeling, optimizing
the processing efficiency of video sequences. 13D utilizes
an extended 3D convolutional network, which can capture
the spatiotemporal information in videos more effectively.
The results are illustrated in Figure 8.
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Figure 8: Performance comparison of different models on
different datasets

Figure 8 shows that the SAT-VIiT model outperforms
other models on HMDB51, UCF101, and Something-
Something V1 datasets, especially in the accuracy of Top-
1and Top-5. Specifically, the Top-1 accuracy of SAT-VIiT
on HMDB51 and UCF101 datasets reaches 61.4% and
76.6%, and the Top-1 accuracy on the Something-
Something V1 dataset achieves 60.4%, significantly
exceeding the contrast model. In addition, SAT-VIT also
maintains a significant advantage in the Top-5 accuracy,
especially on the UCF101 dataset, reaching 98%. These
results reveal that SAT-VIT has strong generalization
ability and excellent performance in spatiotemporal
modeling, and can effectively capture the spatiotemporal
features in video, thus achieving more accurate behavior
recognition. This fully verifies its superiority in complex
video behavior recognition tasks. Experimental results
show average standard deviations of £0.7, £1.1, +1.2, +1.5,
+1.4, and £1.6 for SAT-VIT, ViT, TDN, TEA, TSM, and
I3D across three datasets, respectively. These values
demonstrate SAT-ViT's consistently lower standard
deviation across all test datasets, confirming its superior
stability in spatiotemporal modeling. Comparative models
like 13D and TEA exhibit greater performance variability,
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particularly on complex datasets, as evidenced by their
larger standard deviations.

To further verify the SAT-VIiT model's performance
in practical application scenarios, the SAT-VIT model and
other models are tested on the self-collected dataset of
students' learning behavior. The results are demonstrated
in Figure 9.
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Figure 9: Test results of students' learning behavior

In Figure 9, the Top-1 and Top-5 accuracy of SAT-
ViT reach 83.2% and 96.5%, respectively, which are
superior to other models. This shows that SAT-VIT can
more accurately capture the spatiotemporal dependence
characteristics in students' learning behavior. Due to the
lack of special time modeling ability, the traditional ViT
model's performance is slightly worse than SAT-ViT, but
still better than TEA and 13D models. Although TDN and
TEA have some advantages in extracting time features,
they are not as good as SAT-VIT in capturing complex
behavior features. These results further confirm the
superiority of the SAT-VIiT model in actual educational
scenarios, providing a solid basis for its application in the
learning behavior analysis and intervention system.

To demonstrate the comprehensive performance of
different models, the UCF101 dataset serves as a
benchmark for comparing Top-1 accuracy, Top-5
accuracy, parameter count, computational load, memory
usage per training video, and inference speed. The same
indicators are presented for the self-collected student
learning behavior dataset. Detailed comparisons are
denoted in Tables 4 and 5.

Table 4: Performance and resource consumption
comparison of different models on the UCF101 dataset

To | To Me
p- | p- | Para mor | Infer
Mo |1 5 meter C(_)mput y ence
ational
del | ( ( count load (G) usag | speed
% | % | (M) e (FPS)
) 1) (GB)
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SA

T- | 76. | 98.

Vi |6 0 85.2 95.6 3.33 | 235
T

Vi | 70. | 97.

T 1 2 86.4 96.2 9.15 | 220
TD | 70. | 97.

N 6 4 33.2 92.1 434 | 210
TE | 69. | 96.

A 4 9 33.8 88.7 417 | 215
TS | 68. | 96.

M 9 0 24.3 86.2 434 | 240
13D 36' 25' 25.0 108.5 244 | 120

Table 5: Performance and resource consumption
comparison of various models on the self-collected

student learning behavior dataset
To | To Me
p- | p- | Para mor | Infer
Mo |1 5 meter Cc_)mput y ence
ational
del | ( ( count load (G) usag | speed
% | % | (M) e (FPS)
) 1) (GB)
SA | 83.]96.|852 95.6 3.33 | 235
T- 2 5
Vi
T
Vi 76. | 93. | 86.4 96.2 9.15 | 220
T 8 2
TD | 75.| 92. | 33.2 92.1 434 | 210
N 5 7
TE | 72. | 91. | 33.8 88.7 4,17 | 215
A 3 1
TS | 70. | 89. | 24.3 86.2 434 | 240
M 9 8
13D | 68. | 87. | 25.0 108.5 244 | 120
4 6

Tables 4 and 5 reveal that SAT-ViT achieves optimal
Top-1 and Top-5 accuracy on both the UCF101 dataset
and the student learning behavior dataset. Concurrently,
VIiT maintains superior balance in parameter size,
floating-point operations per second (FLOPS), memory
usage, and inference speed, demonstrating its
effectiveness and efficiency in complex behavior
recognition tasks.

To better evaluate the generalization ability of the
model and its performance on the latest or professional
datasets, experiments are conducted on a new dataset,
Kinetics. The Kinetics dataset is a widely used behavior
recognition dataset that contains diverse human behavior
activities extracted from YouTube videos, covering more
than 400 distinct action categories. The Kinetics dataset
provides extensively annotated videos suitable for training
and evaluating video behavior recognition models. The
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proposed STA-VIT model is compared against advanced
video recognition models, including SlowFast, eXtreme
3D Convolutions (X3D), Time Space Transformer
(TimeSformer), and Video Vision Transformer (ViViT) to
further validate its advantages in spatiotemporal modeling
and diverse video behavior recognition. The comparative
results are presented in Figure 10.
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Figure 10: Performance comparison of different models
on the Kinetics dataset

Figure 10 reveals that the STA-VIT model achieves
outstanding performance on the new dataset, exhibiting
superior advantages in spatiotemporal feature modeling
and processing compared to other methods. These results
validate STA-VIiT's excellence in handling complex video

behavior recognition tasks and confirm its broad
applicability across diverse datasets.

4.3 Learning behavior intervention
strategy

Learning behavior intervention aims to provide

personalized guidance and support by accurately
identifying students' behavior patterns, thus improving
learning efficiency and learning effect. Building upon
SAT-ViT's efficient learning behavior recognition
capabilities and existing learning analytics literature, the
following specific intervention strategies are designed:

(1) Real-time feedback mechanism. Leveraging SAT-
ViT's real-time monitoring capability, immediate
feedback can be provided for students and teachers.
Through accurate recognition of student behaviors,
particularly critical indicators like attention, posture, and
engagement, teachers gain real-time insights into learning
states. For instance, when the model detects a decline in
students' attention, it can provide personalized suggestions
through the integrated intelligent feedback system within
the learning management platform. Technically, feedback
latency is maintained within 1-2 seconds through model
optimization and hardware acceleration, ensuring timely
responses. The visualization interface displays current
behavioral patterns of students and offers real-time
decision support, enabling teachers to dynamically adjust
teaching pace or content.
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(2) Personalized learning path planning. Through
long-term behavioral data accumulation and analysis, the
SAT-ViT model reveals students’ individual learning
needs and supports personalized learning path design. The
model identifies learning bottlenecks by analyzing
attention fluctuations and study habits. The model can
identify learning bottlenecks based on students' attention
fluctuations and learning habits. By combining the
existing literature, the intervention strategy based on the
student behavior prediction model can formulate
personalized learning plans for them [23,24]. Technically,
the formulation of personalized paths is based on students'
historical behavior analysis and is dynamically adjusted in
real time to achieve an efficient learning experience.

(3) Classroom management optimization. The SAT-
VIiT model can provide teachers with data support for
classroom dynamic behaviors, helping to grasp students'
learning conditions in real time, including the attention
levels and interaction frequencies of individuals and
groups. This technology proves particularly valuable in
remote or hybrid learning environments. Through
integration with existing learning management systems,
teachers can gain immediate insights into classroom
engagement levels and students' behavioral trends through
interactive dashboards, allowing dynamic adjustment of
teaching pace and strategies. Technically, the integrated
learning management system automatically analyzes
behavioral data and presents visualized analytics to inform
instructional decisions, effectively enhancing teaching
outcomes. Real-time data analysis in classroom
management enables timely teaching strategy adjustments
that improve student engagement and interaction.

By applying the SAT-VIiT model to the design of
learning behavior intervention strategies, people can
realize the fine recognition and intervention of learning
behavior, effectively improving learning efficiency and
education quality. Real-time feedback mechanism can
correct students' behavior deviation in time; personalized
learning path planning can help students overcome
individual learning  bottlenecks; and classroom
management optimization can support teachers to improve
teaching effect in diversified teaching scenarios.
Implementing these strategies provides new ideas for the
development of an intelligent education system and helps
to promote the popularization of personalized and efficient
education modes.

5 Discussion

To investigate each module's contribution to model
performance, ablation studies are conducted with four
comparative models. @ ViT: It contains only standard
VIT architecture without TPConv or spatiotemporal
feature flow buffer; @ ViT + TPConv: TPConv is added
based on the standard ViT to examine the impact of the

modeling capability in the time dimension on performance.

® VIT + Flow buffer: Standard ViT is enhanced with a
spatiotemporal feature flow buffer to test cross-segment
feature integration; @ Complete STA-VIiT. Experiments
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on the UCF101 dataset yield Top-1 and Top-5 accuracy
under different configurations, as shown in Table 6.

Table 6: Performance and Resource Consumption
Comparison of Diverse Models on the UCF101 Dataset

Top-1 Top-5

Model Accuracy (%) | Accuracy (%)
ViT Baseline 70.1 97.2

ViT + TPConv | 71.8 97.8

VIiT + Flow

buffer 34 %1
Complete STA-

ViT 76.6 98.0

Table 6 demonstrates that the ViT baseline model
achieves the lowest performance. However, after adding
TPConv and the spatiotemporal feature flow buffer, the
model performance gradually improves, thus achieving
the optimal Top-1 and Top-5 accuracy in the STA-VIT
model. This confirms that both the temporal convolution
module and spatiotemporal feature flow buffer markedly
enhance model capability for complex video behavior
recognition tasks.

When comparing the STA-VIT model with existing
methods in literature, Zhang and Li [9] proposed a dual-
stream CNN combined with knowledge distillation and
attention mechanism, achieving 88.1% accuracy on the
UCF-101 dataset. This approach enhanced temporal
information fusion through dual-stream convolutional
networks but lacked in-depth modeling of spatiotemporal
relationships. In contrast, STA-VIT achieves 76.6% Top-
1 accuracy on the UCF-101 dataset by effectively
modeling complex spatiotemporal features through
TPConv and spatiotemporal feature flow buffers,
demonstrating ~ superior  spatiotemporal ~ modeling
capabilities. Yan [10] developed a spatiotemporal neural
network that attained 95.4% accuracy on a basketball
training dataset. While this method combined dual-stream
fusion features and spatiotemporal convolution, its
performance improvement mainly stemmed from domain-
specific task design. STA-VIiT exhibits stronger
generalization ability, handling a wider range of video
behavior recognition tasks, particularly excelling in
complex behavior recognition scenarios. Azmat et al. [11]
proposed a combination of 3D point clouds and deep
CNNs that performed well on multiple datasets. However,
their approach lacked effective temporal modeling for
complex time dependencies, being limited to static frame
features. STA-VIT significantly enhances temporal
modeling through the TPConv module, achieving superior
performance in dynamic behavior recognition. The STR-
Transformer proposed by Yang et al. [12] could model the
spatial-temporal relationships through parallel video
stream features, improving accuracy in security
monitoring. Comparatively, STA-VIiT demonstrates
advantages in finer-grained spatiotemporal feature
modeling, delivering outstanding performance in complex
video behavior recognition tasks while maintaining
balanced recognition accuracy and computational
efficiency. Zhao et al. [13] presented an efficient



288  Informatica 49 (2025) 277-290

combination of Transformer and convolutional networks
that achieved 82.9% accuracy in classroom behavior
recognition. Although this method improved recognition
capability through local temporal modeling, its ability to
model long sequences and complex spatiotemporal
interactions fell short of STA-VIiT. This demonstrated
higher efficiency in processing long videos through
comprehensive spatiotemporal feature flow buffers and
TPConv modules. Yang et al. [14] proposed a ViT-based
behavior recognition method that reduced dependence on
large-scale data through data refinement strategies.
However, this approach primarily relied on ViT's static
feature extraction without fully exploiting temporal
information. In  comparison, STA-VIiT captures
spatiotemporal dependencies more comprehensively
through the integration of TPConv and spatiotemporal
feature flow buffers, exhibiting stronger recognition
performance.

Overall, the innovation of STA-VIT in spatiotemporal
feature modeling has enabled it to demonstrate remarkable
advantages in complex video behavior recognition tasks.
By introducing TPConv and spatiotemporal feature flow
buffers, STA-VIT can capture temporal dependencies
more accurately and handle complex behaviors in long
time series. Compared with the existing methods, STA-
ViT not only improves the accuracy but also shows better
generalization ability and efficiency in various video
behavior recognition tasks. Hence, STA-VIT provides an
effective direction for future intelligent video analysis.

6 Conclusion

This study proposes a novel video behavior recognition
model called SAT-ViT, which combines the ViT
architecture with a spatiotemporal self-attention feature
flow buffer to enhance accuracy and efficiency in complex
video behavior recognition tasks. Based on this model,
multiple intervention strategies are further designed to
improve learning behavior analysis and intelligent
education applications. Experimental validation yields the
following conclusions:

(1) Memory optimization and long video processing:
Compared to traditional VIiT models, SAT-VIT
significantly reduces memory usage through its segment-
wise backpropagation mechanism, maintaining constant
memory requirements that make it particularly suitable for
long-sequence video processing. This characteristic gives
SAT-VIT distinct advantages when handling large-scale
video data, especially for efficient video behavior analysis
tasks.

(2) Performance superiority and generalization ability:

SAT-VIT demonstrates excellent performance on multiple
standard public datasets (including HMDB51, UCF101,
and Something-Something V1) and self-collected student
learning behavior datasets. The accuracy of Top-1 and
Top-5 surpasses existing mainstream models such as ViT,
13D, and TSM. Particularly in complex spatiotemporal
feature modeling, SAT-VIiT exhibits strong generalization
ability to effectively capture temporal and spatial
information in videos for more precise behavior
recognition. This superior performance indicates that
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SAT-VIT is applicable to traditional video behavior
recognition tasks while holding significant potential for
learning behavior analysis in intelligent education and
related fields.

(3) Effectiveness of intervention strategies: Based on
SAT-ViT's learning behavior recognition capability, three
intervention strategies are proposed: real-time feedback
mechanisms, personalized learning path planning, and
classroom management optimization. Experimental
results demonstrate that these intervention strategies
effectively enhance student learning efficiency,
personalize learning experiences, and optimize classroom
management, showing particular application value in
intelligent education and distance learning scenarios.
Through intelligent learning behavior analysis, educators
can adjust teaching strategies in real-time and intervene in
student learning processes with greater precision, thus
improving educational outcomes.

While the proposed SAT-VIiT model demonstrates
excellent performance in spatiotemporal feature modeling
and learning behavior recognition tasks, certain
limitations remain. The model may face challenges when
processing extremely complex behavioral patterns, and its
adaptability to large-scale datasets requires further
improvement. Future research could enhance model
performance  through  multimodal data  fusion,
architectural optimization, and algorithmic efficiency
improvements. SAT-VIiT holds broad application
prospects across multiple scenarios, particularly in
intelligent  education, personalized learning path
recommendation, and behavior prediction.
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Appendix

The hyperparameter settings used for the ViT, TDN, TEA,
TSM, and 13D models in the experiment are detailed in
Table 7:

Table 7: The hyperparameter settings of different models

. Traini
Learni | Bat o Other
Optimi | ng
ng ch paramet
. zer epoch
rate size ers

S

Weight
decay:
le-2;
Moment
um: 0.9;
Learning
rate
scheduler
: Cosine.
TD Weight

N le-3 16 Adam 50 decay:
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ViT | 1le-4 32 50
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0.1,
decaying
every 10
epochs

5e-5

32

Adam

80

Weight
decay:
le-5;
Moment
um: 0.9;
Learning
rate
scheduler
: Cosine

le-3

16

SGD

30

Moment
um= 0.9.
The
learning
rate
decay is
halved
every 5
epochs.

13D

le-4

16

Adam

50

Weight
decay:
le-4;
Moment
um: 0.9;
Learning
rate
scheduler
: Cosine
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