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With the rapid advancement of digital media technologies, facial image manipulation has become 

increasingly sophisticated. Both handcrafted editing tools and deep generative models such as Generative 

Adversarial Networks (GANs) can produce convincingly fake facial images, posing significant threats like 

misinformation and identity fraud. In this study, we introduce a novel Handcrafted Facial Manipulation 

(HFM) dataset, containing 1,527 manually edited images across multiple modification types and 

complexity levels. To detect these fakes along with GAN-generated images, we propose a lightweight 

neural network called Shallow-FakeFaceNet (SFFN), optimized for low-resolution images (64×64 and 

128×128). The detection pipeline includes MTCNN-based face cropping, noise filtering, GAN-based 

facial super-resolution for enhancing small images, and extensive image augmentation using both Keras 

and ImgAug. Unlike prior works that rely on fragile metadata, our model operates solely on RGB image 

data, making it robust against common forgery tactics. Experimental results show that SFFN achieves an 

AUROC of 72.52% on handcrafted fakes and 93.99% on GAN-generated faces, outperforming several 

state-of-the-art models. This approach offers a practical, real-world solution for fake media detection in 

social platforms and biometric verification systems. 

Povzetek: Raziskava uvaja Shallow-FakeFaceNet in ročno ustvarjen HFM nabor, ki omogočata 

zaznavanje ročnih ter GAN-generiranih ponaredkov obrazov, s čimer izboljšata robustnost 

metapodatkovno neodvisne forenzične detekcije. 

 

 

1   Introduction  
With developments in computer software for image 

manipulation such as Adobe Photoshop [1], facial 

photographs can now easily be manipulated, and users can 

create highly realistic forged images. Tools such as 

automatic area selection and foreground-aware inpainting 

enhance the quality of editing, and it is hard to detect 

forged images. Simultaneously, social media sites and 

online guides provide step-by-step guides, and it is simple 

for even beginners to create sophisticated fake material 

for the media. These manipulated images are employed 

for disinformation, defamation, and identity theft, which 

cause serious security concerns in interactive media and 

digital communications. 

In addition to standard editing processes, deep learning-

based generative models, particularly Generative 

Adversarial Networks (GANs) [2], have revolutionized 

artificial content creation with photorealistic images, 

video, and audio. The advancements are for creative 

sectors but pose hazards as well because GAN-

synthesized fake faces can deceive humans as well as 

machine learning algorithms. Abusive use includes 

generated false identities, deepfake adult content, and 

election misinformation campaigns [3]. Further, 

deepfake-basis impersonation attacks infiltrate biometric 

authentication systems, increasing the threat of 

heightened privacy, security, and digital trust issues. 

To mitigate these challenges, a number of detection 

techniques have been proposed. Previous research, e.g., 

Huh et al. [4], has analyzed metadata and image 

compression for authentication. Metadata can be 

manipulated, though, so these methods are unreliable. 

Similarly, Adobe's deep learning-based detection 

networks are ineffective against composite facial 

manipulations and entirely synthesized GAN-generated 

faces [5]. As both handcrafted and GAN-generated fake 

faces are challenging to detect, there remains a strong 

demand for successful neural network-based solutions. 

To bridge this gap, we present Shallow-FakeFaceNet 

(SFFN), a novel neural network-based classifier capable 

of detecting handcrafted and GAN-generated spoof facial 

images from RGB image data alone, making it resistant to 

metadata manipulation. We also present Handcrafted 

Facial Manipulation (HFM) dataset, a collection of 1,527 

spoof facial images handcrafted with Adobe Photoshop, 

carefully crafted to improve fake face detection 

performance. Experimental results validate that SFFN 

performs better than current forgery detection models, 

establishing a new benchmark for classifying fake images 

in interactive media. 
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Our contribution may be stated as follows: 

• Construction of the Handcrafted Facial 

Manipulation (HFM) dataset, an open-source 

repository of 1,527 handcrafted forged facial 

images, enriching datasets for digital forgery 

detection. 

• Introduction of Shallow-FakeFaceNet (SFFN), a 

light-weight neural network-based method that 

distinguishes both human-edited and GAN-

generated forged faces while shattering 

dependence on easily manipulated metadata. 

• Demonstration of SFFN's performance via 

comprehensive evaluations, surpassing state-of-

the-art forgery detection techniques in various 

testing scenarios. 

• Design of a real-world end-to-end detection 

pipeline, specific for social media security, 

biometric authentication, and multimedia 

forensics to counter deepfakes. 

 

2   Literature review  
Various research studies have focused on digital image 

forensics to detect tampered images with techniques such 

as compression artifact analysis, metadata verification, 

and noise pattern detection [6-7]. JPEG compression 

history and frequency-domain based traditional forensic 

approaches have proven successful in detecting 

straightforward image manipulation. As machine 

learning-based synthesis models evolved, the 

effectiveness of traditional approaches decreased. Deep 

learning- and neural networks-based classifiers have now 

become state-of-the-art in detecting forgery with higher 

accuracy and the ability to fight against handcrafted and 

AI-aided forgeries. 

Researchers have prioritized GAN-generated image 

detection, given the prevalent use of deepfake technology 

today. Goodfellow et al. [8] first introduced Generative 

Adversarial Networks (GANs) as a strong tool for 

synthetic media generation, and subsequent advances by 

Karras et al. [5] enabled the generation of ultra-realistic 

human faces. While GANs have positive uses in art, 

gaming, and medical imaging, they have also been 

exploited to commit identity fraud, biometric security 

breaches, and disinformation operations. To address these 

threats, various research works have proposed deep 

learning-based detection models, e.g., Tariq et al. [9], who 

constructed models that are particularly designed to 

identify between GAN-generated images, and Zhou et al. 

[10], who examined CNN-based feature extraction 

approaches to identify inconsistencies in synthesized 

faces. Despite these initiatives, GAN-generated spoofed 

faces continue to be a hard problem due to their high 

realism and adaptive generative models. 

To aid deepfake detection, various benchmark datasets 

have been developed. Rossler et al. [11] created 

FaceForensics++, a widely used dataset consisting of 

deepfake videos gathered from YouTube, while Li et al. 

[12] created CelebDF(v2) to remove bias and quality from 

existing deepfake datasets. However, handcrafted face 

forgeries—those produced manually by the application of 

photo-editing software such as Adobe Photoshop [1]—are 

underresearched. Contrary to GAN-created fakes, which 

come with novel generative patterns that are specifically 

handcrafted, carefully crafted forgeries tend to imply 

pixel-level specific alterations, thereby becoming more 

challenging to identify through conventional forensic 

devices. This justifies the acute need for human-edited as 

well as artificially created forgery datasets to facilitate 

detection models working well across multiple 

manipulation methods. 

In addition to dataset limitations, deep learning-based 

forgery detection methods have also gained widespread 

popularity, with CNN-based models such as VGG16, 

ResNet, and Xception [13] being widely applied in image 

classification and anomaly detection. The models have 

demonstrated good performance in classifying forged 

images, but detecting highly realistic forgeries is still an 

evolving approach. Frequency-domain analysis 

techniques have also been researched by authors to detect 

forgery artifacts [14], as well as EXIF metadata self-

consistency verification. These are simple to manipulate 

or delete, and thus such techniques are not highly robust 

when applied against high-fidelity forgeries. With these 

problems, therefore, there is a requirement for more 

robust, data-driven detection models that can identify 

both GAN-generated and handcrafted higher-fidelity 

forged faces. 

 

3   Methodology 
 

A) High-Quality Handcrafted Facial Manipulation 

Dataset 

 

To encourage facial forgery detection research, we have 

established a manually created dataset of 1,527 forged 

images and 621 original images, all produced with 

varying editing complexities. Our university's skilled 

digital artists painstakingly created these forgeries 

manually using Adobe Photoshop CS6, with high realism 

and variety. Since hand-crafted forgery face datasets are 

not prevalent, our dataset addresses this gap by employing 

edits close to real-world forgeries found on social media 

platforms like Twitter, Instagram, and Facebook (Fig. 1). 

The source images were gathered using Google Image 

Search with the usage rights parameter set to Labeled for 

reuse with modification to prevent copyright 

infringement. To enhance diversity in the datasets, we 

added images of individuals of different ages, genders, 

and ethnicity as well as attributes that are difficult to 

handle, including heavy makeup, glasses, beards, and 

headwear. The fake images were then separated into three 

levels of complexity to simulate multiple levels of 

manipulation one can find on the internet. Lv.1 images 

symbolize obvious cut-and-paste manipulations without 

smoothing. Lv.2 images improve Lv.1 manipulations by 

blurring the edge of the region pasted. Lv.3 images further 

refine Lv.2 modifications even better by adjusting color 
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and lighting more to resemble actuality, increasing the 

level of difficulty to notice (Fig. 2).  

We also utilized six different types of modifications in 

order to resemble different forgery techniques. These 

changes include changes to one's facial features such as  

 

 

the eyes, nose, or mouth (Modification (a)), changes that 

include more than one facial landmark (Modification (b)), 

half-face exchanges (Modification (c)), full-face 

substitutions (Modification (d)), additions like sunglasses 

or mustaches on the face (Modification (e)), and 

manipulations across more than one face in a single image 

(Modification (f)), as illustrated in Fig. 1. These 

variations cause the dataset to capture a broad set of 

manually created facial manipulations, providing a 

valuable resource for evaluating deepfake detection 

models. 

 

B) Evaluation of HFM Dataset Quality 

 

To assess the quality of our HFM dataset, we leverage the 

Inception Score (IS), an unbiased metric introduced by 

Salimans et al. [56] for synthetic image quality 

assessment. Originally developed for estimating GAN-

generated images based on a crowd-sourcing service, IS 

bypasses the intrinsic human judgment using the 

Inception model [15] to derive the conditional label 

distribution. A dataset with a score of about 2.0 for a two-

class problem is simpler to classify, while a score of 

around 1.0 indicates more difficulty. Our HFM dataset 

has an average IS score of 1.0046 with a standard 

deviation of 0.00078, proving its complexity and  

 

 

difficulty in classification. 

Apart from IS, we also assess image quality in relation to 

frequency transformation, a method introduced by Durall 

et al. [58] to identify real vs. fake images based on spatial  

frequencies. Fig. 3 displays the single-dimensional power 

spectrum metrics of our HFM dataset against the PGGAN 

dataset [8]. As observed from Fig. 3(a), the PGGAN 

dataset has large frequency gaps, indicating a strong real-

generated image difference. On the contrary, Fig. 3(b) 

shows how our HFM dataset has the minimum gap, 

meaning that fake images created manually in our dataset 

are more difficult to distinguish from real ones. This also 

makes our dataset more robust in mimicking real-world 

manipulation, and the detection is that much more 

difficult. 

 

Figure 1. Examples of manually crafted forged images showcasing different types of facial modifications, 

including partial feature swaps, multi-feature alterations, half-face and full-face swaps, accessory additions, and 

manipulations involving multiple faces. 
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C) Facial Forgery Detection Framework 

 

Our face forgery detection system is designed to 

differentiate between authentic and forged images 

according to a systematic pipeline. The process involves 

facial preprocessing and classification according to our 

Shallow-FakeFaceNet (SFFN) model, in which only RGB 

data and not metadata is used to prevent forgery 

exploitation.  

 

 

 

 

 

 

As illustrated in Fig. 4, there are two significant phases 

included in the pipeline: preprocessing and classification. 

Preprocessing consists of (1) face region extraction, (2) 

false positive removal, (3) resolution refinement, and (4) 

data augmentation. The refined images are input to the 

classifier for training and manipulation detection using 

SFFN. 

 

 
 

1) Face cropping and noise filtering 

To crop the face region, we utilize MTCNN [16], which 

is a computational face detection method. The process, 

however, risks misclassifying non-facial objects (e.g., 

accessories, hands) or detecting occluded and small faces 

and thus resulting in false positives (Fig. 5). In multi-face 

conditions, erroneous detections would also make 

classification challenging. 

In order to minimize such errors, we have a noise removal 

strategy, which is organized into Algorithm 1. On given 

Figure 2: Examples of forged images categorized by 

complexity levels: Lv.1 (basic cut-and-paste edits with 

visible rough edges), Lv.2 (smoothed edges for 

improved blending), and Lv.3 (enhanced realism with 

adjusted color and lighting). 

(a) 

    (b) 

Figure 3: Comparison of 1D Power Spectrum statistics 

between (a) PGGAN dataset and (b) HFM dataset. 
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image x, we locate the faces using MTCNN with the 

detected face set denoted as M and each of which has 

width 𝑚𝑖
𝑤  and height 𝑚𝑖

ℎ . We obtain the size ratio 𝑟𝑖 
using the following expression: 

𝑟𝑖 = 𝑚𝑖
𝑤 +𝑚𝑖

ℎ                (1) 

The maximum value from the set of objects detected, 𝑅, 

is used as a reference, and any object detected with size 

smaller than a certain threshold τ is eliminated as noise. 

For our experiments, 𝜏 = 1.732 was used after empirical 

selection of false positives. If a detected object passes the 

filtering step but still gets mislabeled, it counts as training 

noise instead of a good detection. 

 

2) Image upscaling for small faces 

 

Approximately 8% of images in our HFM dataset are 

below 128×128 pixels, distinguishing real and fake faces 

becomes challenging due to limited pixel information. To 

enhance resolution, we compare Nearest Neighbor 

Upscaling (NNU) and Facial Super-Resolution (FSR) 

[17]. NNU replaces pixels with adjacent values, often  

 

 

 

causing pixelation artifacts, while FSR utilizes a GAN-

based neural network with Facial Attention Loss to 

progressively upscale images in multiple steps, 

preserving facial details. As illustrated in Fig. 6, FSR 

significantly reduces pixelation, making it our preferred 

method for resolution enhancement. 

The model is trained using the Adam optimizer, which 

optimizes learning rates adaptively for rapid convergence. 

This carefully crafted deep learning pipeline makes the 

framework scalable, adaptable, and capable of optimizing 

energy usage in real-time. By integrating AI, IoT, and 

predictive analytics, this approach is in line with the tenets 

of Industry 4.0, enabling intelligent buildings to reduce 

energy costs, enhance sustainability, and enhance 

operational efficiency. 

 

3) Image-based data augmentation 

 

Handcrafting fake images is a laborious and time-

intensive task. Our collection has 2148 images (1528 fake 

Figure 5: Examples of false positives detected by the 

MTCNN face detector, including occluded faces and 

relatively small facial regions (highlighted in red boxes). 

Figure 4: Overview of the fake face detection pipeline, consisting of two main stages: (1) Preprocessing, which 

includes face cropping, noise filtering, upscaling, and augmentation, and (2) Classification, where the preprocessed 

images are analyzed using the Shallow-FakeFaceNet (SFFN) model to detect facial manipulations. 

Figure 6: Comparison of image upscaling 

techniques. (Top row): Results from Facial 

Super-Resolution (FSR), which progressively 

enhances image quality while preserving 

facial details. (Bottom row): Results from 

Nearest Neighbor Upscaling (NNU), which 

introduces pixelation artifacts, particularly 
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and 620 real), complemented by the Real and Fake Face 

(RFF) dataset [18], adding 960 fake and 1081 real images, 

making it 4188 images. Yet, this number is still too small 

to train deep learning models efficiently. Earlier work 

[19] has noted data augmentation as an important method 

of dataset enlargement and model generalization. In order 

to address sparsity in the data, we use two methods of 

augmentation: (1) Keras image preprocessing, which 

performs real-time adjustments such as shifting, shearing, 

zooming, and flipping, and (2) ImgAug [20], which 

generates a significantly larger dataset by performing 

diverse changes, including geometric shifts, color 

alteration, blurring, and blending. Fig. 7(a) displays a test 

image augmented by six different Keras transformations, 

while Fig. 7(b) displays 64 ImgAug transformations for 

an image.  

 

4) Shallow-FakeFaceNet (SFFN) for facial forgery 

detection 

 

To efficiently identify face manipulations, we designed 

Shallow-FakeFaceNet (SFFN), a light CNN model 

specifically for low-resolution images. In our 

experiments, we noticed that deeper models such as 

DenseNet and Xception [21] were not efficient on small 

images (64 by 64 and 128 by 128) since they are designed 

for large-scale, high-resolution datasets with large 

parameters and data demands. As Xception was first 

trained on 350 million images with 17,000 classes, it was 

not efficient for our dataset. We then introduced a shallow 

but efficient CNN for fake face detection, as presented in 

Fig. 8. SFFN employs L2 regularization (0.0001) and 

dropout layers (0.25) to prevent overfitting and enhance 

generalization, especially with the presence of few 

training samples. SFFNV1 (Fig. 8a), three variants were 

designed: consists of three convolutional layers (kernels: 

3×3,3×3,1×1) with max pooling and repeated in six 

stages, with final dense layers of 3933 and 2 neurons. 

SFFNV1, however, had decreased detection accuracy in 

small images. For better performance, we implemented 

SFFNV2 (Fig. 8 b) with eight convolutional layers, all 

3×3 except the last 1×1, and set the final dense layer size 

to 1024 and 2, resulting in improved classification on 

small images. To minimize further computational cost 

and training time, we implemented SFFNV3 (Fig. 8c), 

reinstating max pooling layers in SFFNV2 and modifying 

the sizes of the convolutional kernels to maximize 

efficiency. The performance of fake detection of all SFFN 

models is compared to that of other CNN-based classifiers 

based on preprocessed images in Section 5. We also 

compare our model with Adobe's Photoshopped Face 

Detector [67] to provide a benchmark comparison of 

performance among different fake detection architectures.  

 

4   Experimentation and results 
We have undertaken rigorous evaluations to assess and 

contrast the efficiency of our detection framework in two 

specific cases: GAN-generated and hand-

crafted spoof face detection). 

A) Handcrafted Facial Manipulation (HFM) Image 

Detection 

 

1) Dataset characteristics 

 

In order to detect facial forgeries, we employ three 

datasets. HFM consists of 1527 forged images manually 

created using Adobe Photoshop [1] and 621 authentic 

images downloaded from Google. The forged images 

include three levels of complexity and six types of 

modification, as shown in Figs. 1 and 2. We also add the 

Real and Fake Face (RFF) dataset [18] consisting of 960 

fakes and 1081 reals collected from Kaggle. Compared to 

HFM with multi-face forgeries and complex 

manipulations, RFF consists of single-face, simpler 

manipulations, so HFM is a more challenging benchmark. 

To have a balanced set, we add 1177 real celebrity faces 

from the CelebFaces Attributes (CelebA)  
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dataset [17]. These additional samples add diversity to 

real faces, making the model more robust. When we mix 

HFM and RFF together, we now have 4189 images (2487 

false, 1702 true). The dataset gets bigger to 4645 samples 

(2911 false, 1734 true) after preprocessing (cropping and 

filtering) because images contain more than a single face. 

To achieve a well-balanced real-to-fake ratio, we 

supplement 1177 additional real images from CelebA, 

and the overall dataset is 5822 preprocessed images. 

 

2) Experimental setup and baseline models 

 

We contrast a number of CNN-based classifiers 

implemented in Keras [68] for detecting fake face images. 

Test models include Xception, Xception pre-trained on 

ImageNet (Xception-IN), ResNext, VGG19, Inception 

ResNet, MesoNet, NasNet, and our novel Shallow-

FakeFaceNetV3 (SFFNV3). We also contrast findings 

with Adobe Photoshopped Face Detector [22], a 

benchmark. Since Xception has already demonstrated 

good detection performance on manipulated face datasets 

[11], we retrain it with ImageNet weights to study its 

performance on our dataset. The Adobe detection model 

is evaluated with pre-trained weights published by the 

authors [. For apples-to-apples comparisons, we 

standardize the input resolution to 128×128 pixels and 

upscale smaller images using the FSR method. Keras real-

time data augmentation is also applied in training for 

improved model generalization. All the models are 

trained using the ADAM optimizer for 200 epochs, batch 

size 32, and learning rate 0.00005. The binary cross-

entropy (BCE) loss function is used, as provided in Eq. 

(1): 

 

Table 1: Performance comparison of CNN models on the HFM dataset for 128×128 and 256×256 image resolutions. 

 128 by 128  256 by 256  

Model Precision  Recall  F1-score  AUC  Precision  Recall  F1-score  AUC  

SFFNV3 

(Ours) 

64.71 62.8 61.55 69.47 70.26 70.2 70.18 72.52 

Xception 61.51 61.4 61.31 63.3 63.97 63.9 63.86 69.83 

Adobe 51.99 50.7 46.79 48.47 50.99 50.7 47.79 47.17 

Xception 

(IN) 

65.22 66.2 66.19 69.61 66.27 67.0 65.86 66.74 

Inception 

ResnetV2 

62.41 63.4 64.39 66.28 63.8 62.8 63.8 66.04 

MesoNet 24.0 50.0 34.33 50.0 25.0 50.0 33.33 51.0 

ResNext 63.68 63.2 63.91 68.23 63.81 64.7 63.63 68.88 

ℒ𝐵𝐶𝐸 = −
1

𝑁
∑  

𝑁

𝑖=1

[𝑦𝑖 ⋅ log⁡(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)

⋅ log⁡(1 − 𝑝(𝑦𝑖))] 

where 𝑦 represents the ground truth label (0 for real, 1 for 

fake), and 𝑝(𝑦) is the model's predicted probability of an 

image being fake. 

3) Performance on the HFM dataset 

For analysis, we process 1000 test images (500 altered, 

500 authentic) major performance metrics: Precision, F1-

score, Recall, and AUROC [23]. AUROC, in particular, 

is used to gauge model performance, with greater values 

indicating better performance. Detection results are listed 

in Table 1, with the bold values representing the top-
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performing models. Our findings indicate that the Adobe 

detector and the MesoNet perform poorly, with 50.00% 

and 47.47% AUROC detection rates, respectively, 

equivalent to random guess. In contrast, the Xception with 

ImageNet weights leads among the CNN-based models 

with a detection rate of 69.61% AUROC, followed by 

Inception ResNet (63.30%), ResNext (66.28%), and 

SFFNV3 (68.23%). While Xception performs well, our 

finding is that SFFNV3 is the best model overall with 

higher accuracy across different configurations. As 

illustrated in Figure 6, visualization of historical energy 

data plots patterns of energy consumption in terms of 

different meters (electricity, hot water, chilled water, and 

steam) in kilowatt-hours (kWh) hourly. This structured 

information facilitates better decision-making since 

building managers are able to identify inefficiencies, 

optimize usage, and implement effective energy-

conserving strategies. Smart buildings are then able to 

adjust energy delivery in real-time, eventually 

maximizing efficiency and sustainability, based on a daily 

understanding of energy consumption. 

 

4) Effect of input image sizes 

 

We explore the impact of image resolution on 

classification performance, considering prior research 

[10,11] indicating GAN-synthesized images exhibit 

resolution-dependent differences in performance. To 

validate this, we compare models trained on 128×128 and 

256×256 cropped faces. The results in Table 1 indicate 

most models show little improvement with higher image 

size. However, Xception and SFFNV3 are more F1-score 

and AUROC, in which Xception improves by 5.52% 

(AUROC), 2.52% (F1-score) and SFFNV3 improves by 

3.15% (AUROC) and 8.64% (F1-score). The error 

distribution matrices for Table 1 are illustrated in Fig. 9. 

 

5) Effect of super-resolution methods 

 

As 8% of cropped faces in our dataset are of sizes less 

than 128×128 pixels, we compare two image upscaling 

techniques: NNU and FSR, as shown in Table 2. While 

NNU is cheap in terms of computation, it creates 

pixelation artifacts by duplicating pixels, degrading visual 

quality (Fig. 6). FSR, however, uses a GAN-based 

approach, preserving facial features during upscaling. 

Benchmarking the highest-performing two models 

(SFFNV3 and Xception-IN) on images that benefited 

from FSR, we can see that Xception-IN provides a small 

AUROC increase (+3.4%), whereas **SFFNV3 improves 

significantly from 57.98% to 72.52% AUROC, 

demonstrating FSR to be better than NNU. These facts 

suggest that better super-resolution methods enhance 

model accuracy, particularly with regard to small face 

images. 

 

 
 

 

 

Table 2: Performance comparison of FSR and NNU upscaling 

 Nearest Neighbor Upscaling Facial Super-Resolution 

Model Precision  Recall  F1-score  AUC  Precision  Recall  F1-score  AUC  

SFFNV3 

(Ours) 

56.77 56.1 54.99 57.98 70.26 70.2 70.18 72.52 

Xception 

(IN) 

65.52 65.2 65.02 66.21 66.22 66.2 66.19 69.61 
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Table 3: Performance comparison of different augmentation methods 

 Without Augmentation (%) Keras (%) ImgAug (%) 

Model Precisio

n  

Recal

l  

F1-

scor

e  

AU

C  

Precisio

n  

Recal

l  

F1-

scor

e  

AU

C  

Precisio

n  

Recal

l  

F1-

scor

e  

AU

C  

SFFNV

3 (Ours) 

54.99 54.7 54.8

4 

54.8

4 

70.26 70.2 70.1

8 

72.5

2 

55.67 55.1 53.5

8 

55.6

7 

Xceptio

n (IN) 

63.9 63.2 62.7

3 

58.8

5 

66.22 66.2 66.1

9 

69.6

1 

60.49 60.3 60.1

2 

57.3

6 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Comparative visuals of natural (CelebA) and 

GAN-produced (PGGAN) images at varying sizes (a) 

show real celebrity images from CelebA, while (b) 

present synthetic faces from PGGAN. 

Figure 11: Class Activation Maps (CAM) for fake face 

detection. 

Figure 12: Comparison of image splice detection 

and our proposed method. 
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6) Effect of data augmentation 

 

To improve detection performance, we explore two 

methods of augmentation: Keras real-time augmentation 

and ImgAug [65]. The Keras library performs six 

transformations: random shifting, shearing, zooming, and 

flipping (Fig. 7a), and ImgAug introduces 64 types of 

augmentation, such as geometric transformations, 

blurring, color changes, and blending (Fig. 7b). For the 

comparison of efficacy of augmentations, we train high-

performance two models (Xception-IN and SFFNV3) 

using FSR-augmented images and indicate performance 

across varied augmentation strategies (Table 3). 

Performance examination reveals that Keras 

augmentation increases  

detection accuracy while Xception-IN increases AUROC 

by 10.76% and SFFNV3 by 17.68%. It is in opposition to 

ImgAug having a negative impact on performance where 

F1-score decreases by Xception-IN (62.73% → 60.12%) 

and SFFNV3 (54.03% → 53.58%). 

 

B) GAN-Generated Image Detection 

 

Fake faces created by GAN are detected through the 

comprehensive detection framework illustrated in Fig. 4. 

Unlike handcrafted fakes, high-res images1024×1024 are 

rather reduced to 64×64 and 128×128 for training 

purposes without making use of any sort of upscaling. In 

terms of improving detection, ImageNet-pretrained 

weights are used for model initialization with minimal 

requirements for large-labeled datasets. 

 

1) Dataset descriptions 

 

We use two datasets to detect GAN-generated images: 

CelebA [17], a collection of 200K real celebrity faces, and 

PGGAN [8], a collection of 100K fake faces. Some 

example comparisons between real faces and GAN-

generated faces are presented in Figs. 10(a) and 10(b). 

The PGGAN images are labeled as "fake", with CelebA 

being real face data. These images are passed through 

CNN models, as illustrated in Fig. 4. 

 

2) Performance on GAN-Generated faces 

 

We train the models on 200K images, validating on 20% 

of the dataset and testing on 18K samples. The 

performance is checked at multiple resolutions (64×64, 

128×128, 256×256, and 1024×1024) using performance 

matrices like Recall, Precision, F1-score, and AUROC 

metrics.Results indicate that Shallow-FakeFaceNet 

(SFFN) outperforms all the models even at the lowest 

resolution (64×64), with an ensemble of SFFNV1 and 

SFFNV3 producing the best accuracy (93.99%–99.99. 

Surprisingly, deeper networks like Xception and NASNet 

struggle to detect images at low resolutions, whereas 

SFFN models are resilient with robust detection 

capabilities for all sizes. These findings confirm that 

shallow models are better for detection in GAN-generated 

images, particularly for low-resolution inputs. 

 

3) HFM detection model analysis 

 

We also test our HFM detection model with Class 

Activation Maps (CAM), which denote areas accountable 

for classification. Grad-CAM analysis in Fig. 11 

demonstrates that Xception-IN focuses at the center of the 

face, while SFFNV3 pays attention to the manipulated 

landmarks and boosts fake detection. Fig. 11 

demonstrates that HFM images contain minimal forgeries 

in the form of altered noses and mouths, and SFFNV3 can 

catch them well. This suggests that facial landmark focus 

enhances fake detection accuracy. We compare our 

approach with Huh et al.'s forgery detection algorithm 

based on image metadata [16]. From Figs. 12 and 13, their 

method identifies forged regions when metadata is 

present but fails to do so in the absence of metadata. Our 

model, however, identifies over 70% of the forged 

regions, as certified in Tables 1–3. This proves that our 

approach is better suited for metadata-independent fake 

face detection, particularly on HFM images. 

 

5   Discussion and limitation 
Our shallow-FakeFaceNet (SFFN) outperforms deep 

CNNs in detecting handcrafted fake faces, especially on 

low-res images. Contrary to the belief that deeper 

networks are better, our findings agree with He et al. [24], 

which shows that shallow models retain important 

Figure 13: Forged images and splice detection results 
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features, whereas deep models like Xception and 

InceptionResNetV2 fail due to excessive pooling. One of 

the main issues in HFM dataset detection is its limited 

dataset size [19]. To this end, we introduce the HFM 

dataset of 1527 simulated and 621 real images, which we 

are releasing publicly upon paper acceptance. But our 

approach is not flawless. The data do not have diversified 

medical conditions (e.g., Bell's palsy, vitiligo, facial 

burns) and therefore the detection may be biased. The tiny 

faces on images of multiple people are usually removed 

by presetting filtering thresholds and thus provide false 

negatives. As a countermeasure, we propose utilizing 

multiple facial detectors in combination and ensemble 

decision strategies (e.g., majority voting), which would be 

useful to improve overall detection rate. 

While the proposed approach demonstrates significant 

improvements over existing models, several limitations 

remain that warrant further investigation. First, the 

detection performance on handcrafted fake faces—

though notably better than prior models—remains 

moderate (AUROC ~72.52%), indicating the intrinsic 

difficulty of such subtle manipulations. Second, the HFM 

dataset, although novel and diverse in editing types, is still 

relatively small and lacks edge-case conditions such as 

facial asymmetry, scars, or medical anomalies, which 

may affect generalizability. Third, the fixed-size filtering 

strategy in the face preprocessing step may inadvertently 

remove valid small or occluded faces in multi-person 

images. Furthermore, certain augmentation methods (e.g., 

ImgAug) were found to degrade model performance, 

possibly due to their distortion of fine-grained facial cues. 

Finally, while SFFN is designed to be computationally 

efficient, a comparative analysis of runtime performance 

was not conducted, and real-world deployment scenarios 

such as adversarial robustness or social media-scale 

evaluations were beyond the scope of this study. These 

limitations present important directions for future work, 

including dataset expansion, ensemble-based 

preprocessing, and broader validation across operational 

contexts. 

 

6   Conclusion  
Manipulated and machine-generated fake photography 

present serious dangers such as identity falsification and 

slander. To combat this, we introduce Shallow-

FakeFaceNet (SFFN) and the Handcrafted Facial 

Manipulation (HFM) dataset to enhance the identification 

of fake images. The HFM dataset provides a huge set of 

handcrafted fake images with different levels of editing 

difficulty and facial changes, filling the gap in the existing 

datasets. Our pipeline-based detection system, which 

utilizes super-resolution and data augmentation, enables 

SFFN to be 72.52% AUROC with less than 2500 

synthesized false images and reach 93.99% accuracy on 

GAN-generated images, particularly low-resolution 

cases. The proposed model has potential applications in 

social network pre-check systems (Twitter, Facebook, 

Instagram) and verification media tools in an effort to 

mark manipulated media content. In the future, we plan to 

expand the HFM dataset with more diverse facial 

conditions and examine other editing tools such as Pixlr, 

GIMP, and Photoscape. Another direction is employing 

GAN-based augmentation to improve training data or 

using transfer learning from DeepFakes and FaceSwap 

detection models to enhance performance in handcrafted 

fake image detection. 
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