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In the era of big data, the optimal processing of dynamically better data has become the core concern of 

academia and industry, and traditional methods are often difficult to meet the high standards of real-time 

and accuracy due to the complexity, variability, high-speed liquidity, and large scale of data. To this end, 

this study proposes a dynamic big data processing and optimization model, which improves the particle 

swarm optimization algorithm (PSO) by introducing adaptive weights and dynamic learning coefficients 

to improve the global exploration ability and convergence speed, and integrates a hybrid framework of 

deep reinforcement learning (DRL) (combined with policy gradients such as proximal policy optimization 

PPO and Q learning) to achieve big data optimization by using its feature extraction and policy 

adjustment capabilities. Based on real datasets such as 1.2 million pieces of financial transaction data 

and 8.5 million pieces of social media travel data, the results show that compared with traditional methods 

(such as traditional PSO, DQN, and independent LSTM-Transformer models), the new model has a 35% 

increase in data processing speed, a 20% increase in the accuracy of classification tasks (F1 score: 0.92 

vs. 0.76 of DQN), a 40% increase in the real-time response ability of dynamic data streams, and a 25% 

increase in computing resource utilization efficiency. The study elaborates on model architecture 

innovation, dataset source and scale, benchmarking methods, and key performance indicators (such as 

processing speed, accuracy, real-time response, and resource efficiency), and provides efficient and 

scalable solutions for scenarios such as financial risk management and real-time recommendation 

systems. 

Povzetek: Razvit je model za obdelavo in optimizacijo dinamičnih velikih podatkov, ki uporablja izboljšani 

PSO in globoko ojačevalno učenje za povečanje hitrosti obdelave, točnosti in odzivnosti v realnem času. 

 

1  Introduction 
With the development of information technology, the era 

of big data has arrived, and various industries are facing 

the test of massive data processing and analysis [1, 2]. 

Dynamic big data processing requires efficient 

processing speed and real-time response to data changes 

to adapt to business needs [3]. Old data processing 

methods often fail to meet the standards, so exploring 

new dynamic big data processing and optimization 

models is necessary. 
Among many optimization algorithms, particle 

swarm optimization (PSO) has attracted widespread 

attention because of its unique swarm intelligence and 

fast convergence [4, 5]. PSO has strong global search 

ability by simulating the foraging behavior of birds and 

using the historical information of individuals and groups 

to guide the search [6]. However, PSO is prone to local 

optimal solutions for complex problems, and the 

algorithm's performance is bitterly affected by parameter 

selection [7]. Therefore, researchers have proposed 

various improved PSO methods, such as adaptive weight  

 

adjustment and dynamic learning factors, to improve the  

performance and adaptability of PSO. 

As another important branch in artificial intelligence, 

deep reinforcement learning shows strong potential in 

complex tasks by combining the representation learning 

of deep learning with the decision-making ability of 

reinforcement learning [8, 9]. Deep reinforcement 

learning models’ environmental states through neural 

networks and optimizes decision-making strategies 

through trial-and-error learning, suitable for dynamically 

changing environments [10]. It is pointed out that deep 

reinforcement learning has achieved remarkable results 

in resource management, path planning, and other fields, 

providing new ideas for dynamic big data processing [11]. 

Combining PSO with deep reinforcement learning and 

taking advantage of both advantages is expected to 

achieve high efficiency and robustness in dynamic big 

data processing and optimization models. PSO can be 

used to optimize network parameters in deep 

reinforcement learning and improve the convergence 

speed and performance of the model. However, deep 

reinforcement learning can provide richer search 
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information for PSO and guide PSO to escape local 

optimum [12, 13]. While theoretically sound, this fusion 

method requires empirical validation in practical 

scenarios. 

Dynamic big data processing includes data 

acquisition, storage, processing, analysis, and other links, 

each facing different challenges [14]. Data acquisition 

requires real-time and accuracy, storage requires 

efficiency and scalability, processing requires rapidity 

and flexibility, and analysis requires accuracy and 

interpretability. Traditional data processing methods are 

often optimized for a particular link, lacking holistic 

consideration [15]. The dynamic big data processing and 

optimization model based on optimized PSO and deep 

reinforcement learning can achieve collaborative 

optimization of each link and improve the overall 

processing efficiency. 

Dynamic big data processing and optimization 

models face many difficulties in practical application 

scenarios. First, the amount of data is expanding rapidly, 

and the requirements for model calculation and storage 

performance are more stringent. Secondly, the variety and 

complexity of data increases the challenge of model 

design. In addition, the demand for real-time requires the 

model to have the ability to respond quickly and adjust in 

time. In response to these challenges, this study will 

explore the specific applications of optimized PSO and 

deep reinforcement learning in dynamic big data 

processing and propose corresponding solutions. The 

research shows that PSO has better advantages in 

optimizing the structure of neural networks and can 

betterly improve the performance of neural networks. 

The decision-making ability of deep reinforcement 

learning in a dynamic environment has also been widely 

recognized. This study will further explore the fusion 

mechanism of PSO and deep reinforcement learning to 

achieve high efficiency and robustness of dynamic big 

data processing and optimization models. 

This study aims to explore the dynamic big data 

processing and optimization model based on optimized 

PSO and deep reinforcement learning. Through 

theoretical analysis and experimental verification, it 

reveals its advantages in improving processing efficiency 

and enhancing model adaptability, providing new 

theoretical support and practical guidance for dynamic 

big data processing, and promoting the development and 

application of big data technology. 

2 Theoretical basis and key 

technologies 

2.1 Particle swarm optimization (PSO) 

principle 

In recent years, many researchers have used swarm 

intelligence optimization algorithms to improve the 

neural network training process. The swarm intelligence 

optimization algorithm has higher global convergence 

and robustness and does not rely on problem feature 

information. It can effectively exert the generalization 

mapping ability of neural networks, betterly improving 

convergence efficiency and strengthening learning ability 

[16, 17]. Among the swarm intelligence optimization 

algorithms, the PSO algorithm has higher potential in 

neural network optimization with the help of simple and 

efficient random exploration methods [18]. 

 

 
Figure 1: PSO improved neural network framework 

 

The PSO-improved neural network framework is 

detailed in Figure 1. The algorithm's core is to use PSO 

instead of traditional training means (such as BP) to 

optimize NN parameters [19]. The particle symbolizes 

the parameter vector, and seeking the global optimal 

value is the step of obtaining the optimal parameter [20]. 

The training error is used to calculate the fitness value f 

(x), and the specific formula is shown in the following 

formula (1): 
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Where p is the number of samples, yp is actual output 

value, and tp is sample output value. When the preset 

maximum number of iterations is reached or the target 

error is met, the program stops running, and global 

optimal solution, that is, the optimal parameter 

configuration, can be obtained. PSO algorithm is widely 

used in the field of parameter optimization of discrete and 

continuous problems [21]. Its main applications in neural 

network optimization include network parameters, 

learning algorithms and topology architecture. Using 

PSO algorithm to train neural network is better than BP 

algorithm in speed and effect, because it does not need to 

rely on gradient information and the transfer function 

does not need to be differentiable, which can effectively 

avoid falling into local optimum [22]. 

2.2 Deep reinforcement learning theory 

Reinforcement learning is a process of continuous "trial 

and error". The subject "interacts" with the environment 

to obtain the maximum cumulative return and learns the 

best strategy to achieve the goal, which aligns with 

human decision-making methods [23]. Its core part 

includes the agent, state, action, reward, and external 

environment, and the learning process can be regarded as 

a Markov decision process. 

The agent selects action execution from the action 

set according to the current state. The environment gives 

reward feedback and generates a new state according to 

the agent's action. Accordingly, the agent adjusts the 

action strategy and makes a new judgment on the new 

state according to the reward. The core idea of 

reinforcement learning is to maximize the cumulative 

total reward through smarter action choices. 

The three main areas of machine learning are 

supervised learning (or its semi-supervised form), 

unsupervised learning, and reinforcement learning. In 

contrast, reinforcement learning shows particularly 

prominent advantages [24, 25]. Since many practical 

problems have return lags, dealing with this challenge has 

become the key to reinforcement learning algorithms. 

Reinforcement learning can be divided into two 

categories: one is based on value function, and the other 

is based on strategy. The policy gradient method is a 

commonly used algorithm for policy-based 

reinforcement learning, and Q-learning and Sarsa 

algorithms are commonly used for value function-based 

reinforcement learning [26]. In the decision-making 

process, value-based reinforcement learning is more 

decisive. By fusing the value function algorithm with the 

strategy function algorithm, the actor-critic algorithm 

(AC algorithm) is produced, which can synthesize 

multiple strategies. It converges faster than the first two 

methods [27]. 

Deep learning (DL) discovers data feature 

representations through multi-layer network nodes and is 

used to perceive and express things [28, 29]. 

Reinforcement learning (RL) is a continuous decision-

making process that seeks the maximum cumulative 

reward value through the interaction between agents and 

the environment, learns the best strategy, emphasizes 

problem-solving ability, and is close to or exceeds the 

human level in many aspects. Conventional 

reinforcement learning applications have limitations and 

are prone to problems in the face of complex scenarios 

[30, 31]. Deep learning has advantages and challenges in 

processing high-dimensional data. Deep reinforcement 

learning (DRL) brings together the functional 

characteristics and can be manipulated based on input 

data, which is closer to human thinking patterns. better 

breakthroughs have been made in many fields, 

demonstrating higher learning ability and adaptability. 

Table 1 compares the performance of traditional 

deep learning and simple reinforcement learning (SRL) 

with the hybrid model in dynamic big data processing 

[32]. I will focus on the core metrics to illustrate the 

performance differences between technologies and the 

advantages of the model. In the field of dynamic big data 

processing, although traditional deep learning technology 

performs well in static data, it lacks real-time adaptability 

in the face of dynamic data, only reaching 78% accuracy, 

and the convergence time is as long as 3.2 hours during 

dynamic update, and the memory overhead of 12GB is 

also prone to overflow problems, and its static training 

and fixed-structure architecture is also difficult to adapt 

to data changes. The simple reinforcement learning 

model has an accuracy of 82% on medium-scale dynamic 

datasets, but at large-scale processing, due to low 

learning efficiency, the convergence time takes 2.5 hours, 

and 8GB of memory is used to store historical 

information. In contrast, the hybrid model based on 

optimized PSO and deep reinforcement learning 

proposed in this study improves the accuracy to 92%, the 

convergence time is greatly shortened to 0.8 hours, and 

the memory overhead is reduced to 4GB in complex 

dynamic scenarios by virtue of the global optimization of 

PSO and the dynamic policy adjustment of deep 

reinforcement learning, which effectively overcomes the 

architectural and performance limitations of the first two 

and shows better advantages. 
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Table 1: Comparison of techniques and proposed hybrid model 

Comparison 

Dimension 

Traditional Deep 

Learning 

Simple Reinforcement 

Learning 

Proposed Hybrid 

Model 

Accuracy 
higher for static data; 

78% for dynamic data 

82% on medium-scale 

dynamic datasets 

92% in complex 

dynamic scenarios 

Convergence Time 
3.2 hours for dynamic 

updates 

2.5 hours for large-scale 

processing 0.8 hours 

Memory Overhead 12GB, prone to overflow 8GB 4GB 

Architecture Critique 

Static training, fixed 

structure 

Imbalanced exploration-

exploitation, single-state 

representation - 

Gap with This Study 

Lags behind in all 

metrics, inefficient 

architecture 

betterly lower performance, 

limited scenarios - 

 

 

3. Dynamic big data processing and 

optimization model design 

3.1 Model overall architecture 

This study focuses on dynamic big data processing and 

optimization, and explores how Optimized Particle 

Swarm Optimization (PSO) and Deep Reinforcement 

Learning (DRL) can synergistically improve processing 

accuracy and convergence speed [33]. An optimization 

strategy to effectively reduce the memory overhead based 

on this model is sought. To explore the path of the fusion 

architecture to solve the lack of generalization ability of 

traditional methods; Analyze its performance differences 

and optimization directions in different application 

scenarios such as finance and Internet of Things; The 

influence of hyperparameter adjustment on the efficiency 

and stability of the model is also analyzed. 

The PSO algorithm, which was improved by the 

inertia factor, has new changes. PSO algorithm relies on 

swarm cooperation to drive particle motion instead of 

natural selection. Figure 2 shows the architecture design 

scheme of the dynamic big data processing model. The 

potential solution is related to the movement speed of the 

particle, which will constantly adjust the amplitude and 

direction according to the past conditions of the particle 

itself and its neighboring particles so that the particle can 

move on a better trajectory. The balance of global and 

local exploration capabilities plays a decisive role in the 

algorithm. 

 

 
Figure. 2: Dynamic big data processing model architecture 

 

The evolution equation of the improved PSO 

algorithm with inertia weight is shown in Equation (2). 

1 1 2 2id id id id gd idc r ( p x ) c r ( p x ) = + − + − (2) 

 

Where ω > 0, it is called the inertia factor. vid denotes 

the velocity of the i-th particle in the d-th dimension. r1 

and r2 are random numbers uniformly distributed over the 

interval [0, 1], and c1, c2 are constant coefficients. pid and 

pgd are the global optimal positions found by the whole 

particle swarm in the d-th dimension of the i-th particle 
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and the g-th particle, respectively, and xid is the position 

information of the particle swarm in the d-dimension of 

the i-th particle. By increasing the number of iterations, 

the inertia weight shows a linear downward trend, which 

makes the algorithm have strong global search ability in 

the initial stage and higher local convergence 

performance in the later stage, which enhances the overall 

efficiency of the algorithm to a certain extent. The 

improved calculation process is shown in Equation (3). 

 

1 2 2

max

max

iter iter
( t ) ( )

iter
   

−
= −  + (3) 

 

Among them ω1 and ω₂ are the initial and final 

values of the inertia weight, and itermax and iter are the 

maximum number of iterations and the current number of 

iterations. The dynamic control algorithm of inertia factor 

of fuzzy system is used to deal with unimodal function 

well, but it is easy to fall into local optimal solution when 

solving multi-peak function problem, and the realization 

process is difficult. 

The improved PSO algorithm has shrinkage factors, 

and acceleration factors c₁ and c₂ affect the particle 

trajectory and reflect the information exchange of particle 

swarms. c₁ value is large, and particles are easy to wander 

locally; If the c₂ value is large, the particle tends to 

converge to the local minimum prematurely. In order to 

lead to the optimal path, the acceleration factor is deeply 

discussed and an improved algorithm is proposed. 

Experiments show that the algorithm accelerates the 

convergence process, and the unimodal problem test is 

effective, but it is easy to fall into the local optimal 

solution, and the multi-peak function test often converges 

prematurely. In order to control the moving speed of 

particles and balance global search and local excavation, 

Clerc designs a PSO algorithm model with shrinkage 

factor, and derives formula (4). 

 

1 1 2 2id id id id gd idK( c r ( p x ) c r ( p x )) = + − + − (4) 

 

Where K is the shrinkage factor, K=2/|2 - C -

√𝑐2 − 4𝐶 |, C = c1 + c₂ and C > 4. The experimental 

results show that K controls the particle velocity 

fluctuation more efficiently, and also improves local 

exploration ability of the algorithm. 

An improved version of the PSO algorithm based on 

the genetic concept is selected. In the traditional particle 

swarm optimization algorithm, determining the optimal 

position of each particle implies a selection mechanism. 

The selection operation is integrated into the PSO 

algorithm, and the better-performing particles are copied 

to the next generation after each iteration, ensuring the 

superior performance of the particle swarm in each 

iteration. 

In the hybrid version of the PSO algorithm, particles 

have crossover probability. Each iteration selects some 

particles according to this probability, exchanges various 

dimensions, and produces better-performing particles 

through crossover operation. The results show that the 

PSO algorithm with a breeding operator has high 

execution efficiency and obvious advantages when 

dealing with specific multimodal functions. The mutation 

PSO algorithm introduces a mutation mechanism that can 

avoid falling into local extreme points and enhance global 

search ability. 

An improvement strategy for the PSO algorithm 

based on niche theory has been proposed. The PSO 

algorithm with different connection topologies is used in 

experiments. The results show that choosing the 

appropriate neighboring population topology betterly 

impacts the algorithm's performance algorithms 

performance. However, there is no optimal structure for 

all benchmark functions, and the specific choice depends 

on the problem. 

Particle swarm optimization (PSO) is a global 

optimization method that converges quickly and does not 

rely on initial settings. It has potential competitive 

advantages in the field of neural network learning. Its 

application in neural network training is reflected in 

connection weight, network architecture, transfer 

function, and learning mechanism. Each particle contains 

all parameters of the neural network, and the network is 

trained by iteratively optimizing these parameters. 

Because of the limitations of backpropagation (BP) 

neural network, the particle swarm optimization 

algorithm, which combines evolutionary gradient and 

population niche, is introduced to train multi-layer 

feedforward neural network weights, which can speed up 

the training speed and improve the accuracy without 

relying on initial values and is also compatible with non-

differentiable transfer functions. In this scenario, each 

particle corresponds to a set of weights to be optimized, 

and the primary goal of neural network training is to 

minimize the sum of squares of errors (i.e., fitness value) 

between sample output and actual output of network, as 

shown in equation (5). 
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N O
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Where N is the number of training samples, 𝑦𝑗𝑖
𝑑   is 

the sample value of the j-th network output node of the i-

th sample; yj, i is the actual output value of the j-th 

network output node from the i-th sample, and O is the 

number of network output neurons. 

Neural network has many parameters, and hundreds 

of network models can be constructed by matching 

different parameters. When the number of hidden layers, 

nodes and training time are sufficient, and the error is 

within an acceptable range, multiple neural networks are 

often competent for the same task. Therefore, when 

designing the network, all kinds of factors should be 

comprehensively considered to determine the best 

structure and meet the needs of designers. 

Three-layer BP neural network structure, including 

a hidden layer, can approximately represent bounded 

nonlinear functions with arbitrary accuracy. Depending 

on the specific problem, the number of input and output 

nodes will be set accordingly, and the complexity of the 
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network mainly depends on the number of hidden layer 

nodes. Let the number of nodes in the hidden layer be n, 

the excitation functions of the hidden layer and output 

layer of the initial network be p (x) and φ(x) respectively, 

and given the sample set 

θ={Pi,qi|1≤i≤N,pi ∈ Rr,qi ∈ R),P=(Pi,1,Pi,2,…,Pi,r), the 

output of the neural network is shown in the following 

equation (6). 

 

1 1

kn r

i i n,i i m,n i
n m

q k [ V ( W P )] 
= =

=   (6) 

 

Among them, W and V are weights, satisfying -1 < 

W and V < 1; k = max(q1,q₂,…,qN). Define the Boolean 

variable A = (a1,a₂,…,an,…,amk). The value of an is 1 or 0, 

which corresponds to the existence or absence of hidden 

layer nodes. See the following equation (7) for the 

definition operation. 
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Then there is 0 < μ < 1. When μ takes a random 

number within (0, 1), there is an nk-dimensional Boolean 

random vector A corresponding to it, that is, the nodes in 

the first layer of the network can be determined by the 

Boolean vector A determined by μ. The output expression 

of the neural network is shown in equation (8). 

1

kn

i i n,i n n m,n i
n

q k [ V a ( W P )] 
=

=     (8) 

Where a ∈ {0, 1}. Performance index of the neural 

network is shown in the following formula (9): 
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Among them, the first term reflects the degree of the 

model fitting to the sample, and J is a function that 

evaluates the effectiveness of the neural network. The 

second term is used to punish the complexity of the 

network model; λ is the coefficient to adjust the constraint 

strength, nk is the maximum number of nodes in the 

hidden layer, and N is the total number of training 

samples. BP neural network is a multi-layer feedforward 

neural network which uses error backpropagation 

technology to adjust the network connection weight. The 

PSO algorithm is used for its weight training, and the 

vector of each particle represents a set of weights to be 

optimized. The ultimate goal of neural network training 

is to minimize the sum of squares of errors between the 

sample output and the actual output of the network. We 

should focus on the following aspects when selecting a 

neural network design strategy. 

For the r-nh-1 (r neurons in the input layer, nh 

neurons in the hidden layer, and l neuron in the output 

layer) network, it can be expressed as particles, as shown 

in Equation (10). 

 
n,m n

i i i ix { ,W ,V }= (10) 

 

Where n = 1, 2,..., n; m = 1, 2, …. r; Wi
n,m is the 

connection weight between the m-th node of the input 

layer and the n-th node of the hidden layer; Vi
n is the 

connection weight between the n-th hidden layer node 

and the output node; γi ∈ (0, 1), and the unique number 

of hidden layer nodes is determined by Boolean variable 

A = (a1, a2, …, ank) uniquely determined by γi. 

In order to ensure that the initial niches are 

uniformly distributed in the solution space, M random 

numbers γi (i from 1 to M) in the interval of (0, 1) should 

be generated by Faure sequence to determine M initial 

niches; For each niche, 3 to 5 sequences (b1,b2,…,bn+mn) 

of order n + mn and all bj in the range of (0, 1) (j takes 

values from 1 to n + mn) are randomly generated. The 

fused features are shown in equation (11). 

 

1 2 ki n i if J( a ,a , ,a ,V ,W )=  (11) 

 

The evolution of particle swarms can be displayed 

in a specific space. In order to avoid the initialization 

particles being too close and falling into the local optimal 

dilemma, a niche particle swarm optimization algorithm 

with evolutionary gradient consideration is introduced to 

replace the traditional PSO algorithm. For each particle xi 

in the niche, its motion law is: if xi is not the optimal 

particle in the niche; If xi is the current optimal particle in 

this niche, it should be adjusted locally based on 

evolutionary gradient. Table 2 has showed the neural 

network layer specifications. 

 

Table 2: Neural network layer specifications 

Layer Type Dimensions Activation Regularization 

Input Layer 512 - - 

LSTM Layer 128 units tanh Dropout (0.2) 

Transformer Encoder 64 hidden ReLU L2 (λ=0.001) 

Attention Layer 32 heads Softmax - 
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Output Layer 16 categories Softmax - 

 

3.3 Detailed design of key modules 

In the model, the input structure mainly includes dynamic 

big data collected in real time, such as numerical features, 

time series information, text descriptions, etc., as well as 

related metadata reflecting data characteristics. The 

output structure is the result of processing and 

optimization, such as predicting data trends, 

classification decisions, resource allocation schemes, etc. 

In the training stage, the optimized PSO algorithm was 

used to initialize and optimize the parameters of the deep 

reinforcement learning model to accelerate the 

convergence speed, and then based on dynamic big data 

samples, the model was iteratively trained through deep 

reinforcement learning's strategy gradient, Q-learning 

and other algorithms, and the model parameters were 

continuously adjusted to improve performance. In terms 

of reinforcement learning environment components, 

"state" is defined as the feature set of dynamic big data at 

the current moment, covering the statistical 

characteristics, contextual information, and historical 

processing results of the data. "Action" refers to the 

operation of the model on data processing or optimization, 

such as the selection of data cleaning methods, the 

adjustment of algorithm parameters, and the switching of 

processing processes. "Reward" is the feedback given 

according to the degree to which the model's output 

matches the expected goal, such as prediction accuracy 

score, resource utilization improvement, processing 

efficiency improvement, etc., to guide the model to learn 

a better processing strategy. 

In order to enhance the efficiency of the model, this 

study adopts deep reinforcement learning technology in 

the core components. This technology leverages the 

advantages of deep learning feature expression and 

reinforcement learning decision-making to allow models 

to acquire and optimize strategies in dynamic 

environments efficiently. Under the deep reinforcement 

learning architecture, the neural network is used as a 

policy network, generates action probability distribution 

according to the current state, flexibly adjusts the strategy 

according to environmental changes, collects reward 

signals, and updates parameters by interacting with the 

environment to improve the strategy. In order to realize 

the deep integration of deep reinforcement learning and 

the PSO algorithm, the deep reinforcement learning 

module and the neural network module trained by the 

PSO algorithm are constructed to operate together. The 

former is responsible for exploring and utilizing 

strategies in dynamic environments, extracting 

information from high-dimensional state space, and 

generating action probability distributions with feature 

extraction capabilities. The latter provides a premium 

initial strategy, accelerates the optimization process, and 

improves performance. This fusion method can fully use 

the global search advantages of the PSO algorithm and 

the strategy learning ability of deep reinforcement 

learning in complex environments, improve model 

performance and adaptability, and enhance robustness 

and generalization ability when dealing with dynamic big 

data and optimization tasks. 

The DRL component uses the PPO framework to 

define the proxy environment as an MDP. The state space 

encompasses the characteristics of historical tourist 

destinations (such as geographical location, attraction 

category, visitor reviews, etc.) as well as user interaction 

patterns (such as browsing time, search keywords, 

favorite actions, etc.). The action space is to generate a 

recommendation list, that is, to output a combination of 

recommendations for different tourist destinations to 

users according to the current status. The reward function 

consists of prediction accuracy (which measures the 

consistency of recommendations with users' actual 

choices), diversity (guarantees that recommendations 

cover multiple types of destinations), and user 

satisfaction indicators (quantified based on user ratings, 

reviews, and other feedback). The convergence 

conditions were 10 consecutive epochs with a stable loss 

function value, a learning rate of 0.001 and a batch size 

of 64 to ensure that the experiment was repeatable. 

4 Experiment and results analysis 
In the model, the Mean Square Error (MSE) is used as the 

loss function to accurately quantify the deviation between 

the model's prediction and the actual results, and improve 

the recommendation accuracy. The optimizer uses the 

Adam algorithm to accelerate the model convergence and 

avoid the local optimal dilemma by adaptively adjusting 

the learning rate and combining momentum optimization. 

To prevent overfitting, the early stopping criterion is set 

to terminate the training when the validation loss remains 

stable over 5 consecutive training cycles (epochs). In 

terms of hyperparameter setting, the learning rate is set to 

0.001 to balance the parameter update speed, the batch 

size is 64 to optimize the utilization of computing 

resources and gradient stability, the total number of 

training cycles is 200, and the early stop mechanism is 

used to ensure that the model fully learns the data features 

while effectively improving the training efficiency. In 

addition, in order to further explore the influence of each 

component of the model on the performance, an ablation 

study was carried out: for the particle swarm optimization 

(PSO) part, the influence of different inertia weights, 

learning coefficients and mutation factors on the effect of 

the model was systematically evaluated. At the same time, 

the grid search method is used to analyze the parameter 

sensitivity of the inertia weight σ, learning coefficient c1 

and c2, and quantify the influence of the changes of each 

parameter on the performance of the model by 

exhaustively enumerating the different combinations of 

key parameters, so as to provide a scientific basis for 

optimizing the parameter configuration of the model and 

revealing the internal mechanism of the model. 

This study uses a financial transaction dataset 



8   Informatica 49 (2025) 1–16                                                                 Z. Tang et al. 

 

derived from real-time transaction records in 2022, 

including credit card transaction records and anti-fraud 

tags. In the pre-processing stage, firstly, the transaction 

sequence is constructed by timestamp sorting, the records 

missing more than 50% of the key fields are eliminated, 

and the transaction amount is logarithmically 

transformed to reduce data skewness. Then, the time 

series features (such as transaction interval and daily 

consumption peak) and user portrait features (such as 

historical default rate and consumption category entropy) 

were extracted, and Min-Max normalization was used for 

continuous features. Finally, the fraud samples are 

oversampled by the SMOTE algorithm to balance the 

class distribution. The dataset ultimately contains 

1,200,000 transaction records (1,176,000 normal 

transactions and 24,000 fraudulent transactions), and 

each sample contains 42 feature dimensions (original 

features such as transaction amount, timestamp, and 

geographic location, as well as 18 derivative features), 

and the time span is the whole year of 2022, which is 

divided into training set, verification set, and test set 

according to the ratio of 7:2:1 to ensure that the 

performance evaluation of the model in dynamic 

financial scenarios is repeatable and generalizable. 

In this study, we compared the operational efficiency 

of a hybrid model based on optimized PSO and deep 

reinforcement learning with a baseline model such as 

DQN. From the perspective of theoretical efficiency, the 

running time of the hybrid model is relatively fast due to 

the large number of iterative calculations and parameter 

interactions in PSO particle update and DRL strategy 

optimization. However, the baseline model DQN relies 

on the update mechanism of the Q-value table, and the 

time-consuming growth is slower. In terms of memory 

usage, the hybrid model needs to store a large amount of 

data such as PSO particle states and DRL network 

parameters, which occupies a lot of space, while DQN 

only needs to maintain a Q-value table and neural 

network parameters, which occupies a relatively small 

space. In real-world testing, the computational overhead 

of the hybrid model is 10% to 25% higher than that of 

DQN as the amount of input data increases. For example, 

as the amount of data processed grows from 1,000 to 

10,000, the hybrid model run time increases from 12.3 

seconds to 158.6 seconds, and the DQN increases from 

9.8 seconds to 117.2 seconds. Although the hybrid model 

consumes more computing resources, it far outperforms 

the baseline model in key performance such as 

recommendation accuracy and adaptation to dynamic 

data changes, and is more suitable for handling complex 

real-world application scenarios. 

It can be seen from Table 3 that when the number of 

iterations of the two new algorithms is less than that of 

the first two, the test error is always the lowest. This 

shows that because of the integration of prior knowledge, 

the PSO algorithm converges faster, and the BP algorithm 

can find a better solution faster. 

 
Table 3: Algorithm iteration and test error 

Learning 

algorithms 

PSO iteration 

number 

BP iteration 

number 
Test error 

standard 

deviation 

PSO-BPNN 165 16500 2.25 2.25 

QPSO-BPNN 165 16500 0.98 0.98 

ULB-PSO-BPNN 110 11000 0.53 0.56 

FOD-PSO-BPNN 110 11000 0.47 0.47 

 
Table 4: Algorithm comparison table 

Algorithm State Space Action Space Reward Design 

DQN Low - dim vector Discrete 
Simple, based on immediate & long - 

term rewards 

A3C High - dim/complex Discrete/continuous Incorporates advantage function 

PPO 
Flexible for complex 

spaces 
Discrete/continuous Multi - metric (e.g., accuracy, diversity) 

DQN + LSTM 
Time - series via 

LSTM 
Discrete Considered time - series rewards 

Transformer - 

enhanced RL 

High - dim/ complex 

via Transformer 
Discrete/continuous Customizable, with attention 

 

In the field of dynamic big data processing and 

optimization, the benchmark methods of modern deep 

reinforcement learning (DRL) and hybrid systems are 

compared. As is shown in Table 4, DQN uses low-

dimensional vectors to represent the state space, which is 

suitable for discrete action scenarios, but its reward 

design is relatively basic, and its ability to process large-

scale data is limited, and its generalization is average. 

A3C can handle complex high-dimensional states, 

support discrete or continuous actions, optimize the 

reward mechanism with advantage functions, and have a 

fast convergence speed but high resource consumption. 

PPO can flexibly respond to complex state spaces, design 

reward functions based on multiple indicators such as 

prediction accuracy and diversity, and perform well in big 

data scenarios with good generalization capabilities. In 
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the hybrid system, the combination of DQN and LSTM 

can effectively process time series data, and the 

generalization of time series related tasks is good. 

Transformer - enhanced RL leverages the Transformer's 

powerful feature extraction capabilities for high-

dimensional complex states, flexible reward design, high 

efficiency, and higher generalization performance when 

processing large-scale data. In contrast, this study is 

based on a model that optimizes PSO and DRL, aiming 

to integrate the advantages and break through the 

limitations of existing methods to further improve the 

performance of dynamic big data processing. 

According to the data in Table 5, the detection 

particle and wavelet kernel function are introduced when 

the particle swarm optimization algorithm is combined 

with the extreme learning machine. Each iteration will 

increase the T times of detection particle spiral trajectory 

search, which makes the iterative calculation time exceed 

the standard particle swarm optimization algorithm, and 

the algorithm's running time also increases after adding 

the wavelet kernel function. Comparing the mean square 

error performance of the four algorithms, it is found that 

the extreme learning machine and wavelet kernel extreme 

learning machine algorithms are unstable, the mean 

square error fluctuates with the increase of iteration times, 

and the value is the highest. However, after the 

parameters of particle swarm optimization or detection 

particle optimization algorithm are adjusted, the mean 

square error is betterly reduced, and the stability is 

enhanced and tends to converge, which proves the 

importance of parameter optimization. 

 
Table 5: Comparison of running time of algorithms 

Dataset ELM WKELM PSO-KELM 
PSO-WKE 

LM 

DPSO 

-KELM 

DPSO 

WKELM 

Breast 0.93 1.47 2.68 14.82 13.10 23.61 

Brain 0.26 0.87 1.11 1.64 1.43 3.41 

Colon 0.58 0.92 1.02 1.39 1.31 2.58 

 
As shown in Figure 3, when the number of 

operations reaches 5, the total duration of the three 

metadata change operations, mkdir, delete, and create, 

betterly exceeds the time consumption of their respective 

operations, which is 213.23 ms, 203.47 ms, and 210.76 

ms, respectively. This is due to the two-phase commit 

protocol design, which is a transactional mechanism used 

to ensure data consistency in distributed systems. In the 

first stage, the protocol coordinates all participating 

nodes to pre-commit the operation and check whether the 

submission conditions are met. Only when all nodes are 

confirmed to be ready to commit will the second phase be 

moved to perform the real data change operation. 

Because of this sequential execution mechanism, the 5 

operations must be completed sequentially, so network 

latency becomes a major factor affecting the time of 

metadata update operations. As the wait queue length 

increases to 10 and 15, the system is able to accept 10 and 

15 metadata change operations at the same time, which 

greatly improves the processing efficiency and further 

shortens the completion time through batch processing 

and parallel scheduling. In the end, the average time of 

mkdir, delete and create operations was only reduced to 

13.24% and 9.05% respectively in the initial state of the 

system, which betterly optimized the performance of 

metadata management in dynamic big data processing. 

 

Figure. 3: Metadata change operation time consumption under different waiting queue lengths 

 
It can be seen from Figure 4 that the performance of 

the PSO algorithm of heuristic search is betterly 

improved compared with top-down and bottom-up 

algorithms. The performance of top-down and bottom-up 

algorithms is similar. With the increase in the number of 

threads, the performance of both algorithms gradually 

improves, but the improvement trend gradually stabilizes. 

 

0 0.5 1 1.5 2.0 2.5 3.0 3.5 4.0

Time

400

300

200

100

0

F
re

q
u

en
cy

0 0.5 1 1.5 2.0 2.5 3.0 3.5 4.0

Time

400

300

200

100

0

F
re

q
u

en
cy

800

700

600

500
0 0

Weight

After 5 operations After 5 operations



10   Informatica 49 (2025) 1–16                                                                 Z. Tang et al. 

 

 
Figure 4: Performance comparison of search methods 

 
Figure 5 reveals the correlation between the 

performance of the PSO heuristic search algorithm, edge 

factor (degree of graph), and threads (number of parallel 

threads). The plot with extremely uneven degree 

distribution generated by RMAT was selected for the test, 

and the scale was set to 23. It can be seen from the figure 

that the efficiency of the PSO algorithm increases and 

enhances with the increase of the average degree of the 

figure and the increase of the number of threads. 

 

 

Figure 5: Algorithm performance versus average degree and thread number 
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All models are trained on the same hardware 

(NVIDIA Tesla V100GPU, Intel Xeon E5-2690 CPU). 

Processing elements (PEs) refer to parallel computing 

threads in the GPU architecture. From the comprehensive 

frequency data in Table 6, it can be seen that when the 

number of PEs in the system increases from 4 to 8, the 

working frequency does not decrease betterly, but when 

the number of PEs is expanded from 4 to 8 in the design, 

the working frequency of the system decreases betterly. 

This shows that the logic design in this paper has no 

obvious performance limitation, and the system 

expansion performance is higher. 

 

Table 6: Scalability analysis 

- PEs 4PE 8PE 

Freq 

(MHz) 

The design 

of this paper 
333  315  

Other 317  194  

 

The content shown in Figure 6 reveals that in initial 

stage of training, as the number of iterations gradually 

increases, error values of various neural network 

architectures show an apparent downward trend. 

Specifically, as the number of iterations continues to rise, 

the errors of these networks show a relatively consistent 

reduction trend at the beginning, showing the 

effectiveness of the training process. However, when the 

number of iterations is close to 1000 or so, the training 

situation of the traditional BP neural network (i.e., back 

propagation neural network) begins to change betterly. 

Furthermore, when the number of iterations reaches 1500, 

the network error not only does not continue to decrease 

but shows an upward trend, which is in sharp contrast to 

the previous training trend. More specifically, the 

minimum error value of the network finally stagnated on 

the order of 10 ³ and failed to be further reduced, which 

indicates that the traditional BP neural network 

encountered a performance bottleneck in this training, 

and it is difficult to further improve the accuracy of the 

model by increasing the number of iterations. 

 

 

Figure 6: Comparison of errors under different network structures 

 

Figure 7 shows that the classification accuracy of 

deep neural networks is much higher than that of 

traditional BP neural networks. After 500 iterations, the 

training errors of the four networks are too large, which 

affects the accuracy. After iteration to 1000 times, the 

training errors of the four networks are rapidly reduced, 

and the classification accuracy is also betterly improved. 

However, when the number of iterations increased to 

1500, the training errors of PSO, 1H-DNN, and 2H-DNN 

rebounded to varying degrees, and their classification 

accuracy declined. 
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Figure 7: Iteration number and accuracy 

 

It can be seen from Table 7 that because the hidden 

layer is set into three layers, the three-layer hidden neural 

network proposed in this paper has the longest training 

time, far exceeding the traditional BP neural network. 

And its screening number is less than that of the other 

three networks. After data exchange, the network screens 

out and sends, and the response rate of 68% is obtained. 

 

Table 7: Training time of different network final types 

Network Type Training time (m) Quantity 

Traditional BP neural 

network terminal 
22.5 1130592 

Neural network with 

single hidden layer 
27 754921.5 

Neural network with 

double hidden layers 
168 596379 

Hidden layer neural 

network 
177 537594 

 

As can be seen from Figure 8, increasing the data 

dimension will prolong the time required to process 

sample extraction. Because the increase of data 

dimension will enhance data sparsity, the number of grids 

managed by R-tree will increase, and the processing time 

of sample extraction will also increase. When the data 

dimension rises to 6, the sample extraction processing 

time is between 0.1 seconds and 0.45 seconds, which 

meets the requirements of big data learning on sample 

extraction time. 

 

 
Figure 8: Sample extraction time varies with data dimension 

1 2 3 4 50 0.25

A8, 0

A2, 5

Amax

A0

Amin

Time(h)

PSO-Avg A-I B-II C-III

PSO-Avg A-I B-II C-III

PSO-Avg A-I B-II C-III

Max

Controller

D-IIII

D-IIII

D-IIII

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

100

90

85

80

75

70

95

Model

S
ta

b
il

it
y

K12

W-PSO

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

100

90

85

80

75

70

95

Model

S
ta

b
il

it
y

K12

W-PSO



Research on Dynamic Big Data Processing and Optimization Model…                     Informatica 49 (2025) 1–16 13 

 

 

5 Discussion 

In the research of dynamic big data processing and 

optimization, this model stands out by virtue of its multi-

dimensional performance advantages. From the 

perspective of the core indicators of the algorithm, 

compared with the traditional PSO-BPNN and QPSO-

BPNN algorithms, the number of iterations of the 

optimized PSO algorithm is reduced by about 33%, and 

the test error is greatly reduced from 2.25 and 0.98 to 0.53 

and 0.47, and the integration of prior knowledge 

effectively accelerates the convergence and optimization 

efficiency. In the scenario of combining particle swarm 

optimization and extreme learning machine, although the 

introduction of detection particles and wavelet kernel 

functions increases the calculation time, the mean square 

error of the algorithm after parameter optimization is 

betterly reduced and tends to converge, which is better 

than the extreme value learning machine algorithm with 

poor stability and large error fluctuation. In terms of 

actual performance, Figure 3 shows that in the metadata 

change operation, although the two-stage commit 

protocol affects the duration of a single operation due to 

network latency, the average time consumption of mkdir, 

delete, and create operations is greatly reduced to 13.24% 

and 9.05% of the system by adjusting the waiting queue 

length. Figures 4 and 5 show that the PSO algorithm of 

heuristic search far exceeds the top-down and bottom-up 

algorithms in terms of search performance, and the 

efficiency is betterly enhanced with the increase of the 

average degree and the number of threads in the graph. 

The data in Table 3 confirms that when the number of PEs 

in the system is scaled from 4 to 8, the operating 

frequency of the design decreases only slightly, showing 

higher scaling performance. However, there are trade-

offs in the model: Table 4 shows that the three-layer 

neural network has a small number of iterations, but the 

training time is as long as 177 minutes, which is far more 

than the traditional BP neural network; Figures 6 to 8 

further reveal that some optimization algorithms have the 

problems of error rebound and classification accuracy in 

the late training stage, and the increase of data dimension 

will prolong the sample extraction time. Therefore, 

although this model is suitable for most dynamic big data 

scenarios, it is not the best choice when it is sensitive to 

training time and has extremely high data dimensions. 

6 Conclusion 
This study profoundly discusses how to effectively 

improve dynamic big data processing efficiency and 

optimization performance in the context of the better data 

era. With the explosive growth of data scale and 

increasing complexity, traditional data processing 

methods have made it challenging to meet the 

requirements of real-time and accuracy. Therefore, this 

study proposes an innovative model that fuses optimized 

particle swarm optimization and deep reinforcement 

learning techniques to provide a new solution for 

dynamic big data processing. 

(1) the particle swarm optimization algorithm is first 

optimized in the model construction process. By 

introducing adaptive weights and dynamic learning 

factors, the algorithm's global search ability and 

convergence speed are enhanced. The optimized PSO 

algorithm has shown remarkable results in experiments. 

Compared with the standard PSO algorithm, its 

efficiency in finding the optimal solution is improved by 

30%, and it can escape the local optimal solution faster, 

ensuring the stability and reliability of the model. 

(2) This study combines the optimized PSO 

algorithm with deep reinforcement learning. Deep 

reinforcement learning learns data features through deep 

neural networks and continuously adjusts strategies 

through reinforcement learning mechanisms. This 

combination enables the model to adaptively adjust 

parameters to cope with data changes when dealing with 

dynamic big data. The experimental results show that 

when processing dynamic data streams, the real-time 

response ability of the model is improved by 40%, 

effectively coping with the high-speed changes and 

complexity of data. 

(3) Multiple large real data sets are used for testing 

in this study to verify the validity of the model. In the 

financial transaction data processing experiment, the 

model's processing speed is increased by 35% to ensure 

accuracy. In social media data processing experiments, 

the accuracy of the model has been improved by 20%, 

and it can effectively identify and process complex social 

network relationships. In terms of resource consumption, 

the computational resource utilization rate of the model 

is increased by 25%, which shows its high efficiency and 

economy in practical applications. 

The dynamic big data processing and optimization 

model based on optimized PSO and deep reinforcement 

learning proposed in this study betterly improves the 

efficiency and accuracy of data processing through 

innovative algorithm fusion and model design. The 

experimental results fully prove the model's superior 

performance and broad application prospects in dynamic 

big data processing. In the future, this study will continue 

to explore the application possibilities of the model in 

more fields and further optimize the algorithm to improve 

the universality and practicability of the model. 
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