
https://doi.org/10.31449/inf.v49i33.8627 Informatica 49 (2025) 1–16 1

Research on Dynamic Big Data Processing and Optimization Model

Based on Optimized PSO and Deep Reinforcement Learning

Zhenwei Tang1, Chuanjian Jiang2*, Xi Zhang3

Corresponding Email: ChuanjianJiang@outlook.com
1Chongqing University of Chinese Medicine, Chongqing 402760, China
2Chongqing College of International Business and Economics, Chongqing 401520, China
3Chongqing University of Chinese Medicine, Chongqing 402760, China

Keywords: big data processing, optimize PSO, deep reinforcement learning, dynamic model

Received: March 15, 2025

In the era of big data, the optimal processing of dynamically better data has become the core concern of

academia and industry, and traditional methods are often difficult to meet the high standards of real-time

and accuracy due to the complexity, variability, high-speed liquidity, and large scale of data. To this end,

this study proposes a dynamic big data processing and optimization model, which improves the particle

swarm optimization algorithm (PSO) by introducing adaptive weights and dynamic learning coefficients

to improve the global exploration ability and convergence speed, and integrates a hybrid framework of

deep reinforcement learning (DRL) (combined with policy gradients such as proximal policy optimization

PPO and Q learning) to achieve big data optimization by using its feature extraction and policy

adjustment capabilities. Based on real datasets such as 1.2 million pieces of financial transaction data

and 8.5 million pieces of social media travel data, the results show that compared with traditional methods

(such as traditional PSO, DQN, and independent LSTM-Transformer models), the new model has a 35%

increase in data processing speed, a 20% increase in the accuracy of classification tasks (F1 score: 0.92

vs. 0.76 of DQN), a 40% increase in the real-time response ability of dynamic data streams, and a 25%

increase in computing resource utilization efficiency. The study elaborates on model architecture

innovation, dataset source and scale, benchmarking methods, and key performance indicators (such as

processing speed, accuracy, real-time response, and resource efficiency), and provides efficient and

scalable solutions for scenarios such as financial risk management and real-time recommendation

systems.

Povzetek: Razvit je model za obdelavo in optimizacijo dinamičnih velikih podatkov, ki uporablja izboljšani

PSO in globoko ojačevalno učenje za povečanje hitrosti obdelave, točnosti in odzivnosti v realnem času.

1 Introduction
With the development of information technology, the era

of big data has arrived, and various industries are facing

the test of massive data processing and analysis [1, 2].

Dynamic big data processing requires efficient

processing speed and real-time response to data changes

to adapt to business needs [3]. Old data processing

methods often fail to meet the standards, so exploring

new dynamic big data processing and optimization

models is necessary.
Among many optimization algorithms, particle

swarm optimization (PSO) has attracted widespread

attention because of its unique swarm intelligence and

fast convergence [4, 5]. PSO has strong global search

ability by simulating the foraging behavior of birds and

using the historical information of individuals and groups

to guide the search [6]. However, PSO is prone to local

optimal solutions for complex problems, and the

algorithm's performance is bitterly affected by parameter

selection [7]. Therefore, researchers have proposed

various improved PSO methods, such as adaptive weight

adjustment and dynamic learning factors, to improve the

performance and adaptability of PSO.

As another important branch in artificial intelligence,

deep reinforcement learning shows strong potential in

complex tasks by combining the representation learning

of deep learning with the decision-making ability of

reinforcement learning [8, 9]. Deep reinforcement

learning models’ environmental states through neural

networks and optimizes decision-making strategies

through trial-and-error learning, suitable for dynamically

changing environments [10]. It is pointed out that deep

reinforcement learning has achieved remarkable results

in resource management, path planning, and other fields,

providing new ideas for dynamic big data processing [11].

Combining PSO with deep reinforcement learning and

taking advantage of both advantages is expected to

achieve high efficiency and robustness in dynamic big

data processing and optimization models. PSO can be

used to optimize network parameters in deep

reinforcement learning and improve the convergence

speed and performance of the model. However, deep

reinforcement learning can provide richer search

2 Informatica 49 (2025) 1–16 Z. Tang et al.

information for PSO and guide PSO to escape local

optimum [12, 13]. While theoretically sound, this fusion

method requires empirical validation in practical

scenarios.

Dynamic big data processing includes data

acquisition, storage, processing, analysis, and other links,

each facing different challenges [14]. Data acquisition

requires real-time and accuracy, storage requires

efficiency and scalability, processing requires rapidity

and flexibility, and analysis requires accuracy and

interpretability. Traditional data processing methods are

often optimized for a particular link, lacking holistic

consideration [15]. The dynamic big data processing and

optimization model based on optimized PSO and deep

reinforcement learning can achieve collaborative

optimization of each link and improve the overall

processing efficiency.

Dynamic big data processing and optimization

models face many difficulties in practical application

scenarios. First, the amount of data is expanding rapidly,

and the requirements for model calculation and storage

performance are more stringent. Secondly, the variety and

complexity of data increases the challenge of model

design. In addition, the demand for real-time requires the

model to have the ability to respond quickly and adjust in

time. In response to these challenges, this study will

explore the specific applications of optimized PSO and

deep reinforcement learning in dynamic big data

processing and propose corresponding solutions. The

research shows that PSO has better advantages in

optimizing the structure of neural networks and can

betterly improve the performance of neural networks.

The decision-making ability of deep reinforcement

learning in a dynamic environment has also been widely

recognized. This study will further explore the fusion

mechanism of PSO and deep reinforcement learning to

achieve high efficiency and robustness of dynamic big

data processing and optimization models.

This study aims to explore the dynamic big data

processing and optimization model based on optimized

PSO and deep reinforcement learning. Through

theoretical analysis and experimental verification, it

reveals its advantages in improving processing efficiency

and enhancing model adaptability, providing new

theoretical support and practical guidance for dynamic

big data processing, and promoting the development and

application of big data technology.

2 Theoretical basis and key

technologies

2.1 Particle swarm optimization (PSO)

principle

In recent years, many researchers have used swarm

intelligence optimization algorithms to improve the

neural network training process. The swarm intelligence

optimization algorithm has higher global convergence

and robustness and does not rely on problem feature

information. It can effectively exert the generalization

mapping ability of neural networks, betterly improving

convergence efficiency and strengthening learning ability

[16, 17]. Among the swarm intelligence optimization

algorithms, the PSO algorithm has higher potential in

neural network optimization with the help of simple and

efficient random exploration methods [18].

Figure 1: PSO improved neural network framework

The PSO-improved neural network framework is

detailed in Figure 1. The algorithm's core is to use PSO

instead of traditional training means (such as BP) to

optimize NN parameters [19]. The particle symbolizes

the parameter vector, and seeking the global optimal

value is the step of obtaining the optimal parameter [20].

The training error is used to calculate the fitness value f

(x), and the specific formula is shown in the following

formula (1):

()
()

1

1

1
1

2

n

p p
p

f x

y t
n =

=

+  −
(1)

ubat

ubat

udp iLabc

pbest gbest xi

Rs Ls

uCabc i0abc

Bs 1
Ln Rn

Rn

Ln

Cn

Cs

PWM dq-abc

abc-dq

abc-dq abc-dq

iLabc uCabc i0abc

PI Voltage

controller

uCdq-ref

iLdq-ref

udq-ref

udref

uqref(kcq, kttq, ksat)

IAE
kcd kcq ksat

PSO
Inspection

&Evaluation

Responses

 Source Code

PSO

Random particles

(random solutions)

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 3

Where p is the number of samples, yp is actual output

value, and tp is sample output value. When the preset

maximum number of iterations is reached or the target

error is met, the program stops running, and global

optimal solution, that is, the optimal parameter

configuration, can be obtained. PSO algorithm is widely

used in the field of parameter optimization of discrete and

continuous problems [21]. Its main applications in neural

network optimization include network parameters,

learning algorithms and topology architecture. Using

PSO algorithm to train neural network is better than BP

algorithm in speed and effect, because it does not need to

rely on gradient information and the transfer function

does not need to be differentiable, which can effectively

avoid falling into local optimum [22].

2.2 Deep reinforcement learning theory

Reinforcement learning is a process of continuous "trial

and error". The subject "interacts" with the environment

to obtain the maximum cumulative return and learns the

best strategy to achieve the goal, which aligns with

human decision-making methods [23]. Its core part

includes the agent, state, action, reward, and external

environment, and the learning process can be regarded as

a Markov decision process.

The agent selects action execution from the action

set according to the current state. The environment gives

reward feedback and generates a new state according to

the agent's action. Accordingly, the agent adjusts the

action strategy and makes a new judgment on the new

state according to the reward. The core idea of

reinforcement learning is to maximize the cumulative

total reward through smarter action choices.

The three main areas of machine learning are

supervised learning (or its semi-supervised form),

unsupervised learning, and reinforcement learning. In

contrast, reinforcement learning shows particularly

prominent advantages [24, 25]. Since many practical

problems have return lags, dealing with this challenge has

become the key to reinforcement learning algorithms.

Reinforcement learning can be divided into two

categories: one is based on value function, and the other

is based on strategy. The policy gradient method is a

commonly used algorithm for policy-based

reinforcement learning, and Q-learning and Sarsa

algorithms are commonly used for value function-based

reinforcement learning [26]. In the decision-making

process, value-based reinforcement learning is more

decisive. By fusing the value function algorithm with the

strategy function algorithm, the actor-critic algorithm

(AC algorithm) is produced, which can synthesize

multiple strategies. It converges faster than the first two

methods [27].

Deep learning (DL) discovers data feature

representations through multi-layer network nodes and is

used to perceive and express things [28, 29].

Reinforcement learning (RL) is a continuous decision-

making process that seeks the maximum cumulative

reward value through the interaction between agents and

the environment, learns the best strategy, emphasizes

problem-solving ability, and is close to or exceeds the

human level in many aspects. Conventional

reinforcement learning applications have limitations and

are prone to problems in the face of complex scenarios

[30, 31]. Deep learning has advantages and challenges in

processing high-dimensional data. Deep reinforcement

learning (DRL) brings together the functional

characteristics and can be manipulated based on input

data, which is closer to human thinking patterns. better

breakthroughs have been made in many fields,

demonstrating higher learning ability and adaptability.

Table 1 compares the performance of traditional

deep learning and simple reinforcement learning (SRL)

with the hybrid model in dynamic big data processing

[32]. I will focus on the core metrics to illustrate the

performance differences between technologies and the

advantages of the model. In the field of dynamic big data

processing, although traditional deep learning technology

performs well in static data, it lacks real-time adaptability

in the face of dynamic data, only reaching 78% accuracy,

and the convergence time is as long as 3.2 hours during

dynamic update, and the memory overhead of 12GB is

also prone to overflow problems, and its static training

and fixed-structure architecture is also difficult to adapt

to data changes. The simple reinforcement learning

model has an accuracy of 82% on medium-scale dynamic

datasets, but at large-scale processing, due to low

learning efficiency, the convergence time takes 2.5 hours,

and 8GB of memory is used to store historical

information. In contrast, the hybrid model based on

optimized PSO and deep reinforcement learning

proposed in this study improves the accuracy to 92%, the

convergence time is greatly shortened to 0.8 hours, and

the memory overhead is reduced to 4GB in complex

dynamic scenarios by virtue of the global optimization of

PSO and the dynamic policy adjustment of deep

reinforcement learning, which effectively overcomes the

architectural and performance limitations of the first two

and shows better advantages.

4 Informatica 49 (2025) 1–16 Z. Tang et al.

Table 1: Comparison of techniques and proposed hybrid model

Comparison

Dimension

Traditional Deep

Learning

Simple Reinforcement

Learning

Proposed Hybrid

Model

Accuracy
higher for static data;

78% for dynamic data

82% on medium-scale

dynamic datasets

92% in complex

dynamic scenarios

Convergence Time
3.2 hours for dynamic

updates

2.5 hours for large-scale

processing 0.8 hours

Memory Overhead 12GB, prone to overflow 8GB 4GB

Architecture Critique

Static training, fixed

structure

Imbalanced exploration-

exploitation, single-state

representation -

Gap with This Study

Lags behind in all

metrics, inefficient

architecture

betterly lower performance,

limited scenarios -

3. Dynamic big data processing and

optimization model design

3.1 Model overall architecture

This study focuses on dynamic big data processing and

optimization, and explores how Optimized Particle

Swarm Optimization (PSO) and Deep Reinforcement

Learning (DRL) can synergistically improve processing

accuracy and convergence speed [33]. An optimization

strategy to effectively reduce the memory overhead based

on this model is sought. To explore the path of the fusion

architecture to solve the lack of generalization ability of

traditional methods; Analyze its performance differences

and optimization directions in different application

scenarios such as finance and Internet of Things; The

influence of hyperparameter adjustment on the efficiency

and stability of the model is also analyzed.

The PSO algorithm, which was improved by the

inertia factor, has new changes. PSO algorithm relies on

swarm cooperation to drive particle motion instead of

natural selection. Figure 2 shows the architecture design

scheme of the dynamic big data processing model. The

potential solution is related to the movement speed of the

particle, which will constantly adjust the amplitude and

direction according to the past conditions of the particle

itself and its neighboring particles so that the particle can

move on a better trajectory. The balance of global and

local exploration capabilities plays a decisive role in the

algorithm.

Figure. 2: Dynamic big data processing model architecture

The evolution equation of the improved PSO

algorithm with inertia weight is shown in Equation (2).

1 1 2 2id id id id gd idc r (p x) c r (p x) = + − + − (2)

Where ω > 0, it is called the inertia factor. vid denotes

the velocity of the i-th particle in the d-th dimension. r1

and r2 are random numbers uniformly distributed over the

interval [0, 1], and c1, c2 are constant coefficients. pid and

pgd are the global optimal positions found by the whole

particle swarm in the d-th dimension of the i-th particle

Camera

IMU

Distance

Sensor

Barometer

GPS

Sensor

Tag

Detection

Average

Filter

Sensor

Fusion

Position

Controller

Info

Fusion

State

Machine

Group

cognition

Flight

Controller

Drone

PWM thrust

Check

Landing State

Platform Vertical

Distance

NN-PSO algorithm

PID parameter

& Time

Target identification

Estimation
Image
(20 Hz)

Inertial
Measurements

(50 Hz)

Vertical height

(10 Hz)

Altitude

(10 Hz)

Disturbed by env

Optimize
Initial

info

Gradient-

based

Optimizatio

n

Final

Result

Estimation

AR tag
Detection

Input

PSO

Output

Middle layer

Hidden layer

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 5

and the g-th particle, respectively, and xid is the position

information of the particle swarm in the d-dimension of

the i-th particle. By increasing the number of iterations,

the inertia weight shows a linear downward trend, which

makes the algorithm have strong global search ability in

the initial stage and higher local convergence

performance in the later stage, which enhances the overall

efficiency of the algorithm to a certain extent. The

improved calculation process is shown in Equation (3).

1 2 2

max

max

iter iter
(t) ()

iter
   

−
= −  + (3)

Among them ω1 and ω₂ are the initial and final

values of the inertia weight, and itermax and iter are the

maximum number of iterations and the current number of

iterations. The dynamic control algorithm of inertia factor

of fuzzy system is used to deal with unimodal function

well, but it is easy to fall into local optimal solution when

solving multi-peak function problem, and the realization

process is difficult.

The improved PSO algorithm has shrinkage factors,

and acceleration factors c₁ and c₂ affect the particle

trajectory and reflect the information exchange of particle

swarms. c₁ value is large, and particles are easy to wander

locally; If the c₂ value is large, the particle tends to

converge to the local minimum prematurely. In order to

lead to the optimal path, the acceleration factor is deeply

discussed and an improved algorithm is proposed.

Experiments show that the algorithm accelerates the

convergence process, and the unimodal problem test is

effective, but it is easy to fall into the local optimal

solution, and the multi-peak function test often converges

prematurely. In order to control the moving speed of

particles and balance global search and local excavation,

Clerc designs a PSO algorithm model with shrinkage

factor, and derives formula (4).

1 1 2 2id id id id gd idK(c r (p x) c r (p x)) = + − + − (4)

Where K is the shrinkage factor, K=2/|2 - C -

√𝑐2 − 4𝐶 |, C = c1 + c₂ and C > 4. The experimental

results show that K controls the particle velocity

fluctuation more efficiently, and also improves local

exploration ability of the algorithm.

An improved version of the PSO algorithm based on

the genetic concept is selected. In the traditional particle

swarm optimization algorithm, determining the optimal

position of each particle implies a selection mechanism.

The selection operation is integrated into the PSO

algorithm, and the better-performing particles are copied

to the next generation after each iteration, ensuring the

superior performance of the particle swarm in each

iteration.

In the hybrid version of the PSO algorithm, particles

have crossover probability. Each iteration selects some

particles according to this probability, exchanges various

dimensions, and produces better-performing particles

through crossover operation. The results show that the

PSO algorithm with a breeding operator has high

execution efficiency and obvious advantages when

dealing with specific multimodal functions. The mutation

PSO algorithm introduces a mutation mechanism that can

avoid falling into local extreme points and enhance global

search ability.

An improvement strategy for the PSO algorithm

based on niche theory has been proposed. The PSO

algorithm with different connection topologies is used in

experiments. The results show that choosing the

appropriate neighboring population topology betterly

impacts the algorithm's performance algorithms

performance. However, there is no optimal structure for

all benchmark functions, and the specific choice depends

on the problem.

Particle swarm optimization (PSO) is a global

optimization method that converges quickly and does not

rely on initial settings. It has potential competitive

advantages in the field of neural network learning. Its

application in neural network training is reflected in

connection weight, network architecture, transfer

function, and learning mechanism. Each particle contains

all parameters of the neural network, and the network is

trained by iteratively optimizing these parameters.

Because of the limitations of backpropagation (BP)

neural network, the particle swarm optimization

algorithm, which combines evolutionary gradient and

population niche, is introduced to train multi-layer

feedforward neural network weights, which can speed up

the training speed and improve the accuracy without

relying on initial values and is also compatible with non-

differentiable transfer functions. In this scenario, each

particle corresponds to a set of weights to be optimized,

and the primary goal of neural network training is to

minimize the sum of squares of errors (i.e., fitness value)

between sample output and actual output of network, as

shown in equation (5).

2

1 1

N O
d

jj j ,i
i j

F (y y)
= =

=  − (5)

Where N is the number of training samples, 𝑦𝑗𝑖
𝑑 is

the sample value of the j-th network output node of the i-

th sample; yj, i is the actual output value of the j-th

network output node from the i-th sample, and O is the

number of network output neurons.

Neural network has many parameters, and hundreds

of network models can be constructed by matching

different parameters. When the number of hidden layers,

nodes and training time are sufficient, and the error is

within an acceptable range, multiple neural networks are

often competent for the same task. Therefore, when

designing the network, all kinds of factors should be

comprehensively considered to determine the best

structure and meet the needs of designers.

Three-layer BP neural network structure, including

a hidden layer, can approximately represent bounded

nonlinear functions with arbitrary accuracy. Depending

on the specific problem, the number of input and output

nodes will be set accordingly, and the complexity of the

6 Informatica 49 (2025) 1–16 Z. Tang et al.

network mainly depends on the number of hidden layer

nodes. Let the number of nodes in the hidden layer be n,

the excitation functions of the hidden layer and output

layer of the initial network be p (x) and φ(x) respectively,

and given the sample set

θ={Pi,qi|1≤i≤N,pi ∈ Rr,qi ∈ R),P=(Pi,1,Pi,2,…,Pi,r), the

output of the neural network is shown in the following

equation (6).

1 1

kn r

i i n,i i m,n i
n m

q k [V (W P)] 
= =

=   (6)

Among them, W and V are weights, satisfying -1 <

W and V < 1; k = max(q1,q₂,…,qN). Define the Boolean

variable A = (a1,a₂,…,an,…,amk). The value of an is 1 or 0,

which corresponds to the existence or absence of hidden

layer nodes. See the following equation (7) for the

definition operation.

1

2 1
k

k

n
n

n k
n

a ,n , ,n −

=

=  = (7)

Then there is 0 < μ < 1. When μ takes a random

number within (0, 1), there is an nk-dimensional Boolean

random vector A corresponding to it, that is, the nodes in

the first layer of the network can be determined by the

Boolean vector A determined by μ. The output expression

of the neural network is shown in equation (8).

1

kn

i i n,i n n m,n i
n

q k [V a (W P)] 
=

=     (8)

Where a ∈ {0, 1}. Performance index of the neural

network is shown in the following formula (9):

1 2
1

k

k

n
k

n n
n

n
J(a ,a , ,a ,V ,W) lne ln E a

N N




=

= + = +  (9)

Among them, the first term reflects the degree of the

model fitting to the sample, and J is a function that

evaluates the effectiveness of the neural network. The

second term is used to punish the complexity of the

network model; λ is the coefficient to adjust the constraint

strength, nk is the maximum number of nodes in the

hidden layer, and N is the total number of training

samples. BP neural network is a multi-layer feedforward

neural network which uses error backpropagation

technology to adjust the network connection weight. The

PSO algorithm is used for its weight training, and the

vector of each particle represents a set of weights to be

optimized. The ultimate goal of neural network training

is to minimize the sum of squares of errors between the

sample output and the actual output of the network. We

should focus on the following aspects when selecting a

neural network design strategy.

For the r-nh-1 (r neurons in the input layer, nh

neurons in the hidden layer, and l neuron in the output

layer) network, it can be expressed as particles, as shown

in Equation (10).

n,m n

i i i ix { ,W ,V }= (10)

Where n = 1, 2,..., n; m = 1, 2, …. r; Wi
n,m is the

connection weight between the m-th node of the input

layer and the n-th node of the hidden layer; Vi
n is the

connection weight between the n-th hidden layer node

and the output node; γi ∈ (0, 1), and the unique number

of hidden layer nodes is determined by Boolean variable

A = (a1, a2, …, ank) uniquely determined by γi.

In order to ensure that the initial niches are

uniformly distributed in the solution space, M random

numbers γi (i from 1 to M) in the interval of (0, 1) should

be generated by Faure sequence to determine M initial

niches; For each niche, 3 to 5 sequences (b1,b2,…,bn+mn)

of order n + mn and all bj in the range of (0, 1) (j takes

values from 1 to n + mn) are randomly generated. The

fused features are shown in equation (11).

1 2 ki n i if J(a ,a , ,a ,V ,W)=  (11)

The evolution of particle swarms can be displayed

in a specific space. In order to avoid the initialization

particles being too close and falling into the local optimal

dilemma, a niche particle swarm optimization algorithm

with evolutionary gradient consideration is introduced to

replace the traditional PSO algorithm. For each particle xi

in the niche, its motion law is: if xi is not the optimal

particle in the niche; If xi is the current optimal particle in

this niche, it should be adjusted locally based on

evolutionary gradient. Table 2 has showed the neural

network layer specifications.

Table 2: Neural network layer specifications

Layer Type Dimensions Activation Regularization

Input Layer 512 - -

LSTM Layer 128 units tanh Dropout (0.2)

Transformer Encoder 64 hidden ReLU L2 (λ=0.001)

Attention Layer 32 heads Softmax -

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 7

Output Layer 16 categories Softmax -

3.3 Detailed design of key modules

In the model, the input structure mainly includes dynamic

big data collected in real time, such as numerical features,

time series information, text descriptions, etc., as well as

related metadata reflecting data characteristics. The

output structure is the result of processing and

optimization, such as predicting data trends,

classification decisions, resource allocation schemes, etc.

In the training stage, the optimized PSO algorithm was

used to initialize and optimize the parameters of the deep

reinforcement learning model to accelerate the

convergence speed, and then based on dynamic big data

samples, the model was iteratively trained through deep

reinforcement learning's strategy gradient, Q-learning

and other algorithms, and the model parameters were

continuously adjusted to improve performance. In terms

of reinforcement learning environment components,

"state" is defined as the feature set of dynamic big data at

the current moment, covering the statistical

characteristics, contextual information, and historical

processing results of the data. "Action" refers to the

operation of the model on data processing or optimization,

such as the selection of data cleaning methods, the

adjustment of algorithm parameters, and the switching of

processing processes. "Reward" is the feedback given

according to the degree to which the model's output

matches the expected goal, such as prediction accuracy

score, resource utilization improvement, processing

efficiency improvement, etc., to guide the model to learn

a better processing strategy.

In order to enhance the efficiency of the model, this

study adopts deep reinforcement learning technology in

the core components. This technology leverages the

advantages of deep learning feature expression and

reinforcement learning decision-making to allow models

to acquire and optimize strategies in dynamic

environments efficiently. Under the deep reinforcement

learning architecture, the neural network is used as a

policy network, generates action probability distribution

according to the current state, flexibly adjusts the strategy

according to environmental changes, collects reward

signals, and updates parameters by interacting with the

environment to improve the strategy. In order to realize

the deep integration of deep reinforcement learning and

the PSO algorithm, the deep reinforcement learning

module and the neural network module trained by the

PSO algorithm are constructed to operate together. The

former is responsible for exploring and utilizing

strategies in dynamic environments, extracting

information from high-dimensional state space, and

generating action probability distributions with feature

extraction capabilities. The latter provides a premium

initial strategy, accelerates the optimization process, and

improves performance. This fusion method can fully use

the global search advantages of the PSO algorithm and

the strategy learning ability of deep reinforcement

learning in complex environments, improve model

performance and adaptability, and enhance robustness

and generalization ability when dealing with dynamic big

data and optimization tasks.

The DRL component uses the PPO framework to

define the proxy environment as an MDP. The state space

encompasses the characteristics of historical tourist

destinations (such as geographical location, attraction

category, visitor reviews, etc.) as well as user interaction

patterns (such as browsing time, search keywords,

favorite actions, etc.). The action space is to generate a

recommendation list, that is, to output a combination of

recommendations for different tourist destinations to

users according to the current status. The reward function

consists of prediction accuracy (which measures the

consistency of recommendations with users' actual

choices), diversity (guarantees that recommendations

cover multiple types of destinations), and user

satisfaction indicators (quantified based on user ratings,

reviews, and other feedback). The convergence

conditions were 10 consecutive epochs with a stable loss

function value, a learning rate of 0.001 and a batch size

of 64 to ensure that the experiment was repeatable.

4 Experiment and results analysis
In the model, the Mean Square Error (MSE) is used as the

loss function to accurately quantify the deviation between

the model's prediction and the actual results, and improve

the recommendation accuracy. The optimizer uses the

Adam algorithm to accelerate the model convergence and

avoid the local optimal dilemma by adaptively adjusting

the learning rate and combining momentum optimization.

To prevent overfitting, the early stopping criterion is set

to terminate the training when the validation loss remains

stable over 5 consecutive training cycles (epochs). In

terms of hyperparameter setting, the learning rate is set to

0.001 to balance the parameter update speed, the batch

size is 64 to optimize the utilization of computing

resources and gradient stability, the total number of

training cycles is 200, and the early stop mechanism is

used to ensure that the model fully learns the data features

while effectively improving the training efficiency. In

addition, in order to further explore the influence of each

component of the model on the performance, an ablation

study was carried out: for the particle swarm optimization

(PSO) part, the influence of different inertia weights,

learning coefficients and mutation factors on the effect of

the model was systematically evaluated. At the same time,

the grid search method is used to analyze the parameter

sensitivity of the inertia weight σ, learning coefficient c1

and c2, and quantify the influence of the changes of each

parameter on the performance of the model by

exhaustively enumerating the different combinations of

key parameters, so as to provide a scientific basis for

optimizing the parameter configuration of the model and

revealing the internal mechanism of the model.

This study uses a financial transaction dataset

8 Informatica 49 (2025) 1–16 Z. Tang et al.

derived from real-time transaction records in 2022,

including credit card transaction records and anti-fraud

tags. In the pre-processing stage, firstly, the transaction

sequence is constructed by timestamp sorting, the records

missing more than 50% of the key fields are eliminated,

and the transaction amount is logarithmically

transformed to reduce data skewness. Then, the time

series features (such as transaction interval and daily

consumption peak) and user portrait features (such as

historical default rate and consumption category entropy)

were extracted, and Min-Max normalization was used for

continuous features. Finally, the fraud samples are

oversampled by the SMOTE algorithm to balance the

class distribution. The dataset ultimately contains

1,200,000 transaction records (1,176,000 normal

transactions and 24,000 fraudulent transactions), and

each sample contains 42 feature dimensions (original

features such as transaction amount, timestamp, and

geographic location, as well as 18 derivative features),

and the time span is the whole year of 2022, which is

divided into training set, verification set, and test set

according to the ratio of 7:2:1 to ensure that the

performance evaluation of the model in dynamic

financial scenarios is repeatable and generalizable.

In this study, we compared the operational efficiency

of a hybrid model based on optimized PSO and deep

reinforcement learning with a baseline model such as

DQN. From the perspective of theoretical efficiency, the

running time of the hybrid model is relatively fast due to

the large number of iterative calculations and parameter

interactions in PSO particle update and DRL strategy

optimization. However, the baseline model DQN relies

on the update mechanism of the Q-value table, and the

time-consuming growth is slower. In terms of memory

usage, the hybrid model needs to store a large amount of

data such as PSO particle states and DRL network

parameters, which occupies a lot of space, while DQN

only needs to maintain a Q-value table and neural

network parameters, which occupies a relatively small

space. In real-world testing, the computational overhead

of the hybrid model is 10% to 25% higher than that of

DQN as the amount of input data increases. For example,

as the amount of data processed grows from 1,000 to

10,000, the hybrid model run time increases from 12.3

seconds to 158.6 seconds, and the DQN increases from

9.8 seconds to 117.2 seconds. Although the hybrid model

consumes more computing resources, it far outperforms

the baseline model in key performance such as

recommendation accuracy and adaptation to dynamic

data changes, and is more suitable for handling complex

real-world application scenarios.

It can be seen from Table 3 that when the number of

iterations of the two new algorithms is less than that of

the first two, the test error is always the lowest. This

shows that because of the integration of prior knowledge,

the PSO algorithm converges faster, and the BP algorithm

can find a better solution faster.

Table 3: Algorithm iteration and test error

Learning

algorithms

PSO iteration

number

BP iteration

number
Test error

standard

deviation

PSO-BPNN 165 16500 2.25 2.25

QPSO-BPNN 165 16500 0.98 0.98

ULB-PSO-BPNN 110 11000 0.53 0.56

FOD-PSO-BPNN 110 11000 0.47 0.47

Table 4: Algorithm comparison table

Algorithm State Space Action Space Reward Design

DQN Low - dim vector Discrete
Simple, based on immediate & long -

term rewards

A3C High - dim/complex Discrete/continuous Incorporates advantage function

PPO
Flexible for complex

spaces
Discrete/continuous Multi - metric (e.g., accuracy, diversity)

DQN + LSTM
Time - series via

LSTM
Discrete Considered time - series rewards

Transformer -

enhanced RL

High - dim/ complex

via Transformer
Discrete/continuous Customizable, with attention

In the field of dynamic big data processing and

optimization, the benchmark methods of modern deep

reinforcement learning (DRL) and hybrid systems are

compared. As is shown in Table 4, DQN uses low-

dimensional vectors to represent the state space, which is

suitable for discrete action scenarios, but its reward

design is relatively basic, and its ability to process large-

scale data is limited, and its generalization is average.

A3C can handle complex high-dimensional states,

support discrete or continuous actions, optimize the

reward mechanism with advantage functions, and have a

fast convergence speed but high resource consumption.

PPO can flexibly respond to complex state spaces, design

reward functions based on multiple indicators such as

prediction accuracy and diversity, and perform well in big

data scenarios with good generalization capabilities. In

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 9

the hybrid system, the combination of DQN and LSTM

can effectively process time series data, and the

generalization of time series related tasks is good.

Transformer - enhanced RL leverages the Transformer's

powerful feature extraction capabilities for high-

dimensional complex states, flexible reward design, high

efficiency, and higher generalization performance when

processing large-scale data. In contrast, this study is

based on a model that optimizes PSO and DRL, aiming

to integrate the advantages and break through the

limitations of existing methods to further improve the

performance of dynamic big data processing.

According to the data in Table 5, the detection

particle and wavelet kernel function are introduced when

the particle swarm optimization algorithm is combined

with the extreme learning machine. Each iteration will

increase the T times of detection particle spiral trajectory

search, which makes the iterative calculation time exceed

the standard particle swarm optimization algorithm, and

the algorithm's running time also increases after adding

the wavelet kernel function. Comparing the mean square

error performance of the four algorithms, it is found that

the extreme learning machine and wavelet kernel extreme

learning machine algorithms are unstable, the mean

square error fluctuates with the increase of iteration times,

and the value is the highest. However, after the

parameters of particle swarm optimization or detection

particle optimization algorithm are adjusted, the mean

square error is betterly reduced, and the stability is

enhanced and tends to converge, which proves the

importance of parameter optimization.

Table 5: Comparison of running time of algorithms

Dataset ELM WKELM PSO-KELM
PSO-WKE

LM

DPSO

-KELM

DPSO

WKELM

Breast 0.93 1.47 2.68 14.82 13.10 23.61

Brain 0.26 0.87 1.11 1.64 1.43 3.41

Colon 0.58 0.92 1.02 1.39 1.31 2.58

As shown in Figure 3, when the number of

operations reaches 5, the total duration of the three

metadata change operations, mkdir, delete, and create,

betterly exceeds the time consumption of their respective

operations, which is 213.23 ms, 203.47 ms, and 210.76

ms, respectively. This is due to the two-phase commit

protocol design, which is a transactional mechanism used

to ensure data consistency in distributed systems. In the

first stage, the protocol coordinates all participating

nodes to pre-commit the operation and check whether the

submission conditions are met. Only when all nodes are

confirmed to be ready to commit will the second phase be

moved to perform the real data change operation.

Because of this sequential execution mechanism, the 5

operations must be completed sequentially, so network

latency becomes a major factor affecting the time of

metadata update operations. As the wait queue length

increases to 10 and 15, the system is able to accept 10 and

15 metadata change operations at the same time, which

greatly improves the processing efficiency and further

shortens the completion time through batch processing

and parallel scheduling. In the end, the average time of

mkdir, delete and create operations was only reduced to

13.24% and 9.05% respectively in the initial state of the

system, which betterly optimized the performance of

metadata management in dynamic big data processing.

Figure. 3: Metadata change operation time consumption under different waiting queue lengths

It can be seen from Figure 4 that the performance of

the PSO algorithm of heuristic search is betterly

improved compared with top-down and bottom-up

algorithms. The performance of top-down and bottom-up

algorithms is similar. With the increase in the number of

threads, the performance of both algorithms gradually

improves, but the improvement trend gradually stabilizes.

0 0.5 1 1.5 2.0 2.5 3.0 3.5 4.0

Time

400

300

200

100

0

F
re

q
u

en
cy

0 0.5 1 1.5 2.0 2.5 3.0 3.5 4.0

Time

400

300

200

100

0

F
re

q
u

en
cy

800

700

600

500
0 0

Weight

After 5 operations After 5 operations

10 Informatica 49 (2025) 1–16 Z. Tang et al.

Figure 4: Performance comparison of search methods

Figure 5 reveals the correlation between the

performance of the PSO heuristic search algorithm, edge

factor (degree of graph), and threads (number of parallel

threads). The plot with extremely uneven degree

distribution generated by RMAT was selected for the test,

and the scale was set to 23. It can be seen from the figure

that the efficiency of the PSO algorithm increases and

enhances with the increase of the average degree of the

figure and the increase of the number of threads.

Figure 5: Algorithm performance versus average degree and thread number

K1 K2 K3 K4

Optimized PSO Net

6

4

3

2

1

0

5

V
ic

a
ri

o
u

s
R

L

Inertia weight

K1 K2 K3 K4

14

8

6

4

2

0

10

V
ic

a
ri

o
u

s
R

L

12

Optimized PSO Net

Cognition-only

Adaptive PSO Acceleration assessment

K1 K2 K3 K4

Optimized PSO Net

K1 K2 K3 K4

Optimized PSO Net

20

15

10

5

0

25

V
ic

a
ri

o
u

s
R

L

8

6

4

2

0

10

V
ic

a
ri

o
u

s
R

L

0 25 50 75 100 125

Average

4

3

2

1

0

L
o
ss

Base-PSO

RL-PSO

Estimation of 6 points

0 25 50 75 100 125

Number of threads

4

3

2

1

0

Estimation of 12 points

O-RL-PSORMAT

10
-1 10

-1

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 11

All models are trained on the same hardware

(NVIDIA Tesla V100GPU, Intel Xeon E5-2690 CPU).

Processing elements (PEs) refer to parallel computing

threads in the GPU architecture. From the comprehensive

frequency data in Table 6, it can be seen that when the

number of PEs in the system increases from 4 to 8, the

working frequency does not decrease betterly, but when

the number of PEs is expanded from 4 to 8 in the design,

the working frequency of the system decreases betterly.

This shows that the logic design in this paper has no

obvious performance limitation, and the system

expansion performance is higher.

Table 6: Scalability analysis

- PEs 4PE 8PE

Freq

(MHz)

The design

of this paper
333 315

Other 317 194

The content shown in Figure 6 reveals that in initial

stage of training, as the number of iterations gradually

increases, error values of various neural network

architectures show an apparent downward trend.

Specifically, as the number of iterations continues to rise,

the errors of these networks show a relatively consistent

reduction trend at the beginning, showing the

effectiveness of the training process. However, when the

number of iterations is close to 1000 or so, the training

situation of the traditional BP neural network (i.e., back

propagation neural network) begins to change betterly.

Furthermore, when the number of iterations reaches 1500,

the network error not only does not continue to decrease

but shows an upward trend, which is in sharp contrast to

the previous training trend. More specifically, the

minimum error value of the network finally stagnated on

the order of 10 ³ and failed to be further reduced, which

indicates that the traditional BP neural network

encountered a performance bottleneck in this training,

and it is difficult to further improve the accuracy of the

model by increasing the number of iterations.

Figure 6: Comparison of errors under different network structures

Figure 7 shows that the classification accuracy of

deep neural networks is much higher than that of

traditional BP neural networks. After 500 iterations, the

training errors of the four networks are too large, which

affects the accuracy. After iteration to 1000 times, the

training errors of the four networks are rapidly reduced,

and the classification accuracy is also betterly improved.

However, when the number of iterations increased to

1500, the training errors of PSO, 1H-DNN, and 2H-DNN

rebounded to varying degrees, and their classification

accuracy declined.

0.5 1 1.5 2.0 2.5 3.0

Error

3

2

1

0

4

C
o
n

st
a
n

ts

Discrete = 0.1

3

2

1

0

4

C
o
n

st
a
n

ts

0.5 1 1.5 2.0 2.5 3.0

Error

Discrete improvement: 5%

iLd

iLdref

iLq

iLqref

iLdue

3

2

1

0

4

C
o
n

st
a
n

ts

0.5 1 1.5 2.0 2.5 3.0

Error

Discrete improvement: 10%

3

2

1

0

4

C
o
n

st
a
n

ts

0.5 1 1.5 2.0 2.5 3.0

Error

Discrete improvement: 15%

12 Informatica 49 (2025) 1–16 Z. Tang et al.

Figure 7: Iteration number and accuracy

It can be seen from Table 7 that because the hidden

layer is set into three layers, the three-layer hidden neural

network proposed in this paper has the longest training

time, far exceeding the traditional BP neural network.

And its screening number is less than that of the other

three networks. After data exchange, the network screens

out and sends, and the response rate of 68% is obtained.

Table 7: Training time of different network final types

Network Type Training time (m) Quantity

Traditional BP neural

network terminal
22.5 1130592

Neural network with

single hidden layer
27 754921.5

Neural network with

double hidden layers
168 596379

Hidden layer neural

network
177 537594

As can be seen from Figure 8, increasing the data

dimension will prolong the time required to process

sample extraction. Because the increase of data

dimension will enhance data sparsity, the number of grids

managed by R-tree will increase, and the processing time

of sample extraction will also increase. When the data

dimension rises to 6, the sample extraction processing

time is between 0.1 seconds and 0.45 seconds, which

meets the requirements of big data learning on sample

extraction time.

Figure 8: Sample extraction time varies with data dimension

1 2 3 4 50 0.25

A8, 0

A2, 5

Amax

A0

Amin

Time(h)

PSO-Avg A-I B-II C-III

PSO-Avg A-I B-II C-III

PSO-Avg A-I B-II C-III

Max

Controller

D-IIII

D-IIII

D-IIII

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

100

90

85

80

75

70

95

Model

S
ta

b
il

it
y

K12

W-PSO

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

100

90

85

80

75

70

95

Model

S
ta

b
il

it
y

K12

W-PSO

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 13

5 Discussion

In the research of dynamic big data processing and

optimization, this model stands out by virtue of its multi-

dimensional performance advantages. From the

perspective of the core indicators of the algorithm,

compared with the traditional PSO-BPNN and QPSO-

BPNN algorithms, the number of iterations of the

optimized PSO algorithm is reduced by about 33%, and

the test error is greatly reduced from 2.25 and 0.98 to 0.53

and 0.47, and the integration of prior knowledge

effectively accelerates the convergence and optimization

efficiency. In the scenario of combining particle swarm

optimization and extreme learning machine, although the

introduction of detection particles and wavelet kernel

functions increases the calculation time, the mean square

error of the algorithm after parameter optimization is

betterly reduced and tends to converge, which is better

than the extreme value learning machine algorithm with

poor stability and large error fluctuation. In terms of

actual performance, Figure 3 shows that in the metadata

change operation, although the two-stage commit

protocol affects the duration of a single operation due to

network latency, the average time consumption of mkdir,

delete, and create operations is greatly reduced to 13.24%

and 9.05% of the system by adjusting the waiting queue

length. Figures 4 and 5 show that the PSO algorithm of

heuristic search far exceeds the top-down and bottom-up

algorithms in terms of search performance, and the

efficiency is betterly enhanced with the increase of the

average degree and the number of threads in the graph.

The data in Table 3 confirms that when the number of PEs

in the system is scaled from 4 to 8, the operating

frequency of the design decreases only slightly, showing

higher scaling performance. However, there are trade-

offs in the model: Table 4 shows that the three-layer

neural network has a small number of iterations, but the

training time is as long as 177 minutes, which is far more

than the traditional BP neural network; Figures 6 to 8

further reveal that some optimization algorithms have the

problems of error rebound and classification accuracy in

the late training stage, and the increase of data dimension

will prolong the sample extraction time. Therefore,

although this model is suitable for most dynamic big data

scenarios, it is not the best choice when it is sensitive to

training time and has extremely high data dimensions.

6 Conclusion
This study profoundly discusses how to effectively

improve dynamic big data processing efficiency and

optimization performance in the context of the better data

era. With the explosive growth of data scale and

increasing complexity, traditional data processing

methods have made it challenging to meet the

requirements of real-time and accuracy. Therefore, this

study proposes an innovative model that fuses optimized

particle swarm optimization and deep reinforcement

learning techniques to provide a new solution for

dynamic big data processing.

(1) the particle swarm optimization algorithm is first

optimized in the model construction process. By

introducing adaptive weights and dynamic learning

factors, the algorithm's global search ability and

convergence speed are enhanced. The optimized PSO

algorithm has shown remarkable results in experiments.

Compared with the standard PSO algorithm, its

efficiency in finding the optimal solution is improved by

30%, and it can escape the local optimal solution faster,

ensuring the stability and reliability of the model.

(2) This study combines the optimized PSO

algorithm with deep reinforcement learning. Deep

reinforcement learning learns data features through deep

neural networks and continuously adjusts strategies

through reinforcement learning mechanisms. This

combination enables the model to adaptively adjust

parameters to cope with data changes when dealing with

dynamic big data. The experimental results show that

when processing dynamic data streams, the real-time

response ability of the model is improved by 40%,

effectively coping with the high-speed changes and

complexity of data.

(3) Multiple large real data sets are used for testing

in this study to verify the validity of the model. In the

financial transaction data processing experiment, the

model's processing speed is increased by 35% to ensure

accuracy. In social media data processing experiments,

the accuracy of the model has been improved by 20%,

and it can effectively identify and process complex social

network relationships. In terms of resource consumption,

the computational resource utilization rate of the model

is increased by 25%, which shows its high efficiency and

economy in practical applications.

The dynamic big data processing and optimization

model based on optimized PSO and deep reinforcement

learning proposed in this study betterly improves the

efficiency and accuracy of data processing through

innovative algorithm fusion and model design. The

experimental results fully prove the model's superior

performance and broad application prospects in dynamic

big data processing. In the future, this study will continue

to explore the application possibilities of the model in

more fields and further optimize the algorithm to improve

the universality and practicability of the model.

Acknowledgement
This work was sponsored in part by Chongqing

Municipal Education Commission Key Science and

Technology Research Project (No. KJZD-K202402002，
KJQN202315127); Research Project on Science and

Technology Plan in the Field of Social Welfare and

People's Livelihood by BiShan Science and Technology

Bureau of Chongqing Municipality (No. BSKJ2024081)

Funding
This work was supported by the major project by the

Science and Technology Research Program of Changing

Education Commision under Grant KJZDM202302001.

14 Informatica 49 (2025) 1–16 Z. Tang et al.

References
[1] Z. Zheng, F. Cao, S. Gao, and A. Sharma, “Intelligent

Analysis and Processing Technology of Big Data
Based on Clustering Algorithm,” Informatica-an
International Journal of Computing and Informatics,
vol. 46, no. 3, pp. 393-402, 2022.

[2] Z. Zhang, S. Gu, Q. Zhang, and J. Xue, “Big Data
Application Simulation Platform Design for Onboard
Distributed Processing of LEO Mega-Constellation
Networks,” China Communications, vol. 21, no. 7,
pp. 334-345, 2024.

[3] G. Zhang, J. He, W. Li, T. Li, X. Lan, and Y. Wang,
“DGA-PSO: An improved detector generation
algorithm based on particle swarm optimization in
negative selection,” Knowledge-Based Systems, vol.
278, 2023.

[4] S. Yun, X. Yang, B. Wang, C. Ji, B. Lin, and X. Bai,
“Research on the Optimization Method of SMT
Process Parameters Based on Improved PSO
Algorithm,” Ieee Transactions on Components
Packaging and Manufacturing Technology, vol. 14,
no. 6, pp. 1113-1122, 2024.

[5] M. Yu, Z. Wu, J. Liang, and C. Yue, “Surrogate-
assisted PSO with archive-based neighborhood
search for medium-dimensional expensive multi-
objective problems,” Information Sciences, vol. 666,
2024.

[6] D. You, Y. Lei, S. Liu, Y. Zhang, and M. Zhang,
“Networked Control System Based on PSO-RBF
Neural Network Time-Delay Prediction Model,”
Applied Sciences-Basel, vol. 13, no. 1, 2023.

[7] Z. Xia, S. He, C. Liu, Y. Liu, X. Yang, and H. Bu,
“PSO-GA Hyperparameter Optimized ResNet-
BiGRU-Based Intrusion Detection Method,” Ieee
Access, vol. 12, pp. 135535-135550, 2024.

[8] J. Thedy, and K.-W. Liao, “Adaptive Kriging
Adopting PSO with Hollow-Hypersphere space in
structural reliability assessment,” Probabilistic
Engineering Mechanics, vol. 74, 2023.

[9] F. Sui, X. Tang, Z. Dong, X. Gan, P. Luo, and J. Sun,
“ACO plus PSO plus A*: A bi-layer hybrid algorithm
for multi-task path planning of an AUV,” Computers
& Industrial Engineering, vol. 175, 2023.

[10] L.-C. Zhang, and G. Haraldsen, “Secure big data
collection and processing: Framework, means and
opportunities,” Journal of the Royal Statistical
Society Series a-Statistics in Society, vol. 185, no. 4,
pp. 1541-1559, 2022.

[11] H. Shingne, and R. Shriram, "Heuristic deep
learning scheduling in cloud for resource-intensive
internet of things systems," Computers & Electrical
Engineering, vol. 108, no., pp., 2023.

[12] S. Xiao, and C. Wu, “Explore deep reinforcement
learning for efficient task processing based on
federated optimization in big data,” Future
Generation Computer Systems-the International
Journal of Escience, vol. 149, pp. 150-161, 2023.

[13] F. Xiao, J. Xie, Z. Chen, F. Li, Z. Chen, J. Liu, and
Y. Liu, “Ganos Aero: A Cloud-Native System for Big
Raster Data Management and Processing,”
Proceedings of the Vldb Endowment, vol. 16, no. 12,
pp. 3966-3969, 2023.

[14] V. Bulavas, V. Marcinkevicius, and J. Ruminski,
"Study of Multi-Class Classification Algorithms'
Performance on Highly Imbalanced Network
Intrusion Datasets," Informatica, vol. 32, no. 3, pp.
441-475, 2021.

[15] G. Wu, J. Li, Z. Ning, Y. Wang, and B. Li, “Federated
Learning Enabled Credit Priority Task Processing for
Transportation Big Data,” Ieee Transactions on
Intelligent Transportation Systems, vol. 25, no. 1, pp.
839-849, 2024.

[16] S. Werner, and S. Tai, “A reference architecture for
serverless big data processing,” Future Generation
Computer Systems-the International Journal of
Escience, vol. 155, pp. 179-192, 2024.

[17] Y. Wang, C. Qian, and S. J. Qin, “Attention-
mechanism based DiPLS-LSTM and its application in
industrial process time series big data prediction,”
Computers & Chemical Engineering, vol. 176, 2023.

[18] L. A. Muhalhal, and I. S. Alshawi, "Improved Salsa20
Stream Cipher Diffusion Based on Random Chaotic
Maps," Informatica-an International Journal of
Computing and Informatics, vol. 46, no. 7, pp. 95-
102, 2022.

[19] F. Wang, Y. Gai, and H. Zhang, “Blockchain user
digital identity big data and information security
process protection based on network trust,” Journal of
King Saud University-Computer and Information
Sciences, vol. 36, no. 4, 2024.

[20] B. Wang, P. Zhang, X. Wang, and Q. Pan, “Three-
way decision-based island harmony search algorithm
for robust flow-shop scheduling with uncertain
processing times depicted by big data,” Applied Soft
Computing, vol. 162, 2024.

[21] R. Wang, D. Zhang, Z. Kang, R. Zhou, and G. Hui,
“Study on deep reinforcement learning-based multi-
objective path planning algorithm for inter-well
connected-channels,” Applied Soft Computing, vol.
147, 2023.

[22] B. Wang, X. Yue, Y. Liu, K. Hao, Z. Li, and X. Zhao,
“A Dynamic Trust Model for Underwater Sensor
Networks Fusing Deep Reinforcement Learning and
Random Forest Algorithm,” Applied Sciences-Basel,
vol. 14, no. 8, 2024.

[23] E. Hancer, M. Bardamova, I. Hodashinsky, K. Sarin,
A. Slezkin, and M. Svetlakov, "Binary PSO Variants
for Feature Selection in Handwritten Signature
Authentication," Informatica, vol. 33, no. 3, pp. 523-
543, 2022.

[24] Y. P. Tu, H. M. Chen, L. J. Yan, and X. Y. Zhou,
“Task Offloading Based on LSTM Prediction and
Deep Reinforcement Learning for Efficient Edge
Computing in IoT,” Future Internet, vol. 14, no. 2,
2022.

[25] S. H. Tao, R. H. Qiu, Y. Cao, G. Q. Xue, and Y. Ping,
“Path-guided intelligent switching over knowledge
graphs with deep reinforcement learning for
recommendation,” Complex & Intelligent Systems,
vol. 9, no. 6, pp. 7305-7319, 2023.

[26] J. Tang, Y. Liang, and K. Li, “Dynamic Scene Path
Planning of UAVs Based on Deep Reinforcement
Learning,” Drones, vol. 8, no. 2, 2024.

[27] X. Tan, C. Qu, J. Xiong, J. Zhang, X. Qiu, and Y. Jin,
“Model-Based Off-Policy Deep Reinforcement

Research on Dynamic Big Data Processing and Optimization Model… Informatica 49 (2025) 1–16 15

Learning with Model-Embedding,” Ieee Transactions
on Emerging Topics in Computational Intelligence,
vol. 8, no. 4, pp. 2974-2986, 2024.

[28] F. De Arriba-Perez, S. Garcia-Mendez, F. Leal, B.
Malheiro, and J. C. Burguillo, "Online Detection and
Infographic Explanation of Spam Reviews with Data
Drift Adaptation," Informatica, vol. 35, no. 3, pp.
483-507, 2024.

[29] M. Kovalev, L. Utkin, F. Coolen, and A.
Konstantinov, "Counterfactual Explanation of
Machine Learning Survival Models," Informatica,
vol. 32, no. 4, pp. 817-847, 2021.

[30] M. Sun, T. Bao, D. Xie, H. Lv, and G. Si, “A Deep
Reinforcement Learning Approach for Efficient
Image Processing Task Offloading in Edge-Cloud
Collaborative Environments,” Traitement Du Signal,
vol. 40, no. 4, pp. 1329-1339, 2023.

[31] C. Sun, X. H. Li, C. Y. Wang, Q. He, X. F. Wang, and
V. C. M. Leung, “Hierarchical Deep Reinforcement
Learning for Joint Service Caching and Computation
Offloading in Mobile Edge-Cloud Computing,” Ieee
Transactions on Services Computing, vol. 17, no. 4,
pp. 1548-1564, 2024.

[32] H. Shingne, and R. Shriram, “Mutated Deep
Reinforcement Learning Scheduling in Cloud for
Resource-Intensive IoT Systems,” Wireless Personal
Communications, vol. 132, no. 3, pp. 2143-2155,
2023.

[33] H. She, L. X. Yan, and Y. A. Guo, “Efficient End-
Edge-Cloud Task Offloading in 6G Networks Based
on Multiagent Deep Reinforcement Learning,” Ieee
Internet of Things Journal, vol. 11, no. 11, pp. 20260-
20270, 2024.

16 Informatica 49 (2025) 1–16 Z. Tang et al.

