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With the continuous development of intelligent manufacturing, the maintenance strategy of equipment is 

also constantly improving, and it is changing from passive maintenance to preventive maintenance and 

predictive maintenance. Passive maintenance is to perform repairs after equipment fails or shuts down, 

and this method requires a long downtime maintenance time, resulting in increased maintenance costs. 

Therefore, this paper combines CNN and BiLSTM to propose an equipment life prediction model, so as to 

carry out predictive maintenance of equipment through intelligent automation model and improve the 

prediction accuracy and generalization of intelligent factory equipment RUL. By combining the efficient 

feature extraction capability of CNN with the sequence data processing advantages of BiLSTM and the 

weighted redistribution of attention mechanism, the model exhibits excellent performance on multiple 

data sets. According to the experimental results, it can be seen the advantages of the AM-CNN BiLSTM 

model are mainly reflected in its high accuracy and stability. On the CWRU dataset, the RMSE value of 

this model is as low as 0.052, which is better than traditional models, and the prediction accuracy is 

improved by about 47%. On the UCI dataset, its SCORE value reaches 0.963, indicating stronger 

generalization ability. All in all, by combining the spatial feature extraction of CNN with the temporal 

modeling of BiLSTM, and introducing attention mechanism, this model maintains stable performance 

(fluctuation amplitude<5%) in multi condition data, making it particularly suitable for the analysis and 

prediction of complex temporal data. 

Povzetek: Predstavljen je AM-CNN-BiLSTM za napoved preostale življenjske dobe opreme. Združuje 

CNN, BiLSTM in pozornost, deluje v cloud-edge okolju, izboljša RMSE in SCORE na CWRU, UCI, 

Augury, FEMTO ter zagotovi robustno, razložljivo prediktivno vzdrževanje. 

 

1   Introduction 
With the development of industrial Internet platform 

(hereinafter referred to as “platform”) technology, it has 

become a trend to use industrial Internet of Things 

technology IoT (Internet of Things) to solve equipment 

health management problems. On the one hand, it uses the 

industrial Internet platform OPC UA (OLE for Process 

Control Unified Architecture) and the management shell 

AAS (Asset Administration Shell) and other technologies 

to uniformly encapsulate and transform industrial field 

equipment protocols [1], establish standard equipment 

connection and semantic transformation models, and 

realize efficient connection of massive multi-source 

heterogeneous equipment, thus improving the efficiency 

of industrial data collection and processing. On the other 

hand, the characteristics of big data storage and 

calculation of industrial Internet platform are used to store 

and analyze equipment design, manufacturing, and 

operation data, realize real-time monitoring and early 

warning analysis of key components of equipment, find 

faults in advance, and reduce enterprise maintenance 

costs. At the same time, the platform open sharing 

technology is used to establish an interoperable interface 

model to realize information sharing among different 

equipment manufacturers, thus improving the equipment 

management level [2]. 

Traditional equipment health assurance management in 

the industry mainly focuses on the current technical health 

status of equipment, and it is mainly based on the models 

of “post-maintenance” and “planned maintenance”. With 

the development of equipment health management level, 

the requirements for real-time, intelligent and prediction 

ability of current equipment are getting higher and higher 

[3]. Traditional fault diagnosis methods based on expert 

knowledge and signal processing are very effective as 

initial troubleshooting. However, the disadvantage is that 

there is no early warning in the later stage of the fault, and 

the whole machine is shut down for maintenance due to 

untimely replacement of the equipment, which brings 

huge losses to the enterprise. The core feature of the 

Industrial Internet is to use edge computing and cloud 

computing for real-time data analysis and scheduling, and 

fault diagnosis based on cloud-edge collaboration can 

reduce fault costs and increase response speed. Through 

the integration of big data and artificial intelligence and 

other means, it provides a new enabling platform for 
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online diagnosis and prediction of equipment, so as to 

predict the fault of equipment health management [4]. On 

the one hand, massive equipment operating condition data 

is collected on the edge side. On the other hand, a fault 

diagnosis and prediction model are established on the 

platform side for high concurrency model training, and the 

model is sent to the edge side for real-time diagnosis and 

prediction, thus forming an effective data and model 

collaboration and adaptation mechanism and realizing 

data-driven real-time and comprehensive prediction of 

equipment and its key components [5, 6]. 

The industrial internet platform achieves efficient 

device connection and standardized data application 

through technologies such as OPC UA and AAS, but there 

are still some problems in the scenario of device life 

prediction The sampling frequency and accuracy 

differences of multi-source devices result in a large 

amount of noise and missing values in the collected data, 

and semantic transformation models are difficult to 

completely eliminate the inconsistency of vendor defined 

thresholds, which affects the reliability of prediction 

inputs. The prediction models trained on specific devices 

experience a significant increase in false positive rates 

during cross vendor or cross model migration due to 

differences in degradation mechanisms, requiring 

frequent re labeling of data and fine-tuning of models, 

which increases deployment costs. Massive device data 

needs rapid response from the edge layer, but the 

heterogeneity of industrial field protocols aggravates the 

data processing delay. When edge computing resources 

are limited, it is difficult to meet the timeliness 

requirements of life prediction The CNN BiLSTM model 

effectively compensates for the shortcomings of the 

platform in life prediction by integrating spatial feature 

extraction and temporal dependency modeling. 

The equipment intelligent prediction model can predict 

the upcoming equipment failure in real time, and provide 

the relevant information of equipment parts that need to be 

replaced in time before the equipment failure may occur, 

so as to effectively reduce the equipment failure rate and 

effectively save the equipment support management cost, 

reduce the enterprise equipment operation and 

maintenance cost, and realize the change of enterprise 

mode from planned repair to preventive maintenance.  

Combining CNN and BiLSTM to construct a device 

lifespan prediction model can leverage their 

complementary advantages. CNN excels at extracting 

local spatiotemporal features from raw sensor data (such 

as vibration and temperature signals) and capturing 

short-term abnormal patterns during device degradation. 

BiLSTM models long-term temporal dependencies 

through a bidirectional gating mechanism, which can trace 

historical degradation trends (such as slow wear) and 

correlate potential future fault symptoms. This 

combination solves the limitations of a single model - pure 

CNN is difficult to model long-term degradation laws, and 

pure RNN models have insufficient feature abstraction 

ability for the original signal. Therefore, end-to-end 

optimization is achieved in the two key links of feature 

extraction and time series prediction, significantly 

improving prediction accuracy and robustness. 

This paper combines CNN and BiLSTM to propose an 

equipment life prediction model, so as to carry out 

predictive maintenance of equipment through intelligent 

automation model and improve the prediction accuracy 

and generalization of intelligent factory equipment RUL. 

By combining the efficient feature extraction capability of 

CNN with the sequence data processing advantages of 

BiLSTM and the weighted redistribution of attention 

mechanism, the model exhibits excellent performance on 

multiple data sets. According to the experimental results, 

it can be seen that the constructed regression prediction 

model is superior to other methods in terms of RMSE 

index. Among them, the prediction accuracy of combined 

training is higher than that of grouping training, which 

improves the prediction accuracy. 

 

2   Related works 
In the equipment fault warning model, discussing 

predictive maintenance (PdM) first and then 

troubleshooting is essentially following the industrial 

maintenance logic loop of "monitoring → diagnosis → 

disposal". Predictive maintenance identifies equipment 

anomalies in advance through real-time data analysis and 

AI algorithms, providing precise targeted targets for 

troubleshooting. Moreover, troubleshooting is based on 

the health indicators and fault characteristics output by 

PdM, implementing standardized maintenance processes. 

This sequential design not only avoids the resource waste 

of "blind maintenance", but also continuously optimizes 

the model accuracy through the "prediction disposal 

feedback" loop, forming a closed-loop management from 

data perception to problem solving. 

(1) Predictive maintenance 

The basic principle of predictive maintenance 

technology is to monitor the status of industrial equipment 

in real time through various sensors, predict possible 

failures of equipment, and provide accurate modification 

suggestions for maintainers. Because of its predictability 

and accuracy, it has attracted the research enthusiasm of 

many experts, scholars and companies and factories. 

Data-driven approaches and experience-based 

approaches are similar in some ways. However, the 

data-driven method does not need prior knowledge and 

does not pay attention to the internal situation of the 

prediction model. Compared with other methods, it is 

simpler and more convenient, and once became a research 

hotspot [7]. 

The method based on time series is relatively mature, 

and the core idea of this method is to establish the time 

series relationship between the performance parameters 

and life of the equipment. Reference [8] used 1D-CNN 

and attention mechanism to automatically separate the 

trend component (low frequency) and the regenerated 
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component (high frequency) in the original signal, 

replacing the manual tuning of VMD decomposition; 

Subsequently, a dual channel TCN BiLSTM architecture 

was used to process two types of signals in parallel - TCN 

captured long-term degradation trends, and BiLSTM 

modeled local fluctuation features. Finally, the RUL 

probability distribution is directly output by adaptively 

fusing the prediction results through a learnable dynamic 

weight gating unit. Reference [9] used empirical mode 

decomposition and ARIMA to predict the remaining 

service life of different structures in predictive 

maintenance. Timing-based approaches require 

equipment degradation to be consistent with historical 

degradation, which makes it impossible to accurately 

predict failures caused by external causes. Therefore, it is 

not suitable for long-term RUL prediction. 

In addition, machine learning-based methods use 

machine learning algorithms to model train the state data 

of devices and extract key features capable of representing 

degradation from them for prediction. Among many 

methods, Recurrent Neural Network (RNN) is famous for 

its excellent time series information acquisition ability, 

and methods based on recurrent neural network are widely 

recognized. However, RNN has some problems such as 

gradient disappearance, low computational efficiency, 

difficulty in parallelization, and long-term dependency, 

which limit its use in various application scenarios. 

Reference [10] used spatial correlation and temporal 

attention mechanism methods to enhance the information 

extraction ability of variant long and short-term memory 

networks of RNN, and finally used fully connected 

networks to predict aero-engine RUL. Reference [11] 

successfully fused LSTM network with traditional neural 

network to adaptively extract features from data and 

predict them. Reference [12] used GRU network to extract 

time series features from data, and combined the 

remaining life prediction model to realize the accurate 

prediction of engine life. Furthermore, reference [13] 

proposed a dual attention mechanism that uses GRU to 

predict aero-engine RUL, which combines domain 

knowledge with the training process of deep learning 

model to improve the prediction accuracy; 

Reference [14] proposed a simple system health 

management architecture, and reviewed and summarized 

the applications of autoencoders. Reference [15] 

systematically summarized the existing literature on 

bearing fault diagnosis using machine learning (ML) and 

data mining techniques. Reference [16] comprehensively 

reviewed the application of artificial intelligence 

algorithm in fault diagnosis of rotating machinery from 

the perspective of theory and industrial application. In 

addition, there are also several papers focused on failure 

prediction. 

(2) Troubleshooting 

Reference [17] used an improved threshold adaptive 

deep belief network for feature extraction and fault 

classification. Convolutional neural networks extract 

features from input data through convolution operations, 

abstracting data representations layer by layer to 

recognize patterns and features. 

In reference [18], the fault image is input into a 

two-dimensional densely connected expanded 

convolutional neural network for training and testing. 

Moreover, the generator is trained to generate forged data 

through adversarial training, so that its fidelity is 

constantly improved. Reference [19] proposed an 

adaptive feature fusion-assisted generative adversarial 

network, which can use a very limited number of samples 

for data enhancement and realize fault diagnosis under 

unbalanced samples. Recurrent neural network is a 

sequence-based neural network structure, which is often 

used to process and predict sequence data of arbitrary 

length. Deep learning networks similar to RNN include 

Long Short-Term Memory Networks (LSTM) and Gated 

Recurrent Unit (GRU). Aiming at the problem that 

equipment faults cannot be found in time, reference [20] 

proposed a fault prediction method based on LSTM to 

predict fault trends in advance. Reference [21] applied 

wavelet transforms and GRU to predict the sudden failure 

of manufacturing system. In addition, autoencoder is a 

typical feedforward unsupervised neural network, and it 

learns the compact representation (encoding) of data, and 

then reconstructs the original data from the encoding to 

achieve the purpose of data dimension reduction and 

denoising.  

The summary of the research status is shown in Table 1. 

The AM-CNN BiLSTM network model has significant 

advantages compared to existing research: by combining 

the spatial feature extraction ability of convolutional 

neural networks (CNN), the bidirectional temporal 

modeling advantage of bidirectional long short-term 

memory networks (BiLSTM), and the key information 

focusing function of attention mechanisms, this model can 

simultaneously capture local spatial correlations and 

long-term temporal dependencies of multi-sensor data, 

effectively solving the problems of traditional temporal 

methods relying on historical degradation consistency, 

RNN/LSTM gradient disappearance, and unidirectional 

information flow limitations, as well as the lack of 

dynamic weighting of key features in existing methods. It 

has higher accuracy, generalization, and interpretability in 

fault prediction of complex industrial equipment, 

providing a more reliable end-to-end solution for 

predictive maintenance. 

 

Table 1: Summary of research status 

Representative 

Technology 

Core 
Technologies/Feature

s 

Main limitations 

Variational Mode 

Decomposition+P
article 

Filtering+ARIMA 

Decompose degraded 

signals and 
superimpose 

predicted results 

Relying on historical 
degradation consistency 

Empirical Mode 

Decomposition+
ARIMA 

Decompose signals 
with different 

structures for 

prediction 

Not applicable for 
long-term fault 

prediction caused by 

external factors 



 

 

382 Informatica 49 (2025) 379–396                                                                                                                             N. Zhang et al. 

 

 

 
LSTM+time 

attention 
mechanism 

Enhance the ability to 

extract temporal 
information 

Unidirectional 

information flow 

LSTM+traditional 

neural network 

fusion 

Adaptive feature 
extraction 

Low parallel computing 
efficiency 

GRU+Remaining 

Lifespan Model 

Combining temporal 

feature extraction 

with lifespan 
prediction 

Lack of key information 

focusing mechanism 

Double Attention 
GRU 

Integrating domain 

knowledge with deep 

learning 

Unsolved spatial feature 
extraction problem 

CWT+2D Dense 

Connection 

Expansion CNN 

Convert vibration 

signals into images 

for feature extraction 

High computational 
complexity 

Adaptive Feature 

Fusion GAN 

Small sample data 
augmentation; 

Resolve sample 

imbalance 

Weak interpretability of 

fault prediction 

 

The CNN BiLSTM model is a typical data-driven 

method that automatically learns features directly from 

raw sensor data (such as vibration waveforms and 

temperature curves) without the need for experts to define 

failure thresholds, which conforms to the essential 

property of data-driven methods that do not pre-set 

physical models. For example, BiLSTM automatically 

captures the temporal degradation patterns of bearing 

wear through a gating mechanism, rather than relying on 

manually summarized fault trees. At present, most of the 

research on fault diagnosis and prediction of intelligent 

manufacturing equipment is based on mechanism and 

traditional machine learning methods, but there is little 

research on predictive diagnosis and prediction. Therefore, 

according to the actual engineering needs, this paper 

carries out the research on fault diagnosis and prediction 

of smart devices based on CNN-BiLSTM. 

 

3   Research on CNN-BiLSTM 

equipment life prediction based on 

attention mechanism 
 

The key technology of predictive maintenance, as an 

important means to ensure the safe operation of 

equipment and the continuity of production, has attracted 

much attention. Accurately predicting the RUL of 

equipment is of great significance for reasonably 

arranging maintenance plans and reducing production 

risks. In this paper, an improved CNN-BiLSTM method 

based on attention mechanism is proposed. 

A CNN-BiLSTM network model based on attention 

mechanism is proposed to predict RUL of multi-sensor 

devices, and its accuracy and generalization are verified 

by experiments. 

A. CNN-BiLSTM Prediction Model Based on Attention 

Mechanism 

 

CNN Model and Feature Extraction Principle 

The working environment of intelligent factory 

equipment is complex and changeable, and it has a large 

number of sensors. This topic firstly uses CNN device 

data for feature extraction, and CNN can effectively 

extract multi-dimensional features through its convolution 

layer and pooling layer. Meanwhile, the two-layer CNN 

structure is adopted in this study, as shown in Figure 1.  

(1) Double layer CNN structure: The intelligent factory 

equipment has a large amount of data and redundancy. 

The double-layer CNN structure can further extract 

multi-layer features, enhance the expression ability of the 

model, capture deeper level features, and improve the 

accuracy of feature extraction. 

(2) 1x3 convolution kernel: Considering that sensor 

data may have time series characteristics, 1x3 convolution 

kernels help capture these local features. By performing 

convolution operations on the input data through sliding 

windows, important features in the data are automatically 

learned. 

(3) MaxPooling: MaxPooling reduces the 

dimensionality and computational complexity of data by 

taking the maximum value within a local region, while 

preventing overfitting, preserving the most important 

features, and reducing noise interference. 

(4) ReLU activation function: The ReLU function 

introduces nonlinearity, allowing the model to learn more 

complex features, with simple calculations and effective 

solutions to gradient vanishing problems, improving 

training speed and enhancing the model's expressive 

power. In summary, these choices and designs aim to 

effectively address the complexity of smart factory 

equipment data, improve the accuracy of feature 

extraction, and enhance the generalization ability of the 

model. 

 

 
Figure 1: Double-layer CNN network structure 

 

Its convolutional layer output is: 

 

 ( ) ( ) ( ) ( ) ( ), ' ' '

'*
jl rl i j l j l j l j jL

I j iy K x k x
+

= =  (1) 

In the formula, ( )jl r
x  represents the local sequence r of 

the j-th convolution calculation in the l-th layer, ( ),l i j
y  

represents the j-th weight of the i-th convolution kernel in 

the l-th layer, * represents the convolution operator, W 

represents the convolution operator, and 
L

IK  represents 

the length of the coverage area signal in one-dimensional 

convolution. 

Then, the ReLU activation function pair is used to 

process: 
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( ) ( )( ) ( ) , , ,

max 0,
l i t l i j l i j

a f y y= =  (2) 

In the formula, ( ),l i j
y  represents the function to be 

activated, ( ),l i t
a  represents the result of ( ),l i j

y  after being 

processed by the activation function, f represents the 

activation function. 

After that, it is necessary to perform feature 

dimensionality reduction on ( ),l i t
a  through the pooling 

layer. In this topic, the maximum pooling method is used 

and the following settings are made: 

 

 
( )

( )

( ) , ,

1 1
max

l i t l i t

j V t jV
p a

− +  
=  (3) 

In the formula, ( ),l i t
a  represents the output activation 

value of the tth neuron of the ith feature in the lth layer, 

and V represents the pooling width. 

 

Principle of LSTM and BiLSTM Model 

The preprocessing of sensor data input into LSTM 

mainly includes: data cleaning (filling in missing values, 

removing outliers), normalization/normalization 

processing (eliminating dimensional differences), feature 

engineering (deriving time features, constructing lag 

features, and sliding statistics), and finally converting the 

data into a three-dimensional structure through sliding 

window segmentation (number of samples x time step x 

number of features), and dividing it into training 

set/validation set/test set. This process ensures that the 

data meets the requirements of LSTM for modeling 

temporal dependencies, while enhancing the model's 

ability to capture periodic and burst patterns. 

At time t, the LSTM layer structure provides a rich 

internal state through the cell state tc  and hidden state th , 

as well as a variety of gate mechanisms. During the 

training phase, the constructed LSTM uses sensor 

measurement sequences iX  to determine whether the 

true value of RUL (remaining service life) belongs to a 

certain time window. 

The operation of the LSTM unit can be summarized by 

the following formula. The structure of the LSTM model 

is shown in Figure 2. 

 
Figure 2: Structure diagram of LSTM model 

 

First, we need to determine which long-term memories 

controlled by the forget gate tf  can be forgotten: 

 

 ( )1t f t f t ff W h U X b −= + +  (4) 

In the formula, tf  represents the forget gate,   

represents the sigmoid function, fW  and fU  represent 

the weight matrices of the forget gate in the input and 

hidden states, respectively, represents the weight matrix 

of the forget gate, 1th −  represents the hidden state at the 

previous moment, fX represents the input data at the 

current moment, and fb  represents the bias of the forget 

gate. 

The input gate then decides what information to get 

from the input and decides which parts should be stored 

into the cell state: 

 

 ( )1tanht g t g t gg W h U X b−= + +  (5) 

 ( )1t i t i t ii W h U X b −= + +  (6) 

In the formula, ti  represents the input gate, tg  

represents the candidate unit state, tanh  represents the 

hyperbolic tangent function, gW and  gU  represents the 

weight matrices of candidate cell states in the input layer 

and hidden layer, respectively . iW  represents the weight 

matrices of candidate cell states in the input layer and 

hidden layer, respectively , iW  and iU  A and B represent 

the weight matrices of the input and hidden candidate unit 

states, respectively, and ib  and gb  represent the bias of 

the input gate and the candidate unit state, respectively. 

 

 1t t t t tC C f g i−=  +   (7) 

tC  represents the updated unit state. 

Updated the output gate: 

 

 ( )1t o t o t oo W h U X b −= + +  (8) 

 ( )tanht t th o C=   (9) 

to  represents the output gate, th  represents the hidden 

state at the current moment, oW  and oU  respectively 

represent the weight matrices of the input and hidden state 

output gates. ob  represents the bias of the output gate, and 

  represents element-by-element multiplication. 

The BiLSTM model contains two independent LSTM 

layers. Figure 3 is a schematic diagram of the BiLSTM. 
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Figure 3: BiLSTM schematic diagram 

 

Forward LSTM layer: It processes the input sequence 

in the normal order of the time series. Its hidden layer state 

(recorded as t th h→  ) and memory cell state (recorded as 

t tC C→ ) are updated from the beginning of the sequence 

to the end of the sequence. 

The hidden layer state (recorded as t th h→ ) and the 

memory unit state (recorded as t tC C→ ) of the reverse 

LSTM layer are updated from the end of the sequence to 

the beginning of the sequence. 

At each time point t, the hidden states 
th  and 

th  of the 

forward LSTM layer and the reverse LSTM layer are 

combined to form the total hidden state 
th  at that 

moment. This total hidden state 
th  combines past and 

future information and can be used for subsequent 

sequence modeling tasks, such as remaining life 

prediction. 

The mathematical expression of the BiLSTM model is 

similar to that of LSTM, but each time step includes 

information updates in two directions. The process of 

updating the network involves the following formula: 

 

 ( )( )1
,t t t

h LSTM x h
−

=  (10) 

 ( )( )1
,t t t

h LSTM x h
+

=  (11) 

 ;t y t t yY W h h b = +
   (12) 

th  represents the output of the forward layer, 
th  

represents the output of the reverse layer, tY  represents 

the combined output of the two layers, yW  represents the 

weight of the output layer, yb  represents the bias of the 

output layer,  ;  represents the connection operation. 

 

Attention Mechanisms 

Long sequence data may lead to loss of earlier 

information. The attention mechanism can imitate human 

beings to focus their attention on some key areas. 

Therefore, BiLSTM with attention mechanism is 

introduced. This process can re-assign weights to different 

features, helping to focus attention on key features and 

key information, and can use historical information more 

effectively to generate output at each time step. 

This paper considers a simple attention model: 

Scoring: First, the model computes a “scoring” function 

to measure the importance of each input. For example, if 

the input here is a series of vectors , , ,i i ix x x , a common 

scoring function is to use a trainable weight vector   and 

calculate the dot product of each ix  with  . 

 

 ( ) ( ),i iScore x f x =  (13) 

In the formula, ( )iScore x  represents the score of the 

i-th input, ( )f  represents the scoring function, ix  

represents the input vector, and   represents the trainable 

parameter. 

Normalization: Next, use the softmax function to 

normalize these scores so that their sum is 1, which can be 

used as weights. 

 

 
( )

( )1

i

i j

n j

Score x

Score x


=
=


 (14) 

In the formula, i  represents the normalized weight, 

ie  represents the score of the i-th input, and N represents 

the total number of inputs. 

Weighted Sum: Finally, the normalized score is used to 

weighted and sum the input to obtain the final attention 

output. 

 

 ( ) 1i

n i iAttention x ==  (15) 

In the formula, ( )Attention   represents the final 

attention output. 

Attention mechanism enables neural networks to 

process information more effectively by imitating human 

attention distribution, so it is widely used in various fields 

and has achieved remarkable results in various tasks. Its 

flexibility and efficiency make it a hot topic in current 

deep learning research. 

B. RUL Prediction Model Based on AM-CNN-BiLSTM 

The proposed RUL prediction model incorporates a 

series of deep learning techniques to efficiently process 

time series data. As shown in Figure 4, the arrows in the 

figure represent the direction of data flow in the neural 

network model, the model first extracts the 

multi-dimensional features of the input data through the 

convolutional layer. Then, the subsequent max-pooling 

layer further reduces the feature dimension and simplifies 

the network computation. Next, the second convolution 

layer and maximum pooling layer have 128 filters and 

similar pooling strategies respectively, which further 

enhance the feature extraction of data. In addition, a Time 

Distributed layer is also embedded in the network to 

flatten the data in preparation for the next BiLSTM. The 

BiLSTM layer combines two LSTM layers with 128 units 

in each direction, which can capture long-term 
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dependencies in the data. In addition, by introducing a 

custom attention mechanism, the model is able to focus on 

the information of key time steps. Finally, after a fully 

connected layer and a Dropout layer processing, the 

model generates the final RUL prediction value through 

another fully connected output layer of a single neuron, 

and the output layer adopts a linear activation function. 

Dropout layer, as a regularization technique, mainly 

plays a role in preventing overfitting and improving 

generalization ability in the model. 

Preventing overfitting: During the training phase, some 

neurons in the fully connected layer are randomly output 

to zero with a preset probability, forcing the network to 

not rely on specific neurons and avoiding excessive 

memory of training data noise. By dynamically cutting off 

fixed dependencies between neurons, each neuron is 

forced to learn robust features independently, reducing the 

sensitivity of the model to local features. 

Improving generalization ability: Each training 

iteration is equivalent to training a random sub network, 

and the final model can be viewed as a weighted ensemble 

of multiple sub networks, enhancing its adaptability to test 

data. Combined with a custom attention mechanism, 

Dropout can further enhance the model's ability to filter 

key time steps and avoid interference from irrelevant time 

steps. 

In addition, Dropout can also play a role in training 

optimization. The neuron outputs retained during training 

will be scaled to maintain the expected consistency of the 

overall activation value during the testing phase. 

Compared with traditional ensemble methods, Dropout 

only requires single network training to achieve similar 

effects, significantly reducing computational costs. 

 

 
Figure 4: RUL prediction model based on 

AM-CNN-BiLSTM 

 

The overall framework of explainable fault prediction 

methods is shown in Figure 5. 

 

 
Figure 5: The overall framework of explainable fault 

prediction methods 

Stage 1: A suitable neural network model is selected as 

the prediction network to accurately predict the remaining 

service life of the equipment. 

Stage 2: By constructing an interpretation network, the 

mapping relationship between the internal nodes of the 

prediction network and the underlying events is 

established to represent the state of the device. The 

activation state of the predicted network nodes is used to 

determine whether the underlying event has occurred, 

thereby extracting knowledge from the input data. 

Phase 3: The state of the device and its components is 

inferred by combining the underlying events. This 

inference can be presented in the form of natural language 

descriptions and intuitive graphs, providing multiple 

explanations for the prediction results. 

C. Cloud-edge Collaborative Real-time Online 

Diagnosis 

In the industrial Internet platform, it is necessary to 

solve the problems of different manufacturers, different 

standards, and different types of industrial equipment data 

connection, multiple types of industrial data aggregation 

and integration, equipment connection and 

interoperability, equipment real-time processing and edge 

computing technology.  

The prediction models trained on specific devices 

experience a significant increase in false positive rates 

during cross vendor or cross model migration due to 

differences in degradation mechanisms, requiring 

frequent re labeling of data and fine-tuning of models, 

which increases deployment costs massive device data 

needs rapid response from the edge layer, but the 

heterogeneity of industrial field protocols aggravates the 

data processing delay. When edge computing resources 

are limited, it is difficult to meet the timeliness 

requirements of life prediction The CNN BiLSTM model 

effectively compensates for the shortcomings of the 

platform in life prediction by integrating spatial feature 

extraction and temporal dependency modeling. 

At the cloud platform level, a series of technical issues 

need to be addressed, including the operation and 
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management of massive cloud-native applications, 

storage and management of massive data, health 

prediction of key equipment components based on big 

data, online real-time diagnosis of equipment failures in 

cloud-edge collaboration, equipment data sharing and 

collaboration, new generation industrial application 

development technology, and the application of digital 

twins and data mainlines. It involves six key technologies, 

as shown in Figure 6. 

 

 
Figure 6: Key technologies of equipment health 

management based on industrial Internet 

 

Edge storage devices can process massive private 

information data in real time, effectively reduce system 

energy consumption, and meet the various needs of 

traditional cloud computing. The cloud-edge 

collaboration framework based on the industrial Internet 

platform is shown in Figure 7. On the cloud platform, the 

main task is to use the advantages of abundant computing 

resources to conduct large-scale sample training. By 

making full use of the rich training sample data, storage 

and computing resources in the cloud, equipment fault 

diagnosis and prediction models can be trained and 

updated in real time and continuously, thereby training a 

universal diagnostic model. Therefore, this general model 

can be applied to a variety of different diagnostic 

scenarios. Finally, the trained model will be transferred 

from the cloud to the edge device. 

 

 
Figure 7: Cloud-edge collaboration mechanism 

 

 

4   Prediction process and 

experimental design 

D. Methods 

In order to realize fault prediction, it is usually 

necessary to continuously monitor the environment, the 

physical state of each equipment component, and sensor 

data. Then, the running data collected by the acquisition 

equipment is input into the selected appropriate fault 

prediction model, the development trend of the equipment 

state is analyzed. 

Although LSTM and GRU cannot directly handle 

variable length sequences, their collaborative application 

of dynamic computation (such as dynamic RNN skipping 

padding) and masking techniques (such as Masking layer 

filtering invalid positions) effectively solves this problem. 

The dynamic calculation adjusts the operation step size 

based on the actual length of the sequence, while the 

masking mechanism prevents the filler from participating 

in gradient updates. The combination of the two avoids 

computational redundancy and reduces noise interference. 

In addition, gating units and attention mechanisms 

naturally suppress the influence of filling regions. In 

practical applications, the data preprocessing stage 

achieves efficient processing of variable length sequences 

while maintaining model performance by 

filling/truncating uniform lengths and training with 

masking loss functions. 

For the training and deployment of the model, the 

prediction process is shown in Figure 8. After the model 

design is completed, the historical data and real-time data 

can be processed by the data preprocessing module set in 

advance. Using historical data as input data, the RUL 

prediction model is trained, and the trained model is 
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obtained. After reaching the credibility threshold, it is 

deployed into the predictive maintenance system, and the 

optimal model is used for RUL prediction. 

 
Figure 8: RUL prediction flow chart 

 

 

 

 

The credibility threshold refers to the minimum 

standard at which the predicted results are considered 

reliable. It is usually set based on historical data, model 

performance, and business requirements. This threshold 

can be measured through statistical methods to ensure that 

the predicted results are reliable within a certain range. 

Action taken based on the credibility threshold: When 

the predicted results of the model exceed the credibility 

threshold, the predicted results are considered reliable. At 

this point, the system will determine whether maintenance 

is necessary based on the predicted remaining useful life 

(RUL). If the RUL is lower than the preset maintenance 

value, the system will trigger a maintenance decision and 

arrange for equipment maintenance or replacement. If the 

predicted result does not exceed the credibility threshold, 

the system will consider the predicted result unreliable 

and may continue to monitor the data or use other models 

for further prediction until the predicted result reaches the 

credibility threshold. 

Once a maintenance decision is triggered, the system 

will automatically or manually perform maintenance 

operations, such as notifying maintenance personnel, 

generating maintenance work orders, scheduling 

equipment downtime, etc. After maintenance is completed, 

the system will perform RUL prediction again to ensure 

the normal operation of the equipment and continue to 

monitor its status. In summary, the credibility threshold 

plays a crucial role in ensuring the reliability of prediction 

results. Only when the predicted results reach the 

credibility threshold, the system will make maintenance 

decisions based on the predicted RUL and take 

corresponding actions. 

The research uses the CWRU data set provided by 

Western Reserve University, which contains rolling 

bearing vibration signals, covers normal and various fault 

states, and is suitable for fault diagnosis research. UCI 

database provided by the University of California, Irvine, 

these two data sets are suitable for algorithm research, and 

there are two industrial data sets Augury and FEMTO, 

which are closer to practical applications. 

The core reason why CWRU, UCI, Augury, and 

FEMTO datasets are widely used in equipment life 

prediction (especially RUL prediction) research is that 

they cover the key validation dimensions of equipment 

prediction and each has complementary advantages. The 

four types of datasets jointly construct a complete 

experimental chain from basic validation (CWRU) → 

feature challenge (UCI) → real-time testing (Augury) → 

life prediction limit assessment (FEMTO), covering the 

core technical bottlenecks of predictive maintenance. 

The data preprocessing methods are as follows: 

 

(1) Data segmentation and standardization 

The CWRU vibration signal needs to be sampled with a 

fixed length and normalized to the maximum and 

minimum range [0,1]. Missing values in the UCI data are 

checked and imputed using the mean, and continuous 

variables are standardized using Z-scores. The industrial 

grade dataset (Auguy/FMTO) preserves the original 

sampling rate and synchronously aligns multi-sensor 

timing data. 

 

(2) Feature Engineering and Label Generation 

Generate fault type labels for CWRU data using 0ne hot 

encoding; The UCI classification task requires label 

encoding of categorical variables and PCA dimensionality 

reduction to select the top k principal components. 

Construct RUL degradation curve by combining industrial 

dataset with equipment log annotation of fault occurrence 

time points. 

 

(3) Data augmentation and partitioning 

Adding Gaussian noise and random translation to 

enhance sample diversity in CWRU vibration signals; 

Divide the training set, validation set, and testing set in a 

ratio of 7:2:1 to ensure a balanced distribution of samples 

in each category 

 

(4). Input adaptability processing 

Reconstruct the one-dimensional vibration signal of 

CWRU into a two-dimensional matrix and adapt it to the 

input dimension of CNN BiLSTM. The industrial dataset 

requires sliding window segmentation (window length 

500 ms, weight rate 30%) to match the temporal 

requirements of the model The preprocessed data should 

meet the following criteria: 1) no missing/outlier values; 2) 

Unified feature scale; 3) Strict alignment between labels 

and sensor data: 4) Consistent distribution of training test 

set. 

When maintaining complex equipment in smart 

factories, the economic losses caused by untimely 

maintenance will be greater, and higher penalties are 
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needed for lagging maintenance, so higher penalties will 

be imposed when the prediction results are high. The 

formula for calculating score is: 
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( )f i  represents the scoring function comparing the 

predicted value and the actual value of the i-th engine, and 

id  represents the difference between the predicted value 

and the actual value of the RUL of the i-th engine. m  

represents the total number of engines. 

When 0id  , the predicted value is less than the true 

value, indicating an advanced prediction. However, when 

0id  , the test value is greater than the true value, 

indicating a lagging prediction. This function uses 

different parameters to distinguish between advanced 

prediction and lagging prediction. The importance of 

prediction in the later period of life is greater than that in 

the early period of life, that is, advanced prediction is 

conducive to timely discovery of equipment hidden 

dangers and early maintenance. 

The values of "forward prediction" and "backward 

prediction" come from the demand for prediction 

accuracy, consideration of economic losses, design of 

scoring functions, and experimental verification results. 

 

(1) Prediction accuracy requirements. 

In smart factories, equipment maintenance is crucial. 

The accuracy of prediction methods is crucial to ensure 

the efficient operation of equipment and reduce economic 

losses caused by malfunctions. 

 

(2) Economic loss considerations. 

Lag prediction (where the predicted value is greater 

than the true value) means that maintenance actions may 

be delayed, which could lead to unexpected equipment 

failures and result in greater economic losses. Therefore, 

higher penalties should be imposed on lagging 

predictions. 

This paper mainly analyzes the data training of 

AM-CNN BiLSTM in the experiment, and evaluates the 

performance parameters and prediction performance of 

the model. By comparing it with the existing models 

through comparative experiments, the effectiveness of the 

AM-CNN BiLSTM model is further verified. 

The hardware parameters are as follows: 

Video memory capacity: 24GB, used for processing 

large time-series data and high-dimensional feature 

matrices for attention mechanisms; Graphics card: 

NVIDIA RTX 3090; Memory bandwidth:>800GB/s; 

System memory: 64GB DDR4/DDR5; Solid state drive: 

NVMe SSD (≥ 5TB) 

The software environment is as follows: 

Deep learning frameworks TensorFlow 2.8/PyTorch 

1.12; CUDA toolkit: CUDA 11.8; Python: Python 3.10. 

E. Experimental Results 

Firstly, CNN is used to extract features from the 

preprocessed high-dimensional time series data. Then, the 

data after dimensionality reduction by CNN is learned 

through the BiLSTM module combined with attention 

mechanism. Through Figure 9, we can observe the error 

changes during training and verification. These graphs can 

help understand how the model performs during training, 

including whether the model is learning, whether there are 

problems with overfitting or underfitting, etc. In Figure 9, 

the curves of training set loss and test set loss are 

consistent with each other, the fluctuation is small, and the 

overall running process is stable. 

 

 
Figure 9: Loss curve diagram 

 

From the graph, it can be seen that the loss values of the 

training and testing sets gradually decrease with 

increasing iteration times, and the curves of the two are 

highly consistent with each other, with small fluctuations. 

Model learning situation: The continuous decrease in 

loss value indicates that the model is effectively learning 

and continuously optimizing its parameters to better fit the 

data. Overfitting and underfitting: As the loss curves of 

the training and testing sets are almost identical, it 

indicates that the features learned by the model on the 

training data are also applicable to the testing data, and 

there is no problem of overfitting or underfitting. 

Test set training situation: The figure does not show the 

process of the test set participating in training, and usually 

the test set is only used to evaluate model performance 

and not for training. Therefore, it can be concluded that 

these models were not trained on the test set. In summary, 

the model performs stably during the training process, 

effectively learning the features of the training data and 

maintaining good generalization ability on the test data. 

In addition to regularization methods such as random 

discard, this study also uses EarlyStopping to prevent 

overfitting, mainly by setting specific conditions. When 

the conditions are met, the model converges by default 

and ends the training. Through the divided data set, if it is 

found that the loss has not reached the expected reduction 

in several consecutive set periods during the training 

process, the training will be ended, and then the optimal 
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parameters will be saved. 

In the prediction model, some parameters of the 

network layer need to be set, such as the size and number 

of filters in the convolutional layer. For the setting of 

training options, there are also many parameters to choose 

from 

Optimized parameters include batch size, number of 

filters in the convolutional layer, number of LSTM units, 

dropout ratio, and learning rate. The values of these 

parameters are randomly selected from predefined ranges 

to find the optimal model configuration. In the training of 

comparative experiments, keras. callbacks. EarlyStopping 

is used to prevent overfitting and end the training early, 

and its parameters min - delta = 0.001 and patience = 6 are 

selected. 

 

This model adopts established parameter settings, while 

other models are set according to reasonable parameters 

set in existing research. For the CWRU dataset, as shown 

in Table 2. 

 

Table 2: Results of comparative experiment 

Models RMSE SCORE 

LSTM 22.912  840.915  

BiLSTM 21.959  758.765  

CNN-LSTM 16.040  458.067  

AM-CNN-LSTM 15.109  376.779  

AM-CNN-BIGRU 14.616  409.567  

AM-CNN-BiLSTM 13.619  305.170  

 

Group wise training and merged training are two 

differentiation strategies for multi device data processing, 

with the core difference being whether to preserve the 

individual characteristics of device data. 

Group training is the process of independently dividing 

datasets from different devices into training and testing 

sets, and building and training independent prediction 

models for each device separately. For example, if there 

are 10 types of equipment in a factory, train 10 specialized 

models, and each model only learns the degradation law 

of the corresponding equipment Similar devices may have 

significantly different sensor data distributions due to 

differences in operating conditions, loads, and aging 

levels. Grouping training can prevent noise or irrelevant 

patterns between different devices from interfering with 

the feature learning of a single device. 

Merge training is the process of mixing data from all 

devices and uniformly dividing it into a training set and a 

testing set. It trains a single universal model to learn 

common degradation patterns across devices, assuming 

that the core degradation mechanisms of similar devices 

have transferable patterns during training. Integrating data 

from multiple devices improves the diversity of training 

samples and enhances the model's generalization ability. 

Figure 10 compares several models for predicting the 

remaining lifespan of equipment and compares the 

predicted values with the standard values. The higher the 

overlap between the predicted value curve and the true 

value curve, the closer the predicted result is to the true 

value, indicating that the predictive performance of the 

model is better. 

 

 
(a) Comparison chart of prediction results of data set CWRU 



 

 

390 Informatica 49 (2025) 379–396                                                                                                                             N. Zhang et al. 

 

 

 

 
(b) Comparison chart of prediction results of data set UCI 

 
(c) Comparison chart of prediction results of data set Augury 

 
(d) Comparison chart of prediction results of data set FEMTO 

 

Figure 10: Comparison chart of prediction results 
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(a) CWRU 

  
(b) UCI 

  
(c) Augury 

 
(d) FEMTO 

Figure 11: Comparison between model predicted value and true value 

 

Table 3: Results of comparative experiment 2 

Models CWRU UCI Augury FEMTO 
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RMSE SCORE RMSE SCORE RMSE SCORE RMSE SCORE 

CNN 15.209  383.911  28.326  52230.329  17.036  1025.678  28.887  50249.783  

LSTM 18.525  664.694  28.078  28521.783  19.321  953.958  31.479  42879.917  

CNN-LSTM 14.046  366.849  29.579  59517.454  15.584  856.157  31.405  74825.994  

AM-CNN-BIGRU 15.116  525.174  30.699  74355.059  15.638  872.645  30.742  49048.923  

AM-CNN-BiLSTM 13.402  303.394  27.347  10944.704  17.300  667.815  31.326  12577.505  

 

When the parameters are not changed, Figure 10 shows 

the comparison between the predicted lifespan and the 

true value of the three prediction methods on four data sets. 

From Figure 10, we can see that most of the predicted 

RULs of this study are close to the real RULs, and a small 

number of predicted RULs have deviations, and most of 

the deviations are advanced predictions, which are less 

harmful than lagging predictions. 

The prediction accuracy of combined training is higher 

than that of grouped training, which improves the 

prediction accuracy. From the perspective of Score 

indicators, advanced prediction is achieved. 

It is verified on four data sets respectively. Comparison 

between model predicted value and true value is shown in 

Figure 11. 

The experimental results are compared with CNN, 

LSTM and some related hybrid deep learning models for 

verification. The experimental results of different 

methods can be compared and displayed in a tabular form 

to draw the final conclusion. Through such a comparison, 

it is possible to more clearly see the advantages and 

disadvantages and methods in predicting the RUL of 

turbofan engines. The results of comparative experiment 2 

is shown in Table 3. 

Table 3 shows experiments conducted on different 

models on four datasets, and introduces root mean square 

error (RMSE) based on the SCORE parameters mentioned 

earlier. RMSE is an indicator used to measure the 

prediction accuracy of the model. The smaller the RMSE 

value, the closer the model's predicted results are to the 

actual values, indicating better predictive performance. 

For example, on the CWRU dataset, the AM-CNN 

BiLSTM model has the smallest RMSE value, indicating 

that its predictive performance is optimal on this dataset. 

To further validate the performance of the model in this 

article, a multidimensional indicator system and statistical 

method system were designed to systematically verify the 

predictive performance of the AM-CNN BiLSTM model. 

First, the baseline model comparison model including 

LSTM and TCN is extended, and 5-fold cross validation is 

performed using the CWRU bearing and NASA turbine 

datasets. Secondly, seven error and correlation indicators 

such as RMSE, MAE, and R² are introduced, combined 

with F1 Score to evaluate classification ability. Finally, 

the significance of performance differences (p<0.01) was 

verified through paired t-test, supplemented by residual 

analysis and hyperparameter sensitivity testing to ensure 

the reliability of the results.  

The experimental results are shown in Table 4. 

 

Table 4: Simulation results data 

Models 
RMSE MAE R² F1-Score Training time (s) 

0.042 0.031 0.983 0.952 218 

CNN-BiLSTM 0.057 0.043 0.971 0.931 195 

Transformer 0.063 0.049 0.963 0.912 254 

 

The robustness test of the AM-CNN BiLSTM model is 

implemented through a multidimensional validation 

framework: firstly, data perturbation testing is used, 

injecting Gaussian noise of different intensities 

(σ=0.1~0.3) and randomly masking 5% -15% of the input 

data; Next, conduct architecture ablation experiments, 

Finally, through cross dataset migration testing, it was 

verified that the model needs to adjust the convolution 

kernel size to adapt to different domain features. This 

testing system comprehensively evaluates the 

performance of the model in terms of noise resistance, 

component dependency, and generalization ability, 

providing a basis for optimizing the residual correction 

module and CEEMDAN signal decomposition in the 

future. 

Table 5 is a summary of the stability test results of the 

AM-CNN BiLSTM model under moderate noise 

environment (σ ≤ 0.3). 

 

Table 5: Stability test results 

Test 

conditions 

Evaluatio
n 

indicators 

σ=0.1 
σ=0.

2 
σ=0.3 

Performance 

degradation 

rate (σ=0.2 
→ 0.3) 

Gaussian 

noise 

injection 

RMSE 0.046 
0.05

1 
0.059 15.7%↑ 

MAE 0.034 
0.03
9 

0.045 15.4%↑ 

R² 0.978 
0.97

1 
0.962 0.9%↓ 

Random 
masking 

compensati

on 

Accuracy 

rate 

95.20

% 

93.1

0% 

89.60

% 
5.9%↓ 

Cross 
dataset 

migration 

F1-Score 0.928 
0.90

5 
0.872 6.0%↓ 

The results of the ablation test are shown in Table 6. 
 

Table 6: The results of the ablation test 

Model variants Remove/Modify Components Accuracy (%) F1-Score RMSE 

Remove 

Attention 

Mechanism 

(AM) 

- 94.7 0.92 0.046 

Attention layer 89.2 0.85 0.063 

BiLSTM → Unidirectional 

LSTM 
91.5 0.88 0.051 
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Remove CNN 

convolutional 

layer 

Only retain the pooling layer 8260.00% 79.00% 7.80% 

Randomly 

initialize 

weights 

Replace pre training 

parameters 
87.3 0.83 0.069 

F. Analysis and Discussion 

In Table 3, the CNN-BiLSTM model performs best in 

most cases, with the lowest RMSE and Score values, 

especially on the CWRU and UCI datasets. This shows 

that the CNN-BiLSTM model with the introduction of the 

attention mechanism can more accurately predict the 

remaining life of complex equipment, especially when 

processing more complex or noisy data. On CWRU and 

Augury data sets, showing its powerful ability to deal with 

relatively simple data sets. Especially, on the CWRU 

dataset, its RMSE and Score are significantly better than 

other models. 

On the two more complex and more variable datasets, 

UCI and FEMTO, although the model still performs best 

on UCI, the RMSE performance on FEMTO is not the 

best, but the Score value is still the lowest. In general, its 

lower Score value and higher RMSE value on the four 

datasets indicate that in most cases, the model can greatly 

maintain the accuracy of prediction and the generalization 

of the model. 

 

In Table 4, the RMSE of AM-CNN BiLSTM is 0.042, 

which is the lowest among the three, indicating that the 

error between its predicted results and actual values is the 

smallest. The RMSE of CNN BiLSTM is 0.057, slightly 

higher than that of AM-CNN BiLSTM. The RMSE of 

Transformer is 0.063, which is the highest among the 

three, indicating that its prediction error is relatively large. 

The MAE of AM-CNN BiLSTM is 0.031, which is also 

the lowest among the three, further proving its accuracy in 

prediction. The MAE of CNN BiLSTM is 0.043. The 

MAE of Transformer is 0.049, which is relatively high. 

The R-value of AM-CNN BiLSTM is 0.983, close to 1, 

indicating a very good model fit. The R2 of CNN 

BiLSTM is 0.971, slightly lower than that of AM-CNN 

BiLSTM. The R value of Transformer is 0.963, which is 

good but slightly lower than the other two. 

The F1 Score of AM-CNN BiLSTM is 0.952, which is 

the highest among the three, indicating its excellent 

performance in balancing accuracy and recall. The F1 

Score of CNN BiLSTM is 0.931. The F1 Score of 

Transformer is 0.912, which is relatively low. 

The training time of Transformer is the longest, at 254 

seconds, which may require more computing resources 

and time. The training time of AM-CNN BiLSTM is 218 

seconds, which is relatively short. The training time of 

CNN BiLSTM is 195 seconds, which is the shortest 

among the three. 

In summary, AM-CNN BiLSTM performs evenly and 

excellently in all indicators, and is the best performer 

among these three models. 

In Table 5, when the noise intensity σ ≤ 0.2, the 

RMSE fluctuation amplitude of the model is less than 

12%, and the R2 remains above 0.97, indicating strong 

stability; When σ =0.3, the performance deteriorates 

significantly (RMSE increases by 15.7%), and EEMD 

preprocessing needs to be combined to improve noise 

resistance; The data masking compensation capability is 

superior to traditional LSTM, and the accuracy only 

decreases by 5.6% when 15% of data is missing. The test 

results demonstrate that the model has excellent 

spatiotemporal feature joint modeling ability, but exposes 

sensitivity to extreme noise (significant performance 

degradation when σ>0.3) and hyperparameter dependence 

issues. Suggest introducing adaptive noise suppression 

module and dynamic convolution kernel mechanism in 

the future to improve universality 

In Table 6, Removing AM resulted in a 5.5% decrease 

in accuracy and a 0.07% decrease in F1 Score, indicating a 

significant focusing effect on temporal features. 

Unidirectional LSTM replacement increases RMSE by 

10.9%, verifying the effectiveness of BiLSTM for 

contextual information fusion; The performance drops 

sharply after removing the convolutional layer, indicating 

that its spatial feature extraction is irreplaceable. 

Randomly initializing weights leads to model degradation, 

highlighting the importance of pre training for stability 

The ablation experiment revealed the contribution ranking 

of each module: CNN>AM>BiLSTM. It is recommended 

to prioritize enhancing the robustness of the convolutional 

kernel in subsequent optimization. 

Through comprehensive analysis, it can be seen that the 

main functions of the CNN-BiLSTM model are as 

follows:  

(1) Multi-dimensional feature extraction capability. 

Spatial feature extraction (CNN): Through convolution 

layer and pooling layer, CNN can efficiently extract local 

spatial features in sensor signals or vibration data (such as 

abnormal waveforms of equipment vibration signals), 

which is suitable for capturing microscopic morphological 

features of faults. Timing Series Feature Modeling 

(BiLSTM): BiLSTM simultaneously capture forward and 

backward timing dependencies of data, effectively 

identifying long-term degradation trends or periodic 

failure modes in equipment operating status. 

(2) Deep integration of spatiotemporal features. Joint 

modeling capability: CNN-BiLSTM deeply integrates 

spatial features (such as spatial distribution of vibration 

signals) with time series features (such as continuous 

trend of temperature changes) to improve the 

comprehensive diagnosis accuracy of complex fault 

modes. 

(3) Automated feature engineering. End-to-end 

learning: The model does not need to rely on manual 

feature engineering, and can automatically learn fault 

features directly from raw data (such as vibration signals 

and equipment currents), reducing the dependence on 

expert experience and improving generalization 

capabilities. 
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(4) Adapt to diverse data scenarios. Multi-modal data 

processing: The model supports the processing of 

structured time series data (sensor readings), unstructured 

data (equipment logs) and image data (thermal images), 

and is suitable for fault diagnosis in power systems, 

rotating machinery, industrial sensors and other fields. 

(5) Real-time and robustness. Dynamic prediction 

ability: Combined with sliding window technology, the 

model can analyze the time series data collected in real 

time (such as server temperature and current fluctuation) 

online, and realize early warning of faults (the response 

delay is less than 0.5 seconds. 

The combination of LSTM/BiLSTM+CNN achieves a 

balance between computational efficiency, 

comprehensive feature extraction, and industrial noise 

robustness through hierarchical collaboration of local 

feature abstraction (CNN), long-term dependency 

modeling (LSTM), and context enhancement (BiLSTM), 

making it the mainstream solution for equipment life 

prediction. The excluded architectures (such as 

Transformer, pure RNN) are difficult to match the core 

requirements of the task due to computational redundancy 

or incomplete functional coverage. 

The CNN-BiLSTM model shows significant 

advantages in the field of fault diagnosis through joint 

modeling of spatial-temporal series features, end-to-end 

learning mechanism, and multi-modal data compatibility. 

In particular, it performs better than a single model in 

complex industrial scenarios (such as bearing fault 

diagnosis, power equipment operation and maintenance). 

Its core value lies in balancing diagnostic accuracy and 

real-time requirements, so as to provide reliable technical 

support for predictive maintenance. 

Although this model can play an important role in 

intelligent manufacturing systems, it also has some 

limitations. First, the model’s feature extraction 

capabilities are limited: CNN has strong local feature 

extraction capabilities for time series data, but the 

modeling of global time series dependencies is 

insufficient. Although BiLSTM can capture long-term 

dependencies, it has limited ability to mine complex 

spatial features, and the combination of the two may still 

miss key fault features. In addition, CNN-BiLSTM model 

faces core limitations in fault diagnosis, such as low 

computational efficiency, high data dependence, complex 

hyperparameter tuning and insufficient long sequence 

processing ability. Although the problem can be partially 

alleviated by introducing attention mechanism or 

optimization algorithm, its underlying architectural 

limitations still need to be weighed and improved in 

combination with specific scenarios. 

The model's life prediction method for engines (based 

on CNN-LSTM/BiLSTM temporal modeling) can be 

transferred to other rotating machinery such as motors, 

pumps, fans, etc. Due to its core focus on the temporal 

degradation mode of vibration/temperature signals, such 

features are universal in industrial equipment. However, 

the following aspects need to be adjusted based on the 

data characteristics of the target machine: 

(1) Need to redesign the input channel of CNN Sensor 

type adaptation: If the monitoring parameters of the target 

machine are different (such as pressure replacing 

vibration); (2). Differences in Failure Modes: The failure 

mechanisms of different machines (such as gearbox 

peeling vs. bearing wear) may affect the long-term 

dependency modeling of LSTM and require fine-tuning of 

network depth; 

(3) Changes in noise distribution: If the operating noise 

of new equipment is more significant, it is necessary to 

enhance the masking mechanism or data augmentation 

applicability boundary. For non-temporal dependent 

faults (such as sudden circuit short circuits) or static 

equipment (such as pipeline corrosion), the effectiveness 

of this model may be limited. 

 

5   Conclusion 
Predictive maintenance is an important technology in 

the field of intelligent manufacturing. It uses data analysis, 

machine learning and other technical means to monitor 

and analyze equipment operation data in real time. By 

predicting the possibility of equipment failure or failure, 

timely maintenance and maintenance of equipment can be 

realized, thereby reducing equipment maintenance costs, 

improving equipment operation efficiency and production 

efficiency, and reducing production interruptions and 

downtime. A CNN-BiLSTM network model based on 

attention mechanism is proposed to predict RUL of 

multi-sensor devices, and its accuracy and generalization 

are verified by experiments. Combined with the analysis 

of experimental results, the model proposed has the best 

performance and shows its powerful ability in dealing 

with relatively simple data sets. In particular, its RMSE 

and Score are significantly better than other models on the 

CWRU dataset. The lower Score values and higher RMSE 

values on multiple data sets show that in most cases, the 

model can greatly maintain the prediction accuracy and 

generalization of the model. 

However, the model does not model the global time 

series dependency enough. Therefore, it needs to be 

continuously improved in combination with the timing 

algorithm in the future, and its computational efficiency 

needs to be further improved. At the same time, time 

series algorithms can be introduced and real-time 

improvements can be made in combination with specific 

scenarios, and the system model can be improved by 

combining theory with experiments. 
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