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With the continuous development of intelligent manufacturing, the maintenance strategy of equipment is
also constantly improving, and it is changing from passive maintenance to preventive maintenance and
predictive maintenance. Passive maintenance is to perform repairs after equipment fails or shuts down,
and this method requires a long downtime maintenance time, resulting in increased maintenance costs.
Therefore, this paper combines CNN and BiLSTM to propose an equipment life prediction model, so as to
carry out predictive maintenance of equipment through intelligent automation model and improve the
prediction accuracy and generalization of intelligent factory equipment RUL. By combining the efficient
feature extraction capability of CNN with the sequence data processing advantages of BiLSTM and the
weighted redistribution of attention mechanism, the model exhibits excellent performance on multiple
data sets. According to the experimental results, it can be seen the advantages of the AM-CNN BiLSTM
model are mainly reflected in its high accuracy and stability. On the CWRU dataset, the RMSE value of
this model is as low as 0.052, which is better than traditional models, and the prediction accuracy is
improved by about 47%. On the UCI dataset, its SCORE value reaches 0.963, indicating stronger
generalization ability. All in all, by combining the spatial feature extraction of CNN with the temporal
modeling of BiLSTM, and introducing attention mechanism, this model maintains stable performance
(fluctuation amplitude<5%) in multi condition data, making it particularly suitable for the analysis and
prediction of complex temporal data.

Povzetek: Predstavljen je AM-CNN-BiLSTM za napoved preostale Zivijenjske dobe opreme. Zdruzuje
CNN, BIiLSTM in pozornost, deluje v cloud-edge okolju, izboljsSa RMSE in SCORE na CWRU, UCI,

Augury, FEMTO ter zagotovi robustno, razlozljivo prediktivno vzdrzevanje.

1 Introduction

With the development of industrial Internet platform
(hereinafter referred to as “platform”) technology, it has
become a trend to use industrial Internet of Things
technology loT (Internet of Things) to solve equipment
health management problems. On the one hand, it uses the
industrial Internet platform OPC UA (OLE for Process
Control Unified Architecture) and the management shell
AAS (Asset Administration Shell) and other technologies
to uniformly encapsulate and transform industrial field
equipment protocols [1], establish standard equipment
connection and semantic transformation models, and
realize efficient connection of massive multi-source
heterogeneous equipment, thus improving the efficiency
of industrial data collection and processing. On the other
hand, the characteristics of big data storage and
calculation of industrial Internet platform are used to store
and analyze equipment design, manufacturing, and
operation data, realize real-time monitoring and early
warning analysis of key components of equipment, find
faults in advance, and reduce enterprise maintenance
costs. At the same time, the platform open sharing
technology is used to establish an interoperable interface

model to realize information sharing among different
equipment manufacturers, thus improving the equipment
management level [2].

Traditional equipment health assurance management in
the industry mainly focuses on the current technical health
status of equipment, and it is mainly based on the models
of “post-maintenance” and “planned maintenance”. With
the development of equipment health management level,
the requirements for real-time, intelligent and prediction
ability of current equipment are getting higher and higher
[3]. Traditional fault diagnosis methods based on expert
knowledge and signal processing are very effective as
initial troubleshooting. However, the disadvantage is that
there is no early warning in the later stage of the fault, and
the whole machine is shut down for maintenance due to
untimely replacement of the equipment, which brings
huge losses to the enterprise. The core feature of the
Industrial Internet is to use edge computing and cloud
computing for real-time data analysis and scheduling, and
fault diagnosis based on cloud-edge collaboration can
reduce fault costs and increase response speed. Through
the integration of big data and artificial intelligence and
other means, it provides a new enabling platform for
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online diagnosis and prediction of equipment, so as to
predict the fault of equipment health management [4]. On
the one hand, massive equipment operating condition data
is collected on the edge side. On the other hand, a fault
diagnosis and prediction model are established on the
platform side for high concurrency model training, and the
model is sent to the edge side for real-time diagnosis and
prediction, thus forming an effective data and model
collaboration and adaptation mechanism and realizing
data-driven real-time and comprehensive prediction of
equipment and its key components [5, 6].

The industrial internet platform achieves efficient
device connection and standardized data application
through technologies such as OPC UA and AAS, but there
are still some problems in the scenario of device life
prediction The sampling frequency and accuracy
differences of multi-source devices result in a large
amount of noise and missing values in the collected data,
and semantic transformation models are difficult to
completely eliminate the inconsistency of vendor defined
thresholds, which affects the reliability of prediction
inputs. The prediction models trained on specific devices
experience a significant increase in false positive rates
during cross vendor or cross model migration due to
differences in degradation mechanisms, requiring
frequent re labeling of data and fine-tuning of models,
which increases deployment costs. Massive device data
needs rapid response from the edge layer, but the
heterogeneity of industrial field protocols aggravates the
data processing delay. When edge computing resources
are limited, it is difficult to meet the timeliness
requirements of life prediction The CNN BiLSTM model
effectively compensates for the shortcomings of the
platform in life prediction by integrating spatial feature
extraction and temporal dependency modeling.

The equipment intelligent prediction model can predict
the upcoming equipment failure in real time, and provide
the relevant information of equipment parts that need to be
replaced in time before the equipment failure may occur,
so as to effectively reduce the equipment failure rate and
effectively save the equipment support management cost,
reduce the enterprise equipment operation and
maintenance cost, and realize the change of enterprise
mode from planned repair to preventive maintenance.

Combining CNN and BiLSTM to construct a device
lifespan  prediction model can leverage their
complementary advantages. CNN excels at extracting
local spatiotemporal features from raw sensor data (such
as vibration and temperature signals) and capturing
short-term abnormal patterns during device degradation.
BiLSTM models long-term temporal dependencies
through a bidirectional gating mechanism, which can trace
historical degradation trends (such as slow wear) and
correlate  potential future fault symptoms. This
combination solves the limitations of a single model - pure
CNN is difficult to model long-term degradation laws, and
pure RNN models have insufficient feature abstraction
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ability for the original signal. Therefore, end-to-end
optimization is achieved in the two key links of feature
extraction and time series prediction, significantly
improving prediction accuracy and robustness.

This paper combines CNN and BiLSTM to propose an
equipment life prediction model, so as to carry out
predictive maintenance of equipment through intelligent
automation model and improve the prediction accuracy
and generalization of intelligent factory equipment RUL.
By combining the efficient feature extraction capability of
CNN with the sequence data processing advantages of
BiLSTM and the weighted redistribution of attention
mechanism, the model exhibits excellent performance on
multiple data sets. According to the experimental results,
it can be seen that the constructed regression prediction
model is superior to other methods in terms of RMSE
index. Among them, the prediction accuracy of combined
training is higher than that of grouping training, which
improves the prediction accuracy.

2 Related works

In the equipment fault warning model, discussing
predictive  maintenance (PdM) first and then
troubleshooting is essentially following the industrial
maintenance logic loop of "monitoring — diagnosis —
disposal”. Predictive maintenance identifies equipment
anomalies in advance through real-time data analysis and
Al algorithms, providing precise targeted targets for
troubleshooting. Moreover, troubleshooting is based on
the health indicators and fault characteristics output by
PdM, implementing standardized maintenance processes.
This sequential design not only avoids the resource waste
of "blind maintenance", but also continuously optimizes
the model accuracy through the "prediction disposal
feedback" loop, forming a closed-loop management from
data perception to problem solving.

(1) Predictive maintenance

The basic principle of predictive maintenance
technology is to monitor the status of industrial equipment
in real time through various sensors, predict possible
failures of equipment, and provide accurate modification
suggestions for maintainers. Because of its predictability
and accuracy, it has attracted the research enthusiasm of
many experts, scholars and companies and factories.

Data-driven  approaches and  experience-based
approaches are similar in some ways. However, the
data-driven method does not need prior knowledge and
does not pay attention to the internal situation of the
prediction model. Compared with other methods, it is
simpler and more convenient, and once became a research
hotspot [7].

The method based on time series is relatively mature,
and the core idea of this method is to establish the time
series relationship between the performance parameters
and life of the equipment. Reference [8] used 1D-CNN
and attention mechanism to automatically separate the
trend component (low frequency) and the regenerated
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component (high frequency) in the original signal,
replacing the manual tuning of VMD decomposition;
Subsequently, a dual channel TCN BiLSTM architecture
was used to process two types of signals in parallel - TCN
captured long-term degradation trends, and BiLSTM
modeled local fluctuation features. Finally, the RUL
probability distribution is directly output by adaptively
fusing the prediction results through a learnable dynamic
weight gating unit. Reference [9] used empirical mode
decomposition and ARIMA to predict the remaining
service life of different structures in predictive
maintenance.  Timing-based  approaches  require
equipment degradation to be consistent with historical
degradation, which makes it impossible to accurately
predict failures caused by external causes. Therefore, it is
not suitable for long-term RUL prediction.

In addition, machine learning-based methods use
machine learning algorithms to model train the state data
of devices and extract key features capable of representing
degradation from them for prediction. Among many
methods, Recurrent Neural Network (RNN) is famous for
its excellent time series information acquisition ability,
and methods based on recurrent neural network are widely
recognized. However, RNN has some problems such as
gradient disappearance, low computational efficiency,
difficulty in parallelization, and long-term dependency,
which limit its use in various application scenarios.
Reference [10] used spatial correlation and temporal
attention mechanism methods to enhance the information
extraction ability of variant long and short-term memory
networks of RNN, and finally used fully connected
networks to predict aero-engine RUL. Reference [11]
successfully fused LSTM network with traditional neural
network to adaptively extract features from data and
predict them. Reference [12] used GRU network to extract
time series features from data, and combined the
remaining life prediction model to realize the accurate
prediction of engine life. Furthermore, reference [13]
proposed a dual attention mechanism that uses GRU to
predict aero-engine RUL, which combines domain
knowledge with the training process of deep learning
model to improve the prediction accuracy;

Reference [14] proposed a simple system health
management architecture, and reviewed and summarized
the applications of autoencoders. Reference [15]
systematically summarized the existing literature on
bearing fault diagnosis using machine learning (ML) and
data mining techniques. Reference [16] comprehensively
reviewed the application of artificial intelligence
algorithm in fault diagnosis of rotating machinery from
the perspective of theory and industrial application. In
addition, there are also several papers focused on failure
prediction.

(2) Troubleshooting

Reference [17] used an improved threshold adaptive
deep belief network for feature extraction and fault
classification. Convolutional neural networks extract
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features from input data through convolution operations,
abstracting data representations layer by layer to
recognize patterns and features.

In reference [18], the fault image is input into a
two-dimensional densely  connected expanded
convolutional neural network for training and testing.
Moreover, the generator is trained to generate forged data
through adversarial training, so that its fidelity is
constantly improved. Reference [19] proposed an
adaptive feature fusion-assisted generative adversarial
network, which can use a very limited number of samples
for data enhancement and realize fault diagnosis under
unbalanced samples. Recurrent neural network is a
sequence-based neural network structure, which is often
used to process and predict sequence data of arbitrary
length. Deep learning networks similar to RNN include
Long Short-Term Memory Networks (LSTM) and Gated
Recurrent Unit (GRU). Aiming at the problem that
equipment faults cannot be found in time, reference [20]
proposed a fault prediction method based on LSTM to
predict fault trends in advance. Reference [21] applied
wavelet transforms and GRU to predict the sudden failure
of manufacturing system. In addition, autoencoder is a
typical feedforward unsupervised neural network, and it
learns the compact representation (encoding) of data, and
then reconstructs the original data from the encoding to
achieve the purpose of data dimension reduction and
denoising.

The summary of the research status is shown in Table 1.

The AM-CNN BiLSTM network model has significant
advantages compared to existing research: by combining
the spatial feature extraction ability of convolutional
neural networks (CNN), the bidirectional temporal
modeling advantage of bidirectional long short-term
memory networks (BiLSTM), and the key information
focusing function of attention mechanisms, this model can
simultaneously capture local spatial correlations and
long-term temporal dependencies of multi-sensor data,
effectively solving the problems of traditional temporal
methods relying on historical degradation consistency,
RNN/LSTM gradient disappearance, and unidirectional
information flow limitations, as well as the lack of
dynamic weighting of key features in existing methods. It
has higher accuracy, generalization, and interpretability in
fault prediction of complex industrial equipment,
providing a more reliable end-to-end solution for
predictive maintenance.

Table 1: Summary of research status

Core
Technologies/Feature
S

Representative

Technology Main limitations

Variational Mode
Decomposition+P
article

Filtering+tARIMA

Decompose degraded
signals and
superimpose
predicted results

Relying on historical
degradation consistency

Decompose  signals | Not
with different
structures for
prediction

applicable  for
long-term fault
prediction caused by
external factors

Empirical Mode
Decomposition+
ARIMA
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LSTM+time Enhance the ability to -

. Unidirectional
attention extract temporal | . .

- - . information flow

mechanism information

+ . .
LSTM+traditional Adaptive feature | Low parallel computing
neural  network . ..
fusion extraction efficiency

Combining temporal

GRU+Remaining | feature extraction | Lack of key information

Lifespan Model with lifespan | focusing mechanism
prediction

Double Attention Integrating _domaln Unsolved spatial feature
knowledge with deep .

GRU - extraction problem
learning

CWT+2D Dense | Convert vibration . .

- : . . High computational

Connection signals into images complexit

Expansion CNN for feature extraction plexity
Small sample data

Adaptive Feature | augmentation; Weak interpretability of

Fusion GAN Resolve sample | fault prediction
imbalance

The CNN BIiLSTM model is a typical data-driven
method that automatically learns features directly from
raw sensor data (such as vibration waveforms and
temperature curves) without the need for experts to define
failure thresholds, which conforms to the essential
property of data-driven methods that do not pre-set
physical models. For example, BiLSTM automatically
captures the temporal degradation patterns of bearing
wear through a gating mechanism, rather than relying on
manually summarized fault trees. At present, most of the
research on fault diagnosis and prediction of intelligent
manufacturing equipment is based on mechanism and
traditional machine learning methods, but there is little
research on predictive diagnosis and prediction. Therefore,
according to the actual engineering needs, this paper
carries out the research on fault diagnosis and prediction
of smart devices based on CNN-BILSTM.

3 Research on CNN-BILSTM
equipment life prediction based on
attention mechanism

The key technology of predictive maintenance, as an
important means to ensure the safe operation of
equipment and the continuity of production, has attracted
much attention. Accurately predicting the RUL of
equipment is of great significance for reasonably
arranging maintenance plans and reducing production
risks. In this paper, an improved CNN-BiLSTM method
based on attention mechanism is proposed.

A CNN-BILSTM network model based on attention
mechanism is proposed to predict RUL of multi-sensor
devices, and its accuracy and generalization are verified
by experiments.

A. CNN-BIiLSTM Prediction Model Based on Attention
Mechanism

CNN Model and Feature Extraction Principle
The working environment of intelligent factory
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equipment is complex and changeable, and it has a large
number of sensors. This topic firstly uses CNN device
data for feature extraction, and CNN can effectively
extract multi-dimensional features through its convolution
layer and pooling layer. Meanwhile, the two-layer CNN
structure is adopted in this study, as shown in Figure 1.

(1) Double layer CNN structure; The intelligent factory
equipment has a large amount of data and redundancy.
The double-layer CNN structure can further extract
multi-layer features, enhance the expression ability of the
model, capture deeper level features, and improve the
accuracy of feature extraction.

(2) 1x3 convolution kernel: Considering that sensor
data may have time series characteristics, 1x3 convolution
kernels help capture these local features. By performing
convolution operations on the input data through sliding
windows, important features in the data are automatically
learned.

(3) MaxPooling:  MaxPooling  reduces the
dimensionality and computational complexity of data by
taking the maximum value within a local region, while
preventing overfitting, preserving the most important
features, and reducing noise interference.

(4) ReLU activation function: The ReLU function
introduces nonlinearity, allowing the model to learn more
complex features, with simple calculations and effective
solutions to gradient vanishing problems, improving
training speed and enhancing the model's expressive
power. In summary, these choices and designs aim to
effectively address the complexity of smart factory
equipment data, improve the accuracy of feature
extraction, and enhance the generalization ability of the
model.

Convolution
layer

Pool Convolution

Pool layer
layer layer -

Input
layer

Figure 1: Double-layer CNN network structure

Its convolutional layer output is:

y ) = byl 2 3 I (1)
In the formula, ,'("') represents the local sequence r of

the j-th convolution calculation in the I-th layer, y'(")
represents the j-th weight of the i-th convolution kernel in
the I-th layer, * represents the convolution operator, W
represents the convolution operator, and K| represents
the length of the coverage area signal in one-dimensional
convolution.

Then, the ReLU activation function pair is used to
process:

Flattening



Remaining Useful Life Prediction in Smart Manufacturing Systems. ..

a'l = f(y'(”)) = max{O, y'(i‘j)} )
In the formula, y'*) represents the function to be

activated, o'0") represents the result of y'()) after being

processed by the activation function, f represents the
activation function.

After that, it is necessary to perform feature
dimensionality reduction on '™ through the pooling

layer. In this topic, the maximum pooling method is used
and the following settings are made:

I(it) _ I(i.t)
p'*Y = max_ {a"] )

In the formula, g'™ represents the output activation

value of the tth neuron of the ith feature in the Ith layer,
and V represents the pooling width.

Principle of LSTM and BiLSTM Model

The preprocessing of sensor data input into LSTM
mainly includes: data cleaning (filling in missing values,
removing outliers), normalization/normalization
processing (eliminating dimensional differences), feature
engineering (deriving time features, constructing lag
features, and sliding statistics), and finally converting the
data into a three-dimensional structure through sliding
window segmentation (number of samples x time step x
number of features), and dividing it into training
set/validation set/test set. This process ensures that the
data meets the requirements of LSTM for modeling
temporal dependencies, while enhancing the model's
ability to capture periodic and burst patterns.

At time t, the LSTM layer structure provides a rich
internal state through the cell state ¢, and hidden state h,,

as well as a variety of gate mechanisms. During the
training phase, the constructed LSTM uses sensor
measurement sequences X, to determine whether the
true value of RUL (remaining service life) belongs to a
certain time window.

The operation of the LSTM unit can be summarized by
the following formula. The structure of the LSTM model
is shown in Figure 2.

ht

- X o+ + tanh
¥ .
+ X + X
*
[ G tank o
Xt

Figure 2: Structure diagram of LSTM model

First, we need to determine which long-term memories
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controlled by the forget gate f, can be forgotten:

f,=o(Wh_ +U X, +b;) )
In the formula, f, represents the forget gate, o

represents the sigmoid function, W; and U; represent

the weight matrices of the forget gate in the input and
hidden states, respectively, represents the weight matrix

of the forget gate, h_, represents the hidden state at the
previous moment, X; represents the input data at the

current moment, and b; represents the bias of the forget

gate.

The input gate then decides what information to get
from the input and decides which parts should be stored
into the cell state:

g, = tanh(Wght_1 +U, X, +bg) (5)
it :G(\Nihtfl"'uixt +b|) (6)
In the formula, i, represents the input gate, g,

represents the candidate unit state, tanh represents the
hyperbolic tangent function, Wyand U, represents the
weight matrices of candidate cell states in the input layer
and hidden layer, respectively .W, represents the weight
matrices of candidate cell states in the input layer and
hidden layer, respectively , W, and U; A and B represent
the weight matrices of the input and hidden candidate unit
states, respectively, and b, and b, represent the bias of
the input gate and the candidate unit state, respectively.

C=C.® ft +0; ®it (7)
C, represents the updated unit state.
Updated the output gate:

o =o(W,h_, +U X, +b,)) (8)
h =0, ®tanh(C,) ©)
0, represents the output gate, h, represents the hidden
state at the current moment, W, and U, respectively
represent the weight matrices of the input and hidden state
output gates. b, represents the bias of the output gate, and
® represents element-by-element multiplication.

The BiLSTM model contains two independent LSTM
layers. Figure 3 is a schematic diagram of the BiLSTM.
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Figure 3: BILSTM schematic diagram

Input

Forward LSTM layer: It processes the input sequence
in the normal order of the time series. Its hidden layer state
(recorded as h, — h ) and memory cell state (recorded as
C, — C,) are updated from the beginning of the sequence
to the end of the sequence.

The hidden layer state (recorded as h, —h,) and the
memory unit state (recorded as C, = C,) of the reverse
LSTM layer are updated from the end of the sequence to
the beginning of the sequence.

At each time point t, the hidden states h, and h, of the
forward LSTM layer and the reverse LSTM layer are
combined to form the total hidden state h at that

moment. This total hidden state h, combines past and

future information and can be used for subsequent
sequence modeling tasks, such as remaining life
prediction.

The mathematical expression of the BILSTM model is
similar to that of LSTM, but each time step includes
information updates in two directions. The process of
updating the network involves the following formula:

R =LST™ (x.h, ) (10)
h =LSTM (Z, th)) (11)
Yo =W, [k J+b, (12)

h, represents the output of the forward layer, h,

represents the output of the reverse layer, Y, represents
the combined output of the two layers, W, represents the
weight of the output layer, b, represents the bias of the

output layer, [] represents the connection operation.

Attention Mechanisms

Long sequence data may lead to loss of earlier
information. The attention mechanism can imitate human
beings to focus their attention on some key areas.
Therefore, BILSTM with attention mechanism is
introduced. This process can re-assign weights to different
features, helping to focus attention on key features and
key information, and can use historical information more
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effectively to generate output at each time step.
This paper considers a simple attention model:
Scoring: First, the model computes a “scoring” function
to measure the importance of each input. For example, if

the input here is a series of vectors X, X,---,X;, acommon
scoring function is to use a trainable weight vector @ and
calculate the dot product of each X; with @ .

Score(x )= f (x.,0) (13)
In the formula, Score(x;) represents the score of the

i-th input, f( ) represents the scoring function, X,

represents the input vector, and € represents the trainable
parameter.

Normalization: Next, use the softmax function to
normalize these scores so that their sum is 1, which can be
used as weights.

Score(x;)

%= > i*score(x; )

In the formula, «; represents the normalized weight,

(14)

€, represents the score of the i-th input, and N represents

the total number of inputs.
Weighted Sum: Finally, the normalized score is used to
weighted and sum the input to obtain the final attention

output.
Attention(a) =

in:1 X (15)

In the formula, Attention(«) represents the final

attention output.

Attention mechanism enables neural networks to
process information more effectively by imitating human
attention distribution, so it is widely used in various fields
and has achieved remarkable results in various tasks. Its
flexibility and efficiency make it a hot topic in current
deep learning research.

B. RUL Prediction Model Based on AM-CNN-BIiLSTM

The proposed RUL prediction model incorporates a
series of deep learning techniques to efficiently process
time series data. As shown in Figure 4, the arrows in the
figure represent the direction of data flow in the neural
network model, the model first extracts the
multi-dimensional features of the input data through the
convolutional layer. Then, the subsequent max-pooling
layer further reduces the feature dimension and simplifies
the network computation. Next, the second convolution
layer and maximum pooling layer have 128 filters and
similar pooling strategies respectively, which further
enhance the feature extraction of data. In addition, a Time
Distributed layer is also embedded in the network to
flatten the data in preparation for the next BiLSTM. The
BiLSTM layer combines two LSTM layers with 128 units
in each direction, which can capture long-term
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dependencies in the data. In addition, by introducing a
custom attention mechanism, the model is able to focus on
the information of key time steps. Finally, after a fully
connected layer and a Dropout layer processing, the
model generates the final RUL prediction value through
another fully connected output layer of a single neuron,
and the output layer adopts a linear activation function.

Dropout layer, as a regularization technique, mainly
plays a role in preventing overfitting and improving
generalization ability in the model.

Preventing overfitting: During the training phase, some
neurons in the fully connected layer are randomly output
to zero with a preset probability, forcing the network to
not rely on specific neurons and avoiding excessive
memory of training data noise. By dynamically cutting off
fixed dependencies between neurons, each neuron is
forced to learn robust features independently, reducing the
sensitivity of the model to local features.

Improving generalization ability: Each training
iteration is equivalent to training a random sub network,
and the final model can be viewed as a weighted ensemble
of multiple sub networks, enhancing its adaptability to test
data. Combined with a custom attention mechanism,
Dropout can further enhance the model's ability to filter
key time steps and avoid interference from irrelevant time
steps.

In addition, Dropout can also play a role in training
optimization. The neuron outputs retained during training
will be scaled to maintain the expected consistency of the
overall activation value during the testing phase.
Compared with traditional ensemble methods, Dropout
only requires single network training to achieve similar
effects, significantly reducing computational costs.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

layer layer

I WISTId

RUL

Jake] doi(g
1 1oKe] asua(]

AM-BILSTM

Figure 4: RUL prediction model based on
AM-CNN-BIiLSTM

The overall framework of explainable fault prediction
methods is shown in Figure 5.
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Figure 5: The overall framework of explainable fault

prediction methods

Stage 1: A suitable neural network model is selected as
the prediction network to accurately predict the remaining
service life of the equipment.

Stage 2: By constructing an interpretation network, the
mapping relationship between the internal nodes of the
prediction network and the underlying events is
established to represent the state of the device. The
activation state of the predicted network nodes is used to
determine whether the underlying event has occurred,
thereby extracting knowledge from the input data.

Phase 3: The state of the device and its components is
inferred by combining the underlying events. This
inference can be presented in the form of natural language
descriptions and intuitive graphs, providing multiple
explanations for the prediction results.

C. Cloud-edge Collaborative Real-time Online
Diagnosis

In the industrial Internet platform, it is necessary to
solve the problems of different manufacturers, different
standards, and different types of industrial equipment data
connection, multiple types of industrial data aggregation
and integration,  equipment  connection  and

|| interoperability, equipment real-time processing and edge

computing technology.

The prediction models trained on specific devices
experience a significant increase in false positive rates
during cross vendor or cross model migration due to
differences in degradation mechanisms, requiring
frequent re labeling of data and fine-tuning of models,
which increases deployment costs massive device data
needs rapid response from the edge layer, but the
heterogeneity of industrial field protocols aggravates the
data processing delay. When edge computing resources
are limited, it is difficult to meet the timeliness
requirements of life prediction The CNN BiLSTM model
effectively compensates for the shortcomings of the
platform in life prediction by integrating spatial feature
extraction and temporal dependency modeling.

At the cloud platform level, a series of technical issues
need to be addressed, including the operation and
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management of massive cloud-native applications,
storage and management of massive data, health
prediction of key equipment components based on big
data, online real-time diagnosis of equipment failures in
cloud-edge collaboration, equipment data sharing and
collaboration, new generation industrial application
development technology, and the application of digital
twins and data mainlines. It involves six key technologies,
as shown in Figure 6.

R ——
: Application
| layer

New generation equipment health application development and
operation technology

| Online real time fault diagnosis
| Cloud technology of equipment based
| o on cloud edge cooperation

| platform

: layer

Health prediction technology of
equipment key components
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Massive equipment health big data storage and management
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! Device connection and Interoperability Technology Based on
management shell

Multi source heterogeneous device acquisition and edge computing
technology

Figure 6: Key technologies of equipment health
management based on industrial Internet

Edge storage devices can process massive private
information data in real time, effectively reduce system
energy consumption, and meet the various needs of
traditional ~ cloud computing. The  cloud-edge
collaboration framework based on the industrial Internet
platform is shown in Figure 7. On the cloud platform, the
main task is to use the advantages of abundant computing
resources to conduct large-scale sample training. By
making full use of the rich training sample data, storage
and computing resources in the cloud, equipment fault
diagnosis and prediction models can be trained and
updated in real time and continuously, thereby training a
universal diagnostic model. Therefore, this general model
can be applied to a variety of different diagnostic
scenarios. Finally, the trained model will be transferred
from the cloud to the edge device.
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Figure 7: Cloud-edge collaboration mechanism

4 Prediction process and
experimental design

D. Methods

In order to realize fault prediction, it is usually
necessary to continuously monitor the environment, the
physical state of each equipment component, and sensor
data. Then, the running data collected by the acquisition
equipment is input into the selected appropriate fault
prediction model, the development trend of the equipment
state is analyzed.

Although LSTM and GRU cannot directly handle
variable length sequences, their collaborative application
of dynamic computation (such as dynamic RNN skipping
padding) and masking techniques (such as Masking layer
filtering invalid positions) effectively solves this problem.
The dynamic calculation adjusts the operation step size
based on the actual length of the sequence, while the
masking mechanism prevents the filler from participating
in gradient updates. The combination of the two avoids
computational redundancy and reduces noise interference.
In addition, gating units and attention mechanisms
naturally suppress the influence of filling regions. In
practical applications, the data preprocessing stage
achieves efficient processing of variable length sequences
while maintaining model performance by
filling/truncating uniform lengths and training with
masking loss functions.

For the training and deployment of the model, the
prediction process is shown in Figure 8. After the model
design is completed, the historical data and real-time data
can be processed by the data preprocessing module set in
advance. Using historical data as input data, the RUL
prediction model is trained, and the trained model is
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obtained. After reaching the credibility threshold, it is
deployed into the predictive maintenance system, and the
optimal model is used for RUL prediction.
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Figure 8: RUL prediction flow chart

The credibility threshold refers to the minimum
standard at which the predicted results are considered
reliable. It is usually set based on historical data, model
performance, and business requirements. This threshold
can be measured through statistical methods to ensure that
the predicted results are reliable within a certain range.

Action taken based on the credibility threshold: When
the predicted results of the model exceed the credibility
threshold, the predicted results are considered reliable. At
this point, the system will determine whether maintenance
is necessary based on the predicted remaining useful life
(RUL). If the RUL is lower than the preset maintenance
value, the system will trigger a maintenance decision and
arrange for equipment maintenance or replacement. If the
predicted result does not exceed the credibility threshold,
the system will consider the predicted result unreliable
and may continue to monitor the data or use other models
for further prediction until the predicted result reaches the
credibility threshold.

Once a maintenance decision is triggered, the system
will automatically or manually perform maintenance
operations, such as notifying maintenance personnel,
generating maintenance work orders, scheduling
equipment downtime, etc. After maintenance is completed,
the system will perform RUL prediction again to ensure
the normal operation of the equipment and continue to
monitor its status. In summary, the credibility threshold
plays a crucial role in ensuring the reliability of prediction
results. Only when the predicted results reach the
credibility threshold, the system will make maintenance
decisions based on the predicted RUL and take
corresponding actions.

The research uses the CWRU data set provided by
Western Reserve University, which contains rolling
bearing vibration signals, covers normal and various fault
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states, and is suitable for fault diagnosis research. UCI
database provided by the University of California, Irving,
these two data sets are suitable for algorithm research, and
there are two industrial data sets Augury and FEMTO,
which are closer to practical applications.

The core reason why CWRU, UCI, Augury, and
FEMTO datasets are widely used in equipment life
prediction (especially RUL prediction) research is that
they cover the key validation dimensions of equipment
prediction and each has complementary advantages. The
four types of datasets jointly construct a complete
experimental chain from basic validation (CWRU) —
feature challenge (UCI) — real-time testing (Augury) —
life prediction limit assessment (FEMTO), covering the
core technical bottlenecks of predictive maintenance.

The data preprocessing methods are as follows:

(1) Data segmentation and standardization

The CWRU vibration signal needs to be sampled with a
fixed length and normalized to the maximum and
minimum range [0,1]. Missing values in the UCI data are
checked and imputed using the mean, and continuous
variables are standardized using Z-scores. The industrial
grade dataset (Auguy/FMTQO) preserves the original
sampling rate and synchronously aligns multi-sensor
timing data.

(2) Feature Engineering and Label Generation

Generate fault type labels for CWRU data using One hot
encoding; The UCI classification task requires label
encoding of categorical variables and PCA dimensionality
reduction to select the top k principal components.
Construct RUL degradation curve by combining industrial
dataset with equipment log annotation of fault occurrence
time points.

(3) Data augmentation and partitioning

Adding Gaussian noise and random translation to
enhance sample diversity in CWRU vibration signals;
Divide the training set, validation set, and testing set in a
ratio of 7:2:1 to ensure a balanced distribution of samples
in each category

(4). Input adaptability processing

Reconstruct the one-dimensional vibration signal of
CWRU into a two-dimensional matrix and adapt it to the
input dimension of CNN BiLSTM. The industrial dataset
requires sliding window segmentation (window length
500 ms, weight rate 30%) to match the temporal
requirements of the model The preprocessed data should
meet the following criteria: 1) no missing/outlier values; 2)
Unified feature scale; 3) Strict alignment between labels
and sensor data: 4) Consistent distribution of training test
set.

When maintaining complex equipment in smart
factories, the economic losses caused by untimely
maintenance will be greater, and higher penalties are
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needed for lagging maintenance, so higher penalties will
be imposed when the prediction results are high. The
formula for calculating score is:

iy
13 d 0
Score=» " f(i)= ed (d <0)

i (16)
e (d,20)

f(i) represents the scoring function comparing the

predicted value and the actual value of the i-th engine, and
d; represents the difference between the predicted value

and the actual value of the RUL of the i-th engine. M
represents the total number of engines.

When d; <0, the predicted value is less than the true
value, indicating an advanced prediction. However, when
d, >0, the test value is greater than the true value,
indicating a lagging prediction. This function uses
different parameters to distinguish between advanced
prediction and lagging prediction. The importance of
prediction in the later period of life is greater than that in
the early period of life, that is, advanced prediction is
conducive to timely discovery of equipment hidden
dangers and early maintenance.

The values of "forward prediction" and "backward
prediction" come from the demand for prediction
accuracy, consideration of economic losses, design of
scoring functions, and experimental verification results.

(1) Prediction accuracy requirements.

In smart factories, equipment maintenance is crucial.
The accuracy of prediction methods is crucial to ensure
the efficient operation of equipment and reduce economic
losses caused by malfunctions.

(2) Economic loss considerations.

Lag prediction (where the predicted value is greater
than the true value) means that maintenance actions may
be delayed, which could lead to unexpected equipment
failures and result in greater economic losses. Therefore,
higher penalties should be imposed on lagging
predictions.

This paper mainly analyzes the data training of
AM-CNN BILSTM in the experiment, and evaluates the
performance parameters and prediction performance of
the model. By comparing it with the existing models
through comparative experiments, the effectiveness of the
AM-CNN BIiLSTM model is further verified.

The hardware parameters are as follows:

Video memory capacity: 24GB, used for processing
large time-series data and high-dimensional feature
matrices for attention mechanisms; Graphics card:
NVIDIA RTX 3090; Memory bandwidth:>800GBY/s;
System memory: 64GB DDR4/DDRS5; Solid state drive:
NVMe SSD (>5TB)

The software environment is as follows:

Deep learning frameworks TensorFlow 2.8/PyTorch
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1.12; CUDA toolkit: CUDA 11.8; Python: Python 3.10.

E. Experimental Results

Firstly, CNN is used to extract features from the
preprocessed high-dimensional time series data. Then, the
data after dimensionality reduction by CNN is learned
through the BiLSTM module combined with attention
mechanism. Through Figure 9, we can observe the error
changes during training and verification. These graphs can
help understand how the model performs during training,
including whether the model is learning, whether there are
problems with overfitting or underfitting, etc. In Figure 9,
the curves of training set loss and test set loss are
consistent with each other, the fluctuation is small, and the
overall running process is stable.
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Figure 9: Loss curve diagram

From the graph, it can be seen that the loss values of the
training and testing sets gradually decrease with
increasing iteration times, and the curves of the two are
highly consistent with each other, with small fluctuations.

Model learning situation: The continuous decrease in
loss value indicates that the model is effectively learning
and continuously optimizing its parameters to better fit the
data. Overfitting and underfitting: As the loss curves of
the training and testing sets are almost identical, it
indicates that the features learned by the model on the
training data are also applicable to the testing data, and
there is no problem of overfitting or underfitting.

Test set training situation: The figure does not show the
process of the test set participating in training, and usually
the test set is only used to evaluate model performance
and not for training. Therefore, it can be concluded that
these models were not trained on the test set. In summary,
the model performs stably during the training process,
effectively learning the features of the training data and
maintaining good generalization ability on the test data.

In addition to regularization methods such as random
discard, this study also uses EarlyStopping to prevent
overfitting, mainly by setting specific conditions. When
the conditions are met, the model converges by default
and ends the training. Through the divided data set, if it is
found that the loss has not reached the expected reduction
in several consecutive set periods during the training
process, the training will be ended, and then the optimal
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parameters will be saved.

In the prediction model, some parameters of the
network layer need to be set, such as the size and number
of filters in the convolutional layer. For the setting of
training options, there are also many parameters to choose
from

Optimized parameters include batch size, number of
filters in the convolutional layer, number of LSTM units,
dropout ratio, and learning rate. The values of these
parameters are randomly selected from predefined ranges
to find the optimal model configuration. In the training of
comparative experiments, keras. callbacks. EarlyStopping
is used to prevent overfitting and end the training early,
and its parameters min - delta = 0.001 and patience = 6 are
selected.

This model adopts established parameter settings, while
other models are set according to reasonable parameters
set in existing research. For the CWRU dataset, as shown
in Table 2.

Table 2: Results of comparative experiment
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Group wise training and merged training are two
differentiation strategies for multi device data processing,
with the core difference being whether to preserve the
individual characteristics of device data.

Group training is the process of independently dividing
datasets from different devices into training and testing
sets, and building and training independent prediction
models for each device separately. For example, if there
are 10 types of equipment in a factory, train 10 specialized
models, and each model only learns the degradation law
of the corresponding equipment Similar devices may have
significantly different sensor data distributions due to
differences in operating conditions, loads, and aging
levels. Grouping training can prevent noise or irrelevant
patterns between different devices from interfering with
the feature learning of a single device.

Merge training is the process of mixing data from all
devices and uniformly dividing it into a training set and a
testing set. It trains a single universal model to learn
common degradation patterns across devices, assuming
that the core degradation mechanisms of similar devices
have transferable patterns during training. Integrating data

Models RMSE SCORE from multiple devices improves the diversity of training
LSTM 22912 840.915 samples and enhances the model's generalization ability.
BILSTM 21.959 758.765 Flgu_re 10.compares severz_all models for predicting the
CNNLSTM 16,040 458,067 remaining I|fespar_1 of equipment and compares the
AM.CNNLSTM 15,100 376.779 predicted values with the standard values. The higher the
~ i i overlap between the predicted value curve and the true
AM-CNN-BIGRU 14.616 409.567 value curve, the closer the predicted result is to the true
AM-CNN-BILSTM 13.619 305.170 value, indicating that the predictive performance of the
model is better.
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Figure 10: Comparison chart of prediction results
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Table 3: Results of comparative experiment 2

Models CWRU | ucl | Augury FEMTO
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RMSE | SCORE | RMSE | SCORE | RMSE | SCORE | RMSE | SCORE
CNN 15.209 | 383.911 | 28.326 | 52230.329 | 17.036 | 1025.678 | 28.887 | 50249.783
LSTM 18.525 | 664.694 | 28.078 | 28521.783 | 19.321 | 953.958 | 31.479 | 42879.917
CNN-LSTM 14.046 | 366.849 | 29.579 | 59517.454 | 15.584 | 856.157 | 31.405 | 74825.994
AM-CNN-BIGRU | 15.116 | 525.174 | 30.699 | 74355.059 | 15.638 | 872.645 | 30.742 | 49048.923
AM-CNN-BILSTM | 13.402 | 303.394 | 27.347 | 10944.704 | 17.300 | 667.815 | 31.326 | 12577.505
When the parameters are not changed, Figure 10 shows
the comparison between the predicted lifespan and the Table 4: Simulation results data
true value of the three prediction methods on four data sets. RMSE | MAE | R? | F1-Score | Training time (s)
From Figure 10, we can see that most of the predicted Models 0.042 | 0.031 | 0.983 0.952 218
RULSs of this study are close to the real RULs, and asmall [~ -850 o™ o1 T or o oa 195
number of predicted RULs have deviations, and most of
the deviations are advanced predictions, which are less [ Transformer | 0063 | 0.049 | 0.963 | 0912 | 254

harmful than lagging predictions.

The prediction accuracy of combined training is higher
than that of grouped training, which improves the
prediction accuracy. From the perspective of Score
indicators, advanced prediction is achieved.

It is verified on four data sets respectively. Comparison
between model predicted value and true value is shown in
Figure 11.

The experimental results are compared with CNN,
LSTM and some related hybrid deep learning models for
verification. The experimental results of different
methods can be compared and displayed in a tabular form
to draw the final conclusion. Through such a comparison,
it is possible to more clearly see the advantages and
disadvantages and methods in predicting the RUL of
turbofan engines. The results of comparative experiment 2
is shown in Table 3.

Table 3 shows experiments conducted on different
models on four datasets, and introduces root mean square
error (RMSE) based on the SCORE parameters mentioned
earlier. RMSE is an indicator used to measure the
prediction accuracy of the model. The smaller the RMSE
value, the closer the model's predicted results are to the
actual values, indicating better predictive performance.
For example, on the CWRU dataset, the AM-CNN
BiLSTM model has the smallest RMSE value, indicating
that its predictive performance is optimal on this dataset.

To further validate the performance of the model in this
article, a multidimensional indicator system and statistical
method system were designed to systematically verify the
predictive performance of the AM-CNN BiLSTM model.
First, the baseline model comparison model including
LSTM and TCN is extended, and 5-fold cross validation is
performed using the CWRU bearing and NASA turbine
datasets. Secondly, seven error and correlation indicators
such as RMSE, MAE, and R? are introduced, combined
with F1 Score to evaluate classification ability. Finally,
the significance of performance differences (p<0.01) was
verified through paired t-test, supplemented by residual
analysis and hyperparameter sensitivity testing to ensure
the reliability of the results.

The experimental results are shown in Table 4.

The robustness test of the AM-CNN BiLSTM model is
implemented through a multidimensional validation
framework: firstly, data perturbation testing is used,
injecting Gaussian noise of different intensities
(6=0.1~0.3) and randomly masking 5% -15% of the input
data; Next, conduct architecture ablation experiments,
Finally, through cross dataset migration testing, it was
verified that the model needs to adjust the convolution
kernel size to adapt to different domain features. This
testing  system  comprehensively  evaluates the
performance of the model in terms of noise resistance,
component dependency, and generalization ability,
providing a basis for optimizing the residual correction
module and CEEMDAN signal decomposition in the
future.

Table 5 is a summary of the stability test results of the
AM-CNN BILSTM model under moderate noise
environment (o < 0.3).

Table 5: Stability test results

Evaluatio Performa_nce
Test _ o=0. _ degradation
conditions | . . 0=0.1 2 =03 rate (6=0.2
indicators
— 0.3)
RMSE | 0046 | 0% | 0050 | 15.7%1
Gaussian 0.03
noise MAE 0.034 9' 0.045 | 15.4%7
injection 097
R2 0.978 1' 0.962 | 0.9%]
Random
masking Accuracy | 95.20 93.1 | 89.60 5.9%)
compensati | rate % 0% | % e
on
Cross 0.90
dataset F1-Score 0.928 5' 0.872 | 6.0%)]
migration

The results of the ablation test are shown in Table 6.

Table 6: The results of the ablation test

LSTM

Model variants | Remove/Modify Components | Accuracy (%) | F1-Score | RMSE
Remove 94.7 0.92 0.046
Attention Attention layer 89.2 0.85 0.063
Mechanism _ —

(AM) BiLSTM — Unidirectional 915 088 0.051
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RMSE fluctuation amplitude of the model is less than

"8 6, and the R2 remains above 0.97, indicating strong

Remove CNN

convolutional Only retain the pooling layer 8260.00% 79.00%

layer

Randomly Replace pre training

initialize 87.3 0.83 0.069,
weights parameters

stability; When o =0.3, the performance deteriorates
sigpificantly (RMSE increases by 15.7%), and EEMD

F. Analysis and Discussion

In Table 3, the CNN-BiLSTM model performs best in
most cases, with the lowest RMSE and Score values,
especially on the CWRU and UCI datasets. This shows
that the CNN-BiLSTM model with the introduction of the
attention mechanism can more accurately predict the
remaining life of complex equipment, especially when
processing more complex or noisy data. On CWRU and
Augury data sets, showing its powerful ability to deal with
relatively simple data sets. Especially, on the CWRU
dataset, its RMSE and Score are significantly better than
other models.

On the two more complex and more variable datasets,
UCI and FEMTO, although the model still performs best
on UCI, the RMSE performance on FEMTO is not the
best, but the Score value is still the lowest. In general, its
lower Score value and higher RMSE value on the four
datasets indicate that in most cases, the model can greatly
maintain the accuracy of prediction and the generalization
of the model.

In Table 4, the RMSE of AM-CNN BIiLSTM is 0.042,
which is the lowest among the three, indicating that the
error between its predicted results and actual values is the
smallest. The RMSE of CNN BIiLSTM is 0.057, slightly
higher than that of AM-CNN BIiLSTM. The RMSE of
Transformer is 0.063, which is the highest among the
three, indicating that its prediction error is relatively large.

The MAE of AM-CNN BIiLSTM is 0.031, which is also
the lowest among the three, further proving its accuracy in
prediction. The MAE of CNN BiLSTM is 0.043. The
MAE of Transformer is 0.049, which is relatively high.

The R-value of AM-CNN BiLSTM is 0.983, close to 1,
indicating a very good model fit. The R2 of CNN
BiLSTM is 0.971, slightly lower than that of AM-CNN
BIiLSTM. The R value of Transformer is 0.963, which is
good but slightly lower than the other two.

The F1 Score of AM-CNN BiLSTM is 0.952, which is
the highest among the three, indicating its excellent
performance in balancing accuracy and recall. The F1
Score of CNN BILSTM is 0.931. The F1 Score of
Transformer is 0.912, which is relatively low.

The training time of Transformer is the longest, at 254
seconds, which may require more computing resources
and time. The training time of AM-CNN BiLSTM is 218
seconds, which is relatively short. The training time of
CNN BILSTM is 195 seconds, which is the shortest
among the three.

In summary, AM-CNN BIiLSTM performs evenly and
excellently in all indicators, and is the best performer
among these three models.

In Table 5, when the noise intensity o < 0.2, the

preprocessing needs to be combined to improve noise
resistance; The data masking compensation capability is
superior to traditional LSTM, and the accuracy only
decreases by 5.6% when 15% of data is missing. The test
results demonstrate that the model has excellent
spatiotemporal feature joint modeling ability, but exposes
sensitivity to extreme noise (significant performance
degradation when 6>0.3) and hyperparameter dependence
issues. Suggest introducing adaptive noise suppression
module and dynamic convolution kernel mechanism in
the future to improve universality

In Table 6, Removing AM resulted in a 5.5% decrease
in accuracy and a 0.07% decrease in F1 Score, indicating a
significant focusing effect on temporal features.
Unidirectional LSTM replacement increases RMSE by
10.9%, verifying the effectiveness of BILSTM for
contextual information fusion; The performance drops
sharply after removing the convolutional layer, indicating
that its spatial feature extraction is irreplaceable.
Randomly initializing weights leads to model degradation,
highlighting the importance of pre training for stability
The ablation experiment revealed the contribution ranking
of each module: CNN>AM>BILSTM. It is recommended
to prioritize enhancing the robustness of the convolutional
kernel in subsequent optimization.

Through comprehensive analysis, it can be seen that the
main functions of the CNN-BIiLSTM model are as
follows:

(1) Multi-dimensional feature extraction capability.
Spatial feature extraction (CNN): Through convolution
layer and pooling layer, CNN can efficiently extract local
spatial features in sensor signals or vibration data (such as
abnormal waveforms of equipment vibration signals),
which is suitable for capturing microscopic morphological
features of faults. Timing Series Feature Modeling
(BILSTM): BiLSTM simultaneously capture forward and
backward timing dependencies of data, effectively
identifying long-term degradation trends or periodic
failure modes in equipment operating status.

(2) Deep integration of spatiotemporal features. Joint
modeling capability: CNN-BIiLSTM deeply integrates
spatial features (such as spatial distribution of vibration
signals) with time series features (such as continuous
trend of temperature changes) to improve the
comprehensive diagnosis accuracy of complex fault
modes.

(3) Automated feature engineering. End-to-end
learning: The model does not need to rely on manual
feature engineering, and can automatically learn fault
features directly from raw data (such as vibration signals
and equipment currents), reducing the dependence on
expert experience and improving generalization
capabilities.
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(4) Adapt to diverse data scenarios. Multi-modal data
processing: The model supports the processing of
structured time series data (sensor readings), unstructured
data (equipment logs) and image data (thermal images),
and is suitable for fault diagnosis in power systems,
rotating machinery, industrial sensors and other fields.

(5) Real-time and robustness. Dynamic prediction
ability: Combined with sliding window technology, the
model can analyze the time series data collected in real
time (such as server temperature and current fluctuation)
online, and realize early warning of faults (the response
delay is less than 0.5 seconds.

The combination of LSTM/BILSTM+CNN achieves a
balance between computational efficiency,
comprehensive feature extraction, and industrial noise
robustness through hierarchical collaboration of local
feature abstraction (CNN), long-term dependency
modeling (LSTM), and context enhancement (BiLSTM),
making it the mainstream solution for equipment life
prediction. The excluded architectures (such as
Transformer, pure RNN) are difficult to match the core
requirements of the task due to computational redundancy
or incomplete functional coverage.

The CNN-BIiLSTM model shows significant
advantages in the field of fault diagnosis through joint
modeling of spatial-temporal series features, end-to-end
learning mechanism, and multi-modal data compatibility.
In particular, it performs better than a single model in
complex industrial scenarios (such as bearing fault
diagnosis, power equipment operation and maintenance).
Its core value lies in balancing diagnostic accuracy and
real-time requirements, so as to provide reliable technical
support for predictive maintenance.

Although this model can play an important role in
intelligent manufacturing systems, it also has some
limitations. First, the model’s feature extraction
capabilities are limited: CNN has strong local feature
extraction capabilities for time series data, but the
modeling of global time series dependencies is
insufficient. Although BIiLSTM can capture long-term
dependencies, it has limited ability to mine complex
spatial features, and the combination of the two may still
miss key fault features. In addition, CNN-BiLSTM model
faces core limitations in fault diagnosis, such as low
computational efficiency, high data dependence, complex
hyperparameter tuning and insufficient long sequence
processing ability. Although the problem can be partially
alleviated by introducing attention mechanism or
optimization algorithm, its underlying architectural
limitations still need to be weighed and improved in
combination with specific scenarios.

The model's life prediction method for engines (based
on CNN-LSTM/BILSTM temporal modeling) can be
transferred to other rotating machinery such as motors,
pumps, fans, etc. Due to its core focus on the temporal
degradation mode of vibration/temperature signals, such
features are universal in industrial equipment. However,
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the following aspects need to be adjusted based on the
data characteristics of the target machine:

(1) Need to redesign the input channel of CNN Sensor
type adaptation: If the monitoring parameters of the target
machine are different (such as pressure replacing
vibration); (2). Differences in Failure Modes: The failure
mechanisms of different machines (such as gearbox
peeling vs. bearing wear) may affect the long-term
dependency modeling of LSTM and require fine-tuning of
network depth;

(3) Changes in noise distribution: If the operating noise
of new equipment is more significant, it is necessary to
enhance the masking mechanism or data augmentation
applicability boundary. For non-temporal dependent
faults (such as sudden circuit short circuits) or static
equipment (such as pipeline corrosion), the effectiveness
of this model may be limited.

5 Conclusion

Predictive maintenance is an important technology in
the field of intelligent manufacturing. It uses data analysis,
machine learning and other technical means to monitor
and analyze equipment operation data in real time. By
predicting the possibility of equipment failure or failure,
timely maintenance and maintenance of equipment can be
realized, thereby reducing equipment maintenance costs,
improving equipment operation efficiency and production
efficiency, and reducing production interruptions and
downtime. A CNN-BIiLSTM network model based on
attention mechanism is proposed to predict RUL of
multi-sensor devices, and its accuracy and generalization
are verified by experiments. Combined with the analysis
of experimental results, the model proposed has the best
performance and shows its powerful ability in dealing
with relatively simple data sets. In particular, its RMSE
and Score are significantly better than other models on the
CWRU dataset. The lower Score values and higher RMSE
values on multiple data sets show that in most cases, the
model can greatly maintain the prediction accuracy and
generalization of the model.

However, the model does not model the global time
series dependency enough. Therefore, it needs to be
continuously improved in combination with the timing
algorithm in the future, and its computational efficiency
needs to be further improved. At the same time, time
series algorithms can be introduced and real-time
improvements can be made in combination with specific
scenarios, and the system model can be improved by
combining theory with experiments.
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