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Aiming at the problems of insufficient flight trajectory prediction accuracy and low early warning 

efficiency of air traffic conflicts under the background of the sharp increase in air traffic volume, a 4D 

trajectory prediction method based on the clustering using representatives (CURE) algorithm is studied 

and proposed. The method utilizes historical track data provided by the Automatic Dependent 

Surveillance-Broadcast (ADS-B) system to measure track similarity by means of modified Euclidean 

distance. It is also combined with hierarchical clustering techniques to cluster and analyze the tracks 

within the terminal area. Experiments showed that the proposed method outperformed the traditional 

model in many aspects. For example, in track prediction, the CURE-based model had an average time 

error of only 17.6 seconds, a height error of 31.5 m, and a horizontal root mean square error (RMSE) of 

0.55 nautical miles. Furthermore, using conflict detection based on 4D planes and geometric methods 

successfully reduced the false alarm rate to 4.30% and controlled the missed alarm rate within 0.08%. 

Together with the experimental data, these results verify the effectiveness and reliability of this method in 

complex aviation scenarios. This indicates that the CURE algorithm can improve track prediction 

accuracy and provide stronger technical support for aviation traffic management. 

Povzetek: Napovedovanje 4D avionskih trajektorij je izvedeno z URE-grozdenjem iz ADS-B; predlagane 

spremembe povečajo rigoroznost in uporabnost. 

 

1 Introduction 
In recent years, with the rapid growth of global air traffic, 

air traffic management is facing unprecedented pressure 

and challenges. Effective trajectory prediction technology 

can not only enhance the utilization of airspace resources 

and reduce the workload of ground controllers, but also 

significantly improve the safety of flight operation. 

Therefore, 4D trajectory prediction method is of great 

significance in modern aviation management. 4D 

trajectory prediction technology accurately predicts an 

aircraft's flight trajectory by combining information from 

four dimensions: time, space, speed, and altitude. This 

technology provides effective support for air traffic 

management. Currently, based on the data from the GPS 

automatic dependent surveillance-broadcast (ADS-B) 

system, it is possible to obtain information such as the 

position, speed, and heading of the aircraft in real time, 

which provides a reliable data base for trajectory 

prediction. Traditional trajectory prediction methods 

mainly rely on ground radar and flight plans. However, 

these methods have certain limitations in terms of 

prediction accuracy and real-time performance [1-2]. With 

the popularization and application of ADS-B system, the 

trajectory prediction technology based on ADS-B data has 

gradually become a research hotspot. The 4D trajectory  

 

prediction technology has been widely studied at home  

and abroad. Many researchers try to improve the accuracy 

and reliability of trajectory prediction by different 

methods. Aiming at the problem of low accuracy of short-

term prediction of flight trajectory, Yang et al. proposed a 

bidirectional long-short memory network prediction 

method based on broadcast auto-correlation surveillance 

historical data. Experimental results indicated that the 

method was proved to improve aviation safety in busy 

airspace [3]. Wang et al. proposed a generalized hybrid 

recurrent prediction model for flight trajectory prediction. 

The results showed that the generalized deep learning 

method not only improved the accuracy of trajectory 

prediction, but also allowed contextualization by 

exploring a large amount of data [4]. Han et al. proposed 

a trajectory prediction method combining a density-based 

spatial clustering algorithm with noise and a gated loop 

cell for trajectory prediction. The results indicated that this 

method could effectively utilize the trajectory data in the 

terminal area, and the model developed could perform 

trajectory prediction for multiple flights and improve the 

accuracy of trajectory prediction [5]. Dai et al. proposed 

that a deep neural network model based on Kalman filter 

algorithm unfolding can be used for aircraft trajectory 

prediction. The results of simulation experiments 
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indicated that the developed model provided better 

accuracy and effectiveness for aircraft trajectory 

prediction than other network models [6]. Rizvi et al. 

proposed a meta-learning approach to predict short and 

medium-term aircraft trajectories using historical real 

flight data collected from multiple genetic algorithm 

aircraft. The study used random forest regression and long 

and short-term memory networks to extract aircraft 

trajectory features and k-nearest neighbors were used to 

complete the final prediction. The model was shown to 

have good prediction results in the experimental results 

[7]. Chakrabarti et al. used a hidden Markov model to 

identify and extract heading changes within aircraft 

trajectories, followed by comparing and clustering the 

trajectory strings using an edit distance metric combined 

with the K-medoids clustering algorithm. An application 

to a set of historical trajectories at Washington National 

Airport demonstrated the success of the proposed 

framework in overcoming the shortcomings associated 

with traditional clustering techniques [8].The literature 

review is specifically shown in Table 1. 

Table 1: Literature review table. 

Refer
ences 

Method Advantages Disadvantages 

Refer
ence 

[3] 

Bi-LSTM 
Be capable of capturing long sequence dependencies. It has 

a remarkable effect on short-term prediction 

The training time is relatively long. Sensitive to 

hyperparameter Settings 

Refer
ence 

[4] 

Generalized 
mixed cycle 

model 

The accuracy of trajectory prediction has been improved. It 
has strong generalization ability and can adapt to various 

data situations 

The model is complex and parameter adjustment is 
difficult. It has high requirements for the volume of 

data 

Refer

ence 
[5] 

DBSCAN-

GRU 

It has a strong ability to handle high-density data and noise. 

Adaptive clustering 

Parameter selection is sensitive. The clustering effect 

is uneven for regions with different densities 

Refer

ence 
[6] 

Deep neural 

network 

Contextualization can be achieved by exploring a large 

amount of data 

The training is complex and the computational 

overhead is high. A large amount of labeled data is 
required for training 

Refer

ence 
[7] 

Meta-learning 

method 

Applicable to various situations. It is capable of efficiently 

utilizing historical data for medium and short-term trajectory 
prediction 

The adaptability to specific problems remains to be 

verified. High complexity 

Refer

ence 

[8] 

Hidden 

Markov 

model 

The model is simple and easy to understand. It is relatively 
effective in sequential data 

It may be impossible to capture long dependencies. Be 
sensitive to the initial Settings 

 

Although existing track prediction models, such as 

Bi-LSTM and generalized mixed loop models, perform 

well in capturing the short-term dependencies of time 

series data, they often have difficulty fully handling the 

complexity of high-dimensional data. This is especially 

true when it comes to effectively identifying potential 

patterns in aviation trajectories and performing cluster 

analysis. Meanwhile, methods such as DBSCAN-GRU 

and Hidden Markov models are relatively vulnerable to 

data noise during the clustering process, making it difficult 

to accurately distinguish the trajectories of different 

categories. The clustering using representatives (CURE) 

algorithm is a clustering method that aims to accurately 

represent the shape and distribution of clusters. It does so 

by selecting multiple representative points. This allows it 

to overcome the limitations of traditional clustering 

methods when dealing with high-dimensional data and 

complex shapes. By dynamically correcting the similarity 

calculation and hierarchical clustering methods, the 

CURE method overcomes the influence of data noise on 

the clustering results. This improves the accuracy and 

reliability of flight trajectory prediction. These 

improvements allow the CURE method to more 

effectively capture the complex features and potential 

patterns of aviation trajectories, providing better technical 

support for flight scheduling and air traffic management. 

This study aims to explore the potential of the CURE 

algorithm to improve the accuracy of 4D trajectory 

prediction in the terminal area. Specific questions include: 

Can the CURE algorithm significantly improve prediction 

accuracy in complex aviation trajectory data 

environments? Meanwhile, the research will conduct an 

in-depth analysis of how trajectory similarity estimation 

using the modified Euclidean distance influences the 

accuracy of flight conflict prediction. This analysis will 

help evaluate the effectiveness of the CURE algorithm in 

air traffic management, providing a theoretical basis and 

practical guidance for developing future air track 

prediction methods. 

2 Methods and materials 

2.1 4D trajectory prediction method and 

surveillance technology 

Currently there are more prediction methods for 

trajectories. The 4D trajectory prediction method is of far-

reaching significance in air traffic management, so the 

study uses the 4D trajectory prediction technique to 

predict the flight trajectory. 4D trajectory mainly refers to 

the main four pieces of information in the airplane 

trajectory. By recording the time, space, speed and altitude 

information of aircraft in the air, real-time monitoring and 

management of aircraft can be achieved. These 4D 

trajectory data can be used to analyze aircraft flight 

performance, route planning, aviation safety and other 

aspects. The airplane flight mainly consists of five 

directions: take off, departure, cruise, arrival, approach 

and landing. The whole process of flight is shown in 

Figure 1. 



4D Flight Trajectory Prediction Using CURE-Based Clustering… Informatica 49 (2025) 365–382 367 

Taxi

Climbing

Take-off climbing

L
ev

el

Cruising

Descending

Approaching

 Taxi

Take off Departure Cruise Arrival Approach and landing

Landing

 

Figure 1: Flight process flow chart. 

Figure 1 shows the whole process of an airplane 

reaching the cruising level through the take-off and 

climbing process, descending and landing after a period of 

cruise process. In terms of trajectory prediction, if only a 

single influencing factor is considered, it will result in a 

lack of accuracy and comprehensiveness of the actual 

trajectory of the airplane. Therefore, a comprehensive 

analysis and prediction should be made by considering a 

variety of factors, including geographic location, wind 

speed, temperature and other information. Equiangular 

routing is the process of route planning according to a 

certain latitude or longitude angular distance equidistant 

on a map. In aviation, this usually refers to the fact that 

routes are set up with fixed points at certain latitude or 

longitude intervals to facilitate pilots' navigation and 

localization in flight. This makes each route segment 

relatively equal in length on the map. Usually, equiangular 

routes fly longer distances than great circle routes [9]. The 

starting point ( , )B BB   and the starting point 

( , )A AA   are defined. The angle between the 

equiangular route and the meridian is a . The distance 

between the starting points is AB H= . At this point, 

according to the trigonometric function can be obtained 

route angle a  and route distance H , as shown in 

Equation (1). 

tan

tan( ) tan( )
4 2 4 2

( )sec ( ) cos sec

A B

A B

a
A B

In In

H A B a or a

 

   

    
−

−
=

 + − +


 = − −

   (1) 

In Equation (1), 
−

 represents the average latitude 

value between A  and B .   represents PI, which is 

approximately equal to 3.14159. It is a mathematical 

constant. In aviation navigation and trajectory prediction, 

"π" is used to calculate angles, distances, and other 

parameters related to circular navigation trajectories. 

When the difference in latitude is large, tan a  in Equation 

(1) is used. When the difference in latitude is small, H  is 

used, and the unit of H  needs to be converted from 

radians to nautical miles. In the process of calculation, 

based on the calculated a  angle to take the corresponding 

absolute value. When 90a , based on the position of 

the course position at this time, the data of the course angle 

can be calculated, as shown in Figure 2. 
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Figure 2: Correlation between route angle and quadrant. 

In Figure 2,   represents the heading Angle of the 

equal-angle route, and 
TC  represents the corrected actual 

heading Angle. When in the first quadrant, 
TC  is 

identical to  . When in the second and fourth quadrants, 

TC  and   are circumferential as well as 

complementary to each other. When in the third quadrant, 

TC  is 
2


 + . When ( , )B BB  , the starting point 

( , )A AA  , the corresponding a  and H  can be obtained 

by referring to the trigonometric functions, as shown in 

Equation (2). 

sin tan sin cos( )
cot

sin( )

cos sin sin cos cos cos( )

A B A B A

B A

A B A B B A

a

H

    

 

     

− −
=

−
 = + −

  (2) 

Equation (2) defines the calculation methods for the 

heading angle and route distance of an equal-angle route. 

Its core role is to provide a mathematical model for an 

equal-angle route. It converts the difference between 

longitude and latitude into actual navigation parameters 

using triangular geometric relations. This solves the 

symbol correction problem of heading angles in different 

quadrants, such as northeast and southeast. The study 

takes the northeast hemisphere as the first quadrant, the 

southeast hemisphere as the fourth quadrant, the northwest 

hemisphere as the second quadrant, and the southwest 

hemisphere as the third quadrant. When the route is in the 

first and fourth quadrants, then 2TCa a= + . When the 

route is in the second and third quadrants, then 

TCa a= + . Finally, H  is converted to nautical miles by 

the corresponding transformation [10]. Trajectory data has 

shortcomings such as spatio-temporal correlation, multi-

dimensionality, high frequency, and large data volume. By 

analyzing historical trajectory data, the patterns and laws 

of aircraft flight are mined to predict future trajectories 

[11]. As the 4D trajectory prediction technique of data 

mining is characterized by simple operation, high 

accuracy and simpler principle, it makes it widely used in 

the field of trajectory prediction [12]. The study adopts 

this method for flight trajectory prediction. 

2.2 Cluster analysis prediction model based 

on CURE algorithm 

The 4D trajectory prediction method is based on the 

historical data of ADS-B, and ADS-B reaches the 

automatic surveillance through the GPS system, the 

ground-to-air system, and the air-to-air three-dimensional 

data. ADS-B uses GPS to provide real-time position 

information of aircraft and broadcasts this information to 

other aircraft and ground control centers via ground-to-air 

and air-to-air communication systems. Therefore, GPS is 

an integral part of the ADS-B system, serving as the basis 

for providing accurate three-dimensional data, such as 

position, altitude, and speed. Compared with other 

surveillance radars, ADS-B is able to provide real-time 

aircraft position and status data at a frequency of multiple 

updates per second. It can provide more accurate aircraft 

position and speed data. It is not limited by terrain or 

geography and can cover a wider area. Based on ADS-B, 
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data such as latitude, longitude, heading and speed of the 

aircraft are preprocessed. Duplicate data points are 

eliminated after categorizing the flight number. 

Subsequently after screening and deleting data bars under 

a certain flight altitude, data bars outside a certain range 

of the receiver and flight numbers with insufficient data 

bars are also screened and deleted."The receiver" refers to 

the device or system that collects and processes the data 

transmitted from the ADS-B system. Finally, the 

corresponding trajectory sequence is regenerated. The 

preprocessed data are categorized and identified, and the 

cumulative trajectory sequence is obtained. The basic 

principle of determining trajectory points by the 

correlation trajectory method is to first determine the 

overall route of the aircraft, including the departure point, 

intermediate waypoints and destination. Second, 

according to the flight plan and flight performance data, 

the trajectory points are calculated by using the correlation 

trajectory method, i.e., the trajectory points that need to be 

passed during the flight. Finally, during the flight, the pilot 

will correct and adjust the trajectory according to the 

actual situation. The aerodynamics on the flight path 

should satisfy Equation (3). 

min max

min max1

| |

| |

| |

| |

i

i x

i

i x

x X
v v

t t

x X
v v

t t

−
  −


−  

 −

                   (3) 

In Equation (3), 
ix  denotes the ADS-B target 

position. X  denotes the trajectory. M  denotes 

information. The horizontal velocity of the trajectory 

should be greater than or equal to 
minv  and less than or 

equal to the maximum value of the trajectory 
maxv  of X . 

The vertical speed of the associated trajectory is the same 

as the horizontal speed of the trajectory. In addition, the 

course angle a  needs to satisfy certain conditions, as 

shown in Equation (4). 

0

1 1

1 1

| |

( )( )
arccos[

| || |

i i i i

i i i i

a a

x x x x
a

x x x x

+ −

+ −




− −
= − −

              (4) 

In Equation (4), vector a  is the angle between 

1i ix x+ −  and 
1i ix x −− . In general, to improve the matching 

probability of the trajectory, 
0a  should adopt a larger 

value. The research focuses on the standardized velocity 

and route angle constraints in formulas (3) and (4). It 

presents a table showing the actual value range and source 

basis, as shown in Table 2. 

After normalizing the time [13], the sampling period 

is shown in Equation (5) based on the historical flight 

record. 

p

i

T
T T

t
 =                                     (5) 

T   is the sampling time and 
pT  is the prediction time. 

iT  is the total flight time on day i . T  is the original 

sampling period of 4s. The trajectory clustering results can 

further reflect the correlation between the data samples. 

Through clustering analysis, the logical relationship 

between each dataset, the classification pattern and the 

trajectory data can be obtained. The steps of the clustering 

algorithm are shown in Figure 3. 

Table 2: Aviation performance constraints and data sources. 

Parameter Value range Source Applicable phase 

Minimum horizontal velocity 
130 kt (67 
m/s) 

ICAO Doc 8168 Vol I 
Approach/Wait  
(H ≤ 10,000 ft) 

Maximum horizontal speed 
320 kt (165 

m/s) 
ADS-B Measured Data Statistics (Inbound Flights at Pudong Airport) 

Cruise (H ≥ 

24,000 ft) 

Vertical velocity constraint [-3, +3] m/s FAA AC 120-29A Climb/descend 

Maximum deviation of the flight 
angle 

±15° ICAO Annex 11 Flight path 

Minimum turning radius 
3 nmi (5.56 

km) 
EUROCONTROL Base of Aircraft Data 

Terminal area 

mobility 

Trajectory matching probability 
threshold 

≥0.85 
Flight Procedure Verification Specifications of the Civil Aviation 
Administration of China 

All stages 
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Figure 3: Clustering algorithm process steps. 

In Figure 3, based on the obtained sample data is 

selected through preprocessing, feature extraction. The 

final result is then output after the relevant data is 

evaluated, verified, and interpreted through the calculation 

of similarity and combination with a clustering algorithm. 

The research selects the hierarchical clustering method in 

the clustering method. This method is hierarchical, 

interpretable and does not require pre-specification of the 

number of clusters [14-15]. Hierarchical clustering 

method has a good ability to analyze and deal with large 

amount of data as well as complex changes in the data. At 

this stage, it has been shown to be used for analyzing 

hierarchical clustering of flight trajectory data [16]. In the 

similarity calculation, the study uses Euclidean distance 

for calculation. Its similarity is shown in Equation (6). 

2 2 2

1 2 1 1 1 2 2 2

1

( , ) ( ) ( ) ( )

1

n n n

n

k k

similarity A A x y x y x y  

−

 = − + − + + −


=
                              (6) 

In Equation (6), A denotes the aerial trajectory 

points. These trajectory points are for precise feature 

extraction and subsequent analysis of the trajectory points 

to ensure an accurate description of the aircraft's position. 

n  denotes the number of dimensions. 
k denotes the 

weight of different dimensions. The weight factor is used 

to adjust the importance of each dimension in the 

similarity calculation. It reflecting the extent to which 

different parameters affect the trajectory characteristics. 

1 2( , )similarity A A  denotes the dimension attribute 

difference, which means the difference between two 

trajectory points in different dimensions, that is, the 

specific change in position, velocity, height, etc. Since the 

Euclidean distance is greatly affected by the trajectory 

data as well as noise, further corrections are needed when 

using the Euclidean distance for trajectory calculation. 

The study uses the point-by-point method to calculate the 

route distance, and then adjusts the Euclidean distance 

similarity calculation using the mean value method. 

Finally, the trajectory is corrected according to the 

calculated distance variance to obtain the final trajectory 

similarity. The corrected trajectory calculation is shown in 

Equation (7). 

( ) ( )

1 1

( ) ( )

2 2

* *

( ) ( )

( ) ( )

i j

i j

i ji j

k k

i j

M M

G G

G G

t t
G G

G G

     
     
     
     

     = = 
     
     
     
           

                (7) 

In Equation (7), *

it  denotes the flight path trajectory. 

M  is the number of trajectory points contained in 

trajectories *

it  and 
*

jt . ( )i

kG  and ( )j

kG  represent a point 

pair. Therefore, the equirectangular air trajectory between 

the point pairs can be expressed as ( ) ( )( , )i j

k k kx d G G= . At 

this time, the set of distances of each point pair is 

 1 2 3, , , MX x x x x=  . The similarity is calculated as 

shown in Equation (8). 

1
( )

p k

k

ij

x
s D x

M

=
= + +


                   (8) 

In Equation (8), ( )D X  represents the structural 

similarity measure and   represents the dynamic 

correction factor. p  represents the number of trajectory 

points involved in the similarity calculation. Equation (6) 

has two main flaws in the calculation of aviation trajectory 

similarity: noise sensitivity and density difference.  
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After correcting these defects in the research, Equation (8) 

is obtained. The main derivation of Equation (8) is as 

follows: assuming that the trajectory contains M trajectory 

points, the normalization factor max( , )M m m= is 

defined. Among them, m is the average number of 

trajectory points in the dataset. Then the density 

normalization term EEE is introduced. The density 

normalization term scales the trajectory point coordinates 

by 1/M, which eliminates cumulative error caused by 

differences in sampling frequencies. The trajectory 

structure similarity measurement extracts geometric 

features of trajectories based on principal component 

analysis. Equation (9) shows the covariance matrix 

factorization of the trajectory point set. 

1
( ) ( )T

X XX X X
m

 = − −              (9) 

The research assumes that the eigenvalues 
1 , 

2 , 

and 
3  represent the energy distribution of the trajectory 

in the main direction in three-dimensional space. The 

structural similarity measure is defined as shown in 

Equation (10). 

2 3

1

( )D X
 



+
=                          (10) 

In Equation (10), when ( )D X  approaches 0, it 

indicates that the trajectory has the characteristic of linear 

motion. When ( )D X  approaches 1, it indicates a drastic 

change in the trajectory direction. Finally, combined with 

the characteristics of the typing stage, the dynamic 

correction factor is defined as shown in Equation (11). 

X Y X Y      =  − +  −               (11) 

In Equation (11),   represents the dynamic 

correction factor.   represents the climb rate.   

represents the turning angular velocity.   represents the 

weight coefficient of the climb rate.   represents the 

turning angular velocity weight. Based on the above 

correction items, Equation (8) for trajectory similarity 

calculation is obtained. The similarity matrix S  can be 

obtained after the operation based on Equation (7), as 

shown in Equation (12). 

12 1 1

21 2 2

1

1 2

0

0

0

0

j n

j n

i in

n n nj

s s s

s s s

S
s s

s s s

 
 
 
 
 =
 
 
 
 
 

            (12) 

In Equation (12), since S  is obtained based on the 

symmetric Euclidean distance operation, the matrix is also 

called symmetric matrix. Since the number of discrete 

points of each aerial trajectory is different, and it is 

difficult to have a corresponding situation in the data, the 

study uses the CURE algorithm in order to realize the 

clustering prediction of the aerial trajectories [17]. The 

CURE algorithm applied in the study is described below. 

Firstly the input defines the set of trajectories 

 * * * * *

1 2 3, , , , nT t t t t= , representing points Q , and the 

number of clusters k . The second output is the clustering 

result of the flight trajectories  1 2 3, , , , kC C C C C= , 

with clustering centers  1 2 3, , , , kAVE ave ave ave ave= . 

Each category represents the aerial trajectory 

 1 2 3, , ,e e e e ekQ Q Q Q Q=  of the point. An algorithm 

based on the modified Euclidean distance aerial trajectory 

similarity is used to calculate the similarity between 2 

aerial trajectories in the trajectory set *T . The trajectory 

similarity matrix is then constructed. The trajectory 

similarity matrix 
TQ , as shown in Equation (13), is also 

constructed. 

12 1 1

21 2 2

1

1 2

0

0

0

0

j n

j n

T

i in

n n nj

Q Q Q

Q Q Q

Q
Q Q

Q Q Q

 
 
 
 
 =
 
 
 
 
 

          (13) 

In Equation (13), after obtaining the similarity matrix 

TQ , the initialization clustering is carried out. 

Subsequently, the center trajectories 
aave , ave  of 

aC  

and C
 are calculated. Meanwhile, the aerial trajectory 

sets 
eaQ  and 

eQ 
 are calculated to determine whether the 

above two aerial trajectories are the aerial trajectory sets 

of the current clustering result. If they are different genus 

classes, merge the classes and define a new genus class 

C
, and reduce the number of classes in the dynamic array 

by 1. Calculate the center flight trajectory ave  of C
 and 

the representative trajectory set 
eQ 

. Finally, the relevant 

results are obtained as shown in Equation (14). 
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



       (14) 

kC  denotes the set of Class k  flight trajectories. 

kave  denotes the cluster center flight trajectory of 
kC . 

ekQ  denotes the representative air trajectory set of 
kC . 

The overall trend of flight operation can be somewhat 

reflected by the cluster trajectories obtained from the 

clustering of the CURE algorithm. In addition, the 

relevant information of the next flight trajectory can be 

obtained by correcting the historical flight trajectory data, 

as shown in Equation (15). 

( ) ( ) ( )

( ) ( )

p c

c R

C h C h

C C





 + = + − 


 =  −
            (15) 

In Equation (15), h  denotes the step size of the 

prediction time. 
pC , 

cC , and 
RC  denote the prediction, 

clustering, and real trajectory, respectively. ( )   denotes 

the correction value coefficient. Equation (15) uses the 

cluster center trajectory and historical trajectory data 
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obtained from the clustering of the CURE algorithm, 

combines the predicted value and the real trajectory, and 

makes a correction prediction for the next flight trajectory. 

The correction coefficients can be used to adjust the 

degree of contribution of the predicted value and the 

cluster center trajectory, as well as the degree of 

contribution of the predicted value and the true trajectory. 

In this way, a more accurate prediction of the next flight 

trajectory can be obtained, thus providing a more reliable 

information reference for the overall trend of flight 

operation. The modified Euclidean distance similarity 

measure proposed in the research is a custom algorithm 

module, and its core mathematical operations are 

implemented through NumPy in Python. The module is 

integrated with Scikit-learn's Agglomerative Clustering 

framework. The similarity calculation function is accessed 

via the custom affinity parameter. The experimental 

platform is built using the PyTorch Geometric spatio-

temporal data processing library. The specific study of 

pseudo-code is shown in Figure 4. 

3 Results 

3.1 4D trajectory prediction based on 

CURE algorithm data mining 

The proposed prediction model is designed based on real-

time stream processing architecture and can be seamlessly 

integrated into the existing air traffic control (ATC) 

system. The system accesses the ADS-B data stream in 

real time through Apache Kafka with an update frequency 

of 1 Hz. It dynamically extracts trajectory fragments using 

the sliding time window mechanism with a window length 

of 300 s and a sliding step length of 10 s. The system 

updates the track pattern online using the incremental 

CURE clustering algorithm with an update cycle of 30 s. 

The real-time prediction engine jointly uses Kalman 

filtering for state estimation and an LSTM time series 

prediction module for behavior reasoning. This generates 

4D trajectory prediction results for the next 300 s in a 

pipeline manner and achieves synchronization of 

prediction states among multiple nodes through a 

distributed Redis database. The CURE algorithm 

combined with cluster analysis is used to analyze the 

actual ADS-B data of the approach flights of an airport in 

East China as the corresponding samples, and the cluster 

analysis is performed after the relevant data 

transformation. First, the study conducts different index 

analyses on various numbers of clusters to determine the 

optimal number of clusters. The indicators include the 

silhouette score (SS), the Davies-Bouldin index (DBI), the 

sum of squared errors (SSE), and the Calinski-Harabasz 

index (CHI). The specific results are shown in Table 3. 

Define CURE_Algorithm(data, k, r):

    Preprocess data:

        Clean, filter, and normalize data

    

    Initialize clusters with initial representatives

    While number of clusters < k:

        For each trajectory in data:

            Assign trajectory to closest cluster based on modified distance

            

        Update representative points in each cluster

        

    Return clusters and representatives

Define Conflict_Detection(clustered_data):

    For each trajectory pair in clustered_data:

        If IsPotentialConflict(trajectory1, trajectory2):

            Add to conflict list

            

    Update metrics (TP, FP, FN, TN)

    Return Precision, Recall, F1-Score

Main:

    Load flight data

    Set parameters: k, r

    clustered_data = CURE_Algorithm(data, k, r)

    conflict_metrics = Conflict_Detection(clustered_data)

    

    Output conflict_metrics
 

Figure 4: Study the pseudo-code of the algorithm. 
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Table 3: Clustering validity evaluation under different cluster numbers. 

Cluster Number (k) SS DBI SSE CHI 

2 0.52 ± 0.04 1.38 ± 0.12 2850340 86.7 

3 0.61 ± 0.03 1.12 ± 0.09 1732150 123.4 

4 0.68 ± 0.02 0.83 ± 0.06 1001920 182.5 

5 0.65 ± 0.03 0.97 ± 0.08 921450 168.3 

6 0.58 ± 0.05 1.05 ± 0.11 898210 154.9 
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Figure 5: Matrix after CURE algorithm modified euclidean distance similarity clustering. 

 

As shown in Table 3, the contour coefficients of the 

four clusters (k=4) are the highest (0.68), the DBI is the 

lowest (0.83), and the CHI is the highest (182.5) among 

different numbers of clusters. This indicates that, in the 

case of four clusters, the separation and closeness among 

the clusters are relatively good and the variability of the 

data is effectively explained. This verifies the rationality 

of having four clusters. Then, the similarity based on the 

modified Euclidean distance was studied and combined 

with the CURE algorithm. After obtaining the similarity 

matrix, it was added to the CURE algorithm. The relevant 

results of the aviation trajectory clustering map in the 

terminal area of Shanghai Pudong Airport are shown in 

Figure5. 

In Figure5, by mapping the similarity of different 

flight trajectories into gradient colors, the size of similarity 

is visually reflected by the color depth [18-19]. The 

horizontal axis represents horizontal distance within a 

specific coordinate system and reflects the spatial 

distribution of track points in the east-west direction. The 

vertical axis represents the vertical distance of the track 

points within the same coordinate system and reflects the 

spatial distribution of the flight in the north-south 

direction. After data analysis and clustering by CURE 

clustering algorithm, trajectories with higher similarity 

will be clustered together and the clustering results are in 

obvious dark red color. The results indicate that these 

aircraft trajectories are more consistent in their flight 

paths. The display plots of the four approaching aircraft 

are shown in Figure6, respectively. 
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(a) The first class of trajectory clustering extraction (b) The second class of trajectory clustering extraction

(c) The third class of trajectory clustering extraction (d) The fourth class of trajectory clustering extraction

Circling flight path
Landing or takeoff 

flight trajectory
Circling flight path

Landing or takeoff 
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Circling flight path
Landing or takeoff 

flight trajectory
Circling flight path

Landing or takeoff 
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Figure 6: Approach trajectories obtained after separate clustering. 

Figure 6 shows the aircraft's circling flight route in 

blue and its takeoff or landing route in red. This figure 

shows the aircraft's path as it passes through the runway 

after landing, as well as any turns or adjustments it makes 

during the ground taxiing process. After clustering by the 

CURE algorithm, the flight trajectories of the aircrafts in 

Figure 6(a) and Figure 6(b) are more consistent. The 

difference is that the flight trajectory of the aircraft shown 

in Figure6b flies back and forth in a certain section of the 

path. In Figure 6(c) and Figure 6(d), the blue flight 

trajectories are found to be basically the same after 

clustering, and only the red path is different due to the 

different departure or arrival procedures. The results show 

that similar flight trajectories are successfully clustered 

together after clustering by the CURE algorithm. This 

verifies the effectiveness of the CURE algorithm in 

processing high-dimensional data and discovering 

potential patterns in the data. The consistency of flight 

trajectories of different approaching aircrafts is high when 

they enter the airport terminal area. Figure 6 shows that 

similar trajectories can be visually observed clustered 

together by the color coding of the different trajectories. 

This suggests that under the same conditions, airplanes 

often experience similar flight paths during the approach. 

In flight planning, airlines tend to choose similar flight 

routes. Furthermore, Figure 6 shows that the intervals and 

flight altitudes between flights on some paths remain 

consistent. This reflects the effective control measures and 

interval management during the approach process. Based 

on the above obtained flight trajectory data is firstly time 

normalized. In order to further verify the reasonableness 

of the algorithm proposed in the study, the actual data on 

the ground in a certain area are selected for experimental 

analysis. The data results of the aerial data after filtering 

and noise reduction are shown in Figure 7. 
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Figure 7: Filtered and noise reduced aerial trajectory. 
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Figure 8: Flight path prediction of part of the route. 
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Figure 9: Partial trajectory prediction of CDG4651 terminal area. 

Figure 7 shows the motion trajectory of Flight 

CDG4651 after filtering and noise reduction processing. 

There are three routes in total: Route 1, Route 2, and Route 

3. After processing, the track data shows high stability. Its 

routes are concentrated primarily between 116.5° and 120

° east longitude and 38° and 40° north latitude. This stable 

trajectory means that, under normal circumstances, flights 

can maintain a consistent course and speed when 

approaching the ground. This reflects the effectiveness of 

flight scheduling. The method described in the literature 

[20] is also used for comparison, and the results are shown 

in Figure 8. 

Figure 8(a) and Figure 8(b) represent the flight 

trajectory prediction route results of the two methods, 

respectively. The proposed method's prediction shows that 

the flight data trajectory distribution is relatively uniform 

and that there are no obvious outliers. It indicates that the 

model performs well in feature extraction and cluster 

analysis. In contrast, other methods' prediction results 

have obvious deviations and cannot accurately match the 

actual flight path. These results further verify the CURE 

algorithm's effectiveness in track prediction. This 

indicates that the algorithm is suitable for processing 

complex track data and can provide accurate predictions, 

offering effective decision support for air traffic 

management. It shows that it is feasible to study the 

method of route trajectory prediction based on CURE 

algorithm. Part of the terminal area trajectory prediction is 

shown in Figure 9. 

As shown in Figure 9, the CURE algorithm can better 

reflect the trajectory characteristics of the flight at 

different stages (e.g., climbing, cruising, and descending) 

by fitting the predicted trajectory of the flight terminal 

area. Due to the influence of wind direction and traffic 

control, the flight path is clearly divided into two main 

routes, indicating that flights in the terminal area are 

restricted by multiple factors. The CURE algorithm's 

predicted trajectory is relatively close to the actual 

trajectory's distribution, with no obvious outlier 

phenomenon occurring and remaining within a reasonable 

error range. This accurate prediction of the trajectory can 

provide airlines with a scientific basis for flight 

adjustments and scheduling, thereby improving the safety 

and efficiency of flight operations. At the same time, the 

predicted crossing time and the actual crossing time, the 

crossing height and the predicted crossing height on June 

1st are compared. The results are shown in Table 4. 

Table 4: Comparative analysis of the prediction results of the crossing point time and crossing point altitude. 

Waypoi

nt 

A little bit of actual 

time 

Excessive time 

prediction 

Error 

/s 

Height of actual crossing 

point 

Over-point height 

prediction 

Error/

m 

FD 9:43:44 9:43:39 5 5650 5630 20 

TEKAM 9:50:03 9:49:56 7 7910 7880 30 
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HCH 9:55:16 9:55:07 9 7920 7920 0 

NOKAK 10:02:29 10:02:15 14 7920 7920 0 

CG 10:26:16 10:25:50 26 4770 4820 50 

 

Table 5: Statistical aggregation of prediction errors across multiple flight trajectories. 

Flight number Aircraft type Flight phase Time error (s) Altitude error (m) Horizontal RMSE (nmi) Data points 

CDG4651 A320 Climb 18.2 ± 4.3 32.5 ± 12.7 0.58 1250 

MU5131 B737 Cruise 12.7 ± 3.1 21.8 ± 8.9 0.42 980 

CA1765 A330 Descent 24.6 ± 5.7 47.3 ± 15.2 0.71 1120 

HO1721 A320 Terminal Maneuvering 15.9 ± 3.8 29.1 ± 10.4 0.53 860 

3U8815 B737 Cruise 13.5 ± 3.0 22.6 ± 9.1 0.45 1050 

GJ8751 A320 Climb 19.8 ± 4.5 35.7 ± 13.5 0.62 1340 

Aggregated Mean / / 17.6 ± 4.1 31.5 ± 11.8 0.55 6600 

 

Table 6: Comparison of errors between the research method and the existing benchmark model. 

Model Time error (s) Altitude error (m) RMSE MAE 

Bi-LSTM 35.2±8.7 68.5±15.3 1.24 0.93 

TCN-GRU 28.9±6.5 55.2±12.1 0.87 0.65 

Attention-GRU 26.4±5.2 49.8±10.7 0.72 0.54 

DBSCAN-GRU 31.7±7.1 61.3±13.9 1.05 0.78 

HMM+k-medoids 42.5±9.8 73.6±16.2 1.48 1.12 

Proposed CURE 23.6±4.8 46.3±9.5 0.61 0.47 

 

In Table 4, Fractional Descent (FD) is usually used to 

represent specific flight points of an aircraft during the 

descent phase. TEKAM is a specific waypoint that aircraft 

must pass through during flight. The name of a waypoint 

is typically a combination of letters and numbers. "High 

corridor heading (HCH)" refers to the aircraft's high-

altitude route points during flight. NOKAK is a key airway 

point where aircraft pass when flying along the designated 

route. A cruising gate (CG) indicates that an aircraft has 

entered the cruising phase. This means that the aircraft has 

reached its predetermined cruising altitude and will 

maintain a certain heading. By comparing the error times, 

it can be concluded that the crossing point time errors 

gradually increase with the advancement of the flight 

process, but the errors are kept within half a minute. The 

crossing altitude errors are also small and remain within 

the range of 50 m. The HCH and NOKAK waypoint 

altitude errors are 0, indicating that the prediction 

accuracy based on the CURE clustering algorithm is high. 

To verify the universality of the method proposed in the 

research, the prediction results of more flights are 

analyzed, as shown in Table 5 specifically. 

As shown in Table 5, the statistical analysis of the 

prediction results indicates that the research method is 

effective in predicting multiple flight trajectories, 

demonstrating its applicability and reliability. The time 

and altitude errors for each flight at different stages were 

all within a reasonable range. During the climbing stage 

of flight CDG4651, the time error is 18.2 s and the altitude 

error is 32.5 m, demonstrating good prediction 

performance. The aggregated data indicates that the 

average time error of each flight is 17.6 s, the altitude error 

is 31.5 m, the horizontal root mean square error (RMSE) 

is 0.55 nautical miles, and the total number of data points 

is 6,600. These results indicate that, although performance 

varies among different aircraft and flight phases, the 

average overall prediction error remains relatively small. 

This further verifies that the proposed method has good 

predictive ability in complex aviation scenarios and can 

strongly support the accuracy of flight trajectories. To 

verify the effectiveness of the proposed method in the 

research, a comparative analysis of the errors with the 

existing benchmark model is conducted. The results are 

shown in Table 6. 

As shown in Table 6, compared to the optimal Attent-

GRU model, the CURE algorithm reduces time error by 

10.6% (26.4 s to 23.6 s), improves height error by 7.0% 

(49.8 m to 46.3 m), and increases the false alarm reduction 

rate by 44.6% (12.1% to 17.5%). Although the calculation 

time increases by 18% compared with DBSCAN-GRU, 

the improvement in accuracy (a 30% reduction in RMSE) 

exceeds the efficiency loss, verifying the superiority of the 

method in the precision-efficiency trade-off. The above 

study only focuses on the 4D flight trajectory planning for 

individual aircraft. In the actual process of multi-class 

aircraft mutual conflict as the main research problem, 

through the research proposed method to solve the 

problem. The specific results are shown in Figure10. 
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Figure 10: Aircraft 4D pane demonstration map. 

In Figure 10, the X-axis represents the horizontal 

position, which is the longitude on the ground or the 

horizontal distance relative to the reference point. The Y-

axis represents the horizontal position in another direction. 

It is the latitude on the ground or the longitudinal distance 

relative to the reference point. The Z-axis represents 

altitude, indicating the flight altitude of the aircraft. the 

presence of two or more flight trajectory points in the pane 

indicates the presence of flight conflicts in this space. In 

the pane where there are two or more flight trajectory 

points, the flight conflicts in these areas can be clearly 

observed. Timely measures can be taken for air traffic 

scheduling to avoid conflicts between aircraft. Where the 

minimum interval of the protected area H=304.8m, which 

represents the height of the cylindrical protected area. The 

minimum horizontal interval of the flight interval 

protection area S=9260m, which represents the radius of 

the bottom surface of the cylindrical protection area. The 

results show that the CURE algorithm can be used to 

cluster air trajectories and analyze flight trajectories in the 

terminal area. This clearly indicates potential areas of 

flight conflict. Moreover, the necessary protection zone 

parameters are set, which can effectively predict and 

identify these conflict points, thus providing data support 

and decision-making basis for air traffic control. The 

quantitative performance results of the supplementary 

conflict detection method for Figure 10 are studied, as 

shown in Table 7 specifically. 

The quantitative performance analysis in Table 7 

shows that the conflict detection method proposed by the 

research performs well in multiple key indicators, 

demonstrating its efficiency and accuracy. Specifically, 

the FAR is 4.30%, which is ≤5% lower than the target 

value, while the MDR is only 0.08%, FAR lower than the 

target of ≤0.1%. This indicates that this method 

outperforms others in reducing false alarms and missed 

detections. In terms of response time, it averages 38 ms, 

which is faster than the allowable maximum of 50 ms. 

Furthermore, the R-tree's query efficiency is 18.2 ms per 

query, which meets the ≤20 millisecond requirement and 

demonstrates fast processing capability. The dynamic 

protected area's accuracy reaches 98.50%, which is much 

higher than the ≥95% standard. This indicates its 

effectiveness in providing an early warning of conflict. 

Meanwhile, the separation accuracy is 0.12±0.05 nautical 

miles in the horizontal direction and 28±9 m in the vertical 

direction. Both met the predetermined accuracy 

requirements. The study selects the flight data of an 

international airport in 2019 to analyze and verify. Some 

flight information is shown in Table 8. 

Table 7: Quantitative performance results of conflict detection methodology. 

Metric Test result Benchmark 

False alert rate (FAR) 4.30% ≤5% 

Missed detection rate (MDR) 0.08% ≤0.1% 

Response time 38 ms ≤50 ms 

R-tree query efficiency 18.2 ms/query ≤20 ms 

Dynamic protection zone accuracy 98.50% ≥95% 

Horizontal separation accuracy 0.12 ± 0.05 nmi ≤0.2 nmi 

Vertical separation accuracy 28 ± 9 m ≤30 m 

Table 8: Airport flight schedule partial information table. 

Serial number Flight number Models The moment of take-off Destination airport 

1 GJ8751 A320 7:00 XNN 

2 H01721 A320 7:00 TAO 

3 MU5655 A320 7:05 KMG 

4 3U8815 A320 7:05 CGQ 

5 GH8881 A320 7:05 SZX 

6 HU7421 B737 7:05 KMG 
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7 CA1765 A320 7:05 BAV 

8 MU5131 B737 7:10 KRL 

9 GJ8841 A320 7:10 PEK 
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Figure 11: Plot of the total number of flights in the terminal area versus the number of conflicts. 

Table 8 shows a table of information for the nine 

flights before 7:00 a.m. that day. In order to simulate the 

most realistic situation, the corresponding incoming 

flights are added for uniform conflict adjustment. The 

relevant geographic coordinate system is transformed as 

follows: E represents the latitude of the Earth, N the 

longitude, and H the flight altitude of the aircraft. “e” 

denotes the first eccentricity of the earth, and R denotes 

the radius of curvature of the earth's dodo circle. 

Combining the above 4D pane flight conflict method as 

well as the geometric method of flight conflict detection. 

The results are shown in Figure 11. 

Figure 11 shows the results of the research method's 

flight prediction conflict. The horizontal axis represents 

the number of flights and is divided into three categories: 

a small number of flights, a medium number of flights, and 

a large number of flights. The vertical axis represents the 

number of flight conflicts. The results show that the 

predicted conflict value of the method is almost equal to 

the real value, and the prediction error is less than 0.5%. 

There is a certain error between the predicted value and 

the real value of the medium-number flights, and the 

maximum error is controlled within 1%. The error 

between the predicted value and the real value of the 

multi-number flights is basically controlled within 3%. 

The results show that the proposed method has high 

accuracy of flight conflict prediction. At the same time, it 

shows that the proposed method has better processing 

ability and analysis ability in complex flight trajectories. 

To explore the performance of the CURE algorithm in 

track prediction, a comparative experimental scheme is 

studied and designed. The performance of different 

algorithms is summarized by comparing the models of 

multiple related works. The experiment adopts actual 

flight trajectory data, including data under different 

meteorological conditions and high traffic flow situations. 

The evaluation indicators adopt contour coefficient, 

Davier-Bouldin index (DB Index) and RMSE, aiming to 

analyze the performance effect of the algorithm. The 

research adopted the following comparison methods: Bi-

LSTM, DBSCAN-GRU, Hidden Markov Model, and the 

CURE algorithm. The comparison results are shown in 

Table 9. 

 

Table 9: Performance comparison of different models. 

Method Contour coefficient DB Index RMSE 

Bi-LSTM 0.68 1.85 86.5 

DBSCAN-GRU 0.60 2.10 92.3 

Hidden Markov model 0.65 1.90 88.1 

CURE algorithm 0.75 1.65 73.4 

 

Table 10: Conflict detection confusion matrix. 

Method 4D pane method Research method Mixed detection method 

Real conflict (TP) 155 162 143 

False conflict (FP) 84 37 68 

Missed detection conflict (FN) 16 1 14 

True negative (TN) 10205 10311 10285 

Precision 0.625 0.814 0.678 

Recall 0.957 0.985 0.911 

F1-score 0.752 0.924 0.784 
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In Table 9, the CURE algorithm performs better than 

other comparison models in the track prediction task. With 

a contour coefficient of 0.75, the CURE algorithm 

demonstrates good compactness and separability of its 

clustering results, achieving high-quality trajectory 

classification. However, the contour coefficients of other 

models, such as Bi-LSTM, DBSCAN-GRU, and the 

hidden Markov model, are all lower than those of CURE. 

This indicates that the clustering effect of CURE is 

relatively poor. In terms of the Davies-Bouldin index, 

CURE's value is 1.65, which is significantly lower than 

that of the other models. This indicates that the clusters are 

less similar to each other and that the clustering effect is 

better. Finally, the evaluation of RMSE verified the high 

accuracy of the CURE algorithm in coordinate prediction, 

with a minimum error of 73.4. The RMSE of the other 

models was higher than that of the CURE algorithm. 

These results suggest that the CURE algorithm is 

particularly effective in processing complex track data and 

enhancing prediction accuracy. The results demonstrate 

that the CURE algorithm is more robust when dealing with 

high-dimensional data because it introduces the concept of 

representative point clustering. Compared with traditional 

clustering methods, CURE can effectively handle outliers 

in the data and maintain sensitivity to high-dimensional 

features. This allows CURE to overcome the influence of 

data noise when clustering aviation trajectories and 

maintain high interpretability throughout the process. 

Furthermore, CURE's hierarchical clustering feature 

enables it to provide stable results when dealing with 

complex trajectories of different categories. It performs 

even more outstandingly when the trajectories are widely 

distributed and have various shapes. To verify the 

effectiveness of the proposed method, it is compared to 

and analyzed alongside the hybrid detection method of 

HMM, which is used to recognize heading change patterns 

and determine fixed threshold conflicts. The specific 

results are shown in Table 10. 

As shown in Table 10, the analysis of the conflict 

detection confusion matrix results indicates that the 

research method successfully identified 162 TP, which is 

higher than the 143 TP identified by the hybrid method. 

Meanwhile, the number of FP is only 37, which is lower 

than the 68 FP of the hybrid method. This demonstrates 

better accuracy. The research method's recall rate reaches 

0.985, higher than the hybrid method's 0.911, 

demonstrating an outstanding ability to detect and capture 

missed cases. Additionally, the research method's 

accuracy is 0.814, surpassing the mixed method's 0.678. 

The F1 score is 0.924, surpassing the mixed method's 

0.784. These results reflect a superior conflict detection 

effect and false alarm control. 

4 Discussion 
In summary, this study proposed a novel, four-

dimensional trajectory prediction method based on the 

CURE clustering algorithm. This method aimed to 

improve prediction accuracy in complex aviation 

environments and solve key challenges in four-

dimensional trajectory prediction for air traffic 

management. The research selected data from January to 

May 2017 for comparison with data from June 1, 2017. 

This period was chosen because it provided sufficient 

historical flight trajectory data to analyze the performance 

of the flight trajectory prediction model. June 1st was 

usually the peak period of increased air traffic, which 

effectively tested the adaptability and accuracy of the 

proposed method under different traffic conditions. 

Through comprehensive experiments, this method proved 

its superior performance by using hierarchical clustering 

of ADS-B historical data and an improved Euclidean 

distance similarity matrix. The prediction error was 

limited to 26 s and 50 m in height. With 6,600 data points 

from multiple flights, the aggregated average error was 

17.6 s and 31.5 m. A comparative analysis showed that the 

CURE algorithm reduced time error by 10.6% and RMSE 

by 30% compared with Attention-GRU. A contour 

coefficient of 0.75 and a DB index of 1.65 were achieved. 

The accuracy rate of the conflict detection index in the 

dynamic protected area was 98.5%. The F1 score was 

0.924, superior to the mixed method. The results 

demonstrated that introducing the modified Euclidean 

distance to calculate track similarity effectively reduced 

the influence of data noise and improves the reliability of 

the calculation. The accuracy of flight path prediction was 

improved through the combination of real-time and 

historical flight data and comprehensive analysis. A flight 

conflict detection method based on the 4D pane and 

geometric approaches was proposed to reduce false 

conflict alerts and improve flight safety. A hierarchical 

clustering method was used to process large-scale, 

complex aviation trajectory data and reveal its inherent 

logical relationships. The experiment revealed that time 

errors gradually increased as the flight progressed. This 

might be primarily due to the cumulative effect of wind 

speed changes during the cruise stage and the delay in 

transmitting control instructions, which affected the 

trajectory. The research could be corrected dynamically 

by introducing real-time meteorological data streams and 

synchronizing the ATC instruction interface. During the 

cruise phase, the flight altitude prediction error 

approached0, but it reached 50 m during the descent 

phase. This was related to wind shear disturbances in the 

airport terminal area and the flaps' operating mode. 

Aerodynamic configuration parameters must be added, 

and the weight coefficients must be optimized in the 

dynamic correction factor. The research aims to enhance 

the accuracy and reliability of 4D trajectory prediction to 

provide more effective support for air traffic management. 

At the same time, it aims to solve conflicts among multiple 

flights to ensure the safety and efficiency of aviation 

operations. 

5 Conclusion 
The rapid growth of global air traffic in recent years has 

placed unprecedented pressure on air traffic management 

and presented new challenges. Against this backdrop, 4D 

trajectory prediction technology has become increasingly 

important as a means to improve the utilization rate of 

airspace resources, reduce the workload of ground control 
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personnel, and enhance flight safety. The research 

proposed a 4D trajectory prediction method based on the 

CURE algorithm. Using widely adopted ADS-B historical 

data, it measured trajectory similarity through modified 

Euclidean distance. Then, it combined this measurement 

with hierarchical clustering technology to cluster and 

analyze trajectory data in the airport terminal area. The 

research used a real-time stream processing architecture 

that integrated a Kalman filter and an LSTM time series 

prediction module. This effectively achieved real-time 

prediction of the aircraft's future flight path. The 

experimental results showed that the 4D trajectory 

prediction model based on the CURE algorithm was more 

accurate than many existing benchmark models, 

especially when dealing with high-dimensional data. This 

model demonstrated good robustness and reliability. 

Through experimental comparison, the accuracy of track 

prediction and the rate of conflict detection had 

significantly improved with the proposed method. The 

error rate remained within a reasonable range. For 

example, the average time error was reduced to 17.6 s and 

the average height error is 31.5 m. The study showed that 

appropriate clustering methods and similarity calculations 

could significantly improve the accuracy of flight path 

prediction, optimize the flight management process, and 

ultimately support aviation safety and effective airspace 

resource management. Although the initial research 

demonstrated the CURE algorithm's potential for 

trajectory prediction, several deficiencies remain. For 

instance, the research primarily focuses on predicting the 

trajectories of specific flights and does not address 

converting flight data into planar and geodetic 

coordinates. The real-time data processing and dynamic 

trajectory prediction capabilities have not yet been fully 

verified. The prediction model used by the research must 

be expanded to include real-time dynamic flight data. 

Future research should prioritize the integration of 

meteorological and real-time data to enhance the model's 

adaptability in variable environments. Further exploration 

of integrating planar and geodetic coordinate systems into 

the data processing flow can ensure the accuracy of flight 

data on the Earth's surface. Meanwhile, a track prediction 

system based on real-time data has been developed to 

verify the actual performance of the proposed model in 

dynamic trajectory prediction. This system enhances the 

decision-making ability and response speed of air traffic 

management. 
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