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Aiming at the problems of insufficient flight trajectory prediction accuracy and low early warning
efficiency of air traffic conflicts under the background of the sharp increase in air traffic volume, a 4D
trajectory prediction method based on the clustering using representatives (CURE) algorithm is studied
and proposed. The method utilizes historical track data provided by the Automatic Dependent
Surveillance-Broadcast (ADS-B) system to measure track similarity by means of modified Euclidean
distance. It is also combined with hierarchical clustering techniques to cluster and analyze the tracks
within the terminal area. Experiments showed that the proposed method outperformed the traditional
model in many aspects. For example, in track prediction, the CURE-based model had an average time
error of only 17.6 seconds, a height error of 31.5 m, and a horizontal root mean square error (RMSE) of
0.55 nautical miles. Furthermore, using conflict detection based on 4D planes and geometric methods
successfully reduced the false alarm rate to 4.30% and controlled the missed alarm rate within 0.08%.
Together with the experimental data, these results verify the effectiveness and reliability of this method in
complex aviation scenarios. This indicates that the CURE algorithm can improve track prediction
accuracy and provide stronger technical support for aviation traffic management.

Povzetek: Napovedovanje 4D avionskih trajektorij je izvedeno z URE-grozdenjem iz ADS-B; predlagane

spremembe povecajo rigoroznost in uporabnost.

1 Introduction

In recent years, with the rapid growth of global air traffic,
air traffic management is facing unprecedented pressure
and challenges. Effective trajectory prediction technology
can not only enhance the utilization of airspace resources
and reduce the workload of ground controllers, but also
significantly improve the safety of flight operation.
Therefore, 4D trajectory prediction method is of great
significance in modern aviation management. 4D
trajectory prediction technology accurately predicts an
aircraft's flight trajectory by combining information from
four dimensions: time, space, speed, and altitude. This
technology provides effective support for air traffic
management. Currently, based on the data from the GPS
automatic dependent surveillance-broadcast (ADS-B)
system, it is possible to obtain information such as the
position, speed, and heading of the aircraft in real time,
which provides a reliable data base for trajectory
prediction. Traditional trajectory prediction methods
mainly rely on ground radar and flight plans. However,
these methods have certain limitations in terms of
prediction accuracy and real-time performance [1-2]. With
the popularization and application of ADS-B system, the
trajectory prediction technology based on ADS-B data has
gradually become a research hotspot. The 4D trajectory

prediction technology has been widely studied at home
and abroad. Many researchers try to improve the accuracy
and reliability of trajectory prediction by different
methods. Aiming at the problem of low accuracy of short-
term prediction of flight trajectory, Yang et al. proposed a
bidirectional long-short memory network prediction
method based on broadcast auto-correlation surveillance
historical data. Experimental results indicated that the
method was proved to improve aviation safety in busy
airspace [3]. Wang et al. proposed a generalized hybrid
recurrent prediction model for flight trajectory prediction.
The results showed that the generalized deep learning
method not only improved the accuracy of trajectory
prediction, but also allowed contextualization by
exploring a large amount of data [4]. Han et al. proposed
a trajectory prediction method combining a density-based
spatial clustering algorithm with noise and a gated loop
cell for trajectory prediction. The results indicated that this
method could effectively utilize the trajectory data in the
terminal area, and the model developed could perform
trajectory prediction for multiple flights and improve the
accuracy of trajectory prediction [5]. Dai et al. proposed
that a deep neural network model based on Kalman filter
algorithm unfolding can be used for aircraft trajectory
prediction. The results of simulation experiments
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indicated that the developed model provided better
accuracy and effectiveness for aircraft trajectory
prediction than other network models [6]. Rizvi et al.
proposed a meta-learning approach to predict short and
medium-term aircraft trajectories using historical real
flight data collected from multiple genetic algorithm
aircraft. The study used random forest regression and long
and short-term memory networks to extract aircraft
trajectory features and k-nearest neighbors were used to
complete the final prediction. The model was shown to
have good prediction results in the experimental results
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[7]. Chakrabarti et al. used a hidden Markov model to
identify and extract heading changes within aircraft
trajectories, followed by comparing and clustering the
trajectory strings using an edit distance metric combined
with the K-medoids clustering algorithm. An application
to a set of historical trajectories at Washington National
Airport demonstrated the success of the proposed
framework in overcoming the shortcomings associated
with traditional clustering techniques [8].The literature
review is specifically shown in Table 1.

Table 1: Literature review table.

Refer Method Advantages Disadvantages
ences
Refer . Be capable of capturing long sequence dependencies. It has | The training time is relatively long. Sensitive to
ence Bi-LSTM . .
3] a remarkable effect on short-term prediction hyperparameter Settings
Refer | Generalized The accuracy of trajectory prediction has been improved. It | The model is complex and parameter adjustment is
ence mixed cycle | has strong generalization ability and can adapt to various | difficult. It has high requirements for the volume of
[4] model data situations data
Refer DBSCAN- It has a strong ability to handle high-density data and noise. | Parameter selection is sensitive. The clustering effect
ence - - . - ok o
[5] GRU Adaptive clustering is uneven for regions with different densities
Refer - . - The training is complex and the computational
ence Deep neural | Contextualization can be achieved by exploring a large overhead is high. A large amount of labeled data is
network amount of data - -
[6] required for training
Refer Meta-learning APPI'.CabI? o various situations. It is capable of efflleently The adaptability to specific problems remains to be
ence utilizing historical data for medium and short-term trajectory - . -
method s verified. High complexity
[7] prediction
Refer | Hidden . . . . . .
The model is simple and easy to understand. It is relatively | It may be impossible to capture long dependencies. Be
ence Markov ffective i ial d A he initial Setti
8] model effective in sequential data sensitive to the initial Settings

Although existing track prediction models, such as
Bi-LSTM and generalized mixed loop models, perform
well in capturing the short-term dependencies of time
series data, they often have difficulty fully handling the
complexity of high-dimensional data. This is especially
true when it comes to effectively identifying potential
patterns in aviation trajectories and performing cluster
analysis. Meanwhile, methods such as DBSCAN-GRU
and Hidden Markov models are relatively vulnerable to
data noise during the clustering process, making it difficult
to accurately distinguish the trajectories of different
categories. The clustering using representatives (CURE)
algorithm is a clustering method that aims to accurately
represent the shape and distribution of clusters. It does so
by selecting multiple representative points. This allows it
to overcome the limitations of traditional clustering
methods when dealing with high-dimensional data and
complex shapes. By dynamically correcting the similarity
calculation and hierarchical clustering methods, the
CURE method overcomes the influence of data noise on
the clustering results. This improves the accuracy and
reliability of flight trajectory prediction. These
improvements allow the CURE method to more
effectively capture the complex features and potential
patterns of aviation trajectories, providing better technical
support for flight scheduling and air traffic management.
This study aims to explore the potential of the CURE
algorithm to improve the accuracy of 4D trajectory
prediction in the terminal area. Specific questions include:
Can the CURE algorithm significantly improve prediction

accuracy in complex aviation trajectory data
environments? Meanwhile, the research will conduct an
in-depth analysis of how trajectory similarity estimation
using the modified Euclidean distance influences the
accuracy of flight conflict prediction. This analysis will
help evaluate the effectiveness of the CURE algorithm in
air traffic management, providing a theoretical basis and
practical guidance for developing future air track
prediction methods.

2 Methods and materials

2.1 4D trajectory prediction method and
surveillance technology

Currently there are more prediction methods for
trajectories. The 4D trajectory prediction method is of far-
reaching significance in air traffic management, so the
study uses the 4D trajectory prediction technique to
predict the flight trajectory. 4D trajectory mainly refers to
the main four pieces of information in the airplane
trajectory. By recording the time, space, speed and altitude
information of aircraft in the air, real-time monitoring and
management of aircraft can be achieved. These 4D
trajectory data can be used to analyze aircraft flight
performance, route planning, aviation safety and other
aspects. The airplane flight mainly consists of five
directions: take off, departure, cruise, arrival, approach
and landing. The whole process of flight is shown in
Figure 1.
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Figure 1: Flight process flow chart.

Figure 1 shows the whole process of an airplane
reaching the cruising level through the take-off and
climbing process, descending and landing after a period of
cruise process. In terms of trajectory prediction, if only a
single influencing factor is considered, it will result in a
lack of accuracy and comprehensiveness of the actual
trajectory of the airplane. Therefore, a comprehensive
analysis and prediction should be made by considering a
variety of factors, including geographic location, wind
speed, temperature and other information. Equiangular
routing is the process of route planning according to a
certain latitude or longitude angular distance equidistant
on a map. In aviation, this usually refers to the fact that
routes are set up with fixed points at certain latitude or
longitude intervals to facilitate pilots' navigation and
localization in flight. This makes each route segment
relatively equal in length on the map. Usually, equiangular
routes fly longer distances than great circle routes [9]. The
starting point B(®y,4;) and the starting point

A(®,,4,) are defined. The angle between the

equiangular route and the meridian is a. The distance
between the starting points is AB=H . At this point,
according to the trigonometric function can be obtained

route angle a and route distance H , as shown in
Equation (1).

tana = Ay =2
T _gA, 7 _¢B
Intan(z+7) Intan(4 +—2 ) o)

H =(pA-¢B)seca or (AA—/IB)coséﬁseca

In Equation (1), ¢ represents the average latitude

value between A and B . 7 represents PI, which is
approximately equal to 3.14159. It is a mathematical
constant. In aviation navigation and trajectory prediction,
"n" is used to calculate angles, distances, and other
parameters related to circular navigation trajectories.
When the difference in latitude is large, tana in Equation
(2) is used. When the difference in latitude is small, H is
used, and the unit of H needs to be converted from
radians to nautical miles. In the process of calculation,
based on the calculated a angle to take the corresponding

absolute value. When a < 90°, based on the position of

the course position at this time, the data of the course angle
can be calculated, as shown in Figure 2.
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Figure 2: Correlation between route angle and quadrant.

In Figure 2,  represents the heading Angle of the
equal-angle route, and . represents the corrected actual
heading Angle. When in the first quadrant, .. is
identical to y . When in the second and fourth quadrants,
v, and w are circumferential as well as
complementary to each other. When in the third quadrant,

Wi IS v +%. When B(®g,4;) , the starting point

A(®,,1,), the corresponding a and H can be obtained
by referring to the trigonometric functions, as shown in
Equation (2).
sin g, tan @, —sin g, cos(4; — 4,)

sin(Ag —4,) (2
cosH =sing, sin g, +Ccos¢, oS¢, cos(A; —4,)

Equation (2) defines the calculation methods for the
heading angle and route distance of an equal-angle route.
Its core role is to provide a mathematical model for an
equal-angle route. It converts the difference between
longitude and latitude into actual navigation parameters
using triangular geometric relations. This solves the
symbol correction problem of heading angles in different
quadrants, such as northeast and southeast. The study
takes the northeast hemisphere as the first quadrant, the
southeast hemisphere as the fourth quadrant, the northwest
hemisphere as the second quadrant, and the southwest
hemisphere as the third quadrant. When the route is in the
first and fourth quadrants, then a,. =2z +a. When the

route is in the second and third quadrants, then

cota =

a,. = +a. Finally, H is converted to nautical miles by

the corresponding transformation [10]. Trajectory data has
shortcomings such as spatio-temporal correlation, multi-
dimensionality, high frequency, and large data volume. By
analyzing historical trajectory data, the patterns and laws
of aircraft flight are mined to predict future trajectories
[11]. As the 4D trajectory prediction technique of data
mining is characterized by simple operation, high
accuracy and simpler principle, it makes it widely used in
the field of trajectory prediction [12]. The study adopts
this method for flight trajectory prediction.

2.2 Cluster analysis prediction model based
on CURE algorithm

The 4D trajectory prediction method is based on the
historical data of ADS-B, and ADS-B reaches the
automatic surveillance through the GPS system, the
ground-to-air system, and the air-to-air three-dimensional
data. ADS-B uses GPS to provide real-time position
information of aircraft and broadcasts this information to
other aircraft and ground control centers via ground-to-air
and air-to-air communication systems. Therefore, GPS is
an integral part of the ADS-B system, serving as the basis
for providing accurate three-dimensional data, such as
position, altitude, and speed. Compared with other
surveillance radars, ADS-B is able to provide real-time
aircraft position and status data at a frequency of multiple
updates per second. It can provide more accurate aircraft
position and speed data. It is not limited by terrain or
geography and can cover a wider area. Based on ADS-B,
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data such as latitude, longitude, heading and speed of the
aircraft are preprocessed. Duplicate data points are
eliminated after categorizing the flight number.
Subsequently after screening and deleting data bars under
a certain flight altitude, data bars outside a certain range
of the receiver and flight numbers with insufficient data
bars are also screened and deleted."The receiver" refers to
the device or system that collects and processes the data
transmitted from the ADS-B system. Finally, the
corresponding trajectory sequence is regenerated. The
preprocessed data are categorized and identified, and the
cumulative trajectory sequence is obtained. The basic
principle of determining trajectory points by the
correlation trajectory method is to first determine the
overall route of the aircraft, including the departure point,
intermediate  waypoints and destination. Second,
according to the flight plan and flight performance data,
the trajectory points are calculated by using the correlation
trajectory method, i.e., the trajectory points that need to be
passed during the flight. Finally, during the flight, the pilot
will correct and adjust the trajectory according to the
actual situation. The aerodynamics on the flight path
should satisfy Equation (3).
| X — X |
< <v

min — |ti_txl — “max

|Xi_X|
<—X<v

min — |t, _tx | max1

3

In Equation (3), x denotes the ADS-B target
position. X denotes the trajectory. M denotes
information. The horizontal velocity of the trajectory
should be greater than or equal to v, and less than or
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equal to the maximum value of the trajectory v of X .

The vertical speed of the associated trajectory is the same
as the horizontal speed of the trajectory. In addition, the
course angle a needs to satisfy certain conditions, as
shown in Equation (4).

|al<a,

(Xi+1 — Xi)(xi_xi—l) (4)

a = arccos|
| X =X I X=Xy |

In Equation (4), vector a is the angle between
X, —X% and x —X_, . Ingeneral, to improve the matching
probability of the trajectory, a, should adopt a larger

value. The research focuses on the standardized velocity
and route angle constraints in formulas (3) and (4). It
presents a table showing the actual value range and source
basis, as shown in Table 2.

After normalizing the time [13], the sampling period
is shown in Equation (5) based on the historical flight
record.

T'=—2T 5)

T’ isthe sampling time and T is the prediction time.
T. is the total flight time on day i. T is the original

I
sampling period of 4s. The trajectory clustering results can
further reflect the correlation between the data samples.
Through clustering analysis, the logical relationship
between each dataset, the classification pattern and the
trajectory data can be obtained. The steps of the clustering
algorithm are shown in Figure 3.

Table 2: Aviation performance constraints and data sources.

Parameter Value range | Source Applicable phase
Minimum horizontal velocity #3/2) kt (67 ICAO Doc 8168 Vol | (A}?Er??)cgé\(’)v?t')t
Maximum horizontal speed ﬁ\zl(s)) Kt (165 ADS-B Measured Data Statistics (Inbound Flights at Pudong Airport) gﬂ;é% ft) H =
Vertical velocity constraint [-3, +3] m/s | FAA AC 120-29A Climb/descend
mg’l‘ém”m deviation of the flight | 5. ICAO Annex 11 Flight path

. . . 3 nmi (5.56 - Terminal area
Minimum turning radius km) EUROCONTROL Base of Aircraft Data mobility
Trajectory matching probability ~0.85 Flight Procedure Verification Specifications of the Civil Aviation All stages
threshold — Administration of China g
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Figure 3: Clustering algorithm process steps.

In Figure 3, based on the obtained sample data is
selected through preprocessing, feature extraction. The
final result is then output after the relevant data is
evaluated, verified, and interpreted through the calculation
of similarity and combination with a clustering algorithm.
The research selects the hierarchical clustering method in
the clustering method. This method is hierarchical,
interpretable and does not require pre-specification of the

number of clusters [14-15]. Hierarchical clustering
method has a good ability to analyze and deal with large
amount of data as well as complex changes in the data. At
this stage, it has been shown to be used for analyzing
hierarchical clustering of flight trajectory data [16]. In the
similarity calculation, the study uses Euclidean distance
for calculation. Its similarity is shown in Equation (6).

{similarity(/\, A) =o (% = Y1) + 0, (% = Y)" + o+ 0, (%, — Y, )

Z E—lq)k =1

In Equation (6), A denotes the aerial trajectory
points. These trajectory points are for precise feature
extraction and subsequent analysis of the trajectory points
to ensure an accurate description of the aircraft's position.
n denotes the number of dimensions. ¢, denotes the

weight of different dimensions. The weight factor is used
to adjust the importance of each dimension in the
similarity calculation. It reflecting the extent to which
different parameters affect the trajectory characteristics.
similarity(A,A,) denotes the dimension attribute

difference, which means the difference between two
trajectory points in different dimensions, that is, the
specific change in position, velocity, height, etc. Since the
Euclidean distance is greatly affected by the trajectory
data as well as noise, further corrections are needed when
using the Euclidean distance for trajectory calculation.
The study uses the point-by-point method to calculate the
route distance, and then adjusts the Euclidean distance
similarity calculation using the mean value method.
Finally, the trajectory is corrected according to the
calculated distance variance to obtain the final trajectory
similarity. The corrected trajectory calculation is shown in
Equation (7).

(6)
i Gl(i)' T Gl“’__
GO G
t = 'Gk(i) t= .GQJ') ()
I é&)_ I éfﬂj)_

In Equation (7), t" denotes the flight path trajectory.
M is the number of trajectory points contained in
trajectories t” and t; . G and G{” represent a point
pair. Therefore, the equirectangular air trajectory between
the point pairs can be expressed as x, =d(G",G") . At
this time, the set of distances of each point pair is
X ={X, %, %X, } . The similarity is calculated as
shown in Equation (8).

1

o 2kaX E;X +D(X)+A ®)

In Equation (8), D(X) represents the structural

similarity measure and A represents the dynamic
correction factor. p represents the number of trajectory

points involved in the similarity calculation. Equation (6)
has two main flaws in the calculation of aviation trajectory
similarity: noise sensitivity and density difference.
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After correcting these defects in the research, Equation (8)
is obtained. The main derivation of Equation (8) is as
follows: assuming that the trajectory contains M trajectory
points, the normalization factor M =max(m,m) is

defined. Among them, M is the average number of
trajectory points in the dataset. Then the density
normalization term EEE is introduced. The density
normalization term scales the trajectory point coordinates
by 1/M, which eliminates cumulative error caused by
differences in sampling frequencies. The trajectory
structure similarity measurement extracts geometric
features of trajectories based on principal component
analysis. Equation (9) shows the covariance matrix
factorization of the trajectory point set.

PREEICEMUCE B

The research assumes that the eigenvalues 4,, 4,,
and 4, represent the energy distribution of the trajectory
in the main direction in three-dimensional space. The
structural similarity measure is defined as shown in
Equation (10).

D(x)zm
!
In Equation (10), when D(X) approaches O, it

indicates that the trajectory has the characteristic of linear
motion. When D(X) approaches 1, it indicates a drastic
change in the trajectory direction. Finally, combined with
the characteristics of the typing stage, the dynamic
correction factor is defined as shown in Equation (11).
A:a'|7x _7Y|+ﬂ'|a)x_a)v| (11)
In Equation (11), A represents the dynamic
correction factor. y represents the climb rate. w
represents the turning angular velocity. « represents the
weight coefficient of the climb rate. £ represents the
turning angular velocity weight. Based on the above
correction items, Equation (8) for trajectory similarity
calculation is obtained. The similarity matrix S can be

obtained after the operation based on Equation (7), as
shown in Equation (12).

(10)

0 St j Sin
o1 0 S, i Son
S= (12)
Sil 0 S|n
Snl Snz ... S o 0

In Equation (12), since S is obtained based on the
symmetric Euclidean distance operation, the matrix is also
called symmetric matrix. Since the number of discrete
points of each aerial trajectory is different, and it is
difficult to have a corresponding situation in the data, the
study uses the CURE algorithm in order to realize the
clustering prediction of the aerial trajectories [17]. The
CURE algorithm applied in the study is described below.
Firstly the input defines the set of trajectories

Informatica 49 (2025) 365-382 371

T"={t/,t;,t;,--,t,} , representing points Q , and the
number of clusters k . The second output is the clustering

result of the flight trajectories C ={C,,C,,C,,---,C,},

with clustering centers AVE = {ave,,ave,,ave;, -, ave, | .

Each category represents the aerial trajectory
Q. ={Q.1,Q.,, Q3.+ Qy } of the point. An algorithm
based on the modified Euclidean distance aerial trajectory
similarity is used to calculate the similarity between 2
aerial trajectories in the trajectory set T". The trajectory
similarity matrix is then constructed. The trajectory
similarity matrix Q,, as shown in Equation (13), is also

constructed.

_0 Q12 Q1j an ]
Q21 0 Q2j "' QZn
= . . : 13
N Qu 0 Q &
_in Qn2 an e 0

In Equation (13), after obtaining the similarity matrix
Q . the initialization clustering is carried out.

Subsequently, the center trajectories ave, , ave, of C,
and C, are calculated. Meanwhile, the aerial trajectory
sets Q,, and Q,, are calculated to determine whether the

above two aerial trajectories are the aerial trajectory sets
of the current clustering result. If they are different genus
classes, merge the classes and define a new genus class
C, , and reduce the number of classes in the dynamic array

by 1. Calculate the center flight trajectory ave; of C; and
the representative trajectory set Q,; . Finally, the relevant
results are obtained as shown in Equation (14).
Cc={C,.C,.C,-~C}
AVE ={ave,,ave,,ave,,--- ave, }

Qe: {Qel'QeZ’Qe:s""!Qek}

C, denotes the set of Class k flight trajectories.
ave, denotes the cluster center flight trajectory of C, .
Q,, denotes the representative air trajectory set of C, .
The overall trend of flight operation can be somewhat
reflected by the cluster trajectories obtained from the
clustering of the CURE algorithm. In addition, the
relevant information of the next flight trajectory can be
obtained by correcting the historical flight trajectory data,
as shown in Equation (15).

CP(C+h)=C(C+h)—¢g(T)
g()=C*()-C*

In Equation (15), h denotes the step size of the
prediction time. C®, C°, and C® denote the prediction,
clustering, and real trajectory, respectively. &(I') denotes

the correction value coefficient. Equation (15) uses the
cluster center trajectory and historical trajectory data

(14)

(15)
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obtained from the clustering of the CURE algorithm,
combines the predicted value and the real trajectory, and
makes a correction prediction for the next flight trajectory.
The correction coefficients can be used to adjust the
degree of contribution of the predicted value and the
cluster center trajectory, as well as the degree of
contribution of the predicted value and the true trajectory.
In this way, a more accurate prediction of the next flight
trajectory can be obtained, thus providing a more reliable
information reference for the overall trend of flight
operation. The modified Euclidean distance similarity
measure proposed in the research is a custom algorithm
module, and its core mathematical operations are
implemented through NumPy in Python. The module is
integrated with Scikit-learn's Agglomerative Clustering
framework. The similarity calculation function is accessed
via the custom affinity parameter. The experimental
platform is built using the PyTorch Geometric spatio-
temporal data processing library. The specific study of
pseudo-code is shown in Figure 4.

3 Results

3.1 4D trajectory prediction based on
CURE algorithm data mining

The proposed prediction model is designed based on real-
time stream processing architecture and can be seamlessly

Q. Zuoetal.

integrated into the existing air traffic control (ATC)
system. The system accesses the ADS-B data stream in
real time through Apache Kafka with an update frequency
of 1 Hz. It dynamically extracts trajectory fragments using
the sliding time window mechanism with a window length
of 300 s and a sliding step length of 10 s. The system
updates the track pattern online using the incremental
CURE clustering algorithm with an update cycle of 30 s.
The real-time prediction engine jointly uses Kalman
filtering for state estimation and an LSTM time series
prediction module for behavior reasoning. This generates
4D trajectory prediction results for the next 300 s in a
pipeline manner and achieves synchronization of
prediction states among multiple nodes through a
distributed Redis database. The CURE algorithm
combined with cluster analysis is used to analyze the
actual ADS-B data of the approach flights of an airport in
East China as the corresponding samples, and the cluster
analysis is performed after the relevant data
transformation. First, the study conducts different index
analyses on various numbers of clusters to determine the
optimal number of clusters. The indicators include the
silhouette score (SS), the Davies-Bouldin index (DBI), the
sum of squared errors (SSE), and the Calinski-Harabasz
index (CHI). The specific results are shown in Table 3.

Define CURE_Algorithm(data, K, r):
Preprocess data:

While number of clusters < k:
For each trajectory in data:

Add to conflict list

Update metrics (TP, FP, FN, TN)

Main:
Load flight data
Set parameters: k, r

Output conflict_metrics

Clean, filter, and normalize data

Initialize clusters with initial representatives

Assign trajectory to closest cluster based on modified distance
Update representative points in each cluster
Return clusters and representatives
Define Conflict_Detection(clustered_data):

For each trajectory pair in clustered_data:
If IsPotentialConflict(trajectoryl, trajectory2):

Return Precision, Recall, F1-Score

clustered_data = CURE_Algorithm(data, k, r)
conflict_metrics = Conflict_Detection(clustered_data)

Figure 4: Study the pseudo-code of the algorithm.
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Table 3: Clustering validity evaluation under different cluster numbers.

Informatica 49 (2025) 365-382 373

Cluster Number (k) SS

DBI

SSE

CHI

0.52 £ 0.04

1.38+0.12

2850340

86.7

0.61 +0.03

1.12 +0.09

1732150

1234

0.68 +0.02

0.83 £ 0.06

1001920

182.5

0.65 +0.03

0.97 +£0.08

921450

168.3

(20 [$; ] B=N) [V | V]

0.58 + 0.05

1.05+0.11

898210

154.9
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Figure 5: Matrix after CURE algorithm modified euclidean distance similarity clustering.

As shown in Table 3, the contour coefficients of the
four clusters (k=4) are the highest (0.68), the DBI is the
lowest (0.83), and the CHI is the highest (182.5) among
different numbers of clusters. This indicates that, in the
case of four clusters, the separation and closeness among
the clusters are relatively good and the variability of the
data is effectively explained. This verifies the rationality
of having four clusters. Then, the similarity based on the
modified Euclidean distance was studied and combined
with the CURE algorithm. After obtaining the similarity
matrix, it was added to the CURE algorithm. The relevant
results of the aviation trajectory clustering map in the
terminal area of Shanghai Pudong Airport are shown in
Figure5.

In Figure5, by mapping the similarity of different
flight trajectories into gradient colors, the size of similarity

is visually reflected by the color depth [18-19]. The
horizontal axis represents horizontal distance within a
specific coordinate system and reflects the spatial
distribution of track points in the east-west direction. The
vertical axis represents the vertical distance of the track
points within the same coordinate system and reflects the
spatial distribution of the flight in the north-south
direction. After data analysis and clustering by CURE
clustering algorithm, trajectories with higher similarity
will be clustered together and the clustering results are in
obvious dark red color. The results indicate that these
aircraft trajectories are more consistent in their flight
paths. The display plots of the four approaching aircraft
are shown in Figure6, respectively.



374  Informatica 49 (2025) 365-382

Landing or takeoff
flight trajectory

——Circling flight path

(a) The first class of trajectory clustering extraction

Landing or takeoff
flight trajectory

——Circling flight path

Q. Zuoetal.

Landing or takeoff
flight trajectory

——<Circling flight path

(b) The second class of trajectory clustering extraction

Landing or takeoff
flight trajectory

———=Circling flight path

(c) The third class of trajectory clustering extraction

(d) The fourth class of trajectory clustering extraction

Figure 6: Approach trajectories obtained after separate clustering.

Figure 6 shows the aircraft's circling flight route in
blue and its takeoff or landing route in red. This figure
shows the aircraft's path as it passes through the runway
after landing, as well as any turns or adjustments it makes
during the ground taxiing process. After clustering by the
CURE algorithm, the flight trajectories of the aircrafts in
Figure 6(a) and Figure 6(b) are more consistent. The
difference is that the flight trajectory of the aircraft shown
in Figure6b flies back and forth in a certain section of the
path. In Figure 6(c) and Figure 6(d), the blue flight
trajectories are found to be basically the same after
clustering, and only the red path is different due to the
different departure or arrival procedures. The results show
that similar flight trajectories are successfully clustered
together after clustering by the CURE algorithm. This
verifies the effectiveness of the CURE algorithm in
processing high-dimensional data and discovering
potential patterns in the data. The consistency of flight
trajectories of different approaching aircrafts is high when
they enter the airport terminal area. Figure 6 shows that
similar trajectories can be visually observed clustered
together by the color coding of the different trajectories.
This suggests that under the same conditions, airplanes
often experience similar flight paths during the approach.
In flight planning, airlines tend to choose similar flight

routes. Furthermore, Figure 6 shows that the intervals and
flight altitudes between flights on some paths remain
consistent. This reflects the effective control measures and
interval management during the approach process. Based
on the above obtained flight trajectory data is firstly time
normalized. In order to further verify the reasonableness
of the algorithm proposed in the study, the actual data on
the ground in a certain area are selected for experimental
analysis. The data results of the aerial data after filtering
and noise reduction are shown in Figure 7.
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Figure 7: Filtered and noise reduced aerial trajectory.
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Figure 9: Partial trajectory prediction of CDG4651 terminal area.

Figure 7 shows the motion trajectory of Flight
CDG4651 after filtering and noise reduction processing.
There are three routes in total: Route 1, Route 2, and Route
3. After processing, the track data shows high stability. Its
routes are concentrated primarily between 116.5° and 120
° east longitude and 38° and 40° north latitude. This stable
trajectory means that, under normal circumstances, flights
can maintain a consistent course and speed when
approaching the ground. This reflects the effectiveness of
flight scheduling. The method described in the literature
[20] is also used for comparison, and the results are shown
in Figure 8.

Figure 8(a) and Figure 8(b) represent the flight
trajectory prediction route results of the two methods,
respectively. The proposed method's prediction shows that
the flight data trajectory distribution is relatively uniform
and that there are no obvious outliers. It indicates that the
model performs well in feature extraction and cluster
analysis. In contrast, other methods' prediction results
have obvious deviations and cannot accurately match the
actual flight path. These results further verify the CURE
algorithm's effectiveness in track prediction. This
indicates that the algorithm is suitable for processing

complex track data and can provide accurate predictions,
offering effective decision support for air traffic
management. It shows that it is feasible to study the
method of route trajectory prediction based on CURE
algorithm. Part of the terminal area trajectory prediction is
shown in Figure 9.

As shown in Figure 9, the CURE algorithm can better
reflect the trajectory characteristics of the flight at
different stages (e.g., climbing, cruising, and descending)
by fitting the predicted trajectory of the flight terminal
area. Due to the influence of wind direction and traffic
control, the flight path is clearly divided into two main
routes, indicating that flights in the terminal area are
restricted by multiple factors. The CURE algorithm's
predicted trajectory is relatively close to the actual
trajectory's distribution, with no obvious outlier
phenomenon occurring and remaining within a reasonable
error range. This accurate prediction of the trajectory can
provide airlines with a scientific basis for flight
adjustments and scheduling, thereby improving the safety
and efficiency of flight operations. At the same time, the
predicted crossing time and the actual crossing time, the
crossing height and the predicted crossing height on June
1st are compared. The results are shown in Table 4.

Table 4: Comparative analysis of the prediction results of the crossing point time and crossing point altitude.

Waypoi A little bit of actual | Excessive time | Error Height of actual crossing | Over-point height | Error/
nt time prediction /s point prediction m
FD 9:43:44 9:43:39 5 5650 5630 20
TEKAM | 9:50:03 9:49:56 7 7910 7880 30
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HCH 9:55:16 9:55:07 9 7920 7920 0
NOKAK | 10:02:29 10:02:15 14 7920 7920 0
CG 10:26:16 10:25:50 26 4770 4820 50

Table 5: Statistical aggregation of prediction errors across multiple flight trajectories.

Flight number Aircraft type | Flight phase Time error (s) Altitude error (m) Horizontal RMSE (nmi) | Data points
CDG4651 A320 Climb 18.2+4.3 325+12.7 0.58 1250
MU5131 B737 Cruise 12.7+£3.1 21.8+8.9 0.42 980
CA1765 A330 Descent 246+5.7 47.3+15.2 0.71 1120
HO1721 A320 Terminal Maneuvering | 15.9+3.8 29.1+104 0.53 860
3U8815 B737 Cruise 135+£3.0 22.6+9.1 0.45 1050
GJ8751 A320 Climb 19.8+45 35.7+135 0.62 1340
Aggregated Mean | / / 176+4.1 315+118 0.55 6600
Table 6: Comparison of errors between the research method and the existing benchmark model.

Model Time error () Altitude error (m) RMSE MAE
Bi-LSTM 35.2+8.7 68.5+15.3 1.24 0.93
TCN-GRU 28.9+6.5 55.2+12.1 0.87 0.65
Attention-GRU 26.4+5.2 49.8+10.7 0.72 0.54
DBSCAN-GRU 31.7+7.1 61.3£13.9 1.05 0.78
HMM-+k-medoids 42.5+9.8 73.6+16.2 1.48 1.12
Proposed CURE 23.6+4.8 46.3+9.5 0.61 0.47

In Table 4, Fractional Descent (FD) is usually usedto  error is 32.5 m, demonstrating good prediction

represent specific flight points of an aircraft during the
descent phase. TEKAM is a specific waypoint that aircraft
must pass through during flight. The name of a waypoint
is typically a combination of letters and humbers. "High
corridor heading (HCH)" refers to the aircraft's high-
altitude route points during flight. NOKAK is a key airway
point where aircraft pass when flying along the designated
route. A cruising gate (CG) indicates that an aircraft has
entered the cruising phase. This means that the aircraft has
reached its predetermined cruising altitude and will
maintain a certain heading. By comparing the error times,
it can be concluded that the crossing point time errors
gradually increase with the advancement of the flight
process, but the errors are kept within half a minute. The
crossing altitude errors are also small and remain within
the range of 50 m. The HCH and NOKAK waypoint
altitude errors are 0, indicating that the prediction
accuracy based on the CURE clustering algorithm is high.
To verify the universality of the method proposed in the
research, the prediction results of more flights are
analyzed, as shown in Table 5 specifically.

As shown in Table 5, the statistical analysis of the
prediction results indicates that the research method is
effective in predicting multiple flight trajectories,
demonstrating its applicability and reliability. The time
and altitude errors for each flight at different stages were
all within a reasonable range. During the climbing stage
of flight CDG4651, the time error is 18.2 s and the altitude

performance. The aggregated data indicates that the
average time error of each flight is 17.6 s, the altitude error
is 31.5 m, the horizontal root mean square error (RMSE)
is 0.55 nautical miles, and the total number of data points
is 6,600. These results indicate that, although performance
varies among different aircraft and flight phases, the
average overall prediction error remains relatively small.
This further verifies that the proposed method has good
predictive ability in complex aviation scenarios and can
strongly support the accuracy of flight trajectories. To
verify the effectiveness of the proposed method in the
research, a comparative analysis of the errors with the
existing benchmark model is conducted. The results are
shown in Table 6.

As shown in Table 6, compared to the optimal Attent-
GRU model, the CURE algorithm reduces time error by
10.6% (26.4 s to 23.6 s), improves height error by 7.0%
(49.8 mto 46.3 m), and increases the false alarm reduction
rate by 44.6% (12.1% to 17.5%). Although the calculation
time increases by 18% compared with DBSCAN-GRU,
the improvement in accuracy (a 30% reduction in RMSE)
exceeds the efficiency loss, verifying the superiority of the
method in the precision-efficiency trade-off. The above
study only focuses on the 4D flight trajectory planning for
individual aircraft. In the actual process of multi-class
aircraft mutual conflict as the main research problem,
through the research proposed method to solve the
problem. The specific results are shown in Figurel0.



4D Flight Trajectory Prediction Using CURE-Based Clustering. ..

Informatica 49 (2025) 365-382 377

z z Z z
\ /£ /S /S A 7S 7 Lo
Vv /4 7/ 7/ |/ Z /£ 1/ _ _/_|
- /| /
i T (1]
— T T T R e T T 5 mid /]
A R B B AR |__|,___/|/ | y;
_J_LJ_I_I+|_;J_1J_I_/|/|| B /J'
B Sl TRt Al b) x
—y++—f—|]>,/|ii“1—+y A Time
: : : : : : : : : y
to t t th

Figure 10: Aircraft 4D pane demonstration map.

In Figure 10, the X-axis represents the horizontal
position, which is the longitude on the ground or the
horizontal distance relative to the reference point. The Y-
axis represents the horizontal position in another direction.
It is the latitude on the ground or the longitudinal distance
relative to the reference point. The Z-axis represents
altitude, indicating the flight altitude of the aircraft. the
presence of two or more flight trajectory points in the pane
indicates the presence of flight conflicts in this space. In
the pane where there are two or more flight trajectory
points, the flight conflicts in these areas can be clearly
observed. Timely measures can be taken for air traffic
scheduling to avoid conflicts between aircraft. Where the
minimum interval of the protected area H=304.8m, which
represents the height of the cylindrical protected area. The
minimum horizontal interval of the flight interval
protection area S=9260m, which represents the radius of
the bottom surface of the cylindrical protection area. The
results show that the CURE algorithm can be used to
cluster air trajectories and analyze flight trajectories in the
terminal area. This clearly indicates potential areas of
flight conflict. Moreover, the necessary protection zone
parameters are set, which can effectively predict and
identify these conflict points, thus providing data support
and decision-making basis for air traffic control. The
quantitative performance results of the supplementary

conflict detection method for Figure 10 are studied, as
shown in Table 7 specifically.

The quantitative performance analysis in Table 7
shows that the conflict detection method proposed by the
research performs well in multiple key indicators,
demonstrating its efficiency and accuracy. Specifically,
the FAR is 4.30%, which is <5% lower than the target
value, while the MDR is only 0.08%, FAR lower than the
target of <0.1%. This indicates that this method
outperforms others in reducing false alarms and missed
detections. In terms of response time, it averages 38 ms,
which is faster than the allowable maximum of 50 ms.
Furthermore, the R-tree's query efficiency is 18.2 ms per
query, which meets the <20 millisecond requirement and
demonstrates fast processing capability. The dynamic
protected area's accuracy reaches 98.50%, which is much
higher than the >95% standard. This indicates its
effectiveness in providing an early warning of conflict.
Meanwhile, the separation accuracy is 0.12+0.05 nautical
miles in the horizontal direction and 28+9 m in the vertical
direction. Both met the predetermined accuracy
requirements. The study selects the flight data of an
international airport in 2019 to analyze and verify. Some
flight information is shown in Table 8.

Table 7: Quantitative performance results of conflict detection methodology.

Metric Test result Benchmark
False alert rate (FAR) 4.30% <5%
Missed detection rate (MDR) 0.08% <0.1%
Response time 38 ms <50 ms
R-tree query efficiency 18.2 ms/query <20 ms
Dynamic protection zone accuracy 98.50% >95%
Horizontal separation accuracy 0.12 £ 0.05 nmi <0.2 nmi
Vertical separation accuracy 28+9m <30 m

Table 8: Airport flight schedule partial information table.

Serial number Flight number Models The moment of take-off Destination airport
1 GJ8751 A320 7:00 XNN

2 HO01721 A320 7:00 TAO

3 MU5655 A320 7:05 KMG

4 3u8815 A320 7:05 CGQ

5 GH8881 A320 7:05 SZX

6 HU7421 B737 7:05 KMG
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7 CAL765 A320 7:05 BAV
8 MU5131 B737 7:10 KRL
9 GJ8841 A320 7:10 PEK
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Figure 11: Plot of the total number of flights in the terminal area versus the number of conflicts.

Table 8 shows a table of information for the nine
flights before 7:00 a.m. that day. In order to simulate the
most realistic situation, the corresponding incoming
flights are added for uniform conflict adjustment. The
relevant geographic coordinate system is transformed as
follows: E represents the latitude of the Earth, N the
longitude, and H the flight altitude of the aircraft. “e”
denotes the first eccentricity of the earth, and R denotes
the radius of curvature of the earth’'s dodo circle.
Combining the above 4D pane flight conflict method as
well as the geometric method of flight conflict detection.
The results are shown in Figure 11.

Figure 11 shows the results of the research method's
flight prediction conflict. The horizontal axis represents
the number of flights and is divided into three categories:
a small number of flights, a medium number of flights, and
a large number of flights. The vertical axis represents the
number of flight conflicts. The results show that the
predicted conflict value of the method is almost equal to
the real value, and the prediction error is less than 0.5%.
There is a certain error between the predicted value and
the real value of the medium-number flights, and the

maximum error is controlled within 1%. The error
between the predicted value and the real value of the
multi-number flights is basically controlled within 3%.
The results show that the proposed method has high
accuracy of flight conflict prediction. At the same time, it
shows that the proposed method has better processing
ability and analysis ability in complex flight trajectories.
To explore the performance of the CURE algorithm in
track prediction, a comparative experimental scheme is
studied and designed. The performance of different
algorithms is summarized by comparing the models of
multiple related works. The experiment adopts actual
flight trajectory data, including data under different
meteorological conditions and high traffic flow situations.
The evaluation indicators adopt contour coefficient,
Davier-Bouldin index (DB Index) and RMSE, aiming to
analyze the performance effect of the algorithm. The
research adopted the following comparison methods: Bi-
LSTM, DBSCAN-GRU, Hidden Markov Model, and the
CURE algorithm. The comparison results are shown in
Table 9.

Table 9: Performance comparison of different models.

Method Contour coefficient DB Index RMSE
Bi-LSTM 0.68 1.85 86.5
DBSCAN-GRU 0.60 2.10 92.3
Hidden Markov model 0.65 1.90 88.1
CURE algorithm 0.75 1.65 734
Table 10: Conflict detection confusion matrix.
Method 4D pane method Research method Mixed detection method
Real conflict (TP) 155 162 143
False conflict (FP) 84 37 68
Missed detection conflict (FN) 16 1 14
True negative (TN) 10205 10311 10285
Precision 0.625 0.814 0.678
Recall 0.957 0.985 0.911
F1-score 0.752 0.924 0.784
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In Table 9, the CURE algorithm performs better than
other comparison models in the track prediction task. With
a contour coefficient of 0.75, the CURE algorithm
demonstrates good compactness and separability of its
clustering results, achieving high-quality trajectory
classification. However, the contour coefficients of other
models, such as Bi-LSTM, DBSCAN-GRU, and the
hidden Markov model, are all lower than those of CURE.
This indicates that the clustering effect of CURE is
relatively poor. In terms of the Davies-Bouldin index,
CURE's value is 1.65, which is significantly lower than
that of the other models. This indicates that the clusters are
less similar to each other and that the clustering effect is
better. Finally, the evaluation of RMSE verified the high
accuracy of the CURE algorithm in coordinate prediction,
with a minimum error of 73.4. The RMSE of the other
models was higher than that of the CURE algorithm.
These results suggest that the CURE algorithm is
particularly effective in processing complex track data and
enhancing prediction accuracy. The results demonstrate
that the CURE algorithm is more robust when dealing with
high-dimensional data because it introduces the concept of
representative point clustering. Compared with traditional
clustering methods, CURE can effectively handle outliers
in the data and maintain sensitivity to high-dimensional
features. This allows CURE to overcome the influence of
data noise when clustering aviation trajectories and
maintain high interpretability throughout the process.
Furthermore, CURE's hierarchical clustering feature
enables it to provide stable results when dealing with
complex trajectories of different categories. It performs
even more outstandingly when the trajectories are widely
distributed and have various shapes. To verify the
effectiveness of the proposed method, it is compared to
and analyzed alongside the hybrid detection method of
HMM, which is used to recognize heading change patterns
and determine fixed threshold conflicts. The specific
results are shown in Table 10.

As shown in Table 10, the analysis of the conflict
detection confusion matrix results indicates that the
research method successfully identified 162 TP, which is
higher than the 143 TP identified by the hybrid method.
Meanwhile, the number of FP is only 37, which is lower
than the 68 FP of the hybrid method. This demonstrates
better accuracy. The research method's recall rate reaches
0.985, higher than the hybrid method's 0.911,
demonstrating an outstanding ability to detect and capture
missed cases. Additionally, the research method's
accuracy is 0.814, surpassing the mixed method's 0.678.
The F1 score is 0.924, surpassing the mixed method's
0.784. These results reflect a superior conflict detection
effect and false alarm control.

4 Discussion

In summary, this study proposed a novel, four-
dimensional trajectory prediction method based on the
CURE clustering algorithm. This method aimed to
improve prediction accuracy in complex aviation
environments and solve key challenges in four-
dimensional trajectory prediction for air traffic
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management. The research selected data from January to
May 2017 for comparison with data from June 1, 2017.
This period was chosen because it provided sufficient
historical flight trajectory data to analyze the performance
of the flight trajectory prediction model. June 1st was
usually the peak period of increased air traffic, which
effectively tested the adaptability and accuracy of the
proposed method under different traffic conditions.
Through comprehensive experiments, this method proved
its superior performance by using hierarchical clustering
of ADS-B historical data and an improved Euclidean
distance similarity matrix. The prediction error was
limited to 26 s and 50 m in height. With 6,600 data points
from multiple flights, the aggregated average error was
17.6 sand 31.5 m. A comparative analysis showed that the
CURE algorithm reduced time error by 10.6% and RMSE
by 30% compared with Attention-GRU. A contour
coefficient of 0.75 and a DB index of 1.65 were achieved.
The accuracy rate of the conflict detection index in the
dynamic protected area was 98.5%. The F1 score was
0.924, superior to the mixed method. The results
demonstrated that introducing the modified Euclidean
distance to calculate track similarity effectively reduced
the influence of data noise and improves the reliability of
the calculation. The accuracy of flight path prediction was
improved through the combination of real-time and
historical flight data and comprehensive analysis. A flight
conflict detection method based on the 4D pane and
geometric approaches was proposed to reduce false
conflict alerts and improve flight safety. A hierarchical
clustering method was used to process large-scale,
complex aviation trajectory data and reveal its inherent
logical relationships. The experiment revealed that time
errors gradually increased as the flight progressed. This
might be primarily due to the cumulative effect of wind
speed changes during the cruise stage and the delay in
transmitting control instructions, which affected the
trajectory. The research could be corrected dynamically
by introducing real-time meteorological data streams and
synchronizing the ATC instruction interface. During the
cruise phase, the flight altitude prediction error
approached0, but it reached 50 m during the descent
phase. This was related to wind shear disturbances in the
airport terminal area and the flaps' operating mode.
Aerodynamic configuration parameters must be added,
and the weight coefficients must be optimized in the
dynamic correction factor. The research aims to enhance
the accuracy and reliability of 4D trajectory prediction to
provide more effective support for air traffic management.
At the same time, it aims to solve conflicts among multiple
flights to ensure the safety and efficiency of aviation
operations.

5 Conclusion

The rapid growth of global air traffic in recent years has
placed unprecedented pressure on air traffic management
and presented new challenges. Against this backdrop, 4D
trajectory prediction technology has become increasingly
important as a means to improve the utilization rate of
airspace resources, reduce the workload of ground control
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personnel, and enhance flight safety. The research
proposed a 4D trajectory prediction method based on the
CURE algorithm. Using widely adopted ADS-B historical
data, it measured trajectory similarity through modified
Euclidean distance. Then, it combined this measurement
with hierarchical clustering technology to cluster and
analyze trajectory data in the airport terminal area. The
research used a real-time stream processing architecture
that integrated a Kalman filter and an LSTM time series
prediction module. This effectively achieved real-time
prediction of the aircraft's future flight path. The
experimental results showed that the 4D trajectory
prediction model based on the CURE algorithm was more
accurate than many existing benchmark models,
especially when dealing with high-dimensional data. This
model demonstrated good robustness and reliability.
Through experimental comparison, the accuracy of track
prediction and the rate of conflict detection had
significantly improved with the proposed method. The
error rate remained within a reasonable range. For
example, the average time error was reduced to 17.6 s and
the average height error is 31.5 m. The study showed that
appropriate clustering methods and similarity calculations
could significantly improve the accuracy of flight path
prediction, optimize the flight management process, and
ultimately support aviation safety and effective airspace
resource management. Although the initial research
demonstrated the CURE algorithm's potential for
trajectory prediction, several deficiencies remain. For
instance, the research primarily focuses on predicting the
trajectories of specific flights and does not address
converting flight data into planar and geodetic
coordinates. The real-time data processing and dynamic
trajectory prediction capabilities have not yet been fully
verified. The prediction model used by the research must
be expanded to include real-time dynamic flight data.
Future research should prioritize the integration of
meteorological and real-time data to enhance the model's
adaptability in variable environments. Further exploration
of integrating planar and geodetic coordinate systems into
the data processing flow can ensure the accuracy of flight
data on the Earth's surface. Meanwhile, a track prediction
system based on real-time data has been developed to
verify the actual performance of the proposed model in
dynamic trajectory prediction. This system enhances the
decision-making ability and response speed of air traffic
management.
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