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In this paper, an intelligent exercise training and recovery system based on multi-modal data fusion is 

proposed, which aims to optimize the training plan through an AI-driven model and predict the training 

load and recovery requirements in real time. The system integrates athletes' physiological signals, motion 

images and environmental data, totaling a data set of 800 athletes. The Xception model is used to extract 

the spatial characteristics of the moving image, and the BiLSTM model is used to analyze the dynamic 

characteristics in the time series data to achieve accurate prediction of training load and recovery time. 

On this basis, the deep deterministic policy gradient (DDPG) reinforcement learning algorithm is used to 

dynamically adjust the training intensity, duration and frequency based on real-time feedback. The 

experimental results show that when tested under different environmental conditions, the mean square 

error (MSE) of the training load prediction of the system is less than 0.05, the determination coefficient 

(R2) is close to 0.99, and the recovery time prediction is stable between 0.018 and 0.022 in the 10-fold 

cross-verification. The R2 value is as high as 0.98. Compared with the traditional training system, the 

injury rate of athletes in this system is significantly reduced, with an average injury rate of only 0.07, 

much lower than the traditional system of 0.12 to 0.22. Studies have shown that the system has a wide 

range of application potential, especially in high-intensity training and personalised training optimisation 

in complex environments. 

Povzetek: Članek predstavi okvir za personalizirano športno vadbo in okrevanje, ki združuje 

multimodalne podatke, Xception-BiLSTM napovedni model ter DDPG algoritme. Ključna je integracija 

napovedi obremenitve, okrevanja in sprotne optimizacije. 

 

1  Introduction 
In recent years, with the rapid development of 

modern sports training [1-2], athletes’ training effect and 

recovery process have received widespread attention. 

Traditional sports training usually relies on the experience 

of coaches and fixed training plans. However, these 

methods cannot personalize and dynamically adjust, 

which may lead to athletes overtraining or insufficient 

recovery, thereby increasing the risk of sports injuries [3-

4]. Especially in high-intensity training, athletes' physical 

load and recovery needs are constantly changing. 

Therefore, evaluating the exercise load and recovery 

status in real time and accurately and dynamically 

adjusting according to the actual situation has become the 

key to improving the training effect and preventing sports 

injuries. With the advancement of wearable devices [5-6] 

and sensor technology, it has become possible to monitor 

and evaluate exercise training based on multimodal data 

[7-8]. For example, through real-time monitoring of multi-

dimensional data such as heart rate variability (HRV), 

muscle oxygen content, EMG signal (EMG), and exercise 

trajectory, athletes' training load and recovery status can 

be comprehensively analyzed, to formulate personalized 

and optimized training strategies [9-10]. These 

technologies not only provide a scientific basis for 

dynamically adjusting the training plan but also 

significantly improve the accuracy and safety of training. 

Based on these technologies, this research aims to build an 

intelligent sports training and recovery system that 

integrates sports load prediction, recovery time prediction 

and training optimization functions to provide athletes 

with personalized training programs to improve training 

effectiveness and reduce injury risk, and lay a theoretical 

foundation for the future application of intelligent sports 

training systems. 

The main contribution of this study is to propose an 

intelligent sports training and recovery system based on 

multimodal data fusion. Through accurate prediction of 

exercise load and recovery time, combined with the 

DDPG reinforcement learning algorithm, personalised 

training programs can be optimised, significantly 

improving athletes' training effect. By integrating 

physiological data, motion images and environmental 

data, the Xception-Bilstm model accurately predicts 

athletes' exercise load and recovery time. Based on these 

prediction results, the DDPG algorithm optimises 

dynamic load adjustment and recovery strategy during 
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training. In this way, the system can automatically adjust 

the training load based on real-time feedback, so that the 

training intensity is always kept in the optimal range of the 

athlete, thereby avoiding the problem for overtraining or 

insufficient recovery and reducing the incidence of sports 

injuries. 

This study proposed a training optimisation 

framework combining deep learning and reinforcement 

learning, filling the gap in the lack of personalised 

optimisation and load prediction in intelligent training 

systems. In addition, the model not only takes into account 

traditional physiological parameters but also integrates 

motion image data and environmental data, greatly 

improving the accuracy of load prediction and recovery 

time prediction. At the same time, the innovative 

application of the DDPG algorithm in this study can make 

targeted dynamic adjustments based on the predicted 

training load and recovery status, automatically optimize 

the training plan, further improve the training effect, and 

has strong application prospects and practical 

significance. 

The main contributions and innovations of this 

research are reflected in the following aspects: First of all, 

an intelligent sports training and recovery optimization 

method based on multi-modal data fusion is proposed, 

making full use of athletes' physiological signals, motion 

images and environmental data, significantly improving 

the degree of personalization and prediction accuracy of 

the training plan. Secondly, combining the Xception and 

Bilstm models for deep learning analysis, extracting 

spatial features and time series features respectively, and 

realising the dynamic optimisation of the training plan 

through the DDPG algorithm solves the problem that 

traditional systems lack real-time adjustment capabilities. 

Finally, comparative experiments are used to verify the 

significant advantages of this system over traditional 

training systems, especially its outstanding performance in 

reducing the injury rate of athletes. These not only provide 

new theoretical support for intelligent sports training but 

also demonstrate its extensive potential in practical 

applications, laying a solid foundation for developing 

intelligent sports training systems in the future. 

 

2  Related work 
         In the past few years, research on sports training and 

recovery has gradually received more and more attention, 

especially in refined training and personalized adjustment. 

Traditional training methods rely on the experience of 

coaches and fixed training plans. Although this method 

can guarantee the basic training effect, it cannot make real-

time adjustments based on each athlete's unique 

physiological characteristics, training level and recovery 

status, which can easily lead to overtraining or insufficient 

recovery, increasing the risk of sports injuries [11-12]. In 

order to solve these problems, many studies have begun to 

explore the use of wearable devices [13-14] and sensor 

technology to monitor athletes' physiological signals in 

real time, such as heart rate, blood oxygen, muscle fatigue 

and other indicators, and also analyze athletes' posture and 

movement trajectory through video monitoring and other 

means. These technologies can provide more feedback 

information for the training process, and combined with 

artificial intelligence and machine learning technologies, 

more accurate evaluation of training load [15-16], 

recovery status and training effect. Based on data such as 

heart rate, acceleration and electromyography, existing 

studies have predicted exercise load through regression or 

neural network models and achieved certain results. At the 

same time, some progress has been made in the research 

on sports recovery in recent years, especially in evaluating 

the recovery level by monitoring athletes' physiological 

signals, including heart rate variability, muscle damage 

markers, etc. Many scholars have proposed different 

recovery prediction models. Despite this, there is still a 

lack of models that can accurately predict training load 

and recovery time, especially in the design and dynamic 

optimisation of high-intensity, personalised training 

programs. Existing research has not yet formed a 

systematic solution. Therefore, how to combine 

multimodal data with deep learning algorithms to achieve 

more accurate load prediction and recovery time 

evaluation has become an important direction in current 

research. 
Although there has been some progress in related 

research, there are still many challenges in personalized 

optimization. Many AI-based sports training systems 

mainly rely on fixed training programs and lack dynamic 

adjustment functions for individual differences. Some 

studies have tried to use deep learning algorithms, such as 

convolutional neural networks and long short-term 

memory networks [17-18], to analyze athletes' training 

data and make certain predictions. However, most of these 

methods focus on a single data source or a fixed training 

load and fail to achieve deep fusion of multimodal data or 

establish a dynamic feedback mechanism between 

recovery needs and training load. In order to solve this 

problem, in recent years, reinforcement learning methods 

[19-20] have gradually been introduced into the research 

of sports training and recovery optimization. In particular, 

deep reinforcement learning has advantages in real-time 

decision-making and dynamic optimization, and has 

begun to be applied in personalized training systems. 

DDPG [21-22], as a reinforcement learning method 

suitable for high-dimensional continuous action space, has 

been widely used in recent years in robot control, 

autonomous driving, and other fields in recent years. It can 

optimise training strategies by interacting with the 

environment, adjusting training load and recovery time, 

and thus realise personalised training program design. 

Although reinforcement learning has broad application 

prospects in training load optimization, the current 

research on combining it with multimodal data-integrated 

load prediction and recovery time assessment models is 

still in its infancy, and there are relatively few related 

studies. Therefore, how to combine deep learning and 

reinforcement learning methods to use multimodal data to 

achieve accurate load prediction, recovery time 

assessment, and dynamic training optimization is still a 

challenging and urgent problem to be solved. 
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Table 1: The comparison of the key elements of the existing research 

 Research method advantage Disadvantage 

Traditional method 

Relying on coach 

experience and fixed 

training plan, lack of real-

time dynamic adjustment 

Simple and easy, suitable 

for basic training scenarios 

The lack of 

personalization and 

dynamic adjustment can 

easily lead to insufficient 

training or recovery, 

increasing the risk of 

sports injury 

Zhang et al. (2022) 

Use the attention 

mechanism LSTM 

network to predict game 

performance 

Can effectively capture the 

dynamic characteristics in 

time series data, suitable 

for competition 

performance prediction 

The data source is single, 

based only on competition 

data, and lacks the ability 

of multi-modal fusion 

Sharp et al. (2022) 

The impact of high-

intensity multimodal 

training on healthy people 

Comprehensively 

analyzed the multifaceted 

effects of high-intensity 

training and provided 

theoretical support 

Lack of specific model 

design and algorithm 

implementation, can not 

be directly applied to 

personalized training 

optimization 

Naureen et al. (2020) 
Personalized training plan 

based on genetic testing 

Provides a personalized 

training basis, which helps 

to accurately customize 

the training plan 

Only focus on genetic 

data, not combined with 

other multimodal data, and 

the scope of application is 

limited 

Wackerhage & Schoenfeld 

(2021) 

Evidence-based 

personalized training plan 

and exercise prescription 

Emphasize the scientific 

basis, which helps to 

improve the training effect 

and health level 

Relying on existing 

research data, lack of 

intelligent dynamic 

adjustment ability 

Gennarelli et al. (2020) 

Psychological intervention 

promotes sports injury 

recovery 

Provides proof of the 

effectiveness of 

psychological intervention 

and contributes to full 

recovery 

Only focus on 

psychological factors, lack 

of comprehensive analysis 

of physiological data and 

environmental factors 

Song et al. (2021) 

Deep learning 

convolutional neural 

networks predict the risk 

of sports injury 

The use of deep learning 

technology to improve the 

prediction accuracy, 

suitable for sports injury 

risk assessment 

The data source is single, 

the generalization ability 

of the model is poor, and 

the reliability is doubtful. 

 

 

3  Methods 
3.1 Data collection and preprocessing 

This research aims to solve the problem of 

overtraining or insufficient recovery caused by the lack of 

personalization and dynamic adjustment in traditional 

sports training through multi-modal data fusion and AI-

driven optimization methods. Specific research objectives 

include: (1) Design and verify a sports load and recovery 

time prediction system based on the Xception-BiLSTM 

model to ensure its prediction accuracy under different 

environmental conditions (MSE<0.05, R2>0.95); (2) Use 

DDPG enhanced learning algorithm to achieve dynamic 

training optimization and reduce the injury rate of athletes 

to below 0.1; (3) evaluate the applicability of the system 

in a variety of training scenarios, especially in high-

intensity training and performance in complex 

environments. 

 

 

The research uses a multi-modal data fusion method to 

collect physiological data closely related to athletes' 

exercise load and recovery status from multiple data 

sources to assess their training load and recovery 

comprehensively. The system integrates various 

physiological signal monitoring methods, including heart 

rate, electromyography (EMG), breathing rate, and 

oxygen consumption. Each data source provides different 

information dimensions to describe the athlete's 

physiological state and sports performance accurately. As 

a key indicator, heart rate is monitored in real time through 

wearable devices such as smart bracelets or watches, and 

built-in photoelectric volumetric sensors are used to 

capture changes in blood flow and calculate heart rate. 

Electromyography is used to assess muscle load, fatigue, 
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and recovery. Electrical signals of specific muscle groups 

are collected through surface or needle electrodes to reveal 

the muscle fatigue process at different training intensities. 

Breathing rate reflects the athlete's breathing burden and 

exercise intensity. At the same time, oxygen consumption 

directly measures aerobic metabolic capacity and training 

load to further to assess the athlete's endurance level and 

recovery needs. The comprehensive analysis of these 

multi-modal data provides a scientific basis for accurately 

predicting the training load and optimizing the recovery 

strategy [23-25]. 

This article collects data on 800 athletes, derived 

from joint research projects of multiple cooperative 

institutions, covering professional athletes and amateur 

sports enthusiasts, with high diversity and representation. 

The multimodal data generated by each athlete (including 

physiological signals, moving images, and environmental 

data) has undergone strict preprocessing and quality 

control to ensure its availability in model training. 

The data collection of each athlete covers multiple 

training sessions, with a period of 8 consecutive weeks and 

3-5 training sessions per week to ensure that the data is 

balanced between different temperature ranges (such as 

low temperature, medium temperature, and high 

temperature) and activity types (aerobic exercise, strength 

training, etc.).In addition, the collection of all human body 

data has been approved by the relevant ethics committees, 

and the principle of informed consent is strictly followed 

to ensure the privacy protection of participants. After the 

data is collected, it is processed anonymously, and the 

information related to personal identity is removed to 

ensure the security and compliance of the data. The 

collected physiological data are shown in Table 2. 

 

Table 2: Physiological data display 

Athlete No. 
Heart rate 

(bpm) 

Electromyography 

(mV) 

Respiratory rate 

(breaths/min) 

Oxygen 

consumption 

(L/min) 

Exercise load 

(RPE) 

001 130 0.85 25 1.2 7 

002 145 1.1 28 1.5 8 

003 120 0.75 22 1 6 

004 155 1.3 30 1.8 9 

005 135 0.9 26 1.3 7 

006 140 1.05 27 1.4 7 

… … … … … … 

800 150 1.25 29 1.7 8 

Through the combination of accelerometer and 

gyroscope, the IMU can provide data on an athlete's 

cadence and stride. These two parameters are particularly 

important in running, walking, and any sports that require 

gait analysis. Cadence refers to the number of steps per 

unit time, while stride is the distance of each step. The 

athlete's physical condition and exercise efficiency can be 

reflected by monitoring the changes in cadence and stride. 

The collected motion data are shown in Table 3. 

 

Table 3: Sports data display 

Athlete No. Acceleration (m/s²) Rotation angle (°) 
Cadence 

(steps/minute) 
Movement status 

001 3.5 45 110 running 

002 4.2 50 115 running 

003 2.8 40 100 walk 

004 5 60 120 running 

005 3.8 55 108 running 

006 2.5 35 95 walk 

… … … … … 

800 3.2 42 105 walk 

Motion capture systems, such as Kinect, will be used 

to obtain sports image data of athletes. Kinect uses 

infrared sensors and depth cameras to capture athletes' 

movements and postures in real time, thereby providing 

high-precision three-dimensional spatial data. These data 

include athletes' limb postures, movement trajectories, and 

key point locations, which can accurately reflect the 

athletes' movement execution process. The image data 

obtained through the motion capture system can monitor 

the athletes' movement accuracy and trajectory in real time 

during training, helping to analyze movement patterns, 

posture stability, and movement optimization needs. The 

collected environmental data are shown in Table 4. 
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Table 4: Environmental data display 

Time point 

(minutes) 
Temperature (°C) humidity (%) Air pressure (hPa) Wind speed (m/s) 

0 22 50 1012 2.5 

5 23 52 1011 2.3 

10 24 55 1010 2.7 

15 25 58 1009 3 

20 26 60 1008 3.2 

25 27 62 1007 3.5 

30 28 65 1006 3.6 

35 29 67 1005 3.8 

In order to comprehensively evaluate the recovery 

level of athletes, this study used wearable devices to 

collect key data such as athletes' sleep quality and muscle 

recovery. Sleep quality is an important factor affecting 

athletes' recovery. Good sleep helps muscle repair and 

energy recovery, and reduces fatigue after training. 

Wearable devices, such as smart bracelets or sleep 

monitors, can monitor athletes' sleep cycles, deep sleep 

duration, sleep interruptions in real time to help assess 

their sleep quality. In addition, wearable devices can also 

be equipped with electromyography sensors to monitor 

muscle recovery after exercise, such as muscle electrical 

activity, muscle fatigue, and relaxation. These data can 

reflect the athlete's muscle recovery process and help the 

training team judge their recovery level. 

There is unnecessary noise in physiological and 

motion data, which may come from sensor errors, 

environmental interference, etc. The low-pass filter can 

remove high-frequency noise and retain the main 

components of the signal. The formula is: 

 

y(t) = ∫  
t

0
h(t − τ)x(τ)dτ(1) 

  

In Formula 1, x(τ)is the original signal, h(t)is the 

impulse response of the filter, and y(t) is the filtered 

signal. 

 In order to avoid the dimensional differences 

between different data sources, the data is standardized. 

The formula is: 

 

Z =
X−μ

σ
(2) 

 

Time series data is affected by random fluctuations, 

and smoothing can remove short-term noise. The moving 

average formula is: 

 

 yt =
1

N
∑  t

i=t−N+1 xi(3) 

 

For time series data, the formula for linear 

interpolation is: 

 

 x(t) = x1 +
t−t1

t2−t1
(x2 − x1)(4) 

 

Since multimodal data comes from different sensors, 

it has different timestamps, so data synchronization is 

required. Ensure that all data sources are aligned on the 

same time axis to avoid data alignment problems caused 

by time differences. For data with different timestamps, 

use interpolation to resample the time axis to ensure the 

data at each time point corresponds. 

 

 taligned = t0 + Δt ⋅ n(5) 

 

In Formula 5, t0 is the initial time, Δt is the time 

interval, and n is the sequence number of the sample. 

Resampling can ensure the time consistency of the data 

and avoid synchronization errors. 

Through time synchronization technology, the image 

data generated by the motion capture system is aligned 

with the physiological signals collected by the wearable 

device and the external conditions recorded by the 

environmental sensor on the same timeline. Specifically, 

the interpolation method is used to resample data with 

different sampling frequencies to ensure that each data 

type corresponds at every point. This multi-modal data 

fusion method enables the system to comprehensively 

analyse the status of athletes, thereby providing more 

accurate input for training load prediction and recovery 

time evaluation. 

 

3.2 Model design 
This study predicts athletes' training load and 

recovery needs based on the Xception-BiLSTM model. 

Xception is a variant of CNN that optimizes traditional 

convolution operations through deep separable 

convolutions, significantly improving the efficiency of the 

network. Google proposed the Xception model, which is a 

further improvement of the Inception network. Its core 

advantage lies in the use of deep separable convolutions, 

which divide traditional convolution operations into two 

steps: first, channel-by-channel convolution, and then, 

inter-channel convolution, thereby effectively reducing 

the amount of calculation while maintaining the efficiency 

of the convolution operation. 

Given an input tensor X and a convolution kernel K, 

the standard convolution is calculated as: 

 

Y = X ∗ K(6) 
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Depthwise separable convolution decomposes the 

standard convolution into two steps: channel-wise 

convolution and point-wise convolution (1x1 

convolution). Perform channel-wise convolution on the 

input tensor: 

 

X′ = X ∗ Kd(7) 

 

Perform a 1x1 convolution on X′: 

 

Y = X′ ∗ Kp(8) 

 

Xception extracts the athlete's motion features from 

sports images, including the athlete's posture, trajectory, 

accuracy, etc. These features are crucial for training load 

prediction and can provide strong support for subsequent 

training optimization and recovery demand prediction. 

BiLSTM is a special RNN structure that can capture 

the input data's forward and reverse time series 

information. Unlike traditional LSTM, BiLSTM 

processes the forward and reverse sequences separately 

through two independent LSTM layers and combines the 

outputs of the two to capture the time series features in the 

sequence more comprehensively. 

The working principle of LSTM is based on memory 

cells, each containing three gates: input gate, forget gate, 

and output gate. Through the control of these gates, LSTM 

can effectively maintain long-term memory and avoid the 

gradient vanishing problem in traditional RNN. The 

mathematical formula of LSTM is as follows: 

 

The forget gate determines which information is 

discarded. The formula is: 

 

ft = σ(Wf ⋅ [ht−1, xt] + bf)(9) 

 

The input gate determines which information is 

updated, and the formula is: 

 

it = σ(Wi ⋅ [ht−1, xt] + bi)(10) 

 

Candidate memory generates candidate memory 

units. The formula is: 

 

C̃t = tanh (WC ⋅ [ht−1, xt] + bC)(11) 

 

Update the memory unit according to the output of 

the forget gate and the input gate. The formula is: 

 

Ct = ft ⋅ Ct−1 + it ⋅ Ct̃(12) 

 

The output gate determines the output of the next 

step. The formula is: 

 

 ot = σ(Wo ⋅ [ht−1, xt] + bo)(13) 

 

The final hidden state output is generated according 

to the output gate, and the formula is: 

 

ht = ot ⋅ tanh (Ct)(14) 

 

For BiLSTM, its basic structure is composed of two 

LSTM networks, one for processing the forward sequence 

and the other for processing the reverse sequence. The 

BiLSTM output combines the hidden states of the two 

LSTMs: 

 

 ht = [ht
+, ht

−](15) 

 

Combining Xception with Bilstm can fully utilise 

both advantages. The Xception model extracts spatial 

features from motion images, while BiLSTM extracts 

dynamic features from time series data. Specifically, 

Xception is responsible for extracting image features and 

passing them as input to BiLSTM. At the same time, 

BiLSTM processes physiological data and extracts time 

series features. Finally, the two features are fused for 

prediction of training load and recovery needs. 

The Xception - BiLSTM model structure is shown 

in Figure 1. 

 
Image data

Spatial characteristics Time series data

BiLSTM

Training Load Recovery time

Xception

Concat

3×3 3×3

1×1 1×1

Forward Reverse

 
Figure 1: Xception - BiLSTM Model Architecture 

 

This study uses the Xception-Bilstm architecture to 

realise the feature extraction and fusion of moving images 

and time series data. The Xception module optimizes 

traditional convolution operations through depthwise 

separable convolution, decomposing the input moving 

image into two-step processing of in-channel convolution 

and cross-channel convolution, to efficiently extract 

spatial features. The LSTM module processes the time 

series data of physiological signals, captures the forward 

and reverse time dependencies through two independent 

LSTM networks, forward and reverse, and stitches their 

outputs to obtain more comprehensive dynamic 

characteristics. In the specific implementation, the image 

features extracted by Xception are flattened and 

dimensionally reduced through the fully connected layer, 

and the timing features output by BiLSTM are spliced on 

the feature dimension to form a unified multi-modal 

feature representation. Ultimately, these fusion features 

are input to the fully connected layer for training and 

prediction. 

During the training process, the model uses the Adam 

optimizer with an initial learning rate of 0.001, and 

enables the learning rate attenuation mechanism (decay 

rate is 0.5) when the verification set loss no longer drops. 

The batch size is set to 32, the number of training rounds 
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is 100, and the early stop strategy (patience=10) is used to 

avoid overfitting. 

 

  

4 Training prediction and optimization 

strategies 
4.1 Load Forecasting and recovery time 

Forecasting 

The athlete's motion image data is extracted through 

the Xception model, and the physiological signal is input 

into the BiLSTM model to extract the time series feature. 

The exercise load and exercise recovery time are 

predicted. MSE measures the difference between the 

model prediction value and the actual value. The formula 

is: 

 

 MSE =
1

n
∑  n

i=1 (yi − yî)
2(16) 

 

In Formula 16, yi represents the actual measured 

value, yî is the model predicted value, and n is the number 

of samples in the data set. 

MAE is another commonly used evaluation criterion 

that measures the absolute size of the prediction error. The 

formula is as follows: 

 

 MAE =
1

n
∑  n

i=1 |yi − yî|(17) 

 

The goal of the sports load prediction and recovery 

time prediction model is to help athletes quantify the 

training load and recovery process through intelligent 

means to make personalised adjustments to the training, 

optimise the training effect, and prevent sports injuries. By 

combining the advantages of multimodal data fusion and 

deep learning models, load and recovery predictions can 

be made more accurately, providing athletes with a 

scientific basis to ensure the rationality of their training 

intensity and recovery time. 

 

4.2 DDPG optimisation strategy 
The DDPG algorithm is a reinforcement learning 

method suitable for problems in high-dimensional 

continuous action spaces. It optimizes the training process 

by gradually adjusting strategies through interaction with 

the environment. In personalized training optimization, 

the DDPG algorithm can adjust training parameters, 

including training intensity, duration, and frequency, 

based on the athlete's physiological data, environmental 

data, motion image data, and predicted training load and 

recovery time to provide a tailored training plan. The 

algorithm has strong exploration capabilities and is 

suitable for scenarios without clear labelled data, making 

it of great application value in personalised sports training 

optimisation. 

State space: The state space is a collection of 

information used to represent the current state of the 

environment. In personalized training optimization, the 

state space consists of multimodal data from the 

following aspects: 

Physiological data includes the athlete's heart rate, 

electromyography signal, etc., which reflect the athlete's 

immediate physiological state. Motion image data extracts 

the athlete's posture, movement trajectory, movement 

accuracy, etc., through image recognition, which can 

intuitively reflect the athlete's training performance. 

Environmental data includes environmental factors such 

as temperature and humidity. These external factors will 

affect the athlete's performance and recovery. Exercise 

load data is the exercise load predicted by the model to 

help understand the athlete's training intensity. Recovery 

time data is the recovery time predicted by the model, 

combining physiological data and environmental factors 

to predict the time required for athletes to recover from 

training. 

The training intensity is expressed in the target heart 

rate range, the value range is 50%-90% of the maximum 

heart rate, the unit is percentage (%); the training duration 

represents the duration of each training, the value range is 

30-120 minutes, the unit is minutes (min); the training 

frequency represents the number of training times per 

week, the value range is 3-7 times/week, the unit is 

times/week. The value range of these parameters is set 

based on the athlete's physiological ability and training 

needs, ensuring that the system can dynamically adjust the 

training plan within a safe and effective range. 

The dimension of the state space continues to expand 

with the increase of multimodal data. The DDPG 

algorithm makes reasonable training optimization 

decisions by intelligently extracting effective features 

from these high-dimensional state spaces. The model 

structure of DDPG is shown in Figure 2. 

 

Environment

Experience pool

Optimizer

Online strategy network

Target policy network

Optimizer

Online Q network

Target Q network

Actor Critic

 
Figure 2: DDPG model structure 

 

Action space is a set of behaviours that define the 

model. In personalised training optimisation, the training 

parameters corresponding to the action space include: 

training intensity, duration, and frequency. Training 

intensity includes the heart rate range, which controls the 

load intensity of training. Training duration includes the 

duration of each training session, which is calculated in 

minutes or hours. Training frequency refers to the 

frequency of training, which is the number of training 

sessions per day, week, or month. 
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These action parameters determine the specific 

implementation details of each training plan. The DDPG 

algorithm optimizes the training effect by continuously 

adjusting these parameters. 

In the DDPG algorithm, the design of the reward 

function is the core of the optimization training plan. The 

reward function of this paper comprehensively considers 

the three key goals of training load optimisation, recovery 

time optimisation, and sports injury risk reduction. The 

specific formula is： 

 

R = w1 ∗ Rload + w2 ∗ Rrecovery + w3 ∗ Rinjury 

 

Among them, Rload represents the optimization 

reward of the training load, defined as the reciprocal of the 

error between the training load predicted by the model and 

the actual endurance of the athlete; Rrecovery  represents 

the optimization reward of the recovery time, defined as 

the consistency between the predicted recovery time and 

the actual recovery needs; Rinjury  represents the penalty 

term for injury risk, defined as the negative value of the 

injury probability calculated based on physiological data 

(such as heart rate, electromyography) and environmental 

factors (such as temperature and humidity).The weights 

w1, w2, and w3are used to balance the importance of each 

goal, and are adjusted experimentally to ensure the overall 

optimization effect of the system. 

 

5  Results 
5.1 Ablation experiment 

In order to verify the superiority of this research 

method, we designed a comparative experiment with the 

existing baseline model. Baseline models include 

traditional statistical regression models (such as linear 

regression and support vector regression, SVR), single-

modal data-driven deep learning models (such as CNN 

models that only use heart rate or moving images), and 

traditional rule-based training systems. All models are 

trained and tested on the same dataset and use the same 

evaluation indicators (MSE, MAE, and R2). The 

experimental results are shown in Table 5 

 

Table 5: Comparison of existing baseline models 

Model MSE (±SD) MAE (±SD) R² (±95% CI) 

Linear regression 0.045 ± 0.008 0.123 ± 0.012 0.82 ± 0.03 

Support Vector regression (SVR) 0.038 ± 0.007 0.115 ± 0.011 0.86 ± 0.02 

Single mode CNN (heart rate) 0.028 ± 0.005 0.095 ± 0.009 0.91 ± 0.02 

Single mode CNN (moving image) 0.032 ± 0.006 0.102 ± 0.010 0.89 ± 0.02 

Traditional training system 0.050 ± 0.010 0.130 ± 0.015 0.80 ± 0.04 

Xception-BiLSTM (multi-modal) 0.007 ± 0.002 0.058 ± 0.006 0.98 ± 0.01 

As can be seen from Table 5, the Xception-BiLSTM 

model based on multi-modal data fusion is significantly 

better than the baseline model in all indicators. 

Specifically, its MSE and MAE were reduced by about 85% 

and 50%, respectively, and the R2 value was close to 0.98, 

indicating that the model has higher prediction accuracy 

and stability. In addition, the results of the standard 

deviation (SD) and confidence interval (CI) show that the 

prediction error distribution of the model is small and the 

confidence interval is narrow, further proving its 

robustness and reliability. 

To evaluate the contribution of different modules to 

overall performance, we conducted ablation experiments, 

gradually removing key components from the model and 

observing performance changes. In the experiment, we 

removed the Xception, Bilstm, and multi-modal data 

fusion. The ablation experiment results are shown in Table 

6. 

 

Table 6: Results of the ablation experiment 

Model configuration MSE (±SD) MAE (±SD) R² (±95% CI) 

Complete model (Xception-BiLSTM) 0.007 ± 0.002 0.058 ± 0.006 0.98 ± 0.01 

Remove the Xception module 0.015 ± 0.004 0.082 ± 0.008 0.92 ± 0.02 

Remove the BiLSTM module 0.018 ± 0.005 0.090 ± 0.009 0.90 ± 0.02 

Remove multimodal data fusion 0.025 ± 0.006 0.105 ± 0.011 0.88 ± 0.03 

As seen from Table 6, removing any key component 

will lead to a significant decrease in model performance. 

For example, after removing the Xception module, MSE 

and MAE increased by about 114% and 41%, respectively, 

indicating that extracting spatial features is critical to 

model performance. Similarly, after removing the 

BiLSTM module, the time series analysis capabilities of 

the model were significantly weakened, and MSE and 

MAE increased by about 157% and 55%, respectively. 

After removing the multi-modal data fusion, the model's 

performance decreases the most, indicating that the multi-

modal data fusion can significantly improve the model's 

prediction accuracy and generalization ability. 
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5.2 Exercise load prediction performance 
To evaluate the performance of the Xception-

BiLSTM model in predicting motion loads under different 

environmental conditions, we conducted experiments at a 

series of ambient temperatures (5℃ to 40℃). The results 

are shown in Table 7. 

Table 7: Exercise load prediction results 

Ambient temperature (℃) MSE MAE R2 

5 0.013 0.078 0.95 

10 0.010 0.071 0.96 

15 0.008 0.065 0.97 

20 0.007 0.060 0.98 

25 0.006 0.058 0.99 

30 0.007 0.061 0.98 

35 0.009 0.069 0.96 

40 0.012 0.075 0.94 

From the data in Table 7, it can be observed that when 

the ambient temperature is between 5℃ and 25℃, the 

prediction effect of the model shows a trend of gradual 

improvement, the model's prediction effect shows a 

gradual improvement trend, the MSE and MAE both 

gradually decrease, and the R² value gradually increases. 

Specifically, at ambient temperatures of 20℃ and 25℃, 

the MSE of the model is 0.007 and 0.006, the MAE is 

0.060 and 0.058, and the R² value is close to 0.99, 

indicating that the training load prediction accuracy is 

high at this time. At lower temperatures (such as 5℃ and 

10℃), although the model can still provide accurate 

predictions, its MSE value (0.013 and 0.010, respectively) 

is higher. The MAE and R² are also lower, indicating that 

the accuracy of the model's load prediction is affected to a 

certain extent in a low temperature environment. Possible 

reasons include that the low temperature environment 

interferes with the athlete's physiological response, 

athletic ability, and the stability of data sensing, resulting 

in greater prediction errors. 

The prediction effect shows a certain regression trend 

when the ambient temperature gradually rises to 30℃ and 

above. At 30℃, the MSE is 0.007, the MAE is 0.061, and 

the R² is 0.98. Although it is still high, accuracy is slightly 

decreased compared with the performance at lower 

temperatures. Especially at 35℃ and 40℃, the model's 

prediction performance further decreases, the MSE and 

MAE increase, and the R² value decreases. Especially at 

40℃, the MSE is 0.012, the MAE is 0.075, and the R² 

value drops to 0.94. This may be related to the impact of a 

high-temperature environment on the physical fitness of 

athletes. Heat stress response may cause instability in 

athletes' heart rate, electromyography data and other 

physiological parameters, thereby affecting the quality of 

data and the accuracy of model prediction. A high 

temperature environment may cause sweat and 

temperature changes to interfere with sensor signals, 

making the model's prediction results for training load not 

as accurate as in medium and low temperature 

environments. Therefore, the model's performance in a 

high-temperature environment showed a certain decline, 

indicating that high temperature significantly impacts the 

accuracy of exercise load prediction. This suggests that 

when designing an exercise load prediction system, the 

impact of ambient temperature on physiological data and 

exercise performance should be considered, and targeted 

optimisation and adjustments should be made for high-

temperature environments. 

The effect of ambient temperature on exercise load 

prediction shows that the model has a better prediction 

effect in medium and low temperature environments. In 

contrst, high and low temperature environments may 

increase the prediction uncertainty. In practical 

applications, model optimization for different temperature 

environments will be the key to improving the accuracy of 

exercise load prediction, especially considering athletes' 

physiological changes and performance differences in 

different environments. 

 

5.3 Recovery time prediction results 
The recovery time prediction results were evaluated 

using 10-fold cross-validation to assess the model's 

stability and accuracy. As shown in Table 8, the metrics 

include Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and the coefficient of determination (R²) for each 

fold. These results demonstrate the model's consistent 

performance across different data subsets, highlighting its 

robustness and reliability in predicting recovery times 

under varying conditions. 

 

Table 8: Recovery time prediction results 

Discount MSE MAE R2 

1 0.022 0.091 0.94 

2 0.021 0.088 0.95 

3 0.020 0.086 0.96 

4 0.019 0.084 0.97 

5 0.018 0.083 0.97 

6 0.018 0.081 0.98 

7 0.019 0.085 0.96 

8 0.020 0.087 0.95 

9 0.021 0.089 0.94 
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10 0.022 0.090 0.94 

As seen from Table 6, the prediction results of the 

recovery time verified the high stability and accuracy of 

the model through 10-fold cross-validation. The MSE 

value generally remained at a low level in each fold, 

ranging from 0.022 to 0.018, indicating that the model has 

a relatively small error in predicting the recovery time, 

with a good fit and high prediction accuracy. The MAE 

value also shows that the model's prediction error for the 

recovery time is relatively consistent, ranging between 

0.081 and 0.091, further proving the stability and 

consistency of the model in different folds. The R² values 

are all high, ranging from 0.94 to 0.98, showing that the 

model can well explain the variability of the prediction 

results. Especially in the 6th fold, the R² value reached the 

highest 0.98, indicating that the recovery time prediction 

of this fold is highly consistent with the actual situation, 

further confirming the high-precision characteristics of the 

model. 

Through 10-fold cross validation, the indicators of 

the model did not show significant fluctuations, indicating 

that the prediction model can stably output high-precision 

results when processing different data subsets. In practical 

applications, the accuracy and stability of recovery time 

prediction are crucial because recovery time directly 

affects athletes' training schedules and recovery cycles. 

The model maintains a high R² value in all folds, 

especially in the 6th fold, showing the best prediction 

performance. The stability of MAE and MSE values also 

reflects the usability and robustness of the model in 

practical environments. In high-intensity training or under 

various environmental conditions, the recovery time 

prediction of athletes is particularly important. Based on 

these results, it is shown that the model has a wide range 

of application potential, especially in the personalized 

optimization and monitoring of sports training plans. 

Combining recovery time prediction with load prediction 

can achieve precise regulation of athlete training, further 

improving training effects and the ability to prevent sports 

injuries. 

 

5.4 Sports training optimization results 
In this study, injury refers to abnormal physical 

function or injury caused by exercise training, and the 

normal training plan needs to be interrupted for at least 48 

hours for recovery or treatment. Specific categories 

include muscle strains, joint sprains, overuse injuries, and 

acute trauma. The injury situation is recorded by a 

professional medical team based on clinical diagnosis to 

ensure the objectivity and consistency of the data. 

Xception is combined with BiLSTM to predict exercise 

load and recovery time, and DDPG is used for targeted 

optimization based on the predicted exercise load and 

recovery time. The injury rate is shown in Figure 3 when 

comparing the traditional system with the system in this 

paper. 

 
Figure 3: Injury 

 

Figure 3 shows the injuries of 10 athletes in the two 

systems. The injury rate of athletes in this system is 

significantly lower than that in the traditional system. The 

injury rate of traditional systems is generally high, ranging 

from 0.12 to 0.22, while the injury rate of this system is 

significantly lower, ranging from 0.05 to 0.09. This result 

shows that combining the Xception and Bilstm models to 

predict exercise load and recovery time, and then using 

DDPG for personalised training optimisation, can 

significantly reduce the risk of athlete injury. Traditional 

systems rely on experience and preset training plans to 

arrange athletes' training load and recovery time, lacking 

personalized adjustments and real-time monitoring, which 

can easily lead to excessive exercise load or insufficient 

recovery, thereby increasing the probability of injury. In 

contrast, this system uses multimodal data fusion, 

Xception and Bilstm to accurately predict the athlete's 

status in real time. It combines the DDPG algorithm to 

optimise and adjust during the training process to make 

the training load and recovery time more accurate and 

personalised. In this way, athletes' load and recovery cycle 

in each training can be adjusted according to individual 

conditions, avoiding the problem of overtraining or 

insufficient recovery, thereby effectively reducing the risk 

of injury. 

In order to verify whether the reduction in injury rate 

of this system compared to the traditional system is 

statistically significant, we conducted a paired t-test on the 

injury rate of the two systems in 10 athletes. In addition, 

we also calculated the effect size (Cohen's d) to assess the 

practical significance of the difference. The results are 

shown in Table 9.

 

Table 9: Comparison and significance analysis of injury rate 

System type 
Average injury rate 

(Mean) 

Standard 

deviation 

95% confidence 

interval (CI) 
t p Cohen's d 

Traditional 

system 
0.17 0.04 [0.14, 0.20]  - - 

Current 

system 
0.07 0.02 [0.06, 0.08]  - - 
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difference 0.1 0.03 [0.08, 0.12] 
t = 

12.34 

p < 

0.001 

d = 

3.16 

The results in Table 9 show that the current system 

has significant advantages in reducing the injury rate of 

athletes compared to the traditional system. Through the 

paired sample t test, the difference in the average injury 

rate of the two systems (0.10) reached a high degree of 

statistical significance (p<0.001), and the effect amount 

Cohen's d was 3.16, indicating that the difference is not 

only significant, but also of important practical 

significance. The confidence interval [0.08, 0.12] further 

verifies the robustness of the results, indicating that the 

current system can effectively reduce the incidence of 

sports injuries, from 0.17 of the traditional system to 0.07. 

This discovery fully proves the value of multi-modal data 

fusion and AI optimisation technology in personalised 

training, and at the same time, provides a scientific basis 

for designing intelligent sports training systems in the 

future. 

 

6  Discussion 
The model in this study showed high accuracy and 

stability in both exercise load prediction and recovery time 

prediction. However, it also revealed the important 

influence of environmental factors on prediction 

performance. As can be seen from Table 7, when the 

ambient temperature is in the medium and low 

temperature range (5℃ to 25℃), the prediction 

performance of the model gradually improves, the MSE 

and MAE gradually decrease, and the R2 value is close to 

0.99, indicating that the model has high prediction 

accuracy in this temperature range. However, under 

extreme temperature conditions, the model's prediction 

error increases significantly, especially at 40℃, when 

MSE reaches 0.012 and R2 drops to 0.94. This result may 

be related to the effect of extreme temperatures on the 

stability of athletes' physiological signals. For example, 

low temperature can inhibit muscle activity and blood 

circulation, while high temperature may cause heart rate 

fluctuations and sensor signal distortion, thereby 

increasing data noise and prediction difficulty. This shows 

that although the model performs well in medium and low 

temperature environments, its adaptability at extreme 

temperatures still needs to be further optimized. 

The recovery time prediction results in Table 8 show 

the high stability and consistency of the model in the 

cross-verification of different models. The MSE value is 

always maintained between 0.018 and 0.022, the MAE 

value is relatively stable, and the R2 value is as high as 

0.98, indicating that the model can explain the variability 

of the data well. This stability is due to the powerful 

feature extraction capabilities of multi-modal data fusion 

and deep learning models. Compared with the research 

method of a single data source, this study significantly 

improves the accuracy and robustness of prediction by 

integrating physiological signals, moving images and 

environmental data. However, although the model 

performs well in most cases, its performance under 

extreme environmental conditions still needs to be 

improved, especially in complex environments such as 

high humidity or strong wind speeds, where may be 

incomplete data acquisition or signal interference 

problems. 

Compared with the prior art, the advantages of this 

research are mainly reflected in three aspects. First, by 

combining the Xception-BiLSTM model, the model can 

capture spatial and time series characteristics to describe 

the athlete's state accurately. Secondly, applying the 

DDPG algorithm makes it possible to adjust the training 

plan dynamically. The system can flexibly adjust the 

training intensity, duration and frequency based on real-

time feedback, avoiding the problem of overtraining or 

insufficient recovery caused by traditional fixed plans. 

Finally, the prediction accuracy and stability of the model 

are significantly better than existing studies, such as Song 

et al. (2021) The proposed sports injury prediction model 

based on convolutional neural networks usually has an 

MSE higher than 0.1, while the MSE in this study is lower 

than 0.05, and R2 is close to 0.99. These advantages not 

only reflect the technological advancement of the model 

but also provide higher reliability for practical 

applications. 

However, the results of this study also reveal some 

potential limitations. Under extreme temperature 

conditions, the model's prediction performance decreases 

significantly, which may be related to the working 

stability of the sensor in high or low temperature 

environments. In addition, the model has a high demand 

for personalized data and requires a large amount of high-

quality multi-modal data support, which poses challenges 

for large-scale promotion. Future research can improve 

the model’s performance in extreme environments by 

introducing adaptive learning mechanisms and enhancing 

the anti-interference capabilities of sensors. At the same 

time, more real-time data sources, such as EEG and skin 

electrical responses, can be explored to enrich the data 

dimension further and improve the model's generalisation 

ability. 

Another noteworthy finding is that the effect of the 

model in dynamically adjusting the training plan is 

significantly better than that of traditional methods. The 

results showed that the injury rate of athletes using this 

system was significantly reduced, with an average injury 

rate of only 0.07, much lower than the traditional system 

of 0.12 to 0.22. This result proves the great potential of 

multi-modal data fusion and AI-driven optimization 

methods in health management. Due to the lack of 

flexibility and personalized adjustment, traditional 

systems often fail to identify the risks of fatigue 

accumulation or overtraining promptly. Through real-time 

monitoring and dynamic adjustment, this system 

effectively reduces the incidence of sports injuries. This 

has laid a solid foundation for the wide application of 

intelligent sports training systems. 

In summary, this study successfully realized the 

accurate prediction of exercise load and recovery time 

through multi-modal data fusion, advanced deep learning 
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models and enhanced learning algorithms, and 

significantly reduced the injury rate of athletes. Although 

the model’s adaptability in extreme environments still 

needs to be improved, its performance in medium and low 

temperature environments and ordinary conditions has 

shown a wide range of application potential. Future 

research should further enhance the generalization ability 

and data processing power of the model and explore its 

applicability in a wider group of athletes and different 

sports scenarios, so as to promote the further development 

of intelligent sports training systems. 

 

7   Conclusion 
Based on multimodal data fusion, this study 

combines Xception and BiLSTM models to predict 

exercise load and recovery time. It uses the DDPG 

algorithm for personalised training optimisation, which 

significantly improves athletes' training effect and health 

management level. By accurately predicting exercise load 

and recovery needs, the system in this paper effectively 

reduces athletes' injury rate and the risk of injury 

compared with traditional systems. The research 

contribution is mainly reflected in three aspects: first, a 

sports training and recovery optimization method based on 

multimodal data fusion is proposed, which makes full use 

of athletes' physiological, sports, environmental and other 

data to improve the personalization and accuracy of 

training; secondly, the Xception and BiLSTM models are 

combined to perform deep learning analysis on the 

athlete's state, and the DDPG algorithm is used to optimize 

the training plan, realizing real-time dynamic adjustment; 

finally, by comparing with the traditional system, the 

significant advantages of this system in improving training 

effects and reducing injury risks are verified. This study 

has important practical significance. It can not only 

optimize the training plan of athletes, but also effectively 

prevent sports injuries and improve athletes' competitive 

level and health management. Nevertheless, the research 

still has some limitations, such as the poor adaptability of 

the model in extreme environments and the high demand 

for personalized data of many individuals. Future research 

can further enhance the model’s generalization and data 

processing capabilities and explore its applicability to a 

wider range of athlete groups and different sports. In 

addition, further combining more real-time data sources 

and adaptive learning methods can improve the 

intelligence level of the system and promote the practical 

application of intelligent sports training and recovery 

management. 
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