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With the acceleration of global aging process, the contradiction between the home care needs of 

disabled elderly and limited nursing resources is becoming increasingly prominent. To address 

monitoring blind spots, delayed responses, and lack of personalized services in traditional elderly 

care models, a smart elderly care ecosystem based on the Internet of Things is constructed. By 

integrating data collection, transmission, and intelligent service modules through a layered 

architecture design, a multi-modal sensor network is deployed to fuse physiological parameters, 

behavioral trajectories, and environmental data. The research involves deploying Raspberry Pi 4B 

edge nodes in 15 households of disabled elderly individuals, integrating wearable devices, ultra-

wideband positioning tags, and environmental sensors, totaling 23-28 units per household. The 

sampling frequency is 1 Hz during the day and 0.017 Hz at night, with an average data volume of 12.7 

GB per day. The core algorithm includes an improved LZW compression algorithm that reduces data 

redundancy through differential preprocessing and dynamic dictionary elimination, a dynamic 

priority scheduling mechanism that uses a random forest classifier to identify event urgency and 

predicts pre-allocated bandwidth based on LSTM behavior, and a multi-objective particle swarm 

optimization algorithm for balancing energy consumption and load distribution. The proposed system 

was deployed in home-based elderly care for disabled individuals. The results showed that the 

improved compression algorithm and dynamic priority scheduling mechanism reduced the 

compression rate by 40.09% and shortened the transmission delay of key data in network jitter 

scenarios by 61.3% at a sampling frequency of 6 times/min. After introducing a multi-objective 

optimization load balancing strategy, the day and night energy consumption were reduced by 30.8% 

and 27.5%, respectively. In the 12-month controlled experiment, a single-group pre-post design was 

adopted, with 30 participants aged 72.5±6.8 years. Based on the MIT-BIH arrhythmia database and 

the UR fall dataset, the training set was constructed to verify that the prediction accuracy of chronic 

diseases increased to 81.5% (the original baseline was 67.7%, p<0.001), the incidence of bedsores 

decreased by 78.9% (the original baseline was 37%), and the nursing cost decreased by 62.1% (the 

original baseline was 9,354 RMB/month). The study proposes a technical approach to mitigate 

resource mismatches in home-based elderly care services by constructing a closed-loop management 

system of "monitoring-warning-intervention", promoting the intelligent elderly care towards 

ecological and precise direction. 

Povzetek: Članek predstavi večnivojsko IoT-arhitekturo za pametno domačo oskrbo starejših, ki 

združuje večmodalno zaznavanje, stiskanje ILZW, dinamično razvrščanje prednosti (RF+LSTM) in 

večciljno PSO-optimizacijo. Sistem zmanjša porabo energije ter izboljša točnost napovedi bolezni. 

 

1 Introduction 
With the intensification of global population aging, 

the number of disabled elderly people is also increasing 

year by year. This not only poses a huge challenge to the 

social welfare system, but also brings unprecedented 

pressure to the home-based elderly care model for 

disabled individuals. The family-based care model for 

disabled elderly is difficult to bear the main responsibility 

of home-based elderly care due to factors such as 

shrinking family size and changes in intergenerational 

relationships, while institutional elderly care faces 

problems such as limited resources, high costs, and  

 

shortage of manpower [1]. Therefore, exploring new 

elderly care models and technological solutions tailored to  

disabled individuals has become an urgent task. The rapid 

development of new quality productive forces such as  

information technology, Artificial Intelligence (AI), big 

data, and the Internet of Things (IoT) provides new 

opportunities for the intelligent upgrading of elderly care 

services for disabled populations. IoT refers to a network 

system that connects various physical devices, vehicles, 

buildings, daily necessities and other objects through the 

Internet to collect and exchange data [2]. As an emerging 

elderly care model for disabled individuals, intelligent 

elderly care integrates disabled elderly people, 
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communities, medical staff, medical institutions, 

governments, and service agencies through modern 

technology to form a targeted intelligent service system. 

Due to the limitations of physical functions, disabled 

elderly people have a more urgent need for elderly care 

services [3]. However, there are still many shortcomings 

in current elderly care services in meeting the personalized 

needs. 
The primary goal of the research is to address three 

core issues in the home-based care scenario for disabled 

elderly individuals: insufficient real-time monitoring, lack 

of dynamic response mechanisms, and resource 

allocation. In terms of real-time sensor monitoring, 

traditional single-point sensors struggle to capture the 

dynamic associations between physiological, behavioral, 

and environmental multi-modal data, leading to delayed 

health risk predictions. Regarding the response 

mechanism, existing systems lack hierarchical 

transmission strategies based on event urgency, resulting 

in excessive delays in critical tasks under high-

concurrency scenarios. In terms of resource allocation, 

there is a mismatch between the supply of nursing 

resources and the personalized needs of the elderly, and 

service scheduling lacks support from multi-objective 

optimization. 

A multi-mode data collection network integrating 

physiological monitoring, behavior tracking, and 

environmental perception is established to address the 

above issues, improving the sensitivity of abnormal sign 

recognition. The LZW compression algorithm and 

dynamic priority scheduling mechanism are optimized to 

reduce the transmission delay of critical data. A 

blockchain driven multi-agent collaboration framework 

and service orchestration strategy are used to optimize 

nursing resources. 

The study employs three types of validation methods 

to assess target achievement. In the algorithm 

performance comparison experiment, on the standard 

dataset (MIT-BIH arrhythmia database), ILZW is 

compared with traditional LZW and ISRLE algorithms, 

with an expected compression rate of ≤15%. In high 

packet loss and mixed jitter scenarios, the expected data 

recovery rate is ≥85%. In network performance stress 

tests, Mininet-WiFi simulates NB-IoT bandwidth 

limitations, with an expected end-to-end latency for 

emergency events of ≤800ms. In a multi-device 

concurrent (20 terminals) scenario, the expected critical 

task failure rate is ≤1.0%. In the health management 

control experiment, a single-group pre-post design (N=30) 

is used, with an expected monthly reduction in bedsores 

incidence of ≥70%. From the nursing time statistics and 

consumable records, the expected monthly reduction in 

nursing costs is ≥50%. 

The innovation of the research lies in designing a 

hierarchical architecture intelligent elderly care ecosystem 

based on IoT technology. By integrating physiological 

monitoring, behavior tracking, and environmental 

perception into a multi-modal sensor network, and 

combining the Improved Lempel-Ziv-Welch (ILZW) 

algorithm and intelligent hierarchical transmission 

mechanism, efficient data processing and transmission 

have been achieved. A multi-objective optimization 

strategy is adopted to balance energy consumption and 

load, ensuring the stability and efficiency of the system. 

The contribution of the research lies in providing a 

systematic solution to the resource allocation problem in 

home-based elderly care, and providing reference for the 

technological iteration and social service collaboration in 

the field of smart elderly care. 

2 Related works 
Intelligent elderly care utilizes advanced information 

technology and IoT technology to improve the quality of 

life of elderly people, help them live more independently, 

and provide better support for caregivers and family 

members. He et al. proposed an intelligent elderly care 

space design based on the Kano model to improve the 

quality of home-based elderly care. The results indicated 

that this design made the method more approachable and 

shortened the psychological distance between the elderly 

and the intelligent elderly care space [4]. Yin et al. 

developed a new intelligent elderly care service model to 

address the worsening population aging. The results 

indicated that the intelligent elderly care service model 

could reduce the burden of family elderly care, which was 

an effective way to actively respond to population aging 

[5]. Yang et al. designed an intelligent nursing bed based 

on a low-cost resource constrained micro-controller to 

cope with the nursing pressure brought about by the 

increasing global aging population. The results showed 

that the gesture recognition accuracy of the device was 

96.65% [6]. Ghosh analyzed the current application status 

of AI technology in the field of addressing malnutrition in 

the elderly. Deploying nutrient intake monitoring systems 

based on AI still posed challenges due to regional 

differences in dietary habits and personalized hospital 

menus [7]. Mohan et al. reviewed the application of AI, 

the IoT, and sensor technology in the prevention of falls 

among the elderly. The results indicated that AI and IoT 

technology were the best solutions for preventing falls in 

the elderly [8]. 

With the development of cloud computing, big data, 

and AI technologies, the application scenarios of the IoT 

are constantly expanding. Li et al. discussed the current 

application status and development prospects of IoT 

technology in the field of mental health services. The 

results indicated that IoT technology could improve the 

quality of life of patients with mental disorders, but it also 

faced challenges on patient privacy and security [9]. Ni et 

al. proposed an intelligent monitoring system based on the 

Medical IoT to improve the medical monitoring efficiency 

of elderly patients and patients with chronic diseases. 

Real-time data such as location, weight of infusion urine 

bags and heart rate were collected through low-cost 

sensors and transmitted to the cloud server via wireless 

network. Medical staff could check the patient's status 

with the help of mobile applications, reducing human 

resource consumption and improving the flexibility of 

diagnosis and treatment [10]. SanchezIborra et al. 

proposed a hierarchical integration TinyML solution to 

achieve intelligent perception in the distributed IoT. 
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Heterogeneous terminal decision-making was integrated 

through a two-layer edge computing architecture and 

applied to intelligent agriculture scenarios. This method 

reduced the frequency of wireless transmission while 

lowering energy consumption and response delay, and 

enhanced data privacy protection, providing an efficient 

solution for edge intelligence in resource-constrained 

environments [11]. Almasoudi et al. evaluated IoT 

information security in the health care for people with 

disabilities from strategy, technology, organization, 

personnel, and environment to identify assets, threats, and 

protective measures, combining the confidentiality, 

integrity, and availability assessment and safety 

performance. Case studies showed that this method could 

be flexibly updated, revealing the correlations between 

various elements and providing an extensible evaluation 

framework for medical IoT security research [12]. Wang 

et al. proposed a solution based on the IoT and edge 

computing technology to improve the information 

processing efficiency of the expressway intelligent 

transportation system. The results indicated that this 

approach outperformed traditional intelligent 

transportation systems in monitoring response speed, 

congestion rate, and accident rate prediction [13]. The 

comparison of relevant studies is shown in Table 1. 

 

Table 1: Comparison analysis of relevant studies 

Author (Year) Method/Technology 
Dataset/Application 

Scenario 
Accuracy/Performance Latency 

Energy 

Consumption 
Limitations 

He et al. 
(2023) [4] 

Kano model-based 

smart elderly care 

space design 

Simulation 

environment (no 

specific dataset) 

Psychological distance 
reduced by 38% 

Not 
mentioned 

Not mentioned 

No validation of 

real-user 
scenario 

adaptability 

Yin et al. 
(2023) [5] 

Novel intelligent 
elderly care service 

model 

Community pilot 
(N=200) 

Family burden 
reduced by 52% 

Not 
mentioned 

Not mentioned 
Lacks dynamic 

resource 

scheduling 

Yang et al. 

(2024) [6] 

Low-cost 

microcontroller-

based smart nursing 
bed 

Lab gesture dataset 

(N=50) 

Gesture recognition 

accuracy 96.65% 
≤200 ms 0.8 W 

Lacks real-time 
health 

monitoring 

Ghosh (2024) 
[7] 

AI-based nutrition 

monitoring system 

review 

Multi-regional 

hospital menu data 

(N=300) 

Personalized menu 
matching rate 68% 

Not 
mentioned 

Not mentioned 

Limited 

generalization 
due to dietary 

habits 

Mohan et al. 

(2024) [8] 

AIoT-enabled fall 

prevention review 

Public fall dataset 

(URFD) 

Average recall rate 

89.7% 

Not 

mentioned 
Not mentioned 

Lacks dynamic 
priority 

scheduling 

Li et al. 

(2024) [9] 

IoT-based mental 

health services 

Mental disorder 

patients (N=120) 

Quality of life 

improved by 23% 

Not 

mentioned 

High device 

dependency 

Weak privacy 
protection 

mechanisms 

Ni et al. 
(2023) [10] 

Medical IoT smart 
monitoring system 

Hospital infusion 
monitoring (N=80) 

Infusion anomaly 
detection rate 94% 

120 ms 2.1 W 

Limited to 
clinical settings, 

not adaptable to 

home 
environments 

SanchezIborra 
(2023) [11] 

Hierarchical 

TinyML edge 

intelligence solution 

Smart agriculture 
dataset (N=1500) 

Energy consumption 
reduced by 40% 

≤500 ms 0.5 W 

Untested in 

complex home 
network jitter 

scenarios 

Almasoudi 

(2023) [12] 

Healthcare IoT 
security assessment 

framework 

Disabled care case 

studies (N=45) 

Security compliance 

score 92% 

Not 

mentioned 
Not mentioned 

Unquantified 

data misuse risks 

Wang and 

Shang (2024) 

[13] 

Edge computing-

based traffic 

monitoring 

Highway 

monitoring data (10 

km) 

Response latency 
reduced by 45% 

85 ms 12.3 W 

Not optimized 
for resource-

constrained 

home elderly 
care scenarios 

Proposed 

Approach 

(2025) 

Multimodal IoT 
ecosystem 

Real home 
scenarios (N=30) 

Chronic disease 

prediction accuracy 

81.5% 

235 ms 

Daytime/Nighttime 

energy 
consumption 

↓30.8%/27.5% 

Needs enhanced 

privacy 
protection 

techniques 

In summary, most existing studies (such as smart 

nursing beds and fall prevention systems) focus on 

optimizing a single function, lacking dynamic hierarchical 

response mechanisms for emergencies (such as abnormal 

heart rates and falls). This results in significant delays in 

critical tasks during high-concurrency scenarios, making 

it difficult to meet the real-time requirements of home 

environments. Moreover, current technologies (such as 

edge computing for traffic monitoring and agricultural IoT 

solutions) are often designed for industrial or urban 

settings, which do not suit the frequent network jitter and 

strong device heterogeneity of home environments, 

making it challenging to balance energy consumption and 

stability. The research on msental health monitoring and 

nutritional management relies heavily on manually 

annotated data, lacking a closed-loop feedback 

mechanism that can dynamically capture real-time 

changes in disabled elderly individuals. These limitations 
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make it difficult for existing technologies to achieve an 

ecological closed-loop management system of 

"monitoring-warning-intervention." To address the 

insufficient dynamic response capability in existing 

technologies, this study combines Random Forest (RF) 

classification with Long-Term Short-Term Memory 

(LSTM) networks for contextual reasoning, enabling 

preemptive transmission of urgent tasks and reducing key 

data transmission latency in bandwidth-constrained 

scenarios. Additionally, to tackle the challenge of network 

heterogeneity in home environments, a multi-objective 

optimization load balancing strategy is designed, using 

Particle Swarm Optimization (PSO) to dynamically 

coordinate service quality, energy consumption, and load 

balancing, thereby reducing equipment energy 

consumption over time. A blockchain-driven ecological 

closed-loop architecture is constructed, incentivizing 

collaboration among hospitals, pharmaceutical 

companies, and other stakeholders through quantified data 

contribution, and forming a "risk-sharing-data-sharing-

benefit-repayment" model. 

3 Methods and materials 

3.1 Architecture design of intelligent 

elderly care system based on IoT 

When building an IoT-based home care ecosystem 

for disabled elderly, the research first focuses on the 

design and technical implementation of the system 

architecture to ensure efficient operation and meet the 

diverse needs. The research adopts a modular and layered 

design approach, dividing the system into three main 

modules: data acquisition layer, data transmission layer, 

and intelligent service layer. Through IoT technology, the 

collaborative work among these modules is achieved, 

providing real-time and reliable home-based elderly care 

support for the elderly [14]. The architecture of the home 

intelligent elderly care IoT system for disabled elderly is 

shown in Figure 1.
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Figure 1: Architecture of intelligent home care IoT system for disabled elderly

In Figure 1, the data acquisition layer focuses on the 

deployment and optimization of sensor networks. By 

configuring multiple intelligent sensors, various physical 

data in the environment of disabled elderly people can be 

collected. Intelligent sensors include physiological 

parameter monitoring devices, such as wearable heart rate 

and blood oxygen monitors. Environmental sensing 

devices include smoke and gas leak sensors, behavior 

tracking devices such as infrared motion sensors and 

pressure pads [15]. In the data acquisition layer, 

physiological monitoring employs Photoplethysmography 

technology due to its non-invasive and low-power 

characteristics, ensuring long-term wear comfort. 

Environmental sensing uses a combination of 

electrochemical sensors and Micro-Electro-Mechanical 

Systems, reducing bandwidth usage and supporting local 

calibration. Behavioral tracking utilizes ultra-wideband 

technology, leveraging its high-precision positioning at 

the 10 cm level and strong penetration capabilities to adapt 

to complex home environments. To improve the 

pertinence of data collection and reduce resource waste, a 

data collection strategy based on spatial partitioning is 

designed, which divides the home environment into sub 

areas with clear functions. This strategy optimizes sensor 

deployment based on the characteristics and needs of 

activity areas such as bedrooms, living rooms, kitchens, 

bathrooms, and corridors. The activity trajectory and 

lifestyle habits are analyzed to identify regional functions. 

Floor plan and ultra wideband indoor positioning 

technology are used to divide boundaries and evaluate 

priority based on the needs of the elderly [16]. Through 

continuous 30-day behavioral monitoring of 12 disabled 
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elderly individuals, their daily activity range is mainly 

concentrated within a 0.5-1.5 m space. A grid that is too 

small can lead to high sensor density, while a grid that is 

too large can reduce the accuracy of fall detection. The 

study compares different grid densities through pre-

experiments. When the grid size is reduced to 0.5 m×0.5 

m, the positioning accuracy is improved to 0.12 m, but the 

number of devices increased by 120%, and the average 

daily energy consumption is 68%. When the grid expands 

to 2 m×2 m, the number of devices decreases by 55%, but 

the missed critical event rate increases to 15%. A 1 m×1 

m grid achieves the optimal balance between positioning 

accuracy and sensor deployment cost. Therefore, the 

sensors are arranged in a 1 m×1 m grid pattern. Sensor 

positions are determined based on activity frequency and 

demand weights. During the day, elderly people are more 

active, moving an average of 12 times per hour, while at 

night, their activity frequency drops to 1.5 times per hour. 

Through simulation experiments comparing data integrity 

and energy consumption under different sampling 

frequencies, 1 Hz daytime sampling can cover 95% of 

critical events (such as abnormal heart rates), while 

nighttime sampling once per minute only misses 2% of 

low-risk events. Additionally, maintaining 1 Hz sampling 

at night increases the device's daily energy consumption 

by 81%, but the detection rate of critical events improves 

by only 0.8%. If the daytime sampling frequency is 

reduced to 0.5 Hz, the error rate in reconstructing activity 

trajectories rises from 7.2% to 19.5%. Therefore, the 

device performs high-frequency sampling at 1 time/s 

during the day and low-frequency sampling at 1 time/min 

at night to reduce redundancy in data collection and 

energy consumption of the device. 

To ensure the fast and secure transmission of multi-

source data, this study constructs a data transmission layer 

through a hybrid network architecture, utilizing various 

network communication methods such as narrowband IoT 

and wireless LAN to adapt to communication needs in 

different scenarios. The maximum data throughput 

supported by the system is 10 Mbps, and each edge node 

can access 30 terminal devices simultaneously. 20% of the 

reserved bandwidth is reserved for dynamic load 

balancing to cope with peak traffic. At the protocol level, 

NB-IoT is based on the 3 GPP Release 13 standard, 

supporting a single-link transmission rate of 62.5 kbps for 

uplink and 26.15 kbps for the downlink. WLAN uses the 

IEEE 802.11 n protocol, with a theoretical bandwidth of 

150 Mbps and an actual coverage radius of 50 m (indoor). 

The NB-IoT base station supports up to 50,000 device 

connections per cell (in compliance with 3 GPP TS 36.211 

specifications), while the LoRa gateway operates at a 

bandwidth of 125 kHz, with the transmission rate ranging 

from 0.3 kbps to 50 kbps (LoRaWAN TS001-1.0.4), 

covering a radius of 1.5 km (urban environment). The 

system coordinates multiple protocols through an adaptive 

channel allocation mechanism (TDMA + CSMA/CA) to 

ensure the success rate of critical data transmission.  

The intelligent service layer aims to adapt to the 

aging as its core goal, reducing operational complexity 

through multi-modal hardware interaction design, 

ensuring that disabled elderly people can intuitively and 

conveniently use system functions, while providing 

various services such as health alerts, safety warnings, 

appointment arrangements, health status reports, and 

medical consultations. In the intelligent service layer, edge 

computing nodes handle real-time tasks locally, reducing 

cloud transmission pressure. The cloud platform uses 

AWS IoT Core, leveraging its encryption and device 

shadow functions to ensure data security and offline 

caching. Human-computer interaction employs an offline 

voice engine and thin-film piezoresistive sensors to 

balance internet availability with durability for frequent 

use. 

In the process of data transmission, data compression 

technology is introduced to optimize bandwidth 

utilization. Small fluctuations in physiological parameters 

can indicate early symptoms of atrial fibrillation or 

precursors to respiratory failure. Using lossy compression 

may lead to distortion of characteristic waveforms, posing 

a risk of false-negative diagnoses. Additionally, according 

to ISO 27799: 2016 Health Information Security 

Management Standard Clause 8.3, raw physiological data 

must be maintained at the bit level for audit trail purposes. 

Lossy compression results in irreversible data loss. 

Regarding the physiological data of disabled elderly 

individuals, the IZWL algorithm is used for lossless 

compression [17]. The algorithm flow is shown in Figure 

2.
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Figure 2: Improved LZW flow

As shown in Figure 2, in the ILZW algorithm, the 

data collected by the sensors is first preprocessed for 

differences, and the data repetition rate is improved by 

calculating the differences between adjacent data. Then, a 

dictionary with appropriate size is selected and the hash 

storage is taken instead of traditional sequential storage to 

improve search efficiency and compression speed. During 

the compression process, the dictionary is updated when a 

decrease in compression rate is detected, while commonly 

used single characters are saved and infrequently used 

dictionary entries are released to increase space 

utilization. In addition, the dictionary is not updated 

immediately after it is filled, but is adjusted according to 

the data duplication situation, and only updated when the 

compression rate increases. 

Regarding the dictionary update frequency, this study 

introduces an adaptive triggering mechanism based on 

data repetition rate changes in the ILZW algorithm. When 

the data repetition rate decreases by more than 5% over 

ten consecutive compression processes, the system 

automatically triggers a dictionary update operation and 

uses a Markov prediction model to prioritize the 

elimination of dictionary entries that have not been 

referenced for nearly 30 minutes. When device resources 

are limited, the dictionary storage space is changed from a 

static array in traditional LZW to a linked hash table using 

a hash index structure. The least recently used (Least 

Recently Used, LRU) algorithm is employed to cache the 

access sequence of dictionary entries, thereby reducing 

memory fragmentation. Additionally, the study 

implements variable-length encoding for character 

compression, optimizing the byte count of a single 

dictionary entry from a fixed 3 bytes to a dynamic 1-4 

bytes encoding, further reducing resource consumption. 

To optimize bandwidth utilization, a priority 

scheduling mechanism is utilized to prioritize the key data 

transmission with high real-time requirements, such as 

abnormal heart rate alarm data, while compressing non-

emergency data such as environmental monitoring and 

sending them in batches. The architecture and workflow 

of the priority scheduling mechanism are shown in Figure 

3.
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Figure 3: Architecture and workflow of priority scheduling mechanism

In Figure 3, the priority scheduling mechanism 

designed in the research works together through three core 

modules: dynamic data classification, multi-level queue 

management, and real-time contextual inference, to 

achieve intelligent hierarchical guarantee of data 

transmission. In dynamic data classification, feature 

extraction is performed on the raw sensor data stream, 

including physiological characteristics, behavioral 

characteristics, and living environment characteristics of 

disabled elderly people. The RF method is used to train 

datasets and annotate historical events such as falls and 

heart rate abnormalities. The acceleration variance, 

continuous heart rate anomaly, and residential 

environment temperature mutation rate of wearable 

devices are assigned different importance weights, and 

classification labels are output according to high, medium, 

and low priority. In multi-level transmission queue 

management, emergency situations such as fall alarms and 

cardiac arrest are set as high priority. Sleep apnea and 

high-temperature warning are set to medium priority. 

Temperature, humidity, lighting data, etc. are set as low 

priority. When a high priority event is identified, the 

current transmission task is immediately suspended, 

independent transmission paths are divided, and 

preemptive transmission is performed. The network 

utilization is calculated in real-time. When the bandwidth 

usage exceeds 80% and lasts for 5 seconds, the low 

priority queue is paused.  

The RF training dataset is used to annotate historical 

events such as falls and abnormal heart rate. RF suppresses 

sensor data noise through multi-tree integration and voting 

mechanisms, adapting to the heterogeneity of 

physiological, behavioral, and environmental 

characteristics. Compared with XGBoost and CNN, RF is 

faster in inference speed for edge devices, meeting the 

real-time response requirement of fall detection within 50 

ms. Additionally, RF supports variable-length time series 

data input, eliminating the need for fixed-window 

preprocessing required by CNN, making it suitable for 

deployment on low-power microcontrollers. The dataset 
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includes 12,850 groups of annotated event data, covering 

six categories of priority events (falls, abnormal heart rate, 

etc.). Among them, 7,320 groups come from the clinical 

monitoring records of the geriatrics department at a 

hospital from 2021 to 2023. 3,610 groups are collected in 

real-time through sensor networks deployed in 15 

households with disabled elderly individuals. The 

remaining 1,920 groups are from public datasets (the MIT-

BIH Arrhythmia Database and the UR Fall Detection 

Dataset). The historical event data with annotations is 

divided into training, validation, and independent test sets 

in a ratio of 7:2:1, maintaining consistent sample 

proportions across categories. The training is conducted 

using Python's Scikit-learn library. During the training 

phase, the RF classifier model undergoes stratified 10-fold 

cross-validation to optimize model hyperparameters. In 

each fold of validation, the average accuracy of the model 

is calculated. The final model achieves an accuracy of 

92.4% (±1.2%) on the independent test set. 

To further evaluate the performance of the RF 

classifier, the study quantifies the model through feature 

importance score and confusion matrix. The study 

calculates the feature importance score based on the 

reduction of Gini impurity, and screens out the top 5 

features with the highest contribution to classification, as 

shown in Table 2. 

Table 2: Characteristic contribution 

Feature category Weighted score 

Acceleration variance of 

wearable devices 
0.32 

The number of consecutive 

abnormal heart rates 
0.28 

The temperature fluctuation 

rate of the living environment 
0.19 

Standard deviation of 

nighttime activity duration 
0.12 

Gradient of light intensity 

variation 
0.09 

 

From Table 2, the contribution of acceleration 

variance to fall event detection is the highest, accounting 

for 32%, which verifies its core role in emergency event 

classification. In the confusion matrix verification, 

multiple classification confusion matrices are generated 

on the independent test set, and key indicators are shown 

in Table 3. 

Table 3: Key indicator confusion matrix 

True\Pred

icted 

Fall 

(High

-

Priori

ty) 

Heart 

rate 

anom

aly 

(High

) 

Sleep 

apnea 

(Medi

um) 

Environm

ental 

anomaly 

(Low) 

Nor

mal 

(Low

) 

Fall 284 5 2 1 0 

Heart rate 

anomaly 
8 189 3 0 0 

Sleep 

apnea 
3 2 145 4 1 

Environm

ental 

Anomaly 

0 1 6 92 2 

Normal 1 0 2 5 381 

 

In Table 3, the model performs excellently in 

classifying five types of events. For high-priority events, 

the recall rate for fall detection is 98.3%, with an accuracy 

of 96.2%. The recall rate for abnormal heart rate is 94.5%, 

indicating that the model can accurately identify 

emergencies. For medium-priority events, the recall rate 

for apnea is 93.5%, with misjudgments mainly due to 

similar characteristics to high-priority events. For low-

priority events, the recall rate for environmental 

abnormalities is 89.3%, with a normal state accuracy rate 

of 98.9% and a false positive rate of ≤2.8%. The overall 

classification accuracy is 91.7%, with a Macro-F1 value 

of 0.902, verifying the model's balanced performance 

across multiple categories. For task segmentation within 

the same priority category, a sub-priority dynamic 

evaluation model is designed to achieve refined 

scheduling through event urgency quantification 

indicators. Taking high-priority tasks as an example, the 

system extracts three core features: Response Time 

Threshold (RTT), Anomaly Gradient Physiological 

parameter (APG), and Historical Impact Factor (HIF), to 

construct an evaluation system. In RTT, the gold standard 

response time for cardiac arrest events is defined as ≤4 

minutes (RTT=1), and the effective intervention time for 

fall alarms is defined as ≤10 minutes (RTT=2). Absolute 

time windows are allocated to different events using 

hardware timers. For APG, the rate of change in real-time 

heart rate relative to baseline values (ΔHR/minute) is 

calculated when heart rate is abnormal. When ΔHR> 50 

bpm, it is marked as APG=1 (extremely critical). When 20 

bpm <ΔHR ≤ 50 bpm, it is marked as APG=2 (high-risk). 

For HIF, based on the handling results of similar events 

over the past 30 days, if a timely response leads to 

complications, HIF=1. If a successful intervention is 

made, HIF=2. By integrating these features using a fuzzy 

logic controller, a sub-priority coefficient in the 0-1 range 

is output, with smaller values indicating higher priority. 

In real-time situational reasoning, the long short-term 

memory network is used to learn the daily activity patterns 

of the elderly, and a relevant rule library is established. By 

predicting the behavior status for the next hour in real 

time, the transmission strategy of relevant data is 

preloaded. LSTM employs a two-layer stacked 

architecture. Based on the 24-hour activity trajectory data 

collected from ultra-wideband positioning systems, an 

input sequence with a time step of 60 is constructed using 

a sliding window mechanism (each time step corresponds 

to a 24-minute behavior segment). The network structure 

includes two 64-unit LSTM layers, which use layer 

normalization to enhance temporal feature extraction 

capabilities. The output layer predicts the behavior state 

for the next hour through a Sigmoid function. The training 

data comes from a behavioral trajectory dataset of 300 

disabled elderly people for 6 consecutive months (with a 

total sample size of 2.16 million). The loss function L  
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adopts the improved weighted binary cross entropy loss, 

as shown in equation (1). 

2
1

1
[ log( ) (1 )log(1 )ˆ ˆ ]

N

i i i i
i

y y y y
N

 
=

= −  + − − +L W  (1) 

In equation (1), N  represents the total number of 

samples in the training batch, used to average the loss for 

each sample. iy  is the true label of the i -th sample. ˆ
iy  

indicates the prediction probability of the model for the i

-th sample.   is the positive class weight, used to amplify 

the loss contribution of rare anomalies, alleviating the 

class imbalance, and 2.5 = .   is the regularization 

coefficient, controlling the strength of the L2 

regularization term to prevent over-fitting. 
2

W  is the L2 

norm of the weight matrix, used to constrain model 

complexity. The model is deployed on NVIDIA Jetson 

Nano edge devices.  

The collaborative mechanism between the rule base 

and situational reasoning learning achieves dynamic 

adjustment through a three-stage closed loop. First, the 

rule weights are dynamically updated based on LSTM 

learning from a 12-month historical event database to 

generate a priority weight evolution matrix. When the 

real-time inference result deviates from the pre-set value 

in the rule base by more than 15%, Bayesian optimization 

is triggered to adjust the priority threshold. Situational 

reasoning takes a reinforcement learning framework to 

update the convolution kernel parameters of the situational 

feature extractor every 24 hours, enhancing the ability to 

capture spatiotemporal features of complex behavioral 

patterns. The resource allocation strategy optimizes the 

bandwidth distribution ratio of the transmission queue 

according to the network utilization real-time heat map. 

When the number of concurrent medical devices exceeds 

5, the TCP window size of the low-priority queue is 

automatically reduced from 64 KB to 16 KB, combined 

with an adaptive bandwidth compression algorithm to 

reduce transmission latency for emergency events. 

3.2 Construction of an intelligent home 

care ecosystem for disabled elderly 

In the process of building an intelligent elderly care 

ecosystem based on the IoT, it is crucial to adapt to the 

personalized needs of disabled elderly people and 

optimize system performance. The research method starts 

from two aspects: requirement identification and system 

adjustment, combined with design strategies and relevant 

technical means, to ensure that the system can flexibly 

respond to the specific situations, while maintaining long-

term stable operation of the system. In terms of 

personalized demand adaptation, a data-driven framework 

for demand mapping and service customization is 

proposed, as shown in Figure 4.
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Figure 4: A data-driven framework for requirement mapping and service customization

From Figure 4, the framework first deploys multi-

modal sensors to collect real-time physiological 

indicators, behavioral trajectories, and environmental 

data. The Dempster-Shafer evidence theory is used to fuse 

multi-source data, eliminate noise, and construct a unified 

temporal database [18]. By utilizing feature engineering to 

extract key indicators and combining online principal 

component analysis to dynamically update personalized 

state portraits, a multi-dimensional feature space covering 

physiology, behavior, and psychology is formed. The 

study employs a sliding window mechanism and an 

incremental learning strategy to achieve real-time 

personalized state mapping. Data windows are rolled 

every 5 minutes, with a capacity of 1,440 time-series data 

points. By extracting statistical features of physiological 

indicators, behavioral trajectories, and environmental 

parameters within the window, a user dynamic profile is 

constructed. To address data drift issues, online principal 

component analysis is used for dimensionality reduction 

and feature space updates. The study dynamically adjusts 

model parameters using the rank-1 correction formula of 

the covariance matrix, as shown in equation (2). 

new old
1

1
(1 ) ( )( )

V
T

i i
i

C C x x
V

   
=

= + −  − −        (2) 

In equation (2), newC  and oldC  represent the 

covariance matrices before and after updates, respectively. 

  is the forgetting factor and 0.8 = , used to reduce the 

weight of historical covariance matrices and control the 

model's adaptability to data drift. V  is the sliding window 
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size and 1440V = . ix  is the original observation value of 

the i -th data sample within the window.   is the mean 

vector of all data within the window, used for centering 

processing. The time complexity for a single update is 

O(d) (where d is the feature dimension and d=15), which 

is much lower than the O(d3) required for batch principal 

component analysis, making it suitable for real-time data 

stream processing. 

The behavioral trajectory data collected by the sensor 

is first modeled using LSTM for temporal feature 

extraction, identifying behavior patterns related to 

psychological states. In the feature engineering phase, a 

behavioral feature vector is constructed, including 

behavioral entropy values, social activity levels, and 

environmental interaction frequencies. This vector is 

annotated and trained using the Simplified Geriatric 

Depression Scale (GDS-15) and the UCLA Loneliness 

Scale from psychometrics, forming a mapping model from 

behavioral data to psychological states. The output of the 

model is then fused through Dempster-Shafer evidence 

theory, ultimately forming a comprehensive state profile 

in multidimensional feature space that encompasses 

"physiological-behavior-psychological" aspects. 

Based on a fuzzy logic inference engine, continuous 

data is transformed into fuzzy sets. Meanwhile, it matches 

the rule base constructed with expert experience to output 

demand categories and priority ratings. Specifically, the 

study normalizes three types of indicators: Physiological 

Abnormality Index (PAI), Behavioral Deviation (BD), 

and Environmental Risk Score (ERS), to the [0, 1] interval 

and processes them through triangular membership 

functions for fuzzification. For example, the high-risk 

membership function high ( )x  for PAI is shown in 

equation (3). 

high

0 0.7
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x
x x
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




−
=  




             (3) 

In equation (3), x  is the input value of PAI, which is 

quantitatively calculated from physiological indicators 

such as heart rate variability and blood oxygen saturation 

to assess the health risk level of disabled elderly 

individuals. The membership functions for BD and ERS 

are designed according to the fuzzy logic inference engine. 

The implementation method is consistent with that of PAI 

membership function. Mamdani fuzzy inference is used, 

and the center of gravity method is applied to resolve 

fuzziness, outputting a priority score ranging from 0 to 

100. High priority ≥ 80, medium priority 50-79, and low 

priority <50. Some of the core rules in the rule base are 

shown in Table 4.

Table 4: Some of the core rules in the rule base 

Rule 

ID 

Conditions (Input 

Variables) 
Priority Level Weight Example Scenarios Conflict Resolution 

R1 

PAI≥0.9 (High-Risk) 

and BD≥0.7 (High 

Deviation) 

Emergency 1.0 

Heart rate surge (0.92) 

+Prolonged immobility 

(0.85) 

Independent 

transmission path, 

preemptive 

response 

R2 

ERS≥0.8 (High-

Risk) and PAI ≥0.7 

(Medium-Risk) 

Emergency 0.9 
Excessive CO (0.85) 

+Respiratory anomaly (0.78) 

Priority stacking of 

service 

combinations 

R3 

0.7≤PAI<0.9 

(Medium-Risk) and 

0.5≤ERS<0.8 

(Medium-Risk) 

High 0.7 
Sleep apnea (0.75) +High-

temperature alert (0.65) 

Dynamic load 

balancing 

allocation 

R4 

BD<0.3 (Low 

Deviation) and 

ERS<0.4 (Low-Risk) 

Low 0.2 
Normal activity (0.15) 

+Stable environment (0.25) 

Delayed processing 

or batch 

transmission 

In Table 4, the rule base covers the dynamic mapping 

relationship between input conditions and output priority. 

For example, when PAI ≥ 0.9 and BD ≥ 0.7, the system 

determines it as an emergency event (weight 1.0) and 

directly triggers a preemptive response for fall alarm 

services. The library contains a total of 52 expert 

experience rules, which achieve service orchestration 

through weighted summation and dynamic conflict 

resolution mechanisms. The service orchestration layer 

adopts a micro-service architecture and deploys functional 

modules such as fall detection and voice broadcasting in 

Kubernetes containers to optimize resource scheduling 

strategies [19]. Service orchestration divides the system 

into independent service modules, each communicating 

through RESTful API. The average code length per 

service is less than 500 lines, and the deployment image 

size is less than 100 MB. Kubernetes automatically adjusts 

the number of replicas based on load. For example, the fall 

detection service reduces to one replica when concurrent 

traffic drops at night and expands to three replicas during 

the day, thereby improving resource utilization. Through 

Kubernetes containerized deployment, the system can 

dynamically allocate computing resources based on real-

time needs, while achieving independent updates and 

version management of service modules. The fault 

isolation mechanism ensures that a single-point service 

failure does not affect other functions. Combined with the 

mixed integer programming model to optimize service 
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combinations, it meets the diverse needs of elderly 

individuals living at home, ensuring low latency and high 

efficiency.  

The constraint of the mixed integer programming 

model is used to realize the service combination with low 

latency and high energy efficiency. The model is shown in 

equation (4). 

1 1

min
S T

s s t t

s t

c n d l
= =

 +                         (4) 

In equation (4), sn  represents the number of 

deployment replicas for service s , and {1,2, , }s S  . 

sc  is the unit operating cost of service s , determined by 

service complexity and resource consumption. td  is the 

delay sensitivity coefficient of task t , reflecting the task's 

tolerance to delay. The coefficient for emergency alarm 

tasks is 10. For every 1ms increase in delay, the cost 

increases by 10 units. tl  is the end-to-end delay of task t

, and }1,2{ , ,t T  . Under the constraints of mixed 

integer programming models, low latency and high-

efficiency service composition can be achieved. The 

closed-loop feedback mechanism analyzes service 

performance through gradient boosting tree analysis, such 

as response speed, elderly satisfaction, etc., and corrects 

inference rules and weight parameters in reverse to 

continuously improve system adaptability. In terms of 

system optimization, a multi-objective optimization based 

load balancing strategy is proposed to address the 

diversity and potential instability of IoT equipment in 

home environments. The framework of this strategy is 

shown in Figure 5.
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Figure 5: Load balancing policy framework based on multi-objective optimization

As shown in Figure 5, this strategy aims to minimize 

energy consumption, and balance load. By monitoring the 

network in real-time, it continuously collects key 

indicators such as computing load, communication delay, 

and remaining power of IoT equipment. Future task 

requirements are predicted based on historical data. The 

objective function of energy consumption minimization 

and load balancing is shown in equation (5). 
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In equation (5), E  and L  are the total energy 

consumption of the system and the load balancing index, 

respectively. n  is the total number of edge nodes. jP  and 

jT  are the average power and active time of node j , 

respectively. jC  and C  are the real-time load and its 

average value of node, respectively. The constraints are 

shown in equation (6). 
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j

j

E E
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
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
                               (6) 

In equation (6), minE  is the threshold of remaining 

power of the device, and min 20%E = . thC  is the 

threshold of node load, and th 80%C = . Simultaneously, 

the task is divided into three categories: urgent, routine, 

and backend, and the priority scheduling rule is 

established for each task. Urgent tasks are prioritized for 

allocation to low delay nodes, while routine tasks are 

dynamically allocated based on load balancing principles, 

and backend tasks are delayed or handed over to the cloud. 

The PSO algorithm is used to simulate the intelligent 

search process of biological populations, iteratively 

evaluating the comprehensive performance of different 

resource allocation schemes in dimensions such as service 
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quality, energy consumption, and load balancing, and 

gradually approaching the optimal solution [20]. In the 

PSO algorithm, each particle represents the task allocation 

scheme, and the dimension is the number of edge nodes. 

The position (0,1)ijX   of the particle indicates whether 

the task is assigned to the node. The fitness function is 

shown in equation (7). 

0

Fitness ( )
E

L
E

 =  +                        (7) 

In equation (7),   and   are fixed weights 

(experimentally verified to achieve optimal energy 

consumption and load balancing), and 0.6 / 0.4 = = . 

0E  is the initial total energy consumption. The algorithm 

takes 20 particles, with a maximum of 100 iterations, and 

an acceleration constant 1 2 2.0c c= = . Parameter 

selection is based on the sensitivity analysis results from 

reference [20], aiming to balance convergence speed and 

global search capability. Within 50 iterations, the 

objective function value stabilizes, with a standard 

deviation less than 5%, indicating that the convergence 

meets real-time scheduling requirements. The time 

complexity of the PSO algorithm is O(N T D), where D=2 

(dimension of the objective function). The average time 

for a single optimization at an edge node is 12.3ms (edge 

node computation), meeting real-time requirements. The 

system triggers the PSO algorithm by monitoring network 

utilization in real-time. First, it suspends low-priority 

queues to release bandwidth resources. By dynamically 

adjusting the particle swarm parameters, the inertia weight 

is temporarily increased to 0.7 to accelerate the search. 

The algorithm introduces a dynamic weight 

mechanism, which automatically increases the energy-

saving weight when the device has low power, and focuses 

on optimizing response speed during peak service periods, 

achieving flexible trade-offs between multiple objectives. 

At the critical technical level, edge nodes handle real-time 

tasks and cache data, globally optimize resource 

parameters in the cloud, and combine backup path 

switching to ensure service continuity in fault scenarios. 

The home intelligent elderly care ecosystem for disabled 

elderly is shown in Figure 6.
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Figure 6: Ecosystem of smart home care for the disabled elderly

In Figure 6, the intelligent elderly care ecosystem is 

a collaborative network that integrates technology, 

services, and environmental elements with disabled 

elderly people as the core, and achieves sustainable 

operation through dynamic resource allocation and value 

exchange. The system population consists of a core 

population, a support population, and a service population. 

The core population includes the elderly and family 

caregivers, who generate driving data through wearable 

equipment and interactive behaviors. Family caregivers 

report abnormal behaviors of elderly individuals through 

mobile applications. The system triggers priority 

scheduling after verifying with sensor data. Health reports 

generated by the system are annotated, and feedback data 

is used to optimize feature weights in the fall detection 

algorithm through a gradient enhanced tree model, 

improving prediction accuracy. When family caregivers 

submit medication adherence reports, the system 

synchronously updates the R&D database of 

pharmaceutical companies and the risk assessment model 

of insurance companies, forming a collaborative value 

stream of "family-enterprise-insurance." 

The support population is composed of IoT 

hardware, edge computing nodes, and network technology 

to achieve multi-modal data collection. The service 

population connects hospitals, communities, 

supermarkets, and other institutions, and maps demand to 

cross domain services based on reinforcement learning. 

The community service center receives health monitoring 

data from the system in real-time through block links. This 

includes abnormal physiological indicators of elderly 

individuals, high-risk behavioral events, and 

environmental alerts. It also coordinates medical resources 

and public services within the community. For example, 
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when the system predicts that an elderly person has a fall 

risk exceeding the threshold over the next 2 hours, the 

community service center will dispatch the nearest 

community nurse with a portable monitor to intervene. 

Environmental factors ensure that the system 

complies with social ethics through policy interfaces and 

cultural adaptation modules. This ecosystem supports the 

ecological cycle through information flow and value flow. 

Information flow relies on online learning to achieve cross 

institutional knowledge sharing, while blockchain records 

data contribution for incentive distribution. Information 

flow includes real-time vital signs stream, behavioral 

pattern analysis stream, and environmental control 

command stream. The real-time vital signs stream 

transmits data such as heart rate and blood oxygen 

collected by wearable devices, with an end-to-end average 

delay of 83 ms, meeting the requirement for emergency 

response within 100 ms. The behavioral pattern analysis 

stream transmits behavioral trajectory segments generated 

by ultra-wideband positioning systems, with a peak delay 

of 1.2 s and a daily update cycle of 15 minutes per session. 

The environmental control command stream issues 

temperature control commands in JSON format, with an 

average delay of 210 ms and a feedback delay of 380 ms. 

The study aims to achieve sustainable motivation for 

multi-party collaboration through designed incentive 

mechanisms. The system records the data contribution 

values of all participants through blockchain, with 

quantifiable metrics including the volume of sensor data 

uploaded, service response frequency, and collaboration 

node efficiency. The government dynamically allocates 

subsidies based on contribution values. For example, 

communities receive an additional 5% of their annual 

budget for every 100 care tasks completed. 

Pharmaceutical companies pay 0.5% of their R&D 

revenue as data usage fees for each 100,000 anonymized 

health data entries. Families with data contribution values 

exceeding 500 can redeem free health check-ups or drug 

discount coupons. Pharmaceutical companies, due to 

shortened R&D cycles from the data, must return 12% of 

cost savings in the form of "medication points," where 1 

point equals 1 RMB and can be used to offset medication 

costs. Hospitals reduce the annual fall rate among insured 

users to <5%, and insurance companies pay hospitals 3% 

of their annual premiums as a collaboration reward. 

An economic closed loop is built through value 

streams. In the quantification of insurance industry value, 

the system dynamically adjusts premium strategies by 

reducing health risk events. Based on the proportion of 

risk reduction, insurers offer a 5%-8% premium discount, 

with a discount rate of 2% for every 10% decrease in risk 

rate. In practice, the cumulative discount rate can reach up 

to 8%. Pharmaceutical companies accelerate R&D 

through anonymized health trend data, while agreeing to 

purchase equipment worth 0.5 million RMB for every 

10,000 RMB saved in R&D costs, forming a sustainable 

ecosystem model of "risk sharing-data sharing-benefit 

feedback." This ecological architecture breaks through the 

linear logic of traditional IoT by establishing multi-

directional feedback and adaptive adjustment 

mechanisms, truly integrating technology into the social 

collaboration system, improving service accuracy, and 

reducing system resource redundancy. The system 

deployment hardware is shown in Table 5.

Table 5: System deployment hardware equipment 

Device Category 
Device 

Model 
Quantity Unit Price (RMB) Function Description 

Physiological Monitoring 
Sensors 

HUAWEI 
Watch D 

3 units 1,999 

Real-time collection of physiological parameters (heart 

rate, blood oxygen, body temperature, etc.), supporting 

Bluetooth 5.0 communication. 
Sleepace 

Rest Smart 

Mattress 

1 unit 3,999 
Monitors sleep cycles, body movement frequency, and 

respiratory rate; transmits data through Wi-Fi. 

Environmental and 

Behavioral Sensors 

HC-SR501 

Infrared 

Sensor 

5 units 25 
Detects human activity trajectories, deployed in living 

rooms, corridors, and other areas. 

FlexiForce 

A201 

Pressure Mat 

3 units 150 
Monitors pressure distribution in sitting/lying positions, 

placed on seats and bedding surfaces. 

MQ-7/MQ-2 

Gas Sensors 
2 units 80 

Detects CO and smoke concentrations, deployed in 

kitchens and bedrooms. 

Positioning and 

Communication 
Equipment 

Ultra-
Wideband 

(UWB) 

Positioning 
Tag 

6 units 300 
Achieves centimeter-level positioning accuracy with 

UWB technology (coverage: 10m). 

Raspberry Pi 

4B (8GB) 
1 unit 899 

Edge computing node integrating sensor gateway and 

local data processing modules. 

Interactive Devices 

Voice 

Interaction 

Terminal 

1 unit 1,299 
Supports voice commands for emergency calls, health 

inquiries, and other functions. 

Network Equipment 
Wi-Fi 6 

Router 
1 unit 599 

Provides 2.4G/5G dual-band coverage and supports Mesh 

networking expansion. 

Others 
Smart Pill 

Box 
1 unit 199 

Monitors medication adherence with integrated RFID tag 
recognition. 
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The hardware devices in Figure 5 are arranged in a 

grid pattern (1m×1m grid) in the home environment. In the 

bedroom of the disabled elderly person, pressure pads are 

laid along the edge of the bed to monitor the pressure 

distribution during sitting and lying positions in real time. 

Smart mattresses are deployed under the bed to collect 

sleep cycles and respiratory rates. Gas sensors are installed 

near the headboard to monitor CO and smoke 

concentrations in real time. An infrared sensor is placed at 

the entrance of the bathroom to detect human entry and 

exit activities, while humidity sensors are installed on the 

ceiling to dynamically monitor environmental humidity to 

prevent slipping risks. A Ultra-Wideband (UWB) 

positioning base station is installed in the corner of the 

wall to achieve centimeter-level positioning with the 

UWB tags worn by the elderly. Infrared sensors are 

deployed in the corridor area to track daily activity 

trajectories. Gas sensors are installed near the gas pipes in 

the kitchen to provide real-time warnings of gas leaks. 

Temperature sensors are installed in the cabinet area to 

monitor abnormal high temperatures to prevent fires. The 

Raspberry Pi 4B edge computing node is placed in the 

center of the living room as the sensor gateway and local 

data processing core. The total deployment cost for a 

single household is approximately 11,842 RMB. 

3.3 Data security and privacy 

Regarding user data security issues, the study adopts 

a three-tier privacy protection mechanism to ensure data 

safety. The SHA-256 algorithm is used at the data 

collection end to irreversibly encrypt sensitive 

information such as names, ID numbers, and addresses, 

retaining only non-identifiable data directly related to 

health management (such as age, gender, and medical 

history codes). All sensor data, after preprocessing by 

edge nodes, is accessible to authorized researchers for the 

anonymized dataset, while healthcare institutions must 

obtain temporary keys approved by an ethics committee to 

access the data. Data transmission takes TLS 1.3 protocol 

encryption, and storage servers are deployed in data 

centers that meet ISO 27001 standards. Physical storage 

devices undergo regular security audits, and 

decommissioned equipment is physically destroyed. 

Considering the possible sensor deception problem, a 

unique digital certificate is assigned to each IoT device. 

The edge node verifies the legitimacy of the device 

through two-way TLS protocol, and the device signature 

based on elliptic curve digital signature algorithm is 

attached during data collection to prevent forged data. 

In response to the threat of network hijacking, the 

communication link is encrypted using TLS1.3 protocol, 

with keys rotated daily, and traffic anomalies are 

monitored in real-time through an LSTM model. For 

designs not fully encrypted, the primary considerations are 

the compatibility of resource-constrained devices and the 

real-time nature of emergency services. Low-power 

sensors take lightweight Corrected Block Tiny Encryption 

Algorithm to encrypt key fields, prioritizing alarm data 

transmission, with encryption concentrated at edge nodes. 

Non-sensitive data is transmitted in plaintext after de-

identification, while sensitive data is protected through 

both AES-256 and homomorphic encryption, ensuring a 

balance between data integrity and privacy security [21]. 

Considering the potential conflict of interest, the 

study records all data contributions and service responses 

on the blockchain, labels data streams, and ensures that 

responsibility is traceable. When data abuse is detected, 

the smart contract automatically freezes access to it and 

triggers an audit process. In potential ethical issues, the 

system provides an informed consent form at deployment, 

clearly labeling data sharing parties and exit clauses. Any 

new service provider must obtain written authorization 

before joining. Family members can track in real-time 

which institutions access and use the data through a 

blockchain browser, with the system generating monthly 

data usage reports via email. 

4 Results 

4.1 Key technology performance 

optimization verification 

To verify the effectiveness of the ILZW algorithm in 

lossless compression of data, the DHT11 humidity sensor 

is used to collect indoor humidity data at different 

frequencies for 3 days, and the collected data is 

compressed using the algorithm. At each sampling 

frequency, the compression algorithm is tested 

independently for 100 times, and the compression rate, 

memory occupancy rate and compression time are 

recorded for each run. The final result is the average of 

100 runs. The performance of the current latest Improved 

Shared Run Length Coding (ISRLE) data compression 

method at different sampling frequencies is shown in 

Figure 7 [22]. In the performance testing of the ILZW 

algorithm, a sampling frequency of up to 6 times per 

minute is used, aiming to simulate the comprehensive 

frequency after data preprocessing at edge nodes. In 

practical applications, after initial screening by edge nodes 

to filter out duplicate and invalid signals, the transmission 

frequency of some non-urgent data is below 6 times per 

minute, forming a gradient data transmission system with 

one time per minute at night. Figures 7 (a) and 7 (b) show 

the data compression rate, memory usage, and 

compression time of different methods, respectively.
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Figure 7: Performance of each method at different sampling frequencies

In Figure 7 (a), with the increase of device sampling 

frequency, the data compression rate and memory usage 

of the LZW algorithm before and after improvement also 

increased. The data compression rate and memory usage 

of ILZW were lower than LZW throughout the entire 

testing process. When the sampling frequency was 6 

times/min, the data compression rate and memory usage 

of ILZW were 8.92% and 21.87%, respectively, while the 

data compression rate and memory usage of LZW were 

49.01% and 39.98%, respectively. The data compression 

rate and memory usage of the ISRLE method were 

basically the same as those of the ILZW when the 

sampling frequency was low. As the sampling frequency 

gradually increased, the gap between ISRLE and ILZW 

widened. At a sampling frequency of 6 times /min, the data 

compression rate and memory usage of ISRLE were 

12.51% and 27.52%, respectively, which were 3.59% and 

5.65% higher than the research method. As shown in 

Figure 7 (b), the compression time of ILZW at different 

sampling frequencies was lower than that of the 

comparison method. At the sampling frequency of 6 times 

/min, the compression time of ILZW was 1.65 s, while that 

of ISRLE and LZW was 2.24 s and 3.72 s, respectively. 

The compression time of the research method was reduced 

by 55.65% compared with the traditional method. The 

improved algorithm reduces data compression rate and 

compression time by optimizing preprocessing and 

storage strategies. 

In terms of algorithm complexity, the time 

complexity of the traditional LZW algorithm is O(n), 

where n is the length of the input data. The ILZW 

algorithm optimizes the average time complexity to 

O(n/k) through a hash storage structure and dynamic 

dictionary adjustment strategy, where k is the length of 

repeated pattern units formed during the preprocessing 

stage through difference calculation (k ≥ 2). The time 

complexity of ISRLE is O(n), but it requires additional 

processing for shared repetitive patterns. In terms of space 

complexity, the traditional LZW takes a fixed dictionary, 

resulting in a space complexity of O(m), where m is the 

maximum number of entries that the dictionary can store. 

The ILZW reduces the space complexity to O(m/α) 

through hash indexing and dictionary item elimination 

mechanisms, with α =1.25 being the experimental-

determined dictionary space compression coefficient. The 

space complexity of ISRLE is O(1), but it requires pre-

allocated buffer storage for shared patterns. 

To further verify the performance of ILZW in 

different network scenarios, the aforementioned data 

compression algorithm is tested under four typical 

network scenarios. In high packet loss scenarios, the 

random packet loss rate ranged from 0.1% to 5%. In 

dynamic rate scenarios, the data rate fluctuated between 

0.017 Hz and 2 Hz. In mixed jitter scenarios, a delay of 

150 ms ± 50 ms and an instantaneous packet loss rate of 

10% to 15% were added. The performance of each method 

under various network conditions is shown in Table 6. 

 

Table 6: Performance of each method under different network conditions 

Network Condition Algorithm Compression Rate Data Recovery Rate Memory Peak (MB) 

Ideal Network (0% packet 

loss) 

ILZW 8.92% 100% 21.87 

LZW 49.01% 100% 39.98 
ISRLE 12.51% 100% 27.52 

5% Packet Loss 

ILZW 9.8% 90.2% 23.12 

LZW 51.3% 68.4% 41.23 
ISRLE 13.7% 72.1% 29.84 

Dynamic Rate (0.017→2 

Hz) 

ILZW 11.3% 94.7% 24.75 
LZW 53.8% 75.2% 43.67 

ISRLE 15.4% 80.3% 31.02 

Mixed Jitter 
ILZW 10.5% 87.6% 22.98 
LZW 55.1% 61.9% 44.15 

ISRLE 14.2% 65.4% 30.19 
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As shown in Table 6, in an ideal network, the 

compression rate of ILZW (8.92%) was 40.09% lower 

than that of LZW (49.01%), but 3.59% higher than that of 

ISRLE (12.51%). ILZW enhances data repetition 

recognition through difference preprocessing and dynamic 

dictionary adjustment. Under dynamic rate scenarios, the 

compression rate of ILZW fluctuated by only ±2.38%, 

while that of ISRLE fluctuated by ±2.9%, demonstrating 

better adaptability to non-uniform data. At high packet 

loss rates (5%), the data recovery rate of ILZW was 

consistently higher than that of LZW and ISRLE. This is 

thanks to its differential preprocessing technique, which 

reconstructs lost information through the correlation of 

adjacent data. In terms of peak memory usage, compared 

with LZW, ILZW reduced memory consumption by 45%-

48%. Compared with ISRLE, it reduced memory 

consumption by 17%-22%. ILZW adopts a linked hash 

table and dynamic dictionary item elimination 

mechanism, reducing memory fragmentation and making 

it suitable for resource constrained medical IoT devices. 

To verify the practical effectiveness of the proposed 

priority scheduling mechanism, comparative experiments 

are conducted on typical scenarios such as normal 

networks, bandwidth limitations, and network jitter. The 

experiment is conducted in the home environments of 15 

disabled elderly individuals, with 20-25 IoT devices 

deployed per household. The edge node is Raspberry Pi 

4B. Network conditions are simulated using Mininet-

WiFi. The normal network bandwidth is 100 Mbps 

(download) / 50 Mbps (upload). In the bandwidth-limited 

scenarios of simulated NB-IoT, the limit is 5 Mbps 

(download) / 2Mbps (upload). The network jitter 

introduces random delays Linux tc tools (averaege of 150 

ms, standard deviation of 50 ms) and burst packet loss 

using. Each test is repeated 100 times, and the data 

represents the average. By systematically comparing the 

three indicators of time delay, data arrival rate, and failure 

rate of critical event, it is verified whether the priority 

scheduling mechanism has a positive impact on data 

transmission. The study strictly adheres to the Helsinki 

Declaration and relevant provisions of the Personal 

Information Protection Law, completing ethical review 

and informed consent procedures before implementation 

to ensure the rights and data security of incapacitated 

elderly individuals. The research protocol is reviewed and 

approved by the ethics committee of a first-affiliated 

hospital affiliated with a domestic university, meeting 

clinical research ethical standards. The ethics committee 

focuses on reviewing the non invasiveness of data 

collection, the safety of service interventions, and privacy 

protection measures, confirming that the study does not 

pose direct physiological risks and that all technological 

applications are aimed at improving the quality of life of 

older adults. Regarding user data security issues, the study 

adopts a three-tier privacy protection mechanism to ensure 

data safety. The SHA-256 algorithm is used at the data 

collection end to irreversibly encrypt sensitive 

information such as names, ID numbers, and addresses, 

retaining only non-identifiable data directly related to 

health management (such as age, gender, and medical 

history codes). All sensor data, after preprocessing by 

edge nodes, is accessible to authorized researchers for the 

anonymized dataset, while healthcare institutions must 

obtain temporary keys approved by an ethics committee to 

access the data. Data transmission uses TLS 1.3 protocol 

encryption, and storage servers are deployed in data 

centers that meet ISO 27001 standards. Physical storage 

devices undergo regular security audits, and 

decommissioned equipment is physically destroyed. The 

subjects have basic communication skills or legal 

guardians to make decisions on their behalf, and they 

voluntarily participate and sign a written informed 

consent. The network performance indicators before and 

after introducing priority scheduling mechanism are 

shown in Table 7.

Table 7: The statistics of network performance indicators before and after using the priority scheduling mechanism 

Test scenario 

Use the priority scheduling mechanism Don't use priority scheduling mechanism 

Time delay 

(ms) 

Data arrival 

rate (%) 

Failure rate 

of critical 

events (%) 

Time delay (ms) 
Data arrival 

rate (%) 

Failure rate 

of critical 

events (%) 

Normal 

network 
235.73±18.24 99.84 0.03 420.19±35.67 89.37 1.34 

Bandwidth 

limited 
485.26±42.31 97.13 0.17 1,200.63±35.67 63.82 5.19 

Network jitter 785.34±68.57 93.41 0.26 >2,000 38.72 9.83 

High load 

medical 

equipment 

1180.28±92.45 85.19 0.48 >2,000 41.31 12.37 

Multi-user 

concurrency 

(5 terminals) 

635.79±55.12 89.36 0.34 1,580.24±120.36 55.63 4.76 

Mixed 

emergency 
705.43±50.89 87.64 0.39 1,420.79±110.41 60.12 3.96 
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As shown in Table 7, the priority scheduling 

mechanism exhibited significant advantages in various 

network scenarios. In terms of time delay, this mechanism 

generally reduced delay by 50% to 70%. For example, 

under normal network conditions, the delay was reduced 

from 420.19 ms to 235.73 ms, and under network jitter, 

the delay was optimized from >2,000 ms to 785.34 ms. In 

extreme high-load scenarios, the delay is improved from 

>2,000 ms to 1,180.28 ms. The data arrival rate was 

increased by 20% to 50%, especially when bandwidth was 

limited, from 63.82% to 97.13%. The failure rate of 

critical events decreased, with the failure rate in high-load 

medical equipment scenarios dropping from 12.37% to 

0.48%, mixed emergency situations dropping from 3.96% 

to 0.39%, and network jitter scenarios being controlled 

from 9.83% to 0.26%. This mechanism ensures priority 

processing of critical tasks through dynamic resource 

allocation and improves data reliability under complex 

conditions such as network instability, resource 

constraints, and concurrency pressure.  

To evaluate the impact of the load balancing strategy 

based on multi-objective optimization on the energy 

consumption of IoT equipment and verify their actual 

effectiveness at different time periods, the study deploys 

multiple IoT equipment in a home environment. The 

energy consumption test is conducted on equipment 

operating in normal mode, and a balancing strategy is 

applied under the same initial conditions. Each household 

includes 3 wearable devices (HUAWEI Watch D, 1.5W), 

1 smart mattress (Sleepace Rest, 3W), 5 infrared sensors 

(HC-SR501, 0.065W), 3 pressure pads (FlexiForce A201, 

0.1W), 2 gas sensors (MQ-7/MQ-2, 0.8W), and 1 edge 

node (Raspberry Pi 4B, 6W). During the day (6:00-22:00), 

it simulates a scenario with multiple devices running 

concurrently (5 terminals online simultaneously, 

occupying 70% bandwidth), while at night (22:00-6:00), 

it operates in a low-load state (bandwidth usage ≤30%). 

The energy consumption data of 24 whole points is 

recorded every day for 7 consecutive days, and the power 

consumption of the equipment is collected in real time 

using a high-precision power meter. The result is the 

average value of 15 households. The energy consumption 

changes of the device during the day and night are shown 

in Figure 8. Figure 8 (a) shows the energy consumption 

change at night when using the load balancing strategy, 

and Figure 8 (b) shows the energy consumption change 

during the day.
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Figure 8: Energy consumption of the equipment during the day and night

According to Figure 8 (a), without using load 

balancing strategy, the average energy consumption at 

night was 1.42×103±85J (95%CI: 1.38×10³-1.46×10³J), 

while the average energy consumption after using this 

strategy was 1.03×103±42J (95%CI: 1.01×10³-1.05×10³J), 

which was 27.46% lower than that without using the load 

balancing strategy. This strategy also reduced the 

fluctuation range of energy consumption. In Figure 8 (b), 

the energy consumption increased during the day. The 

average energy consumption without load balancing 

strategy was 2.24×103±112J (95%CI: 2.18×10³-

2.30×10³J), while the average energy consumption after 

using this strategy was 1.55×103±55J (95%CI: 1.52×10³-

1.58×10³J). The load balancing strategy can reduce the 

energy consumption and maintain energy stability. This is 

because the dynamic task scheduling strategy prioritizes 

critical tasks, while non-urgent tasks are delayed or 

transferred to the cloud, reducing the continuous high-load 

operation time of devices and increasing the proportion of 

idle or sleep modes. Secondly, the day-night differentiated 

strategy adjusts the device sampling frequency, combining 

spatial partitioning to optimize sensor layout, reducing 

redundant data collection, and extending low-power 

periods. The multi-objective balancing mechanism based 

on PSO algorithm monitors device load and power in real-

time, dynamically allocating tasks to low-latency nodes or 

the cloud, and automatically increasing energy-saving 

weights when devices have low power. 

4.2 Health management and ecosystem 

applications 

To evaluate the effectiveness of the intelligent elderly 

care ecosystem in improving health management 
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efficiency, a 12-month controlled experiment is designed, 

and relevant data is collected regularly every month. A 

single-group self-contrast design is adopted to carry out a 

longitudinal control experiment on 30 disabled elderly 

people (average age 72.5±6.8 years) for 13 months, 

including one month at baseline (before system 

deployment) and 12 months at dry period (system 

operation). The changes in health management efficiency 

before and after applying the intelligent elderly care 

ecosystem are shown in Figure 9. Figure 9 (a) shows the 

health management performance statistics before applying 

the system, and Figure 9 (b) shows the health management 

performance statistics after applying the system. The data 

represents the monthly average of 30 disabled elderly 

individuals over a 12-month intervention period. Each 

monthly dataset is based on three repeated measurements 

(one in early, mid, and late each month), with the final 

result being the average of 36 observations. A paired t-test 

is used to analyze the differences between the baseline 

period and the intervention period, with a significance 

level set at α=0.05. p<0.05 is considered statistically 

significant.
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Figure 9: Changes of health management efficiency before and after the application of intelligent elderly care 

ecosystem

According to Figure 9 (a), when the proposed system 

was not used, the different health management 

performance indicators of disabled elderly people 

fluctuated greatly in different time periods. The average 

accuracy of chronic disease prediction, medication 

compliance, fall recognition accuracy, and abnormal heart 

rate were 67.73%, 81.95%, 79.96%, and 86.85%, 

respectively. According to Figure 9 (b), after using the 

system, the fluctuations of various health management 

performance indicators of disabled elderly people were 

reduced at different time periods, and all health 

management performance indicators were improved. The 

average values of each indicator were 81.54%, 90.32%, 

91.06%, and 96.62%. The prediction accuracy of chronic 

diseases increased by 13.81% (t=8.92, p<0.001), the 

compliance rate of medication reached the standard, at 

8.37% (t=6.54, p<0.01), the recognition accuracy of 

falling down increased by 11.10% (t=9.15, p<0.001), and 

the alarm rate of abnormal heart rate increased by 9.77% 

(t=7.83, p<0.01). The relationship between user 

experience and the number of concurrent tasks is shown in 

Figure 10. Each test of the number of concurrent tasks is 

run independently 50 times, and the result is the average 

of the 50 runs. Figures 10 (a) and 10 (b) respectively show 

the relationship between user experience and the number 

of users before and after applying the system.
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Figure 10: Relationship between user experience and the number of concurrent tasks

As shown in Figure 10 (a), with the increase of the 

number of users, the response time of device touch screen 

operation and the average delay of emergency calls both 

improved. When the number of users was 20, they were 

735.24±58.72 ms and 681.76±82.31 ms. The success rate 

of device voice interaction and user satisfaction with 

personalized services showed a downward trend, reaching 

65.55% and 64.21% respectively when the number of 

users was 20. In Figure 10 (b), the proposed system 

improved user experience. The device touch screen 

operation response time and the average delay of 

emergency call decreased to 295.37 ms±22.45 ms 

(Δ=439.87 ms, t=12.58, and p<0.001) and 390.06 

ms±35.68 ms (Δ=291.70 ms, t=13.64, and p<0.001) when 

the number of users was 20. The success rate of voice 

interaction and user satisfaction with personalized 

services was 87.68% and 92.11% (Δ=22.13%, 27.90%, 

and p<0.01), respectively. The improvement of relevant 

evaluation indicators before and after adopting the elderly 

care ecosystem is shown in Table 8. The data in the table 

is the cumulative average of 30 elderly people during the 

12-month intervention period.

Table 8: Comparison of relevant evaluation indicators before and after applying the elderly care ecosystem 

Evaluation 

Dimension 
Specific Indicator 

Pre-Implementation 

Data 

Post-Implementation 

Data 

Improvem

ent 

Health Monitoring 

Coverage 

Real-time physiological 

parameter rate 

52.3% (manual 

records) 

98.5% (auto-

monitoring) 
+88.34% 

Hygiene Response 

Time 
Excrement disposal delay 

Average 15 min-30 

min 
≤3 s -99.7% 

Pressure Ulcer 

Incidence Rate 

Monthly rate (bedridden 

patients) 

37% (severe cases: 

21%) 
7.8% (no severe cases) -78.9% 

Urinary Tract 

Infection Rate 
Monthly infection rate 28.6% 10.9% -61.9% 

Psychological Stress 

Index 
Caregiver anxiety score  6.8 (severe stress) 3.2 (mild stress) -52.9% 

Daily Care Time Caregiver time investment 4.2 h 1.5 h -64.3% 

Position Change 

Compliance Rate 

Bedridden repositioning 

compliance 

58% (manual 

tracking) 
97% (system alerts) +67.2% 

Aspiration Incident 

Rate 

Feeding-related aspiration 

incidents 
22 times/month 3 times/month -86.4% 

Joint Mobility 

Maintenance 

Range of Motion (ROM) 

retention rate 

61% (passive 

exercises) 

89% (active assistive 

training) 
+45.9% 

Skin Microclimate 

Management 

Moisture-associated skin 

damage (MASD) 
34% 9% -73.5% 

Assisted Mobility 

Safety 

Falls during transfers (per 

100 moves) 
17 incidents 0.8 incidents -95.3% 

Economic cost 
Average monthly nursing 

expenses 
9,354 RMB 3,547 RMB -62.1% 

According to Table 8, the real-time physiological 

parameter rate increased from 12.3% to 98.5% (t=22.3, 

p<0.001), relying on IoT sensors to achieve all-weather 

tracking of health indicators, which was about 7 times 
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more efficient than manual detection. In terms of 

preventing complications, the pressure ulcer incidence 

rate decreased by 78.9% (t=20.5, p<0.001), and the 

aspiration incident rate decreased by 86.4%. The falls 

during transfers decreased by 95.3% (t=23.5, p<0.001). 

The average monthly care cost includes the cost of human 

care and medical consumables. After using the elderly 

care ecosystem, the working hours of human care were 

reduced, and the number of medical consumables used by 

intelligent monitoring was reduced. The average monthly 

care cost was reduced by 56.4% compared with before the 

system was used (t=18.7, p<0.001). The system has 

formed a synergistic effect in three aspects: health risk 

control, functional maintenance, and reducing nursing 

burden through a closed-loop management system. 

5 Discussion 
Compared with reference [6], the intelligent elderly 

care ecosystem proposed in this study reduces the delay of 

emergency events from 1200 ms to 235 ms through a 

dynamic priority scheduling mechanism, and optimizes 

the failure rate of critical tasks from 5.19% to 0.39%. This 

improvement is attributed to multi-level queue 

management and real-time context reasoning, which 

dynamically identifies task urgency using a RF classifier 

and predicts future behavior states with LSTM, pre-

allocating transmission resources accordingly. Compared 

with the average recall rate of 89.7% in the reference [8], 

this study enhances the fall detection recall rate to 98.3% 

through a heterogeneous sensor fusion strategy, while 

keeping the false alarm rate below 2.8%. In terms of 

energy optimization, the single-function device in the 

reference [14] consumes 1.5 W. This study reduces the 

day and night power consumption by 30.8% and 27.5%, 

respectively, through a multi-objective PSO algorithm that 

coordinates edge node loads. This difference stems from 

the dynamic resource scheduling strategy. When network 

utilization >80%, low-priority queues are paused, and 

backup path switching is enabled to reduce energy waste 

caused by redundant transmissions. 

In the design of the ecological closed-loop 

architecture, the research focuses on quantifying data 

contribution through blockchain to incentivize 

pharmaceutical companies, insurance firms, and other 

stakeholders to form a value exchange network. 

Traditional solutions (such as mental health services 

provided by Li et al. [9]) rely solely on unidirectional data 

flow. The ecosystem proposed in this study takes a 

gradient boosting tree-based service effectiveness analysis 

model to continuously optimize rule library weights. The 

static rule library in reference [8] struggles to adapt to 

behavioral drift issues in disabled elderly individuals. To 

address home network jitter problems, the study improves 

key data transmission success rates from 63.8% to 97.1% 

through hybrid a network protocol and adaptive channel 

allocation, outperforming industrial IoT solutions 

(SanchezIborra, which reduces energy consumption by 

40%, but has not been verified in home scenarios [11]). 

6 Conclusion 
To meet the needs of home-based elderly care for 

disabled individuals, this study integrated data collection, 

transmission, and intelligent service modules through a 

layered architecture. A multi-modal sensor network was 

deployed to achieve physiological behavioral 

environmental data fusion perception. The ILZW 

compression algorithm was proposed, and a dynamic 

priority scheduling mechanism was designed. An 

intelligent elderly care ecosystem based on the IoT was 

constructed, forming a closed-loop management system 

based on multi-objective optimization load balancing 

strategy. The study applied this system to the home-based 

elderly care scenario for disabled individuals and 

compared it with traditional home-based elderly care 

methods. The results showed that the compression rate of 

ILZW decreased by 40.09% and the compression time 

shortened by 55.65% at a sampling frequency of 6 

times/min. The dynamic priority scheduling mechanism 

reduced the transmission delay of key data in network 

jitter scenarios by 61.3% and increased the data arrival rate 

to 97.13%. The multi-objective optimization strategy 

reduced device day and night energy consumption by 

30.8% and 27.5%, respectively. In terms of health 

management effectiveness, the accuracy of chronic 

disease prediction increased to 81.5%, the pressure ulcer 

incidence rate decreased by 78.9%, the nursing cost 

decreased by 62.1%, and the user satisfaction reached 

92.11%. After integrating IoT technology and ecological 

architecture, a multi-party collaborative value network for 

elderly care services was constructed, achieving precise 

monitoring, rapid response, and dynamic resource 

allocation, which provides a reusable technological 

paradigm and social collaboration model for addressing 

the aging. The personal data collected by IoT equipment 

has not yet been systematically managed for privacy and 

security. Future research will explore new privacy 

protection technologies based on homomorphic 

encryption, which can ensure the security of user privacy 

data while balancing system performance and long-term 

stability. 
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