https://doi.org/10.31449/inf.v49i7.8599

Informatica 49 (2025) 215-234 215

loT-Enabled Hierarchical Architecture for Intelligent Home-Based
Elderly Care: A Multi-Objective Optimization Approach

Jiaogian Xiao”

Changzhi Medical College, Changzhi 046000, Shanxi, China

“E-mail: 15197901237@163.com

Keywords: intelligent elderly care, internet of things, ecosystem, home-based elderly care, data acquisition

Received: March 13, 2025

With the acceleration of global aging process, the contradiction between the home care needs of
disabled elderly and limited nursing resources is becoming increasingly prominent. To address
monitoring blind spots, delayed responses, and lack of personalized services in traditional elderly
care models, a smart elderly care ecosystem based on the Internet of Things is constructed. By
integrating data collection, transmission, and intelligent service modules through a layered
architecture design, a multi-modal sensor network is deployed to fuse physiological parameters,
behavioral trajectories, and environmental data. The research involves deploying Raspberry Pi 4B
edge nodes in 15 households of disabled elderly individuals, integrating wearable devices, ultra-
wideband positioning tags, and environmental sensors, totaling 23-28 units per household. The
sampling frequency is 1 Hz during the day and 0.017 Hz at night, with an average data volume of 12.7
GB per day. The core algorithm includes an improved LZW compression algorithm that reduces data
redundancy through differential preprocessing and dynamic dictionary elimination, a dynamic
priority scheduling mechanism that uses a random forest classifier to identify event urgency and
predicts pre-allocated bandwidth based on LSTM behavior, and a multi-objective particle swarm
optimization algorithm for balancing energy consumption and load distribution. The proposed system
was deployed in home-based elderly care for disabled individuals. The results showed that the
improved compression algorithm and dynamic priority scheduling mechanism reduced the
compression rate by 40.09% and shortened the transmission delay of key data in network jitter
scenarios by 61.3% at a sampling frequency of 6 times/min. After introducing a multi-objective
optimization load balancing strategy, the day and night energy consumption were reduced by 30.8%
and 27.5%, respectively. In the 12-month controlled experiment, a single-group pre-post design was
adopted, with 30 participants aged 72.5+6.8 years. Based on the MIT-BIH arrhythmia database and
the UR fall dataset, the training set was constructed to verify that the prediction accuracy of chronic
diseases increased to 81.5% (the original baseline was 67.7%, p<0.001), the incidence of bedsores
decreased by 78.9% (the original baseline was 37%), and the nursing cost decreased by 62.1% (the
original baseline was 9,354 RMB/month). The study proposes a technical approach to mitigate
resource mismatches in home-based elderly care services by constructing a closed-loop management
system of "monitoring-warning-intervention”, promoting the intelligent elderly care towards
ecological and precise direction.

Povzetek: Clanek predstavi vecnivojsko loT-arhitekturo za pametno domaco oskrbo starejsih, ki
zdruzuje vecmodalno zaznavanje, stiskanje ILZW, dinamicno razvrscanje prednosti (RF+LSTM) in
veccilino PSO-optimizacijo. Sistem zmanjsa porabo energije ter izboljsa tocnost napovedi bolezni.

1 Introduction

With the intensification of global population aging,
the number of disabled elderly people is also increasing
year by year. This not only poses a huge challenge to the
social welfare system, but also brings unprecedented
pressure to the home-based elderly care model for
disabled individuals. The family-based care model for
disabled elderly is difficult to bear the main responsibility
of home-based elderly care due to factors such as
shrinking family size and changes in intergenerational
relationships, while institutional elderly care faces
problems such as limited resources, high costs, and

shortage of manpower [1]. Therefore, exploring new
elderly care models and technological solutions tailored to
disabled individuals has become an urgent task. The rapid
development of new quality productive forces such as
information technology, Artificial Intelligence (Al), big
data, and the Internet of Things (IoT) provides new
opportunities for the intelligent upgrading of elderly care
services for disabled populations. 10T refers to a network
system that connects various physical devices, vehicles,
buildings, daily necessities and other objects through the
Internet to collect and exchange data [2]. As an emerging
elderly care model for disabled individuals, intelligent
elderly care integrates disabled elderly people,
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communities, medical staff, medical institutions,
governments, and service agencies through modern
technology to form a targeted intelligent service system.
Due to the limitations of physical functions, disabled
elderly people have a more urgent need for elderly care
services [3]. However, there are still many shortcomings
in current elderly care services in meeting the personalized
needs.

The primary goal of the research is to address three
core issues in the home-based care scenario for disabled
elderly individuals: insufficient real-time monitoring, lack
of dynamic response mechanisms, and resource
allocation. In terms of real-time sensor monitoring,
traditional single-point sensors struggle to capture the
dynamic associations between physiological, behavioral,
and environmental multi-modal data, leading to delayed
health risk predictions. Regarding the response
mechanism, existing systems lack hierarchical
transmission strategies based on event urgency, resulting
in excessive delays in critical tasks under high-
concurrency scenarios. In terms of resource allocation,
there is a mismatch between the supply of nursing
resources and the personalized needs of the elderly, and
service scheduling lacks support from multi-objective
optimization.

A multi-mode data collection network integrating
physiological monitoring, behavior tracking, and
environmental perception is established to address the
above issues, improving the sensitivity of abnormal sign
recognition. The LZW compression algorithm and
dynamic priority scheduling mechanism are optimized to
reduce the transmission delay of critical data. A
blockchain driven multi-agent collaboration framework
and service orchestration strategy are used to optimize
nursing resources.

The study employs three types of validation methods
to assess target achievement. In the algorithm
performance comparison experiment, on the standard
dataset (MIT-BIH arrhythmia database), ILZW is
compared with traditional LZW and ISRLE algorithms,
with an expected compression rate of <15%. In high
packet loss and mixed jitter scenarios, the expected data
recovery rate is >85%. In network performance stress
tests, Mininet-WiFi simulates NB-loT bandwidth
limitations, with an expected end-to-end latency for
emergency events of <800ms. In a multi-device
concurrent (20 terminals) scenario, the expected critical
task failure rate is <1.0%. In the health management
control experiment, a single-group pre-post design (N=30)
is used, with an expected monthly reduction in bedsores
incidence of >70%. From the nursing time statistics and
consumable records, the expected monthly reduction in
nursing costs is >50%.

The innovation of the research lies in designing a
hierarchical architecture intelligent elderly care ecosystem
based on loT technology. By integrating physiological
monitoring, behavior tracking, and environmental
perception into a multi-modal sensor network, and
combining the Improved Lempel-Ziv-Welch (ILZW)
algorithm and intelligent hierarchical transmission
mechanism, efficient data processing and transmission
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have been achieved. A multi-objective optimization
strategy is adopted to balance energy consumption and
load, ensuring the stability and efficiency of the system.
The contribution of the research lies in providing a
systematic solution to the resource allocation problem in
home-based elderly care, and providing reference for the
technological iteration and social service collaboration in
the field of smart elderly care.

2 Related works

Intelligent elderly care utilizes advanced information
technology and loT technology to improve the quality of
life of elderly people, help them live more independently,
and provide better support for caregivers and family
members. He et al. proposed an intelligent elderly care
space design based on the Kano model to improve the
quality of home-based elderly care. The results indicated
that this design made the method more approachable and
shortened the psychological distance between the elderly
and the intelligent elderly care space [4]. Yin et al.
developed a new intelligent elderly care service model to
address the worsening population aging. The results
indicated that the intelligent elderly care service model
could reduce the burden of family elderly care, which was
an effective way to actively respond to population aging
[5]. Yang et al. designed an intelligent nursing bed based
on a low-cost resource constrained micro-controller to
cope with the nursing pressure brought about by the
increasing global aging population. The results showed
that the gesture recognition accuracy of the device was
96.65% [6]. Ghosh analyzed the current application status
of Al technology in the field of addressing malnutrition in
the elderly. Deploying nutrient intake monitoring systems
based on Al still posed challenges due to regional
differences in dietary habits and personalized hospital
menus [7]. Mohan et al. reviewed the application of Al,
the 10T, and sensor technology in the prevention of falls
among the elderly. The results indicated that Al and 10T
technology were the best solutions for preventing falls in
the elderly [8].

With the development of cloud computing, big data,
and Al technologies, the application scenarios of the 10T
are constantly expanding. Li et al. discussed the current
application status and development prospects of loT
technology in the field of mental health services. The
results indicated that 10T technology could improve the
quality of life of patients with mental disorders, but it also
faced challenges on patient privacy and security [9]. Ni et
al. proposed an intelligent monitoring system based on the
Medical 10T to improve the medical monitoring efficiency
of elderly patients and patients with chronic diseases.
Real-time data such as location, weight of infusion urine
bags and heart rate were collected through low-cost
sensors and transmitted to the cloud server via wireless
network. Medical staff could check the patient's status
with the help of mobile applications, reducing human
resource consumption and improving the flexibility of
diagnosis and treatment [10]. Sanchezlborra et al.
proposed a hierarchical integration TinyML solution to
achieve intelligent perception in the distributed IoT.
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Heterogeneous terminal decision-making was integrated
through a two-layer edge computing architecture and
applied to intelligent agriculture scenarios. This method
reduced the frequency of wireless transmission while
lowering energy consumption and response delay, and
enhanced data privacy protection, providing an efficient
solution for edge intelligence in resource-constrained
environments [11]. Almasoudi et al. evaluated loT
information security in the health care for people with
disabilities from strategy, technology, organization,
personnel, and environment to identify assets, threats, and
protective measures, combining the confidentiality,
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performance. Case studies showed that this method could
be flexibly updated, revealing the correlations between
various elements and providing an extensible evaluation
framework for medical 10T security research [12]. Wang
et al. proposed a solution based on the loT and edge
computing technology to improve the information
processing efficiency of the expressway intelligent
transportation system. The results indicated that this
approach outperformed traditional intelligent
transportation systems in monitoring response speed,
congestion rate, and accident rate prediction [13]. The
comparison of relevant studies is shown in Table 1.

integrity, and availability assessment and safety
Table 1: Comparison analysis of relevant studies
Author (Year)  Method/Technology DatasetlApp! ication Accuracy/Performance Latency Energy' Limitations
Scenario Consumption
He et al Kano model-based Simulation Psychological distance Not N \r/:ellll(-juageorn of
(2023) [4] smart elderly care environment (no reduced by 38% mentioned Not mentioned scenario
space design specific dataset) .
adaptability
Yinetal. elﬁgxelégﬁslégi?ée Community pilot Family burden Not Not mentioned Lacrléssggrrlaemlc
(2023) [5] Y (N=200) reduced by 52% mentioned -
model scheduling
Low-cost Lacks real-time
Yang etal. microcontroller- Lab gesture dataset Gesture recognition <200 ms 08W health
(2024) [6] based smart nursing (N=50) accuracy 96.65% = ' .
bed monitoring
. R Limited
Ghosh (2024) Al-based nutrition Multi-regional Personalized menu Not . generalization
monitoring system hospital menu data . . Not mentioned -
[7] . _ matching rate 68% mentioned due to dietary
review (N=300) ]
habits
Mohan et al. AloT-enabled fall Public fall dataset Average recall rate Not Not mentioned Lacl;?ig)r/irgjmlc
- h o -
(2024) [8] prevention review (URFD) 89.7% mentioned scheduling
Lietal. loT-based mental Mental disorder Quality of life Not High device W;;li’f(;'i\(l]?]cy
- - _ . 0 -
(2024) [9] health services patients (N=120) improved by 23% mentioned dependency mechanisms
Limited to
Ni et al. Medical loT smart Hospital infusion Infusion anomaly 120 ms 21 W zlc')?[:;; Sfatltjllggtz
(2023) [10] monitoring system monitoring (N=80) detection rate 94% ' hoFr)ne
environments
i i Untested in
Sanchezlborra T?;er:ﬂrﬁhégale Smart agriculture Energy consumption <500 ms 05 W complex home
(2023) [11] . ny g€ dataset (N=1500) reduced by 40% = ’ network jitter
intelligence solution ;
scenarios
Almasoudi segl'ﬁ?tlth;s?sfsls(r)l;l;snt Disabled care case Security compliance Not Not mentioned Unquantified
(2023) [12] Y studies (N=45) score 92% mentioned data misuse risks
framework
Not optimized
Wang and Edge computing- Highway Response latenc for resource-
Shang (2024) based traffic monitoring data (10 P 4 85ms 123 W constrained
L reduced by 45%
[13] monitoring km) home elderly
care scenarios
Proposed ) Chronic disease Daytime/Nighttime Needs.enhanced
Multimodal loT Real home - energy privacy
Approach - -30 prediction accuracy 235 ms . :
(2025) ecosystem scenarios (N=30) 81.5% consumption protection
' 130.8%/27.5% techniques

In summary, most existing studies (such as smart
nursing beds and fall prevention systems) focus on
optimizing a single function, lacking dynamic hierarchical
response mechanisms for emergencies (such as abnormal
heart rates and falls). This results in significant delays in
critical tasks during high-concurrency scenarios, making
it difficult to meet the real-time requirements of home
environments. Moreover, current technologies (such as
edge computing for traffic monitoring and agricultural 10T

solutions) are often designed for industrial or urban
settings, which do not suit the frequent network jitter and
strong device heterogeneity of home environments,
making it challenging to balance energy consumption and
stability. The research on msental health monitoring and
nutritional management relies heavily on manually
annotated data, lacking a closed-loop feedback
mechanism that can dynamically capture real-time
changes in disabled elderly individuals. These limitations
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make it difficult for existing technologies to achieve an
ecological closed-loop  management  system  of
"monitoring-warning-intervention." To address the
insufficient dynamic response capability in existing
technologies, this study combines Random Forest (RF)
classification with Long-Term Short-Term Memory
(LSTM) networks for contextual reasoning, enabling
preemptive transmission of urgent tasks and reducing key
data transmission latency in bandwidth-constrained
scenarios. Additionally, to tackle the challenge of network
heterogeneity in home environments, a multi-objective
optimization load balancing strategy is designed, using
Particle Swarm Optimization (PSO) to dynamically
coordinate service quality, energy consumption, and load
balancing, thereby reducing equipment energy
consumption over time. A blockchain-driven ecological
closed-loop architecture is constructed, incentivizing
collaboration ~ among hospitals, pharmaceutical
companies, and other stakeholders through quantified data
contribution, and forming a "risk-sharing-data-sharing-
benefit-repayment™ model.
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3 Methods and materials

3.1 Architecture design of intelligent
elderly care system based on 10T

When building an loT-based home care ecosystem
for disabled elderly, the research first focuses on the
design and technical implementation of the system
architecture to ensure efficient operation and meet the
diverse needs. The research adopts a modular and layered
design approach, dividing the system into three main
modules: data acquisition layer, data transmission layer,
and intelligent service layer. Through loT technology, the
collaborative work among these modules is achieved,
providing real-time and reliable home-based elderly care
support for the elderly [14]. The architecture of the home
intelligent elderly care 10T system for disabled elderly is
shown in Figure 1.
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Figure 1: Architecture of intelligent home care 10T system for disabled elderly

In Figure 1, the data acquisition layer focuses on the
deployment and optimization of sensor networks. By
configuring multiple intelligent sensors, various physical
data in the environment of disabled elderly people can be
collected. Intelligent sensors include physiological
parameter monitoring devices, such as wearable heart rate
and blood oxygen monitors. Environmental sensing
devices include smoke and gas leak sensors, behavior
tracking devices such as infrared motion sensors and
pressure pads [15]. In the data acquisition layer,
physiological monitoring employs Photoplethysmography
technology due to its non-invasive and low-power
characteristics, ensuring long-term wear comfort.
Environmental sensing uses a combination of
electrochemical sensors and Micro-Electro-Mechanical
Systems, reducing bandwidth usage and supporting local

calibration. Behavioral tracking utilizes ultra-wideband
technology, leveraging its high-precision positioning at
the 10 cm level and strong penetration capabilities to adapt
to complex home environments. To improve the
pertinence of data collection and reduce resource waste, a
data collection strategy based on spatial partitioning is
designed, which divides the home environment into sub
areas with clear functions. This strategy optimizes sensor
deployment based on the characteristics and needs of
activity areas such as bedrooms, living rooms, kitchens,
bathrooms, and corridors. The activity trajectory and
lifestyle habits are analyzed to identify regional functions.
Floor plan and ultra wideband indoor positioning
technology are used to divide boundaries and evaluate
priority based on the needs of the elderly [16]. Through
continuous 30-day behavioral monitoring of 12 disabled
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elderly individuals, their daily activity range is mainly
concentrated within a 0.5-1.5 m space. A grid that is too
small can lead to high sensor density, while a grid that is
too large can reduce the accuracy of fall detection. The
study compares different grid densities through pre-
experiments. When the grid size is reduced to 0.5 mx0.5
m, the positioning accuracy is improved to 0.12 m, but the
number of devices increased by 120%, and the average
daily energy consumption is 68%. When the grid expands
to 2 mx2 m, the number of devices decreases by 55%, but
the missed critical event rate increases to 15%. A 1 mx1
m grid achieves the optimal balance between positioning
accuracy and sensor deployment cost. Therefore, the
sensors are arranged in a 1 mx1 m grid pattern. Sensor
positions are determined based on activity frequency and
demand weights. During the day, elderly people are more
active, moving an average of 12 times per hour, while at
night, their activity frequency drops to 1.5 times per hour.
Through simulation experiments comparing data integrity
and energy consumption under different sampling
frequencies, 1 Hz daytime sampling can cover 95% of
critical events (such as abnormal heart rates), while
nighttime sampling once per minute only misses 2% of
low-risk events. Additionally, maintaining 1 Hz sampling
at night increases the device's daily energy consumption
by 81%, but the detection rate of critical events improves
by only 0.8%. If the daytime sampling frequency is
reduced to 0.5 Hz, the error rate in reconstructing activity
trajectories rises from 7.2% to 19.5%. Therefore, the
device performs high-frequency sampling at 1 time/s
during the day and low-frequency sampling at 1 time/min
at night to reduce redundancy in data collection and
energy consumption of the device.

To ensure the fast and secure transmission of multi-
source data, this study constructs a data transmission layer
through a hybrid network architecture, utilizing various
network communication methods such as narrowband loT
and wireless LAN to adapt to communication needs in
different scenarios. The maximum data throughput
supported by the system is 10 Mbps, and each edge node
can access 30 terminal devices simultaneously. 20% of the
reserved bandwidth is reserved for dynamic load
balancing to cope with peak traffic. At the protocol level,
NB-10T is based on the 3 GPP Release 13 standard,
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supporting a single-link transmission rate of 62.5 kbps for
uplink and 26.15 kbps for the downlink. WLAN uses the
IEEE 802.11 n protocol, with a theoretical bandwidth of
150 Mbps and an actual coverage radius of 50 m (indoor).
The NB-10T base station supports up to 50,000 device
connections per cell (in compliance with 3 GPP TS 36.211
specifications), while the LoRa gateway operates at a
bandwidth of 125 kHz, with the transmission rate ranging
from 0.3 kbps to 50 kbps (LoRaWAN TS001-1.0.4),
covering a radius of 1.5 km (urban environment). The
system coordinates multiple protocols through an adaptive
channel allocation mechanism (TDMA + CSMA/CA) to
ensure the success rate of critical data transmission.

The intelligent service layer aims to adapt to the
aging as its core goal, reducing operational complexity
through multi-modal hardware interaction design,
ensuring that disabled elderly people can intuitively and
conveniently use system functions, while providing
various services such as health alerts, safety warnings,
appointment arrangements, health status reports, and
medical consultations. In the intelligent service layer, edge
computing nodes handle real-time tasks locally, reducing
cloud transmission pressure. The cloud platform uses
AWS 10T Core, leveraging its encryption and device
shadow functions to ensure data security and offline
caching. Human-computer interaction employs an offline
voice engine and thin-film piezoresistive sensors to
balance internet availability with durability for frequent
use.

In the process of data transmission, data compression
technology is introduced to optimize bandwidth
utilization. Small fluctuations in physiological parameters
can indicate early symptoms of atrial fibrillation or
precursors to respiratory failure. Using lossy compression
may lead to distortion of characteristic waveforms, posing
a risk of false-negative diagnoses. Additionally, according
to I1SO 27799: 2016 Health Information Security
Management Standard Clause 8.3, raw physiological data
must be maintained at the bit level for audit trail purposes.
Lossy compression results in irreversible data loss.
Regarding the physiological data of disabled elderly
individuals, the 1ZWL algorithm is used for lossless
compression [17]. The algorithm flow is shown in Figure
2.
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Figure 2: Improved LZW flow

As shown in Figure 2, in the ILZW algorithm, the
data collected by the sensors is first preprocessed for
differences, and the data repetition rate is improved by
calculating the differences between adjacent data. Then, a
dictionary with appropriate size is selected and the hash
storage is taken instead of traditional sequential storage to
improve search efficiency and compression speed. During
the compression process, the dictionary is updated when a
decrease in compression rate is detected, while commonly
used single characters are saved and infrequently used
dictionary entries are released to increase space
utilization. In addition, the dictionary is not updated
immediately after it is filled, but is adjusted according to
the data duplication situation, and only updated when the
compression rate increases.

Regarding the dictionary update frequency, this study
introduces an adaptive triggering mechanism based on
data repetition rate changes in the ILZW algorithm. When
the data repetition rate decreases by more than 5% over
ten consecutive compression processes, the system
automatically triggers a dictionary update operation and
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uses a Markov prediction model to prioritize the
elimination of dictionary entries that have not been
referenced for nearly 30 minutes. When device resources
are limited, the dictionary storage space is changed from a
static array in traditional LZW to a linked hash table using
a hash index structure. The least recently used (Least
Recently Used, LRU) algorithm is employed to cache the
access sequence of dictionary entries, thereby reducing
memory fragmentation.  Additionally, the study
implements variable-length encoding for character
compression, optimizing the byte count of a single
dictionary entry from a fixed 3 bytes to a dynamic 1-4
bytes encoding, further reducing resource consumption.

To optimize bandwidth utilization, a priority
scheduling mechanism is utilized to prioritize the key data
transmission with high real-time requirements, such as
abnormal heart rate alarm data, while compressing non-
emergency data such as environmental monitoring and
sending them in batches. The architecture and workflow
of the priority scheduling mechanism are shown in Figure
3.
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Figure 3: Architecture and workflow of priority scheduling mechanism

In Figure 3, the priority scheduling mechanism
designed in the research works together through three core
modules: dynamic data classification, multi-level queue
management, and real-time contextual inference, to
achieve intelligent hierarchical guarantee of data
transmission. In dynamic data classification, feature
extraction is performed on the raw sensor data stream,
including physiological characteristics, behavioral
characteristics, and living environment characteristics of
disabled elderly people. The RF method is used to train
datasets and annotate historical events such as falls and
heart rate abnormalities. The acceleration variance,
continuous heart rate anomaly, and residential
environment temperature mutation rate of wearable
devices are assigned different importance weights, and
classification labels are output according to high, medium,
and low priority. In multi-level transmission queue
management, emergency situations such as fall alarms and
cardiac arrest are set as high priority. Sleep apnea and
high-temperature warning are set to medium priority.

Temperature, humidity, lighting data, etc. are set as low
priority. When a high priority event is identified, the
current transmission task is immediately suspended,
independent transmission paths are divided, and
preemptive transmission is performed. The network
utilization is calculated in real-time. When the bandwidth
usage exceeds 80% and lasts for 5 seconds, the low
priority queue is paused.

The RF training dataset is used to annotate historical
events such as falls and abnormal heart rate. RF suppresses
sensor data noise through multi-tree integration and voting
mechanisms, adapting to the heterogeneity of
physiological, behavioral, and environmental
characteristics. Compared with XGBoost and CNN, RF is
faster in inference speed for edge devices, meeting the
real-time response requirement of fall detection within 50
ms. Additionally, RF supports variable-length time series
data input, eliminating the need for fixed-window
preprocessing required by CNN, making it suitable for
deployment on low-power microcontrollers. The dataset
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includes 12,850 groups of annotated event data, covering
six categories of priority events (falls, abnormal heart rate,
etc.). Among them, 7,320 groups come from the clinical
monitoring records of the geriatrics department at a
hospital from 2021 to 2023. 3,610 groups are collected in
real-time through sensor networks deployed in 15
households with disabled elderly individuals. The
remaining 1,920 groups are from public datasets (the MIT-
BIH Arrhythmia Database and the UR Fall Detection
Dataset). The historical event data with annotations is
divided into training, validation, and independent test sets
in a ratio of 7:2:1, maintaining consistent sample
proportions across categories. The training is conducted
using Python's Scikit-learn library. During the training
phase, the RF classifier model undergoes stratified 10-fold
cross-validation to optimize model hyperparameters. In
each fold of validation, the average accuracy of the model
is calculated. The final model achieves an accuracy of
92.4% (£1.2%) on the independent test set.

To further evaluate the performance of the RF
classifier, the study quantifies the model through feature
importance score and confusion matrix. The study
calculates the feature importance score based on the
reduction of Gini impurity, and screens out the top 5
features with the highest contribution to classification, as
shown in Table 2.

Table 2: Characteristic contribution

Feature category
Acceleration variance of

Weighted score

. 0.32
wearable devices
The number of consecutive
0.28
abnormal heart rates
The temperature fluctuation
L ) 0.19
rate of the living environment
Standard deviation of 0.12
nighttime activity duration '
Gradient of light intensity 0.09

variation

From Table 2, the contribution of acceleration
variance to fall event detection is the highest, accounting
for 32%, which verifies its core role in emergency event
classification. In the confusion matrix verification,
multiple classification confusion matrices are generated
on the independent test set, and key indicators are shown
in Table 3.

Table 3: Key indicator confusion matrix

Fall Heart
(High rate Sleep  Environm  Nor
True\Pred _g anom  apnea ental mal
icted Priori aly (Medi anomaly  (Low
(High  um) (Low) )
ty) )

Fall 284 5 2 1 0
Heart rate 8 189 3 0 0
anomaly

Sleep 3 2 145 4 1
apnea

Informatica 49 (2025) 215-234 221

Environm
ental 0 1 6 92 2
Anomaly
Normal 1 0 2 5 381

In Table 3, the model performs excellently in
classifying five types of events. For high-priority events,
the recall rate for fall detection is 98.3%, with an accuracy
of 96.2%. The recall rate for abnormal heart rate is 94.5%,
indicating that the model can accurately identify
emergencies. For medium-priority events, the recall rate
for apnea is 93.5%, with misjudgments mainly due to
similar characteristics to high-priority events. For low-
priority events, the recall rate for environmental
abnormalities is 89.3%, with a normal state accuracy rate
of 98.9% and a false positive rate of <2.8%. The overall
classification accuracy is 91.7%, with a Macro-F1 value
of 0.902, verifying the model's balanced performance
across multiple categories. For task segmentation within
the same priority category, a sub-priority dynamic
evaluation model is designed to achieve refined
scheduling through event wurgency quantification
indicators. Taking high-priority tasks as an example, the
system extracts three core features: Response Time
Threshold (RTT), Anomaly Gradient Physiological
parameter (APG), and Historical Impact Factor (HIF), to
construct an evaluation system. In RTT, the gold standard
response time for cardiac arrest events is defined as <4
minutes (RTT=1), and the effective intervention time for
fall alarms is defined as <10 minutes (RTT=2). Absolute
time windows are allocated to different events using
hardware timers. For APG, the rate of change in real-time
heart rate relative to baseline values (AHR/minute) is
calculated when heart rate is abnormal. When AHR> 50
bpm, it is marked as APG=1 (extremely critical). When 20
bpm <AHR < 50 bpm, it is marked as APG=2 (high-risk).
For HIF, based on the handling results of similar events
over the past 30 days, if a timely response leads to
complications, HIF=1. If a successful intervention is
made, HIF=2. By integrating these features using a fuzzy
logic controller, a sub-priority coefficient in the 0-1 range
is output, with smaller values indicating higher priority.

In real-time situational reasoning, the long short-term
memory network is used to learn the daily activity patterns
of the elderly, and a relevant rule library is established. By
predicting the behavior status for the next hour in real
time, the transmission strategy of relevant data is
preloaded. LSTM employs a two-layer stacked
architecture. Based on the 24-hour activity trajectory data
collected from ultra-wideband positioning systems, an
input sequence with a time step of 60 is constructed using
a sliding window mechanism (each time step corresponds
to a 24-minute behavior segment). The network structure
includes two 64-unit LSTM layers, which use layer
normalization to enhance temporal feature extraction
capabilities. The output layer predicts the behavior state
for the next hour through a Sigmoid function. The training
data comes from a behavioral trajectory dataset of 300
disabled elderly people for 6 consecutive months (with a
total sample size of 2.16 million). The loss function L
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adopts the improved weighted binary cross entropy loss,
as shown in equation (1).

L _%%[z—yi log(9,)+(@—y;) log@— §,)]+ A[W], (1)

In equation (1), N represents the total number of
samples in the training batch, used to average the loss for
each sample. Y, is the true label of the i-th sample. ¥,
indicates the prediction probability of the model for the i
-th sample. 7 is the positive class weight, used to amplify
the loss contribution of rare anomalies, alleviating the
class imbalance, and 7=25. A is the regularization
coefficient, controlling the strength of the L2

regularization term to prevent over-fitting. W/, is the L2

norm of the weight matrix, used to constrain model
complexity. The model is deployed on NVIDIA Jetson
Nano edge devices.

The collaborative mechanism between the rule base
and situational reasoning learning achieves dynamic
adjustment through a three-stage closed loop. First, the
rule weights are dynamically updated based on LSTM
learning from a 12-month historical event database to
generate a priority weight evolution matrix. When the
real-time inference result deviates from the pre-set value
in the rule base by more than 15%, Bayesian optimization
is triggered to adjust the priority threshold. Situational
reasoning takes a reinforcement learning framework to

J. Xiao

update the convolution kernel parameters of the situational
feature extractor every 24 hours, enhancing the ability to
capture spatiotemporal features of complex behavioral
patterns. The resource allocation strategy optimizes the
bandwidth distribution ratio of the transmission queue
according to the network utilization real-time heat map.
When the number of concurrent medical devices exceeds
5, the TCP window size of the low-priority queue is
automatically reduced from 64 KB to 16 KB, combined
with an adaptive bandwidth compression algorithm to
reduce transmission latency for emergency events.

3.2 Construction of an intelligent home
care ecosystem for disabled elderly

In the process of building an intelligent elderly care
ecosystem based on the 10T, it is crucial to adapt to the
personalized needs of disabled elderly people and
optimize system performance. The research method starts
from two aspects: requirement identification and system
adjustment, combined with design strategies and relevant
technical means, to ensure that the system can flexibly
respond to the specific situations, while maintaining long-
term stable operation of the system. In terms of
personalized demand adaptation, a data-driven framework
for demand mapping and service customization is
proposed, as shown in Figure 4.
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Figure 4: A data-driven framework for requirement mapping and service customization

From Figure 4, the framework first deploys multi-
modal sensors to collect real-time physiological
indicators, behavioral trajectories, and environmental
data. The Dempster-Shafer evidence theory is used to fuse
multi-source data, eliminate noise, and construct a unified
temporal database [18]. By utilizing feature engineering to
extract key indicators and combining online principal
component analysis to dynamically update personalized
state portraits, a multi-dimensional feature space covering
physiology, behavior, and psychology is formed. The
study employs a sliding window mechanism and an
incremental learning strategy to achieve real-time
personalized state mapping. Data windows are rolled
every 5 minutes, with a capacity of 1,440 time-series data
points. By extracting statistical features of physiological

indicators, behavioral trajectories, and environmental
parameters within the window, a user dynamic profile is
constructed. To address data drift issues, online principal
component analysis is used for dimensionality reduction
and feature space updates. The study dynamically adjusts
model parameters using the rank-1 correction formula of
the covariance matrix, as shown in equation (2).

Cnew = 5Cold + (l_ 5) \% é(xi - /,l)(Xi - /u)T (2)

In equation (2), C., and C,, represent the
covariance matrices before and after updates, respectively.
o is the forgetting factor and & =0.8, used to reduce the
weight of historical covariance matrices and control the
model's adaptability to data drift. V is the sliding window
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sizeand V =1440. X; is the original observation value of

the i -th data sample within the window. # is the mean
vector of all data within the window, used for centering
processing. The time complexity for a single update is
O(d) (where d is the feature dimension and d=15), which
is much lower than the O(d®) required for batch principal
component analysis, making it suitable for real-time data
stream processing.

The behavioral trajectory data collected by the sensor
is first modeled using LSTM for temporal feature
extraction, identifying behavior patterns related to
psychological states. In the feature engineering phase, a
behavioral feature vector is constructed, including
behavioral entropy values, social activity levels, and
environmental interaction frequencies. This vector is
annotated and trained using the Simplified Geriatric
Depression Scale (GDS-15) and the UCLA Loneliness
Scale from psychometrics, forming a mapping model from
behavioral data to psychological states. The output of the
model is then fused through Dempster-Shafer evidence
theory, ultimately forming a comprehensive state profile
in multidimensional feature space that encompasses
"physiological-behavior-psychological” aspects.

Based on a fuzzy logic inference engine, continuous
data is transformed into fuzzy sets. Meanwhile, it matches
the rule base constructed with expert experience to output
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demand categories and priority ratings. Specifically, the
study normalizes three types of indicators: Physiological
Abnormality Index (PAI), Behavioral Deviation (BD),
and Environmental Risk Score (ERS), to the [0, 1] interval
and processes them through triangular membership
functions for fuzzification. For example, the high-risk

membership function 77,4, (X) for PAI is shown in
equation (3).

0 x<0.7
(0 =12227 07 <x <09 @3)
1 x> 0.9

In equation (3), X is the input value of PAI, which is
quantitatively calculated from physiological indicators
such as heart rate variability and blood oxygen saturation
to assess the health risk level of disabled elderly
individuals. The membership functions for BD and ERS
are designed according to the fuzzy logic inference engine.
The implementation method is consistent with that of PAI
membership function. Mamdani fuzzy inference is used,
and the center of gravity method is applied to resolve
fuzziness, outputting a priority score ranging from 0 to
100. High priority > 80, medium priority 50-79, and low
priority <50. Some of the core rules in the rule base are
shown in Table 4.

Table 4: Some of the core rules in the rule base

Rule Conditions (Input I . . . .
D Variables) Priority Level Weight Example Scenarios Conflict Resolution
PAI>0.9 (High-Risk) Heart rate surge (0.92) tra;:rieig):ir:)%en;th
R1 and BD>0.7 (High Emergency 1.0 +Prolonged immobility 1 path,
o preemptive
Deviation) (0.85)
response
ERS>0.8 (High- . Priority stacking of
R2 Risk) and PAI >0.7 Emergency 0.9 +Re5xi(r:§'fglrvea(r?c?m(a(1)ll8?()) 78) service
(Medium-Risk) P y y® combinations
0.7<PAI<0.9 Dynamic load
R3 (Medium-Risk) and Hiah 0.7 Sleep apnea (0.75) +High- )t/JaIancin
0.5<ERS<0.8 g ' temperature alert (0.65) aIIocatio%
(Medium-Risk)
BD<0.3 (Low - Delayed processing
R4 Deviation) and Low 0.2 Normal activity (0.15) or batch

ERS<0.4 (Low-Risk)

+Stable environment (0.25) transmission

In Table 4, the rule base covers the dynamic mapping
relationship between input conditions and output priority.
For example, when PAI > 0.9 and BD > 0.7, the system
determines it as an emergency event (weight 1.0) and
directly triggers a preemptive response for fall alarm
services. The library contains a total of 52 expert
experience rules, which achieve service orchestration
through weighted summation and dynamic conflict
resolution mechanisms. The service orchestration layer
adopts a micro-service architecture and deploys functional
modules such as fall detection and voice broadcasting in
Kubernetes containers to optimize resource scheduling
strategies [19]. Service orchestration divides the system
into independent service modules, each communicating

through RESTful API. The average code length per
service is less than 500 lines, and the deployment image
size is less than 100 MB. Kubernetes automatically adjusts
the number of replicas based on load. For example, the fall
detection service reduces to one replica when concurrent
traffic drops at night and expands to three replicas during
the day, thereby improving resource utilization. Through
Kubernetes containerized deployment, the system can
dynamically allocate computing resources based on real-
time needs, while achieving independent updates and
version management of service modules. The fault
isolation mechanism ensures that a single-point service
failure does not affect other functions. Combined with the
mixed integer programming model to optimize service
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combinations, it meets the diverse needs of elderly
individuals living at home, ensuring low latency and high
efficiency.

The constraint of the mixed integer programming
model is used to realize the service combination with low
latency and high energy efficiency. The model is shown in
equation (4).

S T
min'c,-n +>d, -1, %)
s=1 t=1

In equation (4), n, represents the number of
deployment replicas for service s, and se{l2,...,S}.
C, is the unit operating cost of service S, determined by

service complexity and resource consumption. d, is the
delay sensitivity coefficient of task t, reflecting the task's
tolerance to delay. The coefficient for emergency alarm

@
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tasks is 10. For every 1ms increase in delay, the cost
increases by 10 units. |, is the end-to-end delay of task t

,and tefl2,....,T}. Under the constraints of mixed
integer programming models, low latency and high-
efficiency service composition can be achieved. The
closed-loop feedback mechanism analyzes service
performance through gradient boosting tree analysis, such
as response speed, elderly satisfaction, etc., and corrects
inference rules and weight parameters in reverse to
continuously improve system adaptability. In terms of
system optimization, a multi-objective optimization based
load balancing strategy is proposed to address the
diversity and potential instability of 10T equipment in
home environments. The framework of this strategy is
shown in Figure 5.

® Maximization of service quality
@ Energy minimization
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Strategic core
objective

<>

Key technical
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Figure 5: Load balancing policy framework based on multi-objective optimization

As shown in Figure 5, this strategy aims to minimize
energy consumption, and balance load. By monitoring the
network in real-time, it continuously collects key
indicators such as computing load, communication delay,
and remaining power of loT equipment. Future task
requirements are predicted based on historical data. The
objective function of energy consumption minimization
and load balancing is shown in equation (5).

minE =Y (P, T))
j

o ()
minL = /HZ(CJ’_C)Z

In equation (5), E and L are the total energy
consumption of the system and the load balancing index,

respectively. N is the total number of edge nodes. P; and
T, are the average power and active time of node j,
respectively. C; and C are the real-time load and its

average value of node, respectively. The constraints are
shown in equation (6).
{E 2 E

(6)
C<C,

In equation (6), E,;, is the threshold of remaining
power of the device, and E,,=20% . C, is the

threshold of node load, and C;, =80% . Simultaneously,

the task is divided into three categories: urgent, routine,
and backend, and the priority scheduling rule is
established for each task. Urgent tasks are prioritized for
allocation to low delay nodes, while routine tasks are
dynamically allocated based on load balancing principles,
and backend tasks are delayed or handed over to the cloud.
The PSO algorithm is used to simulate the intelligent
search process of biological populations, iteratively
evaluating the comprehensive performance of different
resource allocation schemes in dimensions such as service
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quality, energy consumption, and load balancing, and
gradually approaching the optimal solution [20]. In the
PSO algorithm, each particle represents the task allocation
scheme, and the dimension is the number of edge nodes.

The position X; € (0,1) of the particle indicates whether

the task is assigned to the node. The fitness function is
shown in equation (7).

U]

In equation (7), A and 7 are fixed weights
(experimentally verified to achieve optimal energy
consumption and load balancing), and #=0.6/y=04.
E, is the initial total energy consumption. The algorithm
takes 20 particles, with a maximum of 100 iterations, and
an acceleration constant ¢ =c, =20 Parameter

selection is based on the sensitivity analysis results from
reference [20], aiming to balance convergence speed and
global search capability. Within 50 iterations, the
objective function value stabilizes, with a standard

Fitness = ,8~(EE)+;/« L

0

Informatica 49 (2025) 215-234 225

deviation less than 5%, indicating that the convergence
meets real-time scheduling requirements. The time
complexity of the PSO algorithm is O(N T D), where D=2
(dimension of the objective function). The average time
for a single optimization at an edge node is 12.3ms (edge
node computation), meeting real-time requirements. The
system triggers the PSO algorithm by monitoring network
utilization in real-time. First, it suspends low-priority
queues to release bandwidth resources. By dynamically
adjusting the particle swarm parameters, the inertia weight
is temporarily increased to 0.7 to accelerate the search.

The algorithm introduces a dynamic weight
mechanism, which automatically increases the energy-
saving weight when the device has low power, and focuses
on optimizing response speed during peak service periods,
achieving flexible trade-offs between multiple objectives.
At the critical technical level, edge nodes handle real-time
tasks and cache data, globally optimize resource
parameters in the cloud, and combine backup path
switching to ensure service continuity in fault scenarios.
The home intelligent elderly care ecosystem for disabled
elderly is shown in Figure 6.
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Figure 6: Ecosystem of smart home care for the disabled elderly

In Figure 6, the intelligent elderly care ecosystem is
a collaborative network that integrates technology,
services, and environmental elements with disabled
elderly people as the core, and achieves sustainable
operation through dynamic resource allocation and value
exchange. The system population consists of a core
population, a support population, and a service population.
The core population includes the elderly and family
caregivers, who generate driving data through wearable
equipment and interactive behaviors. Family caregivers
report abnormal behaviors of elderly individuals through
mobile applications. The system triggers priority
scheduling after verifying with sensor data. Health reports
generated by the system are annotated, and feedback data
is used to optimize feature weights in the fall detection
algorithm through a gradient enhanced tree model,
improving prediction accuracy. When family caregivers

submit medication adherence reports, the system
synchronously updates the R&D database of
pharmaceutical companies and the risk assessment model
of insurance companies, forming a collaborative value
stream of "family-enterprise-insurance."”

The support population is composed of IloT
hardware, edge computing nodes, and network technology
to achieve multi-modal data collection. The service
population connects hospitals, communities,
supermarkets, and other institutions, and maps demand to
cross domain services based on reinforcement learning.
The community service center receives health monitoring
data from the system in real-time through block links. This
includes abnormal physiological indicators of elderly
individuals,  high-risk  behavioral  events, and
environmental alerts. It also coordinates medical resources
and public services within the community. For example,
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when the system predicts that an elderly person has a fall
risk exceeding the threshold over the next 2 hours, the
community service center will dispatch the nearest
community nurse with a portable monitor to intervene.
Environmental factors ensure that the system
complies with social ethics through policy interfaces and
cultural adaptation modules. This ecosystem supports the
ecological cycle through information flow and value flow.
Information flow relies on online learning to achieve cross
institutional knowledge sharing, while blockchain records
data contribution for incentive distribution. Information
flow includes real-time vital signs stream, behavioral
pattern analysis stream, and environmental control
command stream. The real-time vital signs stream
transmits data such as heart rate and blood oxygen
collected by wearable devices, with an end-to-end average
delay of 83 ms, meeting the requirement for emergency
response within 100 ms. The behavioral pattern analysis
stream transmits behavioral trajectory segments generated
by ultra-wideband positioning systems, with a peak delay
of 1.2 sand a daily update cycle of 15 minutes per session.
The environmental control command stream issues
temperature control commands in JSON format, with an
average delay of 210 ms and a feedback delay of 380 ms.
The study aims to achieve sustainable motivation for
multi-party collaboration through designed incentive
mechanisms. The system records the data contribution
values of all participants through blockchain, with
quantifiable metrics including the volume of sensor data
uploaded, service response frequency, and collaboration
node efficiency. The government dynamically allocates
subsidies based on contribution values. For example,
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communities receive an additional 5% of their annual
budget for every 100 care tasks completed.
Pharmaceutical companies pay 0.5% of their R&D
revenue as data usage fees for each 100,000 anonymized
health data entries. Families with data contribution values
exceeding 500 can redeem free health check-ups or drug
discount coupons. Pharmaceutical companies, due to
shortened R&D cycles from the data, must return 12% of
cost savings in the form of "medication points,” where 1
point equals 1 RMB and can be used to offset medication
costs. Hospitals reduce the annual fall rate among insured
users to <5%, and insurance companies pay hospitals 3%
of their annual premiums as a collaboration reward.

An economic closed loop is built through value
streams. In the quantification of insurance industry value,
the system dynamically adjusts premium strategies by
reducing health risk events. Based on the proportion of
risk reduction, insurers offer a 5%-8% premium discount,
with a discount rate of 2% for every 10% decrease in risk
rate. In practice, the cumulative discount rate can reach up
to 8%. Pharmaceutical companies accelerate R&D
through anonymized health trend data, while agreeing to
purchase equipment worth 0.5 million RMB for every
10,000 RMB saved in R&D costs, forming a sustainable
ecosystem model of "risk sharing-data sharing-benefit
feedback."” This ecological architecture breaks through the
linear logic of traditional loT by establishing multi-
directional  feedback and adaptive adjustment
mechanisms, truly integrating technology into the social
collaboration system, improving service accuracy, and
reducing system resource redundancy. The system
deployment hardware is shown in Table 5.

Table 5: System deployment hardware equipment

Device

Device Category Model Quantity Unit Price (RMB) Function Description
HUAWEI Real-time collection of physiological parameters (heart
Watch D 3 units 1,999 rate, blood oxygen, body temperature, etc.), supporting
Physiological Monitoring Bluetooth 5.0 communication.
Sensors Sleepace . Monitors sleep cycles, body movement frequency, and
Rest Smart 1 unit 3,999 . . . A
respiratory rate; transmits data through Wi-Fi.
Mattress
HC-SR501 L . . Lo
Infrared 5 units 25 Detects human activity trajectories, deployed in living
rooms, corridors, and other areas.
Sensor
Environmental and FlexiForce Monitors pressure distribution in sitting/lying positions
Behavioral Sensors A201 3 units 150 P IHINgIyINg p '
placed on seats and bedding surfaces.
Pressure Mat
MQ-7/MQ-2 . Detects CO and smoke concentrations, deployed in
2 units 80 .
Gas Sensors kitchens and bedrooms.
Ultra-
Wideband Achieves centimeter-level positioning accuracy with
Positioning and (uwB) 6 units 300 P g Y
LY L UWSB technology (coverage: 10m).
Communication Positioning
Equipment Tag
Raspberry Pi 1 unit 899 Edge computing node integrating sensor gateway and
4B (8GB) local data processing modules.
Voice Supports voice commands for emergency calls, health
Interactive Devices Interaction 1 unit 1,299 PP S gency '
: inquiries, and other functions.
Terminal
Network Equipment Wi-Fi 6 1 unit 599 Provides 2.4G/5G dual-bapd coverage and supports Mesh
Router networking expansion.
Smart Pill . Monitors medication adherence with integrated RFID tag
Others Box 1 unit 199 recognition.
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The hardware devices in Figure 5 are arranged in a
grid pattern (Imx1m grid) in the home environment. In the
bedroom of the disabled elderly person, pressure pads are
laid along the edge of the bed to monitor the pressure
distribution during sitting and lying positions in real time.
Smart mattresses are deployed under the bed to collect
sleep cycles and respiratory rates. Gas sensors are installed
near the headboard to monitor CO and smoke
concentrations in real time. An infrared sensor is placed at
the entrance of the bathroom to detect human entry and
exit activities, while humidity sensors are installed on the
ceiling to dynamically monitor environmental humidity to
prevent slipping risks. A Ultra-Wideband (UWB)
positioning base station is installed in the corner of the
wall to achieve centimeter-level positioning with the
UWB tags worn by the elderly. Infrared sensors are
deployed in the corridor area to track daily activity
trajectories. Gas sensors are installed near the gas pipes in
the kitchen to provide real-time warnings of gas leaks.
Temperature sensors are installed in the cabinet area to
monitor abnormal high temperatures to prevent fires. The
Raspberry Pi 4B edge computing node is placed in the
center of the living room as the sensor gateway and local
data processing core. The total deployment cost for a
single household is approximately 11,842 RMB.

3.3 Data security and privacy

Regarding user data security issues, the study adopts
a three-tier privacy protection mechanism to ensure data
safety. The SHA-256 algorithm is used at the data
collection end to irreversibly encrypt sensitive
information such as names, ID numbers, and addresses,
retaining only non-identifiable data directly related to
health management (such as age, gender, and medical
history codes). All sensor data, after preprocessing by
edge nodes, is accessible to authorized researchers for the
anonymized dataset, while healthcare institutions must
obtain temporary keys approved by an ethics committee to
access the data. Data transmission takes TLS 1.3 protocol
encryption, and storage servers are deployed in data
centers that meet 1SO 27001 standards. Physical storage
devices undergo regular security audits, and
decommissioned equipment is physically destroyed.
Considering the possible sensor deception problem, a
unique digital certificate is assigned to each loT device.
The edge node verifies the legitimacy of the device
through two-way TLS protocol, and the device signature
based on elliptic curve digital signature algorithm is
attached during data collection to prevent forged data.

In response to the threat of network hijacking, the
communication link is encrypted using TLS1.3 protocol,
with keys rotated daily, and traffic anomalies are
monitored in real-time through an LSTM model. For
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designs not fully encrypted, the primary considerations are
the compatibility of resource-constrained devices and the
real-time nature of emergency services. Low-power
sensors take lightweight Corrected Block Tiny Encryption
Algorithm to encrypt key fields, prioritizing alarm data
transmission, with encryption concentrated at edge nodes.
Non-sensitive data is transmitted in plaintext after de-
identification, while sensitive data is protected through
both AES-256 and homomorphic encryption, ensuring a
balance between data integrity and privacy security [21].

Considering the potential conflict of interest, the
study records all data contributions and service responses
on the blockchain, labels data streams, and ensures that
responsibility is traceable. When data abuse is detected,
the smart contract automatically freezes access to it and
triggers an audit process. In potential ethical issues, the
system provides an informed consent form at deployment,
clearly labeling data sharing parties and exit clauses. Any
new service provider must obtain written authorization
before joining. Family members can track in real-time
which institutions access and use the data through a
blockchain browser, with the system generating monthly
data usage reports via email.

4 Results

4.1 Key technology performance

optimization verification

To verify the effectiveness of the ILZW algorithm in
lossless compression of data, the DHT11 humidity sensor
is used to collect indoor humidity data at different
frequencies for 3 days, and the collected data is
compressed using the algorithm. At each sampling
frequency, the compression algorithm is tested
independently for 100 times, and the compression rate,
memory occupancy rate and compression time are
recorded for each run. The final result is the average of
100 runs. The performance of the current latest Improved
Shared Run Length Coding (ISRLE) data compression
method at different sampling frequencies is shown in
Figure 7 [22]. In the performance testing of the ILZW
algorithm, a sampling frequency of up to 6 times per
minute is used, aiming to simulate the comprehensive
frequency after data preprocessing at edge nodes. In
practical applications, after initial screening by edge nodes
to filter out duplicate and invalid signals, the transmission
frequency of some non-urgent data is below 6 times per
minute, forming a gradient data transmission system with
one time per minute at night. Figures 7 (a) and 7 (b) show
the data compression rate, memory usage, and
compression time of different methods, respectively.
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Figure 7: Performance of each method at different sampling frequencies

In Figure 7 (a), with the increase of device sampling
frequency, the data compression rate and memory usage
of the LZW algorithm before and after improvement also
increased. The data compression rate and memory usage
of ILZW were lower than LZW throughout the entire
testing process. When the sampling frequency was 6
times/min, the data compression rate and memory usage
of ILZW were 8.92% and 21.87%, respectively, while the
data compression rate and memory usage of LZW were
49.01% and 39.98%, respectively. The data compression
rate and memory usage of the ISRLE method were
basically the same as those of the ILZW when the
sampling frequency was low. As the sampling frequency
gradually increased, the gap between ISRLE and ILZW
widened. At a sampling frequency of 6 times /min, the data
compression rate and memory usage of ISRLE were
12.51% and 27.52%, respectively, which were 3.59% and
5.65% higher than the research method. As shown in
Figure 7 (b), the compression time of ILZW at different
sampling frequencies was lower than that of the
comparison method. At the sampling frequency of 6 times
/min, the compression time of ILZW was 1.65 s, while that
of ISRLE and LZW was 2.24 s and 3.72 s, respectively.
The compression time of the research method was reduced
by 55.65% compared with the traditional method. The
improved algorithm reduces data compression rate and
compression time by optimizing preprocessing and
storage strategies.

In terms of algorithm complexity, the time
complexity of the traditional LZW algorithm is O(n),

where n is the length of the input data. The ILZW
algorithm optimizes the average time complexity to
O(n/k) through a hash storage structure and dynamic
dictionary adjustment strategy, where k is the length of
repeated pattern units formed during the preprocessing
stage through difference calculation (k > 2). The time
complexity of ISRLE is O(n), but it requires additional
processing for shared repetitive patterns. In terms of space
complexity, the traditional LZW takes a fixed dictionary,
resulting in a space complexity of O(m), where m is the
maximum number of entries that the dictionary can store.
The ILZW reduces the space complexity to O(m/a)
through hash indexing and dictionary item elimination
mechanisms, with a =1.25 being the experimental-
determined dictionary space compression coefficient. The
space complexity of ISRLE is O(1), but it requires pre-
allocated buffer storage for shared patterns.

To further verify the performance of ILZW in
different network scenarios, the aforementioned data
compression algorithm is tested under four typical
network scenarios. In high packet loss scenarios, the
random packet loss rate ranged from 0.1% to 5%. In
dynamic rate scenarios, the data rate fluctuated between
0.017 Hz and 2 Hz. In mixed jitter scenarios, a delay of
150 ms + 50 ms and an instantaneous packet loss rate of
10% to 15% were added. The performance of each method
under various network conditions is shown in Table 6.

Table 6: Performance of each method under different network conditions

Network Condition Algorithm Compression Rate Data Recovery Rate Memory Peak (MB)
o ILZW 8.92% 100% 21.87
Ideal Net""l‘;rsks)(o % packet LZW 49.01% 100% 39.98
ISRLE 12.51% 100% 27.52
ILZW 9.8% 90.2% 23.12
5% Packet Loss (A 51.3% 68.4% 41.23
ISRLE 13.7% 72.1% 29.84
. ILZW 11.3% 94.7% 24.75
Dynamic R:;te (0.017—-2 LZW 53.8% 75.204 43.67
2) ISRLE 15.4% 80.3% 31.02
ILZW 10.5% 87.6% 22.98
Mixed Jitter LZW 55.1% 61.9% 44.15
ISRLE 14.2% 65.4% 30.19
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As shown in Table 6, in an ideal network, the
compression rate of ILZW (8.92%) was 40.09% lower
than that of LZW (49.01%), but 3.59% higher than that of
ISRLE (12.51%). ILZW enhances data repetition
recognition through difference preprocessing and dynamic
dictionary adjustment. Under dynamic rate scenarios, the
compression rate of ILZW fluctuated by only +2.38%,
while that of ISRLE fluctuated by +2.9%, demonstrating
better adaptability to non-uniform data. At high packet
loss rates (5%), the data recovery rate of ILZW was
consistently higher than that of LZW and ISRLE. This is
thanks to its differential preprocessing technique, which
reconstructs lost information through the correlation of
adjacent data. In terms of peak memory usage, compared
with LZW, ILZW reduced memory consumption by 45%-
48%. Compared with ISRLE, it reduced memory
consumption by 17%-22%. ILZW adopts a linked hash
table and dynamic dictionary item elimination
mechanism, reducing memory fragmentation and making
it suitable for resource constrained medical 10T devices.

To verify the practical effectiveness of the proposed
priority scheduling mechanism, comparative experiments
are conducted on typical scenarios such as normal
networks, bandwidth limitations, and network jitter. The
experiment is conducted in the home environments of 15
disabled elderly individuals, with 20-25 10T devices
deployed per household. The edge node is Raspberry Pi
4B. Network conditions are simulated using Mininet-
WiFi. The normal network bandwidth is 100 Mbps
(download) / 50 Mbps (upload). In the bandwidth-limited
scenarios of simulated NB-loT, the limit is 5 Mbps
(download) / 2Mbps (upload). The network jitter
introduces random delays Linux tc tools (averaege of 150
ms, standard deviation of 50 ms) and burst packet loss
using. Each test is repeated 100 times, and the data
represents the average. By systematically comparing the
three indicators of time delay, data arrival rate, and failure
rate of critical event, it is verified whether the priority
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scheduling mechanism has a positive impact on data
transmission. The study strictly adheres to the Helsinki
Declaration and relevant provisions of the Personal
Information Protection Law, completing ethical review
and informed consent procedures before implementation
to ensure the rights and data security of incapacitated
elderly individuals. The research protocol is reviewed and
approved by the ethics committee of a first-affiliated
hospital affiliated with a domestic university, meeting
clinical research ethical standards. The ethics committee
focuses on reviewing the non invasiveness of data
collection, the safety of service interventions, and privacy
protection measures, confirming that the study does not
pose direct physiological risks and that all technological
applications are aimed at improving the quality of life of
older adults. Regarding user data security issues, the study
adopts a three-tier privacy protection mechanism to ensure
data safety. The SHA-256 algorithm is used at the data
collection end to irreversibly encrypt sensitive
information such as names, ID numbers, and addresses,
retaining only non-identifiable data directly related to
health management (such as age, gender, and medical
history codes). All sensor data, after preprocessing by
edge nodes, is accessible to authorized researchers for the
anonymized dataset, while healthcare institutions must
obtain temporary keys approved by an ethics committee to
access the data. Data transmission uses TLS 1.3 protocol
encryption, and storage servers are deployed in data
centers that meet 1SO 27001 standards. Physical storage
devices undergo regular security audits, and
decommissioned equipment is physically destroyed. The
subjects have basic communication skills or legal
guardians to make decisions on their behalf, and they
voluntarily participate and sign a written informed
consent. The network performance indicators before and
after introducing priority scheduling mechanism are
shown in Table 7.

Table 7: The statistics of network performance indicators before and after using the priority scheduling mechanism

Use the priority scheduling mechanism

Don't use priority scheduling mechanism

Test scenario Time delay Data arrival Fallur_e_rate . Data arrival Fallur_e_rate
(ms) rate (%) of critical Time delay (ms) rate (%) of critical
events (%) events (%)
Normal 235.73+18.24 99.84 0.03 420.19+35.67 89.37 1.34
network
B"’I‘i”nf‘i’;’;gth 485.26+42.31 97.13 0.17 1200.63+3567  63.82 5.19
Network jitter ~ 785.34+68.57 93.41 0.26 >2,000 38.72 9.83
High load
medical 1180.28+92.45 85.19 0.48 >2,000 41.31 12.37
equipment
Multi-user
concurrency  635.79+55.12 89.36 0.34 1,580.24+120.36 55.63 4.76
(5 terminals)
Mixed
705.43+50.89 87.64 0.39 1,420.79+110.41 60.12 3.96

emergency
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As shown in Table 7, the priority scheduling
mechanism exhibited significant advantages in various
network scenarios. In terms of time delay, this mechanism
generally reduced delay by 50% to 70%. For example,
under normal network conditions, the delay was reduced
from 420.19 ms to 235.73 ms, and under network jitter,
the delay was optimized from >2,000 ms to 785.34 ms. In
extreme high-load scenarios, the delay is improved from
>2,000 ms to 1,180.28 ms. The data arrival rate was
increased by 20% to 50%, especially when bandwidth was
limited, from 63.82% to 97.13%. The failure rate of
critical events decreased, with the failure rate in high-load
medical equipment scenarios dropping from 12.37% to
0.48%, mixed emergency situations dropping from 3.96%
to 0.39%, and network jitter scenarios being controlled
from 9.83% to 0.26%. This mechanism ensures priority
processing of critical tasks through dynamic resource
allocation and improves data reliability under complex
conditions such as network instability, resource
constraints, and concurrency pressure.

To evaluate the impact of the load balancing strategy
based on multi-objective optimization on the energy
consumption of 10T equipment and verify their actual
effectiveness at different time periods, the study deploys

J. Xiao

multiple 1oT equipment in a home environment. The
energy consumption test is conducted on equipment
operating in normal mode, and a balancing strategy is
applied under the same initial conditions. Each household
includes 3 wearable devices (HUAWEI Watch D, 1.5W),
1 smart mattress (Sleepace Rest, 3W), 5 infrared sensors
(HC-SR501, 0.065W), 3 pressure pads (FlexiForce A201,
0.1W), 2 gas sensors (MQ-7/MQ-2, 0.8W), and 1 edge
node (Raspberry Pi 4B, 6W). During the day (6:00-22:00),
it simulates a scenario with multiple devices running
concurrently (5 terminals online simultaneously,
occupying 70% bandwidth), while at night (22:00-6:00),
it operates in a low-load state (bandwidth usage <30%).
The energy consumption data of 24 whole points is
recorded every day for 7 consecutive days, and the power
consumption of the equipment is collected in real time
using a high-precision power meter. The result is the
average value of 15 households. The energy consumption
changes of the device during the day and night are shown
in Figure 8. Figure 8 (a) shows the energy consumption
change at night when using the load balancing strategy,
and Figure 8 (b) shows the energy consumption change
during the day.
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(a) The curve of total energy consumption
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Figure 8: Energy consumption of the equipment during the day and night

According to Figure 8 (a), without using load
balancing strategy, the average energy consumption at
night was 1.42x10%+85J] (95%CI: 1.38x103%-1.46x103)),
while the average energy consumption after using this
strategy was 1.03x10%+42] (95%Cl: 1.01x103-1.05x103J),
which was 27.46% lower than that without using the load
balancing strategy. This strategy also reduced the
fluctuation range of energy consumption. In Figure 8 (b),
the energy consumption increased during the day. The
average energy consumption without load balancing
strategy was 2.24x10%+112)  (95%Cl: 2.18x10%-
2.30x103J), while the average energy consumption after
using this strategy was 1.55x10%+55J (95%CI: 1.52x103-
1.58x103J). The load balancing strategy can reduce the
energy consumption and maintain energy stability. This is
because the dynamic task scheduling strategy prioritizes
critical tasks, while non-urgent tasks are delayed or

transferred to the cloud, reducing the continuous high-load
operation time of devices and increasing the proportion of
idle or sleep modes. Secondly, the day-night differentiated
strategy adjusts the device sampling frequency, combining
spatial partitioning to optimize sensor layout, reducing
redundant data collection, and extending low-power
periods. The multi-objective balancing mechanism based
on PSO algorithm monitors device load and power in real-
time, dynamically allocating tasks to low-latency nodes or
the cloud, and automatically increasing energy-saving
weights when devices have low power.

4.2 Health management and ecosystem
applications

To evaluate the effectiveness of the intelligent elderly
care ecosystem in improving health management
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efficiency, a 12-month controlled experiment is designed,
and relevant data is collected regularly every month. A
single-group self-contrast design is adopted to carry out a
longitudinal control experiment on 30 disabled elderly
people (average age 72.5+6.8 years) for 13 months,
including one month at baseline (before system
deployment) and 12 months at dry period (system
operation). The changes in health management efficiency
before and after applying the intelligent elderly care
ecosystem are shown in Figure 9. Figure 9 (a) shows the
health management performance statistics before applying

Fall recognition
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the system, and Figure 9 (b) shows the health management
performance statistics after applying the system. The data
represents the monthly average of 30 disabled elderly
individuals over a 12-month intervention period. Each
monthly dataset is based on three repeated measurements
(one in early, mid, and late each month), with the final
result being the average of 36 observations. A paired t-test
is used to analyze the differences between the baseline
period and the intervention period, with a significance
level set at ¢=0.05. p<0.05 is considered statistically
significant.
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Figure 9: Changes of health management efficiency before and after the application of intelligent elderly care
ecosystem

According to Figure 9 (a), when the proposed system
was not used, the different health management
performance indicators of disabled elderly people
fluctuated greatly in different time periods. The average
accuracy of chronic disease prediction, medication
compliance, fall recognition accuracy, and abnormal heart
rate were 67.73%, 81.95%, 79.96%, and 86.85%,
respectively. According to Figure 9 (b), after using the
system, the fluctuations of various health management
performance indicators of disabled elderly people were
reduced at different time periods, and all health
management performance indicators were improved. The
average values of each indicator were 81.54%, 90.32%,

91.06%, and 96.62%. The prediction accuracy of chronic
diseases increased by 13.81% (t=8.92, p<0.001), the
compliance rate of medication reached the standard, at
8.37% (t=6.54, p<0.01), the recognition accuracy of
falling down increased by 11.10% (t=9.15, p<0.001), and
the alarm rate of abnormal heart rate increased by 9.77%
(t=7.83, p<0.01). The relationship between user
experience and the number of concurrent tasks is shown in
Figure 10. Each test of the number of concurrent tasks is
run independently 50 times, and the result is the average
of the 50 runs. Figures 10 (a) and 10 (b) respectively show
the relationship between user experience and the number
of users before and after applying the system.
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Figure 10: Relationship between user experience and the number of concurrent tasks

As shown in Figure 10 (a), with the increase of the
number of users, the response time of device touch screen
operation and the average delay of emergency calls both
improved. When the number of users was 20, they were
735.24+58.72 ms and 681.76+82.31 ms. The success rate
of device voice interaction and user satisfaction with
personalized services showed a downward trend, reaching
65.55% and 64.21% respectively when the number of
users was 20. In Figure 10 (b), the proposed system
improved user experience. The device touch screen
operation response time and the average delay of

emergency call decreased to 295.37 ms+22.45 ms
(A=439.87 ms, t=12.58, and p<0.001) and 390.06
ms+35.68 ms (A=291.70 ms, t=13.64, and p<0.001) when
the number of users was 20. The success rate of voice
interaction and user satisfaction with personalized
services was 87.68% and 92.11% (A=22.13%, 27.90%,
and p<0.01), respectively. The improvement of relevant
evaluation indicators before and after adopting the elderly
care ecosystem is shown in Table 8. The data in the table
is the cumulative average of 30 elderly people during the
12-month intervention period.

Table 8: Comparison of relevant evaluation indicators before and after applying the elderly care ecosystem

Evaluation . . Pre-Implementation Post-Implementation Improvem
. . Specific Indicator
Dimension Data Data ent
Health Monitoring Real-time physiological 52.3% (manual 98.5% (auto-
L\ +88.34%
Coverage parameter rate records) monitoring)
Hyglene_Response Excrement disposal delay Average 1.5 min-30 <3s -99.7%
Time min
Pressure Ulcer Monthly rate (bedridden 37% (severe cases: 0 i 0
Incidence Rate patients) 21%) 7.8% (no severe cases) 78.9%
Urinary T ract Monthly infection rate 28.6% 10.9% -61.9%
Infection Rate
PSyChOI&%‘gjl Stress Caregiver anxiety score 6.8 (severe stress) 3.2 (mild stress) -52.9%
Daily Care Time Caregiver time investment 4.2h 15h -64.3%
. . L 0
P05|t|qn Change Bedridden re_posmonlng 58% (manual 97% (system alerts) +67.2%
Compliance Rate compliance tracking)
Aspiration Incident Feedlng-_relgted aspiration 29 times/month 3 times/month -86.4%
Rate incidents
Joint Mobility Range of Motion (ROM) 61% (passive 89% (active assistive
. . . L +45.9%
Maintenance retention rate exercises) training)
Skin Microclimate Moisture-associated skin 0 0 0
Management damage (MASD) 34% 9% 73:5%
Assisted Mobility Falls during transfers (per 17 incidents 0.8 incidents -95.3%
Safety 100 moves)
Economic cost Average monthly nursing 9,354 RMB 3,547 RMB -62.1%
expenses

According to Table 8, the real-time physiological
parameter rate increased from 12.3% to 98.5% (t=22.3,

p<0.001), relying on loT sensors to achieve all-weather
tracking of health indicators, which was about 7 times
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more efficient than manual detection. In terms of
preventing complications, the pressure ulcer incidence
rate decreased by 78.9% (t=20.5, p<0.001), and the
aspiration incident rate decreased by 86.4%. The falls
during transfers decreased by 95.3% (t=23.5, p<0.001).
The average monthly care cost includes the cost of human
care and medical consumables. After using the elderly
care ecosystem, the working hours of human care were
reduced, and the number of medical consumables used by
intelligent monitoring was reduced. The average monthly
care cost was reduced by 56.4% compared with before the
system was used (t=18.7, p<0.001). The system has
formed a synergistic effect in three aspects: health risk
control, functional maintenance, and reducing nursing
burden through a closed-loop management system.

5 Discussion

Compared with reference [6], the intelligent elderly
care ecosystem proposed in this study reduces the delay of
emergency events from 1200 ms to 235 ms through a
dynamic priority scheduling mechanism, and optimizes
the failure rate of critical tasks from 5.19% to 0.39%. This
improvement is attributed to multi-level queue
management and real-time context reasoning, which
dynamically identifies task urgency using a RF classifier
and predicts future behavior states with LSTM, pre-
allocating transmission resources accordingly. Compared
with the average recall rate of 89.7% in the reference [8],
this study enhances the fall detection recall rate to 98.3%
through a heterogeneous sensor fusion strategy, while
keeping the false alarm rate below 2.8%. In terms of
energy optimization, the single-function device in the
reference [14] consumes 1.5 W. This study reduces the
day and night power consumption by 30.8% and 27.5%,
respectively, through a multi-objective PSO algorithm that
coordinates edge node loads. This difference stems from
the dynamic resource scheduling strategy. When network
utilization >80%, low-priority queues are paused, and
backup path switching is enabled to reduce energy waste
caused by redundant transmissions.

In the design of the ecological closed-loop
architecture, the research focuses on quantifying data
contribution  through  blockchain  to  incentivize
pharmaceutical companies, insurance firms, and other
stakeholders to form a value exchange network.
Traditional solutions (such as mental health services
provided by Li et al. [9]) rely solely on unidirectional data
flow. The ecosystem proposed in this study takes a
gradient boosting tree-based service effectiveness analysis
model to continuously optimize rule library weights. The
static rule library in reference [8] struggles to adapt to
behavioral drift issues in disabled elderly individuals. To
address home network jitter problems, the study improves
key data transmission success rates from 63.8% to 97.1%
through hybrid a network protocol and adaptive channel
allocation, outperforming industrial 10T solutions
(Sanchezlborra, which reduces energy consumption by
40%, but has not been verified in home scenarios [11]).
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6 Conclusion

To meet the needs of home-based elderly care for
disabled individuals, this study integrated data collection,
transmission, and intelligent service modules through a
layered architecture. A multi-modal sensor network was
deployed to achieve physiological behavioral
environmental data fusion perception. The ILZW
compression algorithm was proposed, and a dynamic
priority scheduling mechanism was designed. An
intelligent elderly care ecosystem based on the loT was
constructed, forming a closed-loop management system
based on multi-objective optimization load balancing
strategy. The study applied this system to the home-based
elderly care scenario for disabled individuals and
compared it with traditional home-based elderly care
methods. The results showed that the compression rate of
ILZW decreased by 40.09% and the compression time
shortened by 55.65% at a sampling frequency of 6
times/min. The dynamic priority scheduling mechanism
reduced the transmission delay of key data in network
jitter scenarios by 61.3% and increased the data arrival rate
to 97.13%. The multi-objective optimization strategy
reduced device day and night energy consumption by
30.8% and 27.5%, respectively. In terms of health
management effectiveness, the accuracy of chronic
disease prediction increased to 81.5%, the pressure ulcer
incidence rate decreased by 78.9%, the nursing cost
decreased by 62.1%, and the user satisfaction reached
92.11%. After integrating loT technology and ecological
architecture, a multi-party collaborative value network for
elderly care services was constructed, achieving precise
monitoring, rapid response, and dynamic resource
allocation, which provides a reusable technological
paradigm and social collaboration model for addressing
the aging. The personal data collected by 10T equipment
has not yet been systematically managed for privacy and
security. Future research will explore new privacy
protection technologies based on homomorphic
encryption, which can ensure the security of user privacy
data while balancing system performance and long-term
stability.
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