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In this study, we propose a Multi-Objective Hierarchical Reinforcement Learning (MOHRL) 

approach with online meta-learning for dynamic pricing strategy optimization. Our method utilizes 

hierarchical RL layers to decompose the pricing decision-making process and a meta-learning 

adapter to accelerate the cold start. We compare MOHRL with baseline methods like DQN and 

NSGA-II. Experimental results show that MOHRL outperforms DQN by 25% in profit and 18% in 

retention rate, and NSGA-II by 30% in market share over a 30-day simulation. The simulation system 

built based on 100,000+ SKU data of an e-commerce platform demonstrates MOHRL's superiority in 

real-time dynamic pricing, especially in cold start scenarios. Ablation experiments confirm that the 

meta-learning module significantly enhances performance, with a 41% contribution to the overall 

improvement. 

Povzetek: MOHRL (Multi-Objective Hierarchical Reinforcement Learning) MOHRL s sprotnim meta-

učenjem omogoča hitro in uravnoteženo dinamično oblikovanje cen z več cilji (dobiček, zadržanje 

uporabnikov, delež trga). Posebej učinkovit je v scenarijih z začetno neznanko. 

 

1 Introduction 

To address these challenges, this study integrates multi-

objective hierarchical reinforcement learning (MOHRL) 

with online meta-learning. MOHRL divides the pricing 

decision process into two main levels: the macro level 

and the micro level. The macro level focuses on long-

term strategic goals, such as setting overall price trends 

and profit margin ranges, while the micro level handles 

real-time price adjustments in response to market 

dynamics like competitor price changes or fluctuating 

consumer demand. By incorporating multiple objectives

—profit, user satisfaction, and competitive advantage—

into the reinforcement learning reward function [1], the 

model achieves more balanced pricing decisions. 

Additionally, online meta-learning enables rapid 

adaptation to new market environments by leveraging 

historical data to quickly adjust model parameters. This 

integration of MOHRL and online meta-learning offers 

a more intelligent and efficient dynamic pricing 

solution, overcoming limitations of traditional methods 

and advancing both research and practical applications 

in the field. A crucial component of MOHRL is the 

online meta-learning adapter, which is designed to 

accelerate the cold start process by leveraging historical 

experience. As will be shown in the ablation 

experiments, the meta-learning module significantly 

contributes to the performance gain, accounting for a 

41% improvement [2]. 

The sharing economy model represented by online 

car-hailing platforms such as Uber and Lyft and shared 

bicycle services such as Mobike and OFO also relies 

heavily on dynamic pricing mechanisms. During peak 

hours in cities, when travel demand or demand for 

shared bicycles rises sharply, these platforms will adjust 

service prices accordingly [3]. For example, during the 

evening peak hours in large cities, online car-hailing 

prices may increase by 30%-50% compared to non-peak 

hours. This price adjustment mechanism cannot only 

encourage more drivers or shared bicycle owners to 

participate in the service supply, thereby increasing 

market supply but also help balance the supply and 

demand relationship [4]. However, similar to the e-

commerce field, sharing economy platforms face 

considerable challenges in processing real-time data [5]. 

They need to process a large amount of request 

information, user location data, and historical order data 

in real-time to determine the best price. For example, 

accurately predicting the demand for shared bicycles in 

different urban areas within the next hour based on real-

time data and historical patterns is a complex problem 

that requires advanced data processing technology to 

solve. 
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Static pricing models are usually built based on 

historical data and some oversimplified market 

assumptions [6]. They assume that market conditions 

will remain relatively stable in the short term. For 

example, when traditional physical stores price goods, 

they often add a fixed profit margin to the cost without 

considering real-time market fluctuations [7]. In the 

ever-changing e-commerce and sharing economy 

market environment, consumer preferences may change 

overnight, competitors' strategies may also adjust 

quickly, and supply and demand imbalances may occur 

at any time within minutes. Static models are obviously 

too rigid to adapt to such rapid changes. Faced with 

sudden price cuts by competitors or sudden surges in 

consumer demand caused by social media hot spots, 

static models have difficulty making price adjustments 

quickly. Single-objective optimization methods, such as 

the simple pursuit of profit maximization, often ignore 

other critical factors [8]. For example, if a company sets 

its product price too high to maximize profits, it may 

achieve profit growth in the short term, but it may lose a 

large number of customers due to the high price 

threshold, and it will also be at a disadvantage in the 

competition with competitors [9]. In a dynamic market 

environment, it is crucial to achieve a balance between 

multiple factors such as profit, user satisfaction and 

market share. Ignoring any of these factors may have a 

negative impact on the company's long-term 

performance and sustainable development. 

To overcome the above challenges, this study 

combines multi-objective hierarchical reinforcement 

learning (MOHRL) with online meta-learning. Multi-

objective hierarchical reinforcement learning divides 

the pricing decision process into multiple levels [10]. 

Higher-level strategies focus on long-term and overall 

goals, such as formulating overall price trends and 

determining appropriate profit margin ranges within a 

specific period. Lower-level strategies focus on real-

time price adjustments based on immediate market 

changes, such as responding to sudden price cuts by 

competitors or unexpected surges in consumer demand 

[11]. By incorporating multiple objectives such as 

profit, user satisfaction, and competitive advantage into 

the reward function of the reinforcement learning 

algorithm, the model can make more comprehensive 

and balanced pricing decisions. At the same time, online 

meta-learning gives the system the ability to adapt to 

new market environments quickly. It can learn from 

historical experience and data so that the reinforcement 

learning model can quickly adjust its parameters when 

facing new market conditions [12]. This innovative 

combination of multi-objective hierarchical 

reinforcement learning and online meta-learning 

provides a more intelligent and efficient solution for 

dynamic pricing, effectively making up for the 

shortcomings of existing methods and opening up new 

paths for research and practice in this field. 

 

2 Multi-objective hierarchical 

reinforcement learning (MOHRL) 

 In the optimization research of dynamic pricing 

strategies, the Multi-Objective Hierarchical 

Reinforcement Learning (MOHRL) algorithm aims to 

overcome the limitations of traditional pricing methods 

and respond more efficiently and intelligently to 

complex and changing market environments. By 

combining hierarchical decision-making with multi-

objective optimization, MOHRL dynamically balances 

profit, user retention, and market share through an 

attention-based reward mechanism. It also incorporates 

an online meta-learning adapter to enhance adaptability 

to new market conditions, making it particularly 

effective for real-time dynamic pricing scenarios. The 

hierarchical structure and online meta-learning 

mechanism in MOHRL address key limitations of 

existing methods, such as poor cold start performance 

and lack of dynamic objective balancing. 

2.1 Core architecture 

2.1.1 Hierarchical decision-making 

MOHRL employs a hierarchical decision-making 

mechanism, dividing the pricing process into macro and 

micro layers to enhance decision-making 

comprehensiveness and accuracy. The macro layer 

formulates periodic pricing strategies based on long-term 

market trends, seasonal variations, and corporate 

strategic planning. Within its decision-making period, 

the price strategy is expressed as a time function. This 

function, based on market trends, simulates periodic 

price fluctuations. Parameters such as fluctuation 

frequency, initial phase, and adjustment amplitudes are 

determined through historical data analysis and long-

term strategic considerations[13]. The macro layer is 

mainly responsible for formulating periodic pricing 

strategies, and its goal is to determine the approximate 

price trend of products or services within a relatively 

long-time scale based on the overall market trend, 

seasonal changes, and the company's long-term strategic 

planning. Suppose the decision-making period of the 

macro layer is 𝑇𝑚. Within this period, the price strategy 

𝑃𝑚  can be expressed as a function of time 𝑡 (𝑡 ∈
[0, 𝑇𝑚]): 

𝑃𝑚(𝑡) = 𝛼𝑚 ⋅ 𝑓𝑚(𝑡) + 𝛽𝑚                        (1) 

 

In the macro-layer decision-making, parameters αm 
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and βm are learned via reinforcement signals. We adopt 

an outer-loop RL policy optimization algorithm. At 

each time step t, the agent observes the market state st, 

takes an action at according to the current policy π(st), 

and receives a reward rt. The policy π is updated to 

maximize the cumulative reward 
=

T

tr
1t

, and this 

process updates the values of αm and βm. 

𝑓𝑚(𝑡) is an essential price function based on market 

trends. For example, it can be set as 𝑓𝑚(𝑡) =

sin (𝜔𝑚𝑡 + 𝜑𝑚) , which simulates the periodic 

fluctuation of market prices over time, 𝜔𝑚  is the 

fluctuation frequency, 𝜑𝑚  is the initial phase; 𝛼𝑚  and 

𝛽𝑚  are two parameters, which are used to adjust the 

amplitude of price fluctuations and the benchmark price 

level respectively, and their values are determined by 

the company's long-term strategy and market analysis. 

The microlayer focuses on real-time price 

adjustment and correction. Within the price framework 

determined by the macro layer, the price is dynamically 

fine-tuned according to the real-time market 

information obtained, such as the user's instant purchase 

behavior, the latest price changes of competitors, etc. 

The decision-making frequency of the microlayer is 

much higher than that of the macro layer. Let the 

decision-making time interval of the microlayer be Δ𝑡. 

At time 𝑡𝑛 ( 𝑡𝑛 = 𝑛Δ𝑡), the real-time price adjustment 

correction Δ𝑃micro (𝑡𝑛)  based on the macro layer price 

Δ𝑃micro (𝑡𝑛)  can be expressed as: 

Δ𝑃micro (𝑡𝑛) = 𝛾𝑚 ⋅ 𝑔𝑚(𝑠(𝑡𝑛))                 (2) 

𝑠(𝑡𝑛)  represents the market state vector at time 𝑡𝑛, 

which contains information such as user behavior and 

competitive dynamics; 𝑔𝑚(𝑠(𝑡𝑛)) is a function related 

to the market state, which is used to calculate the 

direction and amplitude of price adjustment. For 

example, it can be set to 𝑔𝑚(𝑠(𝑡𝑛)) = ∑𝑖=1
𝑘  𝑤𝑖 ⋅

𝑥𝑖(𝑠(𝑡𝑛))  , where 𝑥𝑖(𝑠(𝑡𝑛))  is the 𝑖  feature of the 

market state vector 𝑠(𝑡𝑛) , 𝑤𝑖   is the corresponding 

weight, which is continuously optimized through 

reinforcement learning; 𝛾𝑚 is a parameter that controls 

the sensitivity of adjustment. We use an ϵ-greedy 

exploration strategy for balancing exploitation and 

exploration in the dynamic price step mechanism. 

Initially, ϵ is set to 0.8, and it decays exponentially to 

0.1 during training. With a probability of ϵ, the agent 

chooses a random action within the price step range [βa

.min, βa.max]. This random selection enables the 

exploration of new pricing strategies. With a probability 

of (1-ϵ), the agent selects the action that maximizes the 

expected future reward, based on the learned Q-values, 

thus exploiting the existing knowledge. 

2.1.2 Multi-objective reward function 

To optimize profit, user retention, and market share 

comprehensively, MOHRL incorporates a multi-

objective reward function. The reward weights for profit  

 

(60%), user retention (25%), and market share (15%) are 

dynamically adjusted via an attention mechanism, 

reflecting their varying importance in different market 

conditions. The profit reward is calculated based on 

price and sales volume, considering unit costs. User 

retention reward depends on the ratio of retained users, 

while market share reward is determined by competitor 

sales volumes. The attention mechanism updates these 

weights through a defined formula, integrating them into 

the final multi-objective reward function. This dynamic 

adjustment allows MOHRL to prioritize objectives 

adaptively, enhancing its responsiveness to market 

changes [14]. The profit target accounts for 60% of the 

reward function, user retention accounts for 25%, and 

market share accounts for 15%. The weights of each 

goal are not fixed but are dynamically learned through 

the attention mechanism to adapt to the changes in the 

importance of each goal in different market 

environments. The profit reward 𝑅profit  can be expressed 

as: 

𝑅profit (𝑡) = 𝜋(𝑡) ⋅ 𝜌profit                        (3) 

Where 𝜋(𝑡) is the profit at time 𝑡 , which is 

determined by price 𝑃(𝑡) and sales volume 𝑄(𝑡), that is, 

𝜋(𝑡) = (𝑃(𝑡) − 𝐶) ⋅ 𝑄(𝑡), 𝐶 is the unit cost; 𝜌profit  is the 

initial weight of the profit target in the reward function, 

set to 0.6. The user retention reward 𝑅retention   is defined 

as: 

𝑅retention (𝑡) =
𝑁retention (𝑡)

𝑁total (𝑡)
⋅ 𝜌retention             (4) 

𝑁retention (𝑡)is the number of users retained at time 𝑡, 

𝑁total (𝑡)   is the total number of users, 𝜌retention  is the 

initial weight of the user retention target, set to 0.25. The 

market share reward 𝑅marketShare  is expressed as: 

𝑅marketShare (𝑡) =
𝑄(𝑡)

∑  𝑀
𝑗=1  𝑄𝑗(𝑡)

⋅ 𝜌marketShare         (5) 

𝑄𝑗(𝑡)is the sales volume of competitor 𝑗 at time 𝑡, 

𝑀  is the total number of competitors, 𝜌marketShare is the 

initial weight of the market share target, set to 0.15. The 

dynamic weights are learned through the attention 

mechanism. Let the attention weight vector 𝝎(𝑡) =

[𝜔profit (𝑡), 𝜔retention (𝑡), 𝜔marketShare (𝑡)] , and its updated 

formula is: 

𝜔𝑖(𝑡) =
exp(𝜃𝑖⋅𝑅𝑖(𝑡))

∑  3
𝑗=1  exp(𝜃𝑗⋅𝑅𝑗(𝑡))

                             (6) 

𝑖 = profit, retention, market Share, 𝜃𝑖  is a parameter 
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that controls the sensitivity of weight update. The final 

multi-objective reward function 𝑅(𝑡) is: 

 

𝑅(𝑡) = 𝜔profit (𝑡) ⋅ 𝑅profit (𝑡) + 𝜔retention (𝑡) ⋅ 𝑅retention (𝑡) + 𝜔marketShare (𝑡)

𝑅marketShare (𝑡)

(7) 

The attention weights θi are updated using the 

Adam optimizer. We compute the gradients of the loss 

function, which measures the difference between the 

predicted and actual rewards, with respect to θi. The 

initial values of θi are randomly initialized within the 

range [-0.1, 0.1] to avoid biasing the reward calculation. 

The self-attention mechanism we use has several 

advantages. It can adaptively adjust the weights 

assigned to different reward components according to 

the market state and action, enabling more accurate 

reward calculation compared to fixed-weight methods. 

However, it does increase the computational complexity 

due to the additional matrix multiplications for 

calculating attention scores. Considering the nature of 

our dynamic pricing problem, where accurate reward 

representation is crucial, we believe the benefits of this 

mechanism outweigh the increased complexity. 

2.1.3 Online meta-learning adapter 

To enable rapid adaptation to new environments 

and accelerate cold start, MOHRL incorporates an 

online meta-learning adapter. This adapter uses 

historical scenarios, each associated with a strategy and 

reward, to calculate similarity with new environments 

through a defined similarity function, such as Euclidean 

distance. Based on similarity, it weights and fuses 

strategies from historical scenarios to generate an initial 

strategy for the new environment. By leveraging 

historical experience, the meta-learning adapter shortens 

the cold start period theoretically by 30%, enhancing 

the model's initial adaptability and reducing the time to 

achieve stable performance in new scenarios[15]. Let 

the historical scenario set be  𝒮history = {𝑠1, 𝑠2, ⋯ , 𝑠𝑁}, 

and each historical scenario 𝑠𝑖  corresponds to a strategy 

𝜋𝑖  and reward 𝑅𝑖 . In the new environment𝑠new , Meta-

Adapter first calculates the similarity between the new 

environment and each historical scenario through a 

similarity measurement function 𝑑(𝑠𝑛𝑒𝑤 , 𝑠𝑖) , for 

example, using the Euclidean distance: 

 

𝑑(𝑠new , 𝑠𝑖) = √∑  𝐷
𝑗=1   (𝑥𝑗(𝑠new ) − 𝑥𝑗(𝑠𝑖))

2

         (8) 

𝐷 is the dimension of the state vector, and 𝑥𝑗(𝑠)  is 

the 𝑗 feature of the state vector 𝑠. The strategies of the 

historical scenarios are weighted and fused to obtain the 

initial strategy 𝜋init (𝑠new ) based on the similarity: 

𝜋init (𝑠new ) =
∑  𝑁

𝑖=1  exp (−𝜆⋅𝑑(𝑠new ,𝑠𝑖))⋅𝜋𝑖

∑  𝑁
𝑖=1  exp (−𝜆⋅𝑑(𝑠new ,𝑠𝑖))

               (9) 

𝜆  is a parameter that controls the decay speed of 

similarity weight. In this way, Meta-Adapter can use 

historical experience to quickly generate a more 

reasonable initial strategy for the new environment, 

which can theoretically accelerate the cold start by 30%. 

where λ is a parameter that controls the decay speed of similarity 

weight. Our online meta-learning adapter uses a custom-

designed meta-learning algorithm that combines 

aspects of MAML and nearest-neighbor search. This 

approach allows for fast adaptation and efficient 

utilization of historical experience. The similarity d(hk, 

hnew) is calculated using the Euclidean distance, a 

simple and commonly-used similarity measure in 

vector spaces. It can accurately measure the difference 

between the new state and historical states. The 

parameter λ serves as a similarity threshold. If d(hk, 

hnew) <λ, we utilize the historical experience related to 

hk for initializing the model in the new state. A smaller 

λ makes the model more conservative in applying 

historical experience, while a larger λ promotes more 

generalization. Meta-learning is incorporated into our 

reinforcement learning framework because dynamic 

pricing frequently encounters new market conditions. 

Meta-learning enables the model to adapt rapidly to 

these new situations by leveraging past experience, 

thereby enhancing the cold-start performance, which is 

essential for real-time pricing applications. We now 

report only the experimental result of a 68% increase in 

cold-start speed, which is based on extensive 

experiments. 

2.2 State space design 

The state space design is critical for MOHRL to 

accurately perceive the market environment. This 

algorithm integrates multiple factors, including time 

characteristics, user profiles, and competitive 

dynamics, and uses latent variable encoding via a 

variational autoencoder (VAE) to extract market 

sentiment features. The weights for historical 

purchase, competitor prices, and other contextual 

features are determined using a multi-layer perceptron 

(MLP). The MLP has two hidden layers with ReLU 

activation functions. Given the concatenated vector of 

all raw features as input, the MLP outputs a set of 

weights. These weights are then used to linearly 

combine the features. For the VAE, it consists of three 

hidden layers in both the encoder and decoder. The 

hidden layers use ReLU activation functions, and the 

output layer of the decoder uses a Sigmoid activation 

function. The loss function for training the VAE is the 
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sum of the reconstruction loss (mean squared error) 

and the KL-divergence loss. The final state vector 

fuses time features, user profiles, competitive 

dynamics, and VAE-encoded latent variables, 

providing a comprehensive representation of the 

market state for effective decision-making. 

Temporal features include season and promotion 

cycle information. Assume that a year is divided into 𝑆 

seasons, and the current season is 𝑠𝑡 (𝑠𝑡 ∈ {1,2, ⋯ , 𝑆}), 

which can be encoded as a one-hot vector 𝒆𝑠𝑡
with 

dimension 𝑆. The promotion cycle is represented by 𝑝𝑡 , 

with a value range of [0,1], 0 means no promotion, 1 

implies the peak promotion period, and the function can 

reflect its impact on the price strategy ℎ(𝑝𝑡) , for 

example, ℎ(𝑝𝑡) = 1 + 𝛼𝑝 ⋅ 𝑝𝑡 , 𝛼𝑝   is the promotion 

impact coefficient. 

User portraits use the RFM clustering method. 

Divide users into 𝐾 groups, and assume that the current 

user belongs to the 𝑘 group( 𝑘 ∈ {1,2, ⋯ , 𝐾} ), which is 

also encoded as a one-hot vector 𝒆𝑘 with dimension 𝐾. 

Price fluctuations of competing products reflect 

competition dynamics. Suppose there are 𝑀 competitors 

in total, the price of competitor 𝑗 is 𝑃𝑗(𝑡), and the price 

fluctuation range is Δ𝑃𝑗(𝑡) = 𝑃𝑗(𝑡) − 𝑃𝑗(𝑡 − Δ𝑡). 

In order to further extract the characteristics of 

market sentiment, VAE-based latent variable encoding 

is introduced. Suppose the input market state vector is 

𝒙, and the latent variable 𝒛 is obtained through the VAE 

encoder Enc (𝒙): 

𝒛 = Enc(𝒙) = 𝜇(𝒙) + 𝜖 ⋅ 𝜎(𝒙)                  (10) 

𝜇(𝒙)  and 𝜎(𝒙) are the mean and standard deviation 

of the encoder output, respectively, and 𝜖 is a random 

variable that follows a standard normal distribution. The 

market state vector �̂� = Dec (𝒛)  is reconstructed by the 

decoder Dec (𝒛). When training VAE, the optimization 

goal is to minimize the weighted sum of the 

reconstruction loss 𝐿𝑟𝑒𝑐   and the KL divergence  𝐿𝐾𝐿: 

𝐿 = 𝛼𝑟𝑒𝑐 ⋅ 𝐿𝑟𝑒𝑐 + 𝛼𝐾𝐿 ⋅ 𝐿𝐾𝐿                        (11) 

𝐿𝑟𝑒𝑐 = ∑𝑖=1
𝐷  (𝒙𝑖 − �̂�𝑖)

2, 𝐿𝐾𝐿 = −
1

2
∑𝑖=1

𝐷  (1 +

log (𝜎𝑖
2) − 𝜇𝑖

2 − 𝜎𝑖
2),  𝛼𝑟𝑒𝑐 and 𝛼𝐾𝐿  are weight 

parameters. The final state space vector 𝒔 is a fusion of 

time features, user profiles, competitive dynamics, and 

latent variable encoding: 

 𝒔 = [𝒆𝑠𝑡
, ℎ(𝑝𝑡), 𝒆𝑘 , Δ𝑃1(𝑡), ⋯ , Δ𝑃𝑀(𝑡), 𝒛]     (12) 

A detailed diagram in the appendix shows how different 

market factors are combined to form the state vector 

s(tn). 

2.3 Action space optimization 

To prevent dimensionality explosion in discrete action 

spaces, MOHRL implements a dynamic price step 

mechanism. The price adjustment step varies between 

0.1% and 5%, where is the price adjustment ratio 

ranging from 0.001 to 0.05. In practice, is dynamically 

adjusted based on market conditions and strategy 

effectiveness. During intense competition with slow 

sales growth, the adjustment range increases to allow 

larger price changes. In stable markets where profit 

targets are met, the range narrows to minimize user 

impact from price fluctuations. This dynamic 

mechanism ensures price adjustment flexibility, controls 

action space complexity, and enhances algorithmic 

efficiency and convergence.: 

𝑎(𝑡) = 𝛽𝑎 ⋅ 𝑃(𝑡)                                 (13) 

𝛽𝑎 is the price adjustment ratio, and its value range 

is [0.001,0.05]. In practical applications, the value of 𝛽𝑎 

is dynamically adjusted according to the market status 

and the effect of the current strategy. For example, when 

the market competition is fierce, and sales growth is 

slow, the value range of 𝛽𝑎  can be appropriately 

increased to increase the price adjustment; when the 

market is relatively stable, and the profit target is well 

achieved, the value range of 𝛽𝑎  can be narrowed to 

reduce the impact of price fluctuations on users [16]. 

Through this dynamic adjustment mechanism, while 

ensuring the flexibility of price adjustment, the 

dimension of the action space is effectively controlled, 

and the computational efficiency and convergence speed 

of the algorithm are improved. The dynamic price step 

mechanism is designed to avoid dimensionality 

explosion. By adjusting the price within a specific range 

(βa∈[0.001,0.05]) based on the market state, it restricts 

the number of possible actions. Instead of considering 

the entire spectrum of possible price values, which 

would result in a high-dimensional action space, the 

mechanism focuses on a relevant subset of prices. This 

significantly reduces the complexity of the action space, 

thus avoiding dimensionality explosion. 

3 Simulation system construction 

3.1 Data source 

To construct a realistic and practically valuable 

dynamic pricing simulation system, this study sourced 3-

year historical data from a major e-commerce platform. 

The dataset encompasses over 100,000 SKUs, detailing 

sales status, price changes, and key market information 

across different periods. Notably, promotion and off-

season periods are clearly labeled, offering rich data for 

analyzing dynamic pricing strategies under varying 

market conditions. The data was collected from a large-
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scale e-commerce platform over a period of two years. 

To ensure reproducibility, we obtained the data through 

a legal data-sharing agreement with the platform. For 

pre-processing, we first dealt with missing values. For 

numerical features such as price and quantity, we used 

mean imputation for columns with a relatively low 

percentage of missing values (less than 10%). For 

columns with a higher percentage of missing values, we 

employed more advanced techniques like multiple 

imputation by chained equations (MICE). Categorical 

variables were encoded using one-hot encoding. 

Additionally, we normalized numerical features to have 

a mean of 0 and a standard deviation of 1 to improve the 

training efficiency of our models. The simulation 

system employs an agent-based market simulator with 

components such as user selection models and 

competitive product response strategies to accurately 

replicate market dynamics. 

In these 3 years of data, the core data such as daily 

sales price, sales volume, and cost information of each 

SKU are recorded in detail. By analyzing these data, we 

can clearly see the fluctuation pattern of commodity 

prices over time and the complex relationship between 

sales volume and price. For example, in the promotion 

season, the prices of some commodities will drop 

sharply, while sales volume will show explosive 

growth; on the contrary, in the off-season, prices are 

relatively stable, but sales volume will also decrease 

significantly [17]. At the same time, the inclusion of 

cost information enables this paper to comprehensively 

consider profit factors when studying pricing strategies, 

ensuring the practical operability and commercial value 

of the research results. The existence of promotion and 

off-season labels provides direct clues for studying the 

impact of the market environment on pricing strategies, 

helping this paper to accurately distinguish price 

behavior patterns under different market conditions, 

thereby providing targeted data support for subsequent 

algorithm training and strategy optimization. 

3.2 Environmental modeling 

To accurately simulate the complex market 

environment for dynamic pricing, this study utilizes an 

agent-based market simulator comprising two key 

components: a user selection model and a competitive 

product response strategy. The user selection model 

considers factors like product price, user preference, 

historical purchase records, and competing product 

prices, employing a utility function to simulate purchase 

decisions. User preference is quantified via browsing 

and collection data, while the competitive product 

response strategy models competitor behaviors, 

including price following, differentiated competition, 

and market share competition. Competitors adjust prices 

based on market leader changes, improve product 

differentiation to reduce price reliance, or lower prices to 

seize market share. These components together enable 

realistic simulation of market dynamics for in-depth 

dynamic pricing strategy analysis. The competitive 

product response strategy is implemented as a rule-based 

component within the market simulator. It is not trained 

in a machine-learning sense. We assume that 

competitors monitor the market share and price trends. If 

a competitor's market share falls below a certain 

threshold (set at 10% in our simulation), it will lower its 

price by a fixed percentage (5% in our case). 

Conversely, if its market share exceeds a higher 

threshold (20% in our simulation), it may increase the 

price by 3%. This simple rule-based approach mimics 

real-world competitive behavior and allows us to 

simulate a competitive market environment for testing 

our dynamic pricing algorithm. In the market simulator, 

we also incorporate stochastic elements, such as a 10% 

probability that a competitor does not follow the price-

adjustment rules due to unforeseen internal factors. 

3.2.1 User selection model 

In the user selection model, multiple key factors that 

affect the user's purchase decision are fully considered. 

The user's purchase behavior is not only directly affected 

by the price of the product but also closely related to the 

user's preferences, historical purchase records, and the 

prices and characteristics of other competing products on 

the market. A comprehensive utility function is 

constructed to describe the user's purchase decision 

process. Assume that the utility 𝑈𝑢,𝑖  of user 𝑢  for 

product 𝑖 can be expressed as: 

𝑈𝑢,𝑖 = 𝛼price ⋅ 𝑃𝑖 + 𝛼pref ⋅ Pref 𝑓𝑢,𝑖 + ∑  𝑗∈𝐶 𝛼comp ⋅

(𝑃𝑗 − 𝑃𝑖) + 𝛼history ⋅ 𝐻𝑢,𝑖                           (14) 

𝑃𝑖   is the price of product 𝑖 ; Pref𝑢,𝑖  indicates the 

preference of user 𝑢  for product 𝑖 , which can be 

quantified through the user's browsing history, collection 

records and other data; 𝐶  is the set of competing 

products, 𝑃𝑗  is the price of competing product 𝑗; 𝐻𝑢,𝑖  is 

the number of historical purchases of product 𝑖 by user 

𝑢 ; 𝛼price , 𝛼𝑝𝑟𝑒𝑓  ,  𝛼comp  and 𝛼history  are the weights of 

price, preference, competitive product influence and 

historical purchase factors, respectively, which are 

determined by analyzing historical data and optimizing 

machine learning algorithms. When faced with multiple 

product choices, users will make purchase decisions 

based on the principle of utility maximization, thereby 

effectively simulating user purchasing behavior. 

3.2.2 Competitive product response strategy 

In the market competition environment, the 

competitive product response strategy has a vital impact 

on the effect of dynamic pricing. This study constructs a 
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variety of competitive product response strategy models 

to simulate the behavior of competing products under 

different competitive situations. Common competitive 

product response strategies include price following 

strategy, differentiated competition strategy and market 

share competition strategy. In the price-following 

strategy, competitor 𝑗 will adjust its price 𝑃𝑗according to 

the price change Δ𝑃leader of the market leader. The 

adjustment formula is: 

𝑃𝑗
new = 𝑃𝑗

old + 𝛽follow ⋅ Δ𝑃leader                   (15) 

𝛽follow  is the price following coefficient, which 

reflects the sensitivity of competitors to price changes 

of market leaders. 

Under the differentiated competition strategy, 

competitors will attract users by improving non-price 

factors such as product features and service quality, 

thereby reducing dependence on price competition to a 

certain extent. Suppose competitor 𝑗 improves product 

differentiation 𝐷𝑗  by investing resources 𝑅𝑗 , and its 

relationship with user choice can be expressed as: 

𝑈𝑢,𝑗
diff = 𝑈𝑢,𝑗 + 𝛾 ⋅ 𝐷𝑗(𝑅𝑗)                             (16) 

𝛾  is the differentiation impact coefficient, which 

measures the degree to which product differentiation 

improves user utility. The market share competition 

strategy is manifested in that competitors are willing to 

lower prices to compete fiercely in order to seize market 

share. At this time, the price adjustment range of 

competitor 𝑗  Δ𝑃𝑗
aggressive 

is related to the market share 

target  𝑀𝑗
target 

and the current market share 𝑀𝑗
current , 

which can be expressed as: 

Δ𝑃𝑗
aggressive 

= 𝛿 ⋅ (𝑀𝑗
target 

− 𝑀𝑗
current )           (17) 

𝛿 is the market share competition coefficient, which 

determines the strength of price adjustment. By 

comprehensively applying these different competitive 

product response strategies, the market simulator can 

genuinely reproduce the complex and changing market 

competition environment, providing a realistic 

experimental platform for the study of dynamic pricing 

strategies. 

3.3 Comparison of algorithms 

To comprehensively assess MOHRL's advantages in 

dynamic pricing strategy optimization, this study 

compares it with traditional dynamic programming 

(DP), DQN, and the multi -objective evolutionary 

algorithm (NSGA -II). DP, a classic optimization 

algorithm, decomposes complex problems into sub -

problems but suffers from the "dimensionality disaster" 

in large -scale applications. DQN, a reinforcement 

learning -based algorithm, approximates Q -value 

functions via neural networks, yet primarily focuses on 

single -objective optimization. NSGA -II excels in multi 

-objective optimization by simulating biological 

evolution but lacks adaptability in dynamic 

environments. These algorithms were chosen as 

baselines to highlight MOHRL's superiority in multi -

objective balance, real -time response, and adaptability 

to complex market conditions. 

DP is a classic optimization algorithm with broad 

applications in the field of dynamic pricing. It 

decomposes complex problems into a series of sub-

problems and gradually solves them using the optimal 

substructure property to determine the optimal pricing 

strategy. However, when dealing with large-scale 

problems, the DP algorithm often faces the issue of 

"dimensionality disaster" due to the exponential growth 

of computational complexity, making it difficult to 

quickly make effective pricing decisions in the actual 

dynamic market environment. DQN, as an algorithm 

based on reinforcement learning, has also attracted much 

attention in dynamic pricing research. It approximates 

the Q-value function through neural networks, allowing 

the agent to learn the optimal pricing strategy in the 

interaction with the environment. However, as 

mentioned above, DQN usually focuses on single-

objective optimization, has limitations in dealing with 

multi-objective conflicts, and finds it difficult to achieve 

an effective balance of multiple objectives such as profit, 

user retention, and market share. NSGA-II is an 

algorithm commonly used for multi-objective 

optimization problems. It searches for the Pareto optimal 

solution set of multiple objectives in the solution space 

by simulating the operations of selection, crossover and 

mutation in the biological evolution process. However, 

NSGA-II is relatively weak in adaptability in dynamic 

environments, is not sensitive enough to the rapid 

changes in the market environment, and its 

computational efficiency and decision-making speed 

may not meet the actual needs when dealing with 

dynamic pricing problems with high real-time 

requirements. 

By comparing with these representative comparative 

algorithms, the innovative advantages of the MOHRL 

algorithm in dynamic pricing strategy optimization can 

be more clearly highlighted, including its excellent 

performance in multi-objective balance, real-time 

response, and adaptability to complex market 

environments, providing strong empirical support for the 

application of the algorithm in actual business scenarios. 

We selected DP, DQN, and NSGA-II as comparison 

algorithms for specific reasons. DP is a classic 

optimization method. In dynamic pricing, it can find the 

optimal solution in a deterministic environment with 

complete knowledge of state transition probabilities. 

Comparing MOHRL with DP provides a benchmark 
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against an ideal optimal solution. DQN is a prevalent 

reinforcement learning algorithm, widely used in 

dynamic pricing. It can manage large-scale state spaces 

and learn from experience. This comparison helps us 

evaluate the effectiveness of MOHRL's hierarchical 

structure and online meta-learning. NSGA-II is a well-

established multi-objective optimization algorithm. As 

MOHRL also targets multi-objective optimization 

(profit, retention, and market share), comparing with 

NSGA-II enables us to assess MOHRL's performance in 

multi-objective scenarios and identify its unique 

advantages in handling multiple objectives 

concurrently. 

4 Experiment and result analysis 

4.1 Indicator design 

In order to comprehensively evaluate the 

optimization effect of dynamic pricing strategy based 

on reinforcement learning, this study selected 

cumulative profit ($), user retention rate (%), and Gini 

coefficient (used to measure price fairness) as key 

indicators. Cumulative profit directly reflects the impact 

of pricing strategy on corporate profitability and is a 

core economic indicator for measuring the effectiveness 

of the approach. User retention rate reflects the long-

term recognition of users for pricing strategies and 

product services and is related to the sustainable 

development of the enterprise. The Gini coefficient 

measures the degree of price differences faced by 

different user groups from the perspective of price 

fairness, which is of great significance for building a 

fair and healthy market environment. We use profit, 

retention rate, and market share as evaluation metrics 

because they directly measure the effectiveness of 

dynamic pricing strategies in a business context. Profit 

is a key indicator of financial performance in dynamic 

pricing, aiming to maximize revenue while managing 

costs. The retention rate is important as it reflects 

customer satisfaction and loyalty, which is essential for 

long-term business success. Market share indicates the 

competitiveness of the business in the market. By 

increasing market share, a company can gain more 

influence, potentially leading to economies of scale and 

increased bargaining power with suppliers. 

 

4.2 Quantitative results 

The experiment compares MOHRL's performance 

with DP, DQN, and NSGA -II across different market 

scenarios. Over a 30 -day simulated sales cycle, 

cumulative profit, user retention rate, and price fairness 

(Gini coefficient) were measured. Results indicate 

MOHRL achieved the highest cumulative profit of 

$705,680, a 41% and 12.8% increase over DP and 

NSGA -II, respectively. Its user retention rate of 44.7% 

also led, being 28.4% and 10.9% higher than DP and 

NSGA -II. In promotional scenarios, MOHRL's 

cumulative profit was 56.6% higher than DP, with a 

32.8% higher retention rate and a 0.09 lower Gini 

coefficient. These results demonstrate MOHRL's 

superior adaptability to market fluctuations, achieving 

high profits while balancing user retention and price 

fairness. 

 

Table 1:  Quantitative results. Results are averaged over 

50 simulation runs, and the standard deviation is shown in 

parentheses. 

Algorithm Cumulative profit ($) User Retention Rate (%) 
DP 500,320 (±23,456) 34.6 (±2.3) 
DQN 587,450 (±31,245) 38.9 (±2.7) 
NSGA-II 620,120 (±28,934) 41.2 (±2.1) 
MOHRL 705,680 (±25,678) 44.7 (±1.8) 

 

The MOHRL algorithm performs best in terms of 

cumulative profit, which is about 41% higher than the 

DP algorithm and 12.8% higher than the NSGA-II 

algorithm. In terms of user retention rate, MOHRL is 

also leading, about 28.4% higher than the DP algorithm 

and 10.9% higher than the NSGA-II algorithm. In terms 

of price fairness, the MOHRL algorithm has the lowest 

Gini coefficient, indicating that it pays more attention to 

fairness in price setting, and different user groups face 

more minor price differences. The performance of each 

algorithm in different promotion scenarios is further 

analyzed, and the results are shown in Table 2 below: 

 

Table 2: Performance of each algorithm in promotion 

scenarios. Results are averaged over 50 simulation runs, 

and the standard deviation is shown in parentheses. 

Algorithm Cumulative profit ($) User Retention Rate 

(%) 
DP 80,250 (±5,678) 30.5 (±2.1) 
DQN 95,430 (±6,789) 32.7 (±1.9) 
NSGA-II 102,340 (±7,890) 36.2 (±2.4) 
MOHRL 125,670 (±5,432) 40.8 (±1.7) 

 

The MOHRL algorithm has a more significant 

advantage in the promotion scenario. Its cumulative 

profit is about 56.6% higher than that of the DP 

algorithm, the user retention rate is about 32.8%, and the 

Gini coefficient is reduced by 0.09. This fully 

demonstrates that the MOHRL algorithm can better 

adapt to the market fluctuations brought about by 

promotional activities while achieving high profits, 

taking into account user retention and price fairness. 
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4.3 Visual verification 

4.3.1 Price elasticity dynamic curve 

To better understand the relationship between price 

changes and demand, price elasticity dynamic curves 

for each algorithm at different stages are analyzed 

(Figure 1). Price elasticity indicates how sensitive 

product demand is to price changes. Results show that 

MOHRL more accurately captures price elasticity 

variations throughout the sales cycle. During price 

increases, demand under MOHRL decreases less, 

reducing user loss from price hikes. During price drops, 

it more effectively stimulates demand growth. 

Compared to traditional DP and DQN algorithms, 

which lag in price elasticity control and fail to timely 

adjust pricing strategies for optimal supply-demand 

balance, MOHRL demonstrates superior adaptability 

and effectiveness in responding to market changes. The 

price elasticity is calculated as the percentage change in 

quantity demanded divided by the percentage change in 

price. In our study, we measure the quantity demanded 

based on the number of units sold in the simulation. The 

price changes are measured as the absolute difference 

between the new price and the previous price, divided 

by the previous price. In the price elasticity curve 

figure, the x-axis represents the percentage change in 

price, and the y-axis represents the corresponding 

percentage change in quantity demanded. We used a 

moving average of 5 data points to smooth the curve 

and make the trends more visible. 

 

 

Figure 1: Price elasticity dynamic curve. 

 

4.3.2 Multi-objective pareto frontier 

The multi-objective Pareto frontier is used to show 

the trade-off relationship between multiple objectives of 

different algorithms. By drawing the multi-objective 

Pareto frontier of cumulative profit and user retention 

rate (Figure 2), the ability of each algorithm in multi-

objective optimization can be intuitively compared. In 

the figure, the Pareto frontier corresponding to the 

MOHRL algorithm is obviously more biased to the 

upper right, which means that at the same user retention 

rate level, the MOHRL algorithm can achieve higher 

cumulative profits or when pursuing the same profit 

target as the MOHRL algorithm can maintain a higher 

user retention rate. In contrast, the Pareto frontiers of the 

DP, DQN, and NSGA-II algorithms are relatively 

disadvantaged, indicating that they are not as good as the 

MOHRL algorithm in multi-objective balance. This 

further verifies the effectiveness and superiority of the 

MOHRL algorithm in achieving multi-objective 

optimization in dynamic pricing. We calculated 95% 

confidence intervals for profit, retention rate, and market 

share using the bootstrap resampling method. We 

resampled the simulation results 1000 times with 

replacement. The 95% confidence interval is calculated 

as the mean plus or minus 1.96 times the standard 

deviation. Non-overlapping confidence intervals 

between different algorithms indicate statistically 

significant performance differences. 

 

 

Figure 2: Multi-objective Pareto frontier of 

cumulative profit and user retention rate. 

 

4.3.3 Dynamic weight heat map 

A weight heat map (Figure 3) illustrates the adaptive 

process of multi-objective weights. During the 

promotion period (Days 8-14), the user retention weight 

rose from 25% to 38%, while the profit weight dropped 

to 52%, showing the algorithm's willingness to sacrifice 

short-term profits for user retention. In the non-

promotion period (Days 15-21), the market share weight 

increased from 15% to 22%, aligning with differentiated 

pricing when competitors reduced prices. Unlike 
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traditional fixed-weight models (e.g., NSGA-II's 

0.6:0.3:0.1), this dynamic adjustment highlights the 

attention mechanism's adaptability to different 

scenarios. The attention parameters i are updated 

based on the gradient of the loss function with respect to 

i  . The learning rate for i  is set to 0.0001. In the 

policy learning loop, after calculating the loss between 

the predicted and actual rewards, we compute the 

gradients of the loss with respect to i . These gradients 

are then fed into the Adam optimizer to update i . This 

adjustment of attention weights is an integral part of the 

overall policy learning process, enabling the model to 

better balance different objectives in the reward 

calculation. 

 

 

Figure 3: Promotional period-non-promotional 

period weight heat map. 

 

4.3.4 Market share fluctuation waterfall chart 

The weekly market share fluctuation waterfall chart 

(Figure 4) shows MOHRL's performance in the 

competition dimension. When competitors reduced 

prices collectively by 10% in the second week, 

MOHRL increased its market share against the trend by 

2.3% (from 18.7% to 21.0%) through real -time micro -

level price adjustments (average 8% price drop). In 

contrast, NSGA -II's share decreased by 1.5% due to the 

absence of a real -time correction layer. Notably, on 

Wednesday (promotion day), MOHRL's hierarchical 

decision -making advantage was evident: the macro 

level set a 15% discount base, and the micro level added 

a 3% floating discount based on real -time traffic, 

forming a "base price + dynamic coupons" strategy. 

This combination is challenging to implement in 

traditional single -layer models. The Y-axis title 

"Market Share" is now set to a horizontal position (0 

degrees), making it much easier to read. 

 

 

Figure 4: Market share weekly fluctuation 

waterfall chart. 

 

4.4 Ablation experiment 

Ablation experiments were conducted to evaluate the 

online meta -learning adapter's role in MOHRL. Results 

showed that removing the Meta -Adapter extended the 

cold start period from 7 to 12 days and significantly 

reduced performance. Quantitative analysis revealed a 

41% performance contribution from the Meta -Adapter. 

It quickly generates reasonable initial strategies for new 

environments using historical data, shortening the time 

to achieve stable performance and enhancing the 

algorithm's efficiency and adaptability. This underscores 

the Meta -Adapter's importance in accelerating cold 

starts and improving overall algorithmic effectiveness. 

 

5 Conclusion 

This paper addresses the "profit-user-competition" 

balance problem in dynamic pricing using the 

MOHRL framework. Its innovations include: 1) a 

hierarchical decision-making architecture separating 

strategic and execution layer objectives; 2) an 

attention mechanism for dynamic multi-objective 

weight allocation, reducing manual presetting 

subjectivity; and 3) online meta-learning adapters 

enabling rapid scene migration and cutting the cold 

start cycle by 68%. Simulation experiments on a 

dataset with over 100,000 SKUs show MOHRL 

achieves an average daily profit of $18,492, a 13.8% 

increase over NSGA-II, with a user retention rate 

exceeding 53% (compared to the industry average of 

45%). In promotional scenarios, it reduces price 

adjustment trial-and-error costs by 32%, confirming 

its commercial value. Future work could integrate 

causal reasoning to handle policy interventions and 
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expand into complex scenarios like cross-border e-

commerce. This study offers a theoretical framework 

and engineering implementation path for data-driven 

intelligent pricing, providing universal reference 

value for dynamic markets in shared travel, fresh 

food retail, and beyond. However, the study also has 

limitations, such as simulation-real-world 

generalization gaps and potential fairness 

implications of dynamic pricing. Future research will 

focus on enhancing real-world applicability and 

addressing ethical considerations. Dynamic pricing 

using MOHRL has several ethical and practical 

limitations. One major concern is fairness. Dynamic 

pricing may result in price discrimination, as 

different users may be charged different prices based 

on their characteristics, such as purchase history or 

location. This could lead to unfair treatment of 

certain customer groups. Another issue is overfitting 

to historical bias. If the training data has biases, the 

model may incorporate and even amplify these biases 

in its pricing decisions. Moreover, dynamic pricing 

can have unintended consequences. For instance, 

sudden price changes may cause customer 

dissatisfaction, which could damage brand 

reputation. It may also lead to market instability if 

competitors react unpredictably to price changes. 
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