
https://doi.org/10.31449/inf.v49i26.8595 Informatica 49 (2025) 123–134 123

Multi-Objective Hierarchical Reinforcement Learning with Online

Meta-Learning for Dynamic Pricing Strategy Optimization

Guangzeng Zhang

 Anyang Vocational and Technical College, Anyang 455000, HeNan, China

E-mail: zgz781228@163.com

Keywords: reinforcement learning, dynamic pricing, multi-objective optimization, online meta-learning, simulation

system

Received: March 13, 2025

In this study, we propose a Multi-Objective Hierarchical Reinforcement Learning (MOHRL)

approach with online meta-learning for dynamic pricing strategy optimization. Our method utilizes

hierarchical RL layers to decompose the pricing decision-making process and a meta-learning

adapter to accelerate the cold start. We compare MOHRL with baseline methods like DQN and

NSGA-II. Experimental results show that MOHRL outperforms DQN by 25% in profit and 18% in

retention rate, and NSGA-II by 30% in market share over a 30-day simulation. The simulation system

built based on 100,000+ SKU data of an e-commerce platform demonstrates MOHRL's superiority in

real-time dynamic pricing, especially in cold start scenarios. Ablation experiments confirm that the

meta-learning module significantly enhances performance, with a 41% contribution to the overall

improvement.

Povzetek: MOHRL (Multi-Objective Hierarchical Reinforcement Learning) MOHRL s sprotnim meta-

učenjem omogoča hitro in uravnoteženo dinamično oblikovanje cen z več cilji (dobiček, zadržanje

uporabnikov, delež trga). Posebej učinkovit je v scenarijih z začetno neznanko.

1 Introduction

To address these challenges, this study integrates multi-

objective hierarchical reinforcement learning (MOHRL)

with online meta-learning. MOHRL divides the pricing

decision process into two main levels: the macro level

and the micro level. The macro level focuses on long-

term strategic goals, such as setting overall price trends

and profit margin ranges, while the micro level handles

real-time price adjustments in response to market

dynamics like competitor price changes or fluctuating

consumer demand. By incorporating multiple objectives

—profit, user satisfaction, and competitive advantage—

into the reinforcement learning reward function [1], the

model achieves more balanced pricing decisions.

Additionally, online meta-learning enables rapid

adaptation to new market environments by leveraging

historical data to quickly adjust model parameters. This

integration of MOHRL and online meta-learning offers

a more intelligent and efficient dynamic pricing

solution, overcoming limitations of traditional methods

and advancing both research and practical applications

in the field. A crucial component of MOHRL is the

online meta-learning adapter, which is designed to

accelerate the cold start process by leveraging historical

experience. As will be shown in the ablation

experiments, the meta-learning module significantly

contributes to the performance gain, accounting for a

41% improvement [2].

The sharing economy model represented by online

car-hailing platforms such as Uber and Lyft and shared

bicycle services such as Mobike and OFO also relies

heavily on dynamic pricing mechanisms. During peak

hours in cities, when travel demand or demand for

shared bicycles rises sharply, these platforms will adjust

service prices accordingly [3]. For example, during the

evening peak hours in large cities, online car-hailing

prices may increase by 30%-50% compared to non-peak

hours. This price adjustment mechanism cannot only

encourage more drivers or shared bicycle owners to

participate in the service supply, thereby increasing

market supply but also help balance the supply and

demand relationship [4]. However, similar to the e-

commerce field, sharing economy platforms face

considerable challenges in processing real-time data [5].

They need to process a large amount of request

information, user location data, and historical order data

in real-time to determine the best price. For example,

accurately predicting the demand for shared bicycles in

different urban areas within the next hour based on real-

time data and historical patterns is a complex problem

that requires advanced data processing technology to

solve.

https://doi.org/10.31449/inf.v49i26.8594
mailto:zgz781228@163.com

124 Informatica 49 (2025) 123–134 G. Zhang

Static pricing models are usually built based on

historical data and some oversimplified market

assumptions [6]. They assume that market conditions

will remain relatively stable in the short term. For

example, when traditional physical stores price goods,

they often add a fixed profit margin to the cost without

considering real-time market fluctuations [7]. In the

ever-changing e-commerce and sharing economy

market environment, consumer preferences may change

overnight, competitors' strategies may also adjust

quickly, and supply and demand imbalances may occur

at any time within minutes. Static models are obviously

too rigid to adapt to such rapid changes. Faced with

sudden price cuts by competitors or sudden surges in

consumer demand caused by social media hot spots,

static models have difficulty making price adjustments

quickly. Single-objective optimization methods, such as

the simple pursuit of profit maximization, often ignore

other critical factors [8]. For example, if a company sets

its product price too high to maximize profits, it may

achieve profit growth in the short term, but it may lose a

large number of customers due to the high price

threshold, and it will also be at a disadvantage in the

competition with competitors [9]. In a dynamic market

environment, it is crucial to achieve a balance between

multiple factors such as profit, user satisfaction and

market share. Ignoring any of these factors may have a

negative impact on the company's long-term

performance and sustainable development.

To overcome the above challenges, this study

combines multi-objective hierarchical reinforcement

learning (MOHRL) with online meta-learning. Multi-

objective hierarchical reinforcement learning divides

the pricing decision process into multiple levels [10].

Higher-level strategies focus on long-term and overall

goals, such as formulating overall price trends and

determining appropriate profit margin ranges within a

specific period. Lower-level strategies focus on real-

time price adjustments based on immediate market

changes, such as responding to sudden price cuts by

competitors or unexpected surges in consumer demand

[11]. By incorporating multiple objectives such as

profit, user satisfaction, and competitive advantage into

the reward function of the reinforcement learning

algorithm, the model can make more comprehensive

and balanced pricing decisions. At the same time, online

meta-learning gives the system the ability to adapt to

new market environments quickly. It can learn from

historical experience and data so that the reinforcement

learning model can quickly adjust its parameters when

facing new market conditions [12]. This innovative

combination of multi-objective hierarchical

reinforcement learning and online meta-learning

provides a more intelligent and efficient solution for

dynamic pricing, effectively making up for the

shortcomings of existing methods and opening up new

paths for research and practice in this field.

2 Multi-objective hierarchical

reinforcement learning (MOHRL)

 In the optimization research of dynamic pricing

strategies, the Multi-Objective Hierarchical

Reinforcement Learning (MOHRL) algorithm aims to

overcome the limitations of traditional pricing methods

and respond more efficiently and intelligently to

complex and changing market environments. By

combining hierarchical decision-making with multi-

objective optimization, MOHRL dynamically balances

profit, user retention, and market share through an

attention-based reward mechanism. It also incorporates

an online meta-learning adapter to enhance adaptability

to new market conditions, making it particularly

effective for real-time dynamic pricing scenarios. The

hierarchical structure and online meta-learning

mechanism in MOHRL address key limitations of

existing methods, such as poor cold start performance

and lack of dynamic objective balancing.

2.1 Core architecture

2.1.1 Hierarchical decision-making

MOHRL employs a hierarchical decision-making

mechanism, dividing the pricing process into macro and

micro layers to enhance decision-making

comprehensiveness and accuracy. The macro layer

formulates periodic pricing strategies based on long-term

market trends, seasonal variations, and corporate

strategic planning. Within its decision-making period,

the price strategy is expressed as a time function. This

function, based on market trends, simulates periodic

price fluctuations. Parameters such as fluctuation

frequency, initial phase, and adjustment amplitudes are

determined through historical data analysis and long-

term strategic considerations[13]. The macro layer is

mainly responsible for formulating periodic pricing

strategies, and its goal is to determine the approximate

price trend of products or services within a relatively

long-time scale based on the overall market trend,

seasonal changes, and the company's long-term strategic

planning. Suppose the decision-making period of the

macro layer is 𝑇𝑚. Within this period, the price strategy

𝑃𝑚 can be expressed as a function of time 𝑡 (𝑡 ∈
[0, 𝑇𝑚]):

𝑃𝑚(𝑡) = 𝛼𝑚 ⋅ 𝑓𝑚(𝑡) + 𝛽𝑚 (1)

In the macro-layer decision-making, parameters αm

RS-Net: A Dynamic Weight Hybrid Model Integrating SDE… Informatica 49 (2025) 123–134 125

and βm are learned via reinforcement signals. We adopt

an outer-loop RL policy optimization algorithm. At

each time step t, the agent observes the market state st,

takes an action at according to the current policy π(st),

and receives a reward rt. The policy π is updated to

maximize the cumulative reward 
=

T

tr
1t

, and this

process updates the values of αm and βm.

𝑓𝑚(𝑡) is an essential price function based on market

trends. For example, it can be set as 𝑓𝑚(𝑡) =

sin (𝜔𝑚𝑡 + 𝜑𝑚) , which simulates the periodic

fluctuation of market prices over time, 𝜔𝑚 is the

fluctuation frequency, 𝜑𝑚 is the initial phase; 𝛼𝑚 and

𝛽𝑚 are two parameters, which are used to adjust the

amplitude of price fluctuations and the benchmark price

level respectively, and their values are determined by

the company's long-term strategy and market analysis.

The microlayer focuses on real-time price

adjustment and correction. Within the price framework

determined by the macro layer, the price is dynamically

fine-tuned according to the real-time market

information obtained, such as the user's instant purchase

behavior, the latest price changes of competitors, etc.

The decision-making frequency of the microlayer is

much higher than that of the macro layer. Let the

decision-making time interval of the microlayer be Δ𝑡.

At time 𝑡𝑛 (𝑡𝑛 = 𝑛Δ𝑡), the real-time price adjustment

correction Δ𝑃micro (𝑡𝑛) based on the macro layer price

Δ𝑃micro (𝑡𝑛) can be expressed as:

Δ𝑃micro (𝑡𝑛) = 𝛾𝑚 ⋅ 𝑔𝑚(𝑠(𝑡𝑛)) (2)

𝑠(𝑡𝑛) represents the market state vector at time 𝑡𝑛,

which contains information such as user behavior and

competitive dynamics; 𝑔𝑚(𝑠(𝑡𝑛)) is a function related

to the market state, which is used to calculate the

direction and amplitude of price adjustment. For

example, it can be set to 𝑔𝑚(𝑠(𝑡𝑛)) = ∑𝑖=1
𝑘  𝑤𝑖 ⋅

𝑥𝑖(𝑠(𝑡𝑛)) , where 𝑥𝑖(𝑠(𝑡𝑛)) is the 𝑖 feature of the

market state vector 𝑠(𝑡𝑛) , 𝑤𝑖 is the corresponding

weight, which is continuously optimized through

reinforcement learning; 𝛾𝑚 is a parameter that controls

the sensitivity of adjustment. We use an ϵ-greedy

exploration strategy for balancing exploitation and

exploration in the dynamic price step mechanism.

Initially, ϵ is set to 0.8, and it decays exponentially to

0.1 during training. With a probability of ϵ, the agent

chooses a random action within the price step range [βa

.min, βa.max]. This random selection enables the

exploration of new pricing strategies. With a probability

of (1-ϵ), the agent selects the action that maximizes the

expected future reward, based on the learned Q-values,

thus exploiting the existing knowledge.

2.1.2 Multi-objective reward function

To optimize profit, user retention, and market share

comprehensively, MOHRL incorporates a multi-

objective reward function. The reward weights for profit

(60%), user retention (25%), and market share (15%) are

dynamically adjusted via an attention mechanism,

reflecting their varying importance in different market

conditions. The profit reward is calculated based on

price and sales volume, considering unit costs. User

retention reward depends on the ratio of retained users,

while market share reward is determined by competitor

sales volumes. The attention mechanism updates these

weights through a defined formula, integrating them into

the final multi-objective reward function. This dynamic

adjustment allows MOHRL to prioritize objectives

adaptively, enhancing its responsiveness to market

changes [14]. The profit target accounts for 60% of the

reward function, user retention accounts for 25%, and

market share accounts for 15%. The weights of each

goal are not fixed but are dynamically learned through

the attention mechanism to adapt to the changes in the

importance of each goal in different market

environments. The profit reward 𝑅profit can be expressed

as:

𝑅profit (𝑡) = 𝜋(𝑡) ⋅ 𝜌profit (3)

Where 𝜋(𝑡) is the profit at time 𝑡 , which is

determined by price 𝑃(𝑡) and sales volume 𝑄(𝑡), that is,

𝜋(𝑡) = (𝑃(𝑡) − 𝐶) ⋅ 𝑄(𝑡), 𝐶 is the unit cost; 𝜌profit is the

initial weight of the profit target in the reward function,

set to 0.6. The user retention reward 𝑅retention is defined

as:

𝑅retention (𝑡) =
𝑁retention (𝑡)

𝑁total (𝑡)
⋅ 𝜌retention (4)

𝑁retention (𝑡)is the number of users retained at time 𝑡,

𝑁total (𝑡) is the total number of users, 𝜌retention is the

initial weight of the user retention target, set to 0.25. The

market share reward 𝑅marketShare is expressed as:

𝑅marketShare (𝑡) =
𝑄(𝑡)

∑  𝑀
𝑗=1  𝑄𝑗(𝑡)

⋅ 𝜌marketShare (5)

𝑄𝑗(𝑡)is the sales volume of competitor 𝑗 at time 𝑡,

𝑀 is the total number of competitors, 𝜌marketShare is the

initial weight of the market share target, set to 0.15. The

dynamic weights are learned through the attention

mechanism. Let the attention weight vector 𝝎(𝑡) =

[𝜔profit (𝑡), 𝜔retention (𝑡), 𝜔marketShare (𝑡)] , and its updated

formula is:

𝜔𝑖(𝑡) =
exp(𝜃𝑖⋅𝑅𝑖(𝑡))

∑  3
𝑗=1  exp(𝜃𝑗⋅𝑅𝑗(𝑡))

 (6)

𝑖 = profit, retention, market Share, 𝜃𝑖 is a parameter

126 Informatica 49 (2025) 123–134 G. Zhang

that controls the sensitivity of weight update. The final

multi-objective reward function 𝑅(𝑡) is:

𝑅(𝑡) = 𝜔profit (𝑡) ⋅ 𝑅profit (𝑡) + 𝜔retention (𝑡) ⋅ 𝑅retention (𝑡) + 𝜔marketShare (𝑡)

𝑅marketShare (𝑡)

(7)

The attention weights θi are updated using the

Adam optimizer. We compute the gradients of the loss

function, which measures the difference between the

predicted and actual rewards, with respect to θi. The

initial values of θi are randomly initialized within the

range [-0.1, 0.1] to avoid biasing the reward calculation.

The self-attention mechanism we use has several

advantages. It can adaptively adjust the weights

assigned to different reward components according to

the market state and action, enabling more accurate

reward calculation compared to fixed-weight methods.

However, it does increase the computational complexity

due to the additional matrix multiplications for

calculating attention scores. Considering the nature of

our dynamic pricing problem, where accurate reward

representation is crucial, we believe the benefits of this

mechanism outweigh the increased complexity.

2.1.3 Online meta-learning adapter

To enable rapid adaptation to new environments

and accelerate cold start, MOHRL incorporates an

online meta-learning adapter. This adapter uses

historical scenarios, each associated with a strategy and

reward, to calculate similarity with new environments

through a defined similarity function, such as Euclidean

distance. Based on similarity, it weights and fuses

strategies from historical scenarios to generate an initial

strategy for the new environment. By leveraging

historical experience, the meta-learning adapter shortens

the cold start period theoretically by 30%, enhancing

the model's initial adaptability and reducing the time to

achieve stable performance in new scenarios[15]. Let

the historical scenario set be 𝒮history = {𝑠1, 𝑠2, ⋯ , 𝑠𝑁},

and each historical scenario 𝑠𝑖 corresponds to a strategy

𝜋𝑖 and reward 𝑅𝑖 . In the new environment𝑠new , Meta-

Adapter first calculates the similarity between the new

environment and each historical scenario through a

similarity measurement function 𝑑(𝑠𝑛𝑒𝑤 , 𝑠𝑖) , for

example, using the Euclidean distance:

𝑑(𝑠new , 𝑠𝑖) = √∑  𝐷
𝑗=1   (𝑥𝑗(𝑠new) − 𝑥𝑗(𝑠𝑖))

2

 (8)

𝐷 is the dimension of the state vector, and 𝑥𝑗(𝑠) is

the 𝑗 feature of the state vector 𝑠. The strategies of the

historical scenarios are weighted and fused to obtain the

initial strategy 𝜋init (𝑠new) based on the similarity:

𝜋init (𝑠new) =
∑  𝑁

𝑖=1  exp (−𝜆⋅𝑑(𝑠new ,𝑠𝑖))⋅𝜋𝑖

∑  𝑁
𝑖=1  exp (−𝜆⋅𝑑(𝑠new ,𝑠𝑖))

 (9)

𝜆 is a parameter that controls the decay speed of

similarity weight. In this way, Meta-Adapter can use

historical experience to quickly generate a more

reasonable initial strategy for the new environment,

which can theoretically accelerate the cold start by 30%.

where λ is a parameter that controls the decay speed of similarity

weight. Our online meta-learning adapter uses a custom-

designed meta-learning algorithm that combines

aspects of MAML and nearest-neighbor search. This

approach allows for fast adaptation and efficient

utilization of historical experience. The similarity d(hk,

hnew) is calculated using the Euclidean distance, a

simple and commonly-used similarity measure in

vector spaces. It can accurately measure the difference

between the new state and historical states. The

parameter λ serves as a similarity threshold. If d(hk,

hnew) <λ, we utilize the historical experience related to

hk for initializing the model in the new state. A smaller

λ makes the model more conservative in applying

historical experience, while a larger λ promotes more

generalization. Meta-learning is incorporated into our

reinforcement learning framework because dynamic

pricing frequently encounters new market conditions.

Meta-learning enables the model to adapt rapidly to

these new situations by leveraging past experience,

thereby enhancing the cold-start performance, which is

essential for real-time pricing applications. We now

report only the experimental result of a 68% increase in

cold-start speed, which is based on extensive

experiments.

2.2 State space design

The state space design is critical for MOHRL to

accurately perceive the market environment. This

algorithm integrates multiple factors, including time

characteristics, user profiles, and competitive

dynamics, and uses latent variable encoding via a

variational autoencoder (VAE) to extract market

sentiment features. The weights for historical

purchase, competitor prices, and other contextual

features are determined using a multi-layer perceptron

(MLP). The MLP has two hidden layers with ReLU

activation functions. Given the concatenated vector of

all raw features as input, the MLP outputs a set of

weights. These weights are then used to linearly

combine the features. For the VAE, it consists of three

hidden layers in both the encoder and decoder. The

hidden layers use ReLU activation functions, and the

output layer of the decoder uses a Sigmoid activation

function. The loss function for training the VAE is the

RS-Net: A Dynamic Weight Hybrid Model Integrating SDE… Informatica 49 (2025) 123–134 127

sum of the reconstruction loss (mean squared error)

and the KL-divergence loss. The final state vector

fuses time features, user profiles, competitive

dynamics, and VAE-encoded latent variables,

providing a comprehensive representation of the

market state for effective decision-making.

Temporal features include season and promotion

cycle information. Assume that a year is divided into 𝑆

seasons, and the current season is 𝑠𝑡 (𝑠𝑡 ∈ {1,2, ⋯ , 𝑆}),

which can be encoded as a one-hot vector 𝒆𝑠𝑡
with

dimension 𝑆. The promotion cycle is represented by 𝑝𝑡 ,

with a value range of [0,1], 0 means no promotion, 1

implies the peak promotion period, and the function can

reflect its impact on the price strategy ℎ(𝑝𝑡) , for

example, ℎ(𝑝𝑡) = 1 + 𝛼𝑝 ⋅ 𝑝𝑡 , 𝛼𝑝 is the promotion

impact coefficient.

User portraits use the RFM clustering method.

Divide users into 𝐾 groups, and assume that the current

user belongs to the 𝑘 group(𝑘 ∈ {1,2, ⋯ , 𝐾}), which is

also encoded as a one-hot vector 𝒆𝑘 with dimension 𝐾.

Price fluctuations of competing products reflect

competition dynamics. Suppose there are 𝑀 competitors

in total, the price of competitor 𝑗 is 𝑃𝑗(𝑡), and the price

fluctuation range is Δ𝑃𝑗(𝑡) = 𝑃𝑗(𝑡) − 𝑃𝑗(𝑡 − Δ𝑡).

In order to further extract the characteristics of

market sentiment, VAE-based latent variable encoding

is introduced. Suppose the input market state vector is

𝒙, and the latent variable 𝒛 is obtained through the VAE

encoder Enc (𝒙):

𝒛 = Enc(𝒙) = 𝜇(𝒙) + 𝜖 ⋅ 𝜎(𝒙) (10)

𝜇(𝒙) and 𝜎(𝒙) are the mean and standard deviation

of the encoder output, respectively, and 𝜖 is a random

variable that follows a standard normal distribution. The

market state vector �̂� = Dec (𝒛) is reconstructed by the

decoder Dec (𝒛). When training VAE, the optimization

goal is to minimize the weighted sum of the

reconstruction loss 𝐿𝑟𝑒𝑐 and the KL divergence 𝐿𝐾𝐿:

𝐿 = 𝛼𝑟𝑒𝑐 ⋅ 𝐿𝑟𝑒𝑐 + 𝛼𝐾𝐿 ⋅ 𝐿𝐾𝐿 (11)

𝐿𝑟𝑒𝑐 = ∑𝑖=1
𝐷  (𝒙𝑖 − �̂�𝑖)

2, 𝐿𝐾𝐿 = −
1

2
∑𝑖=1

𝐷  (1 +

log (𝜎𝑖
2) − 𝜇𝑖

2 − 𝜎𝑖
2), 𝛼𝑟𝑒𝑐 and 𝛼𝐾𝐿 are weight

parameters. The final state space vector 𝒔 is a fusion of

time features, user profiles, competitive dynamics, and

latent variable encoding:

 𝒔 = [𝒆𝑠𝑡
, ℎ(𝑝𝑡), 𝒆𝑘 , Δ𝑃1(𝑡), ⋯ , Δ𝑃𝑀(𝑡), 𝒛] (12)

A detailed diagram in the appendix shows how different

market factors are combined to form the state vector

s(tn).

2.3 Action space optimization

To prevent dimensionality explosion in discrete action

spaces, MOHRL implements a dynamic price step

mechanism. The price adjustment step varies between

0.1% and 5%, where is the price adjustment ratio

ranging from 0.001 to 0.05. In practice, is dynamically

adjusted based on market conditions and strategy

effectiveness. During intense competition with slow

sales growth, the adjustment range increases to allow

larger price changes. In stable markets where profit

targets are met, the range narrows to minimize user

impact from price fluctuations. This dynamic

mechanism ensures price adjustment flexibility, controls

action space complexity, and enhances algorithmic

efficiency and convergence.:

𝑎(𝑡) = 𝛽𝑎 ⋅ 𝑃(𝑡) (13)

𝛽𝑎 is the price adjustment ratio, and its value range

is [0.001,0.05]. In practical applications, the value of 𝛽𝑎

is dynamically adjusted according to the market status

and the effect of the current strategy. For example, when

the market competition is fierce, and sales growth is

slow, the value range of 𝛽𝑎 can be appropriately

increased to increase the price adjustment; when the

market is relatively stable, and the profit target is well

achieved, the value range of 𝛽𝑎 can be narrowed to

reduce the impact of price fluctuations on users [16].

Through this dynamic adjustment mechanism, while

ensuring the flexibility of price adjustment, the

dimension of the action space is effectively controlled,

and the computational efficiency and convergence speed

of the algorithm are improved. The dynamic price step

mechanism is designed to avoid dimensionality

explosion. By adjusting the price within a specific range

(βa∈[0.001,0.05]) based on the market state, it restricts

the number of possible actions. Instead of considering

the entire spectrum of possible price values, which

would result in a high-dimensional action space, the

mechanism focuses on a relevant subset of prices. This

significantly reduces the complexity of the action space,

thus avoiding dimensionality explosion.

3 Simulation system construction

3.1 Data source

To construct a realistic and practically valuable

dynamic pricing simulation system, this study sourced 3-

year historical data from a major e-commerce platform.

The dataset encompasses over 100,000 SKUs, detailing

sales status, price changes, and key market information

across different periods. Notably, promotion and off-

season periods are clearly labeled, offering rich data for

analyzing dynamic pricing strategies under varying

market conditions. The data was collected from a large-

128 Informatica 49 (2025) 123–134 G. Zhang

scale e-commerce platform over a period of two years.

To ensure reproducibility, we obtained the data through

a legal data-sharing agreement with the platform. For

pre-processing, we first dealt with missing values. For

numerical features such as price and quantity, we used

mean imputation for columns with a relatively low

percentage of missing values (less than 10%). For

columns with a higher percentage of missing values, we

employed more advanced techniques like multiple

imputation by chained equations (MICE). Categorical

variables were encoded using one-hot encoding.

Additionally, we normalized numerical features to have

a mean of 0 and a standard deviation of 1 to improve the

training efficiency of our models. The simulation

system employs an agent-based market simulator with

components such as user selection models and

competitive product response strategies to accurately

replicate market dynamics.

In these 3 years of data, the core data such as daily

sales price, sales volume, and cost information of each

SKU are recorded in detail. By analyzing these data, we

can clearly see the fluctuation pattern of commodity

prices over time and the complex relationship between

sales volume and price. For example, in the promotion

season, the prices of some commodities will drop

sharply, while sales volume will show explosive

growth; on the contrary, in the off-season, prices are

relatively stable, but sales volume will also decrease

significantly [17]. At the same time, the inclusion of

cost information enables this paper to comprehensively

consider profit factors when studying pricing strategies,

ensuring the practical operability and commercial value

of the research results. The existence of promotion and

off-season labels provides direct clues for studying the

impact of the market environment on pricing strategies,

helping this paper to accurately distinguish price

behavior patterns under different market conditions,

thereby providing targeted data support for subsequent

algorithm training and strategy optimization.

3.2 Environmental modeling

To accurately simulate the complex market

environment for dynamic pricing, this study utilizes an

agent-based market simulator comprising two key

components: a user selection model and a competitive

product response strategy. The user selection model

considers factors like product price, user preference,

historical purchase records, and competing product

prices, employing a utility function to simulate purchase

decisions. User preference is quantified via browsing

and collection data, while the competitive product

response strategy models competitor behaviors,

including price following, differentiated competition,

and market share competition. Competitors adjust prices

based on market leader changes, improve product

differentiation to reduce price reliance, or lower prices to

seize market share. These components together enable

realistic simulation of market dynamics for in-depth

dynamic pricing strategy analysis. The competitive

product response strategy is implemented as a rule-based

component within the market simulator. It is not trained

in a machine-learning sense. We assume that

competitors monitor the market share and price trends. If

a competitor's market share falls below a certain

threshold (set at 10% in our simulation), it will lower its

price by a fixed percentage (5% in our case).

Conversely, if its market share exceeds a higher

threshold (20% in our simulation), it may increase the

price by 3%. This simple rule-based approach mimics

real-world competitive behavior and allows us to

simulate a competitive market environment for testing

our dynamic pricing algorithm. In the market simulator,

we also incorporate stochastic elements, such as a 10%

probability that a competitor does not follow the price-

adjustment rules due to unforeseen internal factors.

3.2.1 User selection model

In the user selection model, multiple key factors that

affect the user's purchase decision are fully considered.

The user's purchase behavior is not only directly affected

by the price of the product but also closely related to the

user's preferences, historical purchase records, and the

prices and characteristics of other competing products on

the market. A comprehensive utility function is

constructed to describe the user's purchase decision

process. Assume that the utility 𝑈𝑢,𝑖 of user 𝑢 for

product 𝑖 can be expressed as:

𝑈𝑢,𝑖 = 𝛼price ⋅ 𝑃𝑖 + 𝛼pref ⋅ Pref 𝑓𝑢,𝑖 + ∑  𝑗∈𝐶 𝛼comp ⋅

(𝑃𝑗 − 𝑃𝑖) + 𝛼history ⋅ 𝐻𝑢,𝑖 (14)

𝑃𝑖 is the price of product 𝑖 ; Pref𝑢,𝑖 indicates the

preference of user 𝑢 for product 𝑖 , which can be

quantified through the user's browsing history, collection

records and other data; 𝐶 is the set of competing

products, 𝑃𝑗 is the price of competing product 𝑗; 𝐻𝑢,𝑖 is

the number of historical purchases of product 𝑖 by user

𝑢 ; 𝛼price , 𝛼𝑝𝑟𝑒𝑓 , 𝛼comp and 𝛼history are the weights of

price, preference, competitive product influence and

historical purchase factors, respectively, which are

determined by analyzing historical data and optimizing

machine learning algorithms. When faced with multiple

product choices, users will make purchase decisions

based on the principle of utility maximization, thereby

effectively simulating user purchasing behavior.

3.2.2 Competitive product response strategy

In the market competition environment, the

competitive product response strategy has a vital impact

on the effect of dynamic pricing. This study constructs a

RS-Net: A Dynamic Weight Hybrid Model Integrating SDE… Informatica 49 (2025) 123–134 129

variety of competitive product response strategy models

to simulate the behavior of competing products under

different competitive situations. Common competitive

product response strategies include price following

strategy, differentiated competition strategy and market

share competition strategy. In the price-following

strategy, competitor 𝑗 will adjust its price 𝑃𝑗according to

the price change Δ𝑃leader of the market leader. The

adjustment formula is:

𝑃𝑗
new = 𝑃𝑗

old + 𝛽follow ⋅ Δ𝑃leader (15)

𝛽follow is the price following coefficient, which

reflects the sensitivity of competitors to price changes

of market leaders.

Under the differentiated competition strategy,

competitors will attract users by improving non-price

factors such as product features and service quality,

thereby reducing dependence on price competition to a

certain extent. Suppose competitor 𝑗 improves product

differentiation 𝐷𝑗 by investing resources 𝑅𝑗 , and its

relationship with user choice can be expressed as:

𝑈𝑢,𝑗
diff = 𝑈𝑢,𝑗 + 𝛾 ⋅ 𝐷𝑗(𝑅𝑗) (16)

𝛾 is the differentiation impact coefficient, which

measures the degree to which product differentiation

improves user utility. The market share competition

strategy is manifested in that competitors are willing to

lower prices to compete fiercely in order to seize market

share. At this time, the price adjustment range of

competitor 𝑗 Δ𝑃𝑗
aggressive

is related to the market share

target 𝑀𝑗
target

and the current market share 𝑀𝑗
current ,

which can be expressed as:

Δ𝑃𝑗
aggressive

= 𝛿 ⋅ (𝑀𝑗
target

− 𝑀𝑗
current) (17)

𝛿 is the market share competition coefficient, which

determines the strength of price adjustment. By

comprehensively applying these different competitive

product response strategies, the market simulator can

genuinely reproduce the complex and changing market

competition environment, providing a realistic

experimental platform for the study of dynamic pricing

strategies.

3.3 Comparison of algorithms

To comprehensively assess MOHRL's advantages in

dynamic pricing strategy optimization, this study

compares it with traditional dynamic programming

(DP), DQN, and the multi -objective evolutionary

algorithm (NSGA -II). DP, a classic optimization

algorithm, decomposes complex problems into sub -

problems but suffers from the "dimensionality disaster"

in large -scale applications. DQN, a reinforcement

learning -based algorithm, approximates Q -value

functions via neural networks, yet primarily focuses on

single -objective optimization. NSGA -II excels in multi

-objective optimization by simulating biological

evolution but lacks adaptability in dynamic

environments. These algorithms were chosen as

baselines to highlight MOHRL's superiority in multi -

objective balance, real -time response, and adaptability

to complex market conditions.

DP is a classic optimization algorithm with broad

applications in the field of dynamic pricing. It

decomposes complex problems into a series of sub-

problems and gradually solves them using the optimal

substructure property to determine the optimal pricing

strategy. However, when dealing with large-scale

problems, the DP algorithm often faces the issue of

"dimensionality disaster" due to the exponential growth

of computational complexity, making it difficult to

quickly make effective pricing decisions in the actual

dynamic market environment. DQN, as an algorithm

based on reinforcement learning, has also attracted much

attention in dynamic pricing research. It approximates

the Q-value function through neural networks, allowing

the agent to learn the optimal pricing strategy in the

interaction with the environment. However, as

mentioned above, DQN usually focuses on single-

objective optimization, has limitations in dealing with

multi-objective conflicts, and finds it difficult to achieve

an effective balance of multiple objectives such as profit,

user retention, and market share. NSGA-II is an

algorithm commonly used for multi-objective

optimization problems. It searches for the Pareto optimal

solution set of multiple objectives in the solution space

by simulating the operations of selection, crossover and

mutation in the biological evolution process. However,

NSGA-II is relatively weak in adaptability in dynamic

environments, is not sensitive enough to the rapid

changes in the market environment, and its

computational efficiency and decision-making speed

may not meet the actual needs when dealing with

dynamic pricing problems with high real-time

requirements.

By comparing with these representative comparative

algorithms, the innovative advantages of the MOHRL

algorithm in dynamic pricing strategy optimization can

be more clearly highlighted, including its excellent

performance in multi-objective balance, real-time

response, and adaptability to complex market

environments, providing strong empirical support for the

application of the algorithm in actual business scenarios.

We selected DP, DQN, and NSGA-II as comparison

algorithms for specific reasons. DP is a classic

optimization method. In dynamic pricing, it can find the

optimal solution in a deterministic environment with

complete knowledge of state transition probabilities.

Comparing MOHRL with DP provides a benchmark

130 Informatica 49 (2025) 123–134 G. Zhang

against an ideal optimal solution. DQN is a prevalent

reinforcement learning algorithm, widely used in

dynamic pricing. It can manage large-scale state spaces

and learn from experience. This comparison helps us

evaluate the effectiveness of MOHRL's hierarchical

structure and online meta-learning. NSGA-II is a well-

established multi-objective optimization algorithm. As

MOHRL also targets multi-objective optimization

(profit, retention, and market share), comparing with

NSGA-II enables us to assess MOHRL's performance in

multi-objective scenarios and identify its unique

advantages in handling multiple objectives

concurrently.

4 Experiment and result analysis

4.1 Indicator design

In order to comprehensively evaluate the

optimization effect of dynamic pricing strategy based

on reinforcement learning, this study selected

cumulative profit ($), user retention rate (%), and Gini

coefficient (used to measure price fairness) as key

indicators. Cumulative profit directly reflects the impact

of pricing strategy on corporate profitability and is a

core economic indicator for measuring the effectiveness

of the approach. User retention rate reflects the long-

term recognition of users for pricing strategies and

product services and is related to the sustainable

development of the enterprise. The Gini coefficient

measures the degree of price differences faced by

different user groups from the perspective of price

fairness, which is of great significance for building a

fair and healthy market environment. We use profit,

retention rate, and market share as evaluation metrics

because they directly measure the effectiveness of

dynamic pricing strategies in a business context. Profit

is a key indicator of financial performance in dynamic

pricing, aiming to maximize revenue while managing

costs. The retention rate is important as it reflects

customer satisfaction and loyalty, which is essential for

long-term business success. Market share indicates the

competitiveness of the business in the market. By

increasing market share, a company can gain more

influence, potentially leading to economies of scale and

increased bargaining power with suppliers.

4.2 Quantitative results

The experiment compares MOHRL's performance

with DP, DQN, and NSGA -II across different market

scenarios. Over a 30 -day simulated sales cycle,

cumulative profit, user retention rate, and price fairness

(Gini coefficient) were measured. Results indicate

MOHRL achieved the highest cumulative profit of

$705,680, a 41% and 12.8% increase over DP and

NSGA -II, respectively. Its user retention rate of 44.7%

also led, being 28.4% and 10.9% higher than DP and

NSGA -II. In promotional scenarios, MOHRL's

cumulative profit was 56.6% higher than DP, with a

32.8% higher retention rate and a 0.09 lower Gini

coefficient. These results demonstrate MOHRL's

superior adaptability to market fluctuations, achieving

high profits while balancing user retention and price

fairness.

Table 1: Quantitative results. Results are averaged over

50 simulation runs, and the standard deviation is shown in

parentheses.

Algorithm Cumulative profit ($) User Retention Rate (%)
DP 500,320 (±23,456) 34.6 (±2.3)
DQN 587,450 (±31,245) 38.9 (±2.7)
NSGA-II 620,120 (±28,934) 41.2 (±2.1)
MOHRL 705,680 (±25,678) 44.7 (±1.8)

The MOHRL algorithm performs best in terms of

cumulative profit, which is about 41% higher than the

DP algorithm and 12.8% higher than the NSGA-II

algorithm. In terms of user retention rate, MOHRL is

also leading, about 28.4% higher than the DP algorithm

and 10.9% higher than the NSGA-II algorithm. In terms

of price fairness, the MOHRL algorithm has the lowest

Gini coefficient, indicating that it pays more attention to

fairness in price setting, and different user groups face

more minor price differences. The performance of each

algorithm in different promotion scenarios is further

analyzed, and the results are shown in Table 2 below:

Table 2: Performance of each algorithm in promotion

scenarios. Results are averaged over 50 simulation runs,

and the standard deviation is shown in parentheses.

Algorithm Cumulative profit ($) User Retention Rate

(%)
DP 80,250 (±5,678) 30.5 (±2.1)
DQN 95,430 (±6,789) 32.7 (±1.9)
NSGA-II 102,340 (±7,890) 36.2 (±2.4)
MOHRL 125,670 (±5,432) 40.8 (±1.7)

The MOHRL algorithm has a more significant

advantage in the promotion scenario. Its cumulative

profit is about 56.6% higher than that of the DP

algorithm, the user retention rate is about 32.8%, and the

Gini coefficient is reduced by 0.09. This fully

demonstrates that the MOHRL algorithm can better

adapt to the market fluctuations brought about by

promotional activities while achieving high profits,

taking into account user retention and price fairness.

RS-Net: A Dynamic Weight Hybrid Model Integrating SDE… Informatica 49 (2025) 123–134 131

4.3 Visual verification

4.3.1 Price elasticity dynamic curve

To better understand the relationship between price

changes and demand, price elasticity dynamic curves

for each algorithm at different stages are analyzed

(Figure 1). Price elasticity indicates how sensitive

product demand is to price changes. Results show that

MOHRL more accurately captures price elasticity

variations throughout the sales cycle. During price

increases, demand under MOHRL decreases less,

reducing user loss from price hikes. During price drops,

it more effectively stimulates demand growth.

Compared to traditional DP and DQN algorithms,

which lag in price elasticity control and fail to timely

adjust pricing strategies for optimal supply-demand

balance, MOHRL demonstrates superior adaptability

and effectiveness in responding to market changes. The

price elasticity is calculated as the percentage change in

quantity demanded divided by the percentage change in

price. In our study, we measure the quantity demanded

based on the number of units sold in the simulation. The

price changes are measured as the absolute difference

between the new price and the previous price, divided

by the previous price. In the price elasticity curve

figure, the x-axis represents the percentage change in

price, and the y-axis represents the corresponding

percentage change in quantity demanded. We used a

moving average of 5 data points to smooth the curve

and make the trends more visible.

Figure 1: Price elasticity dynamic curve.

4.3.2 Multi-objective pareto frontier

The multi-objective Pareto frontier is used to show

the trade-off relationship between multiple objectives of

different algorithms. By drawing the multi-objective

Pareto frontier of cumulative profit and user retention

rate (Figure 2), the ability of each algorithm in multi-

objective optimization can be intuitively compared. In

the figure, the Pareto frontier corresponding to the

MOHRL algorithm is obviously more biased to the

upper right, which means that at the same user retention

rate level, the MOHRL algorithm can achieve higher

cumulative profits or when pursuing the same profit

target as the MOHRL algorithm can maintain a higher

user retention rate. In contrast, the Pareto frontiers of the

DP, DQN, and NSGA-II algorithms are relatively

disadvantaged, indicating that they are not as good as the

MOHRL algorithm in multi-objective balance. This

further verifies the effectiveness and superiority of the

MOHRL algorithm in achieving multi-objective

optimization in dynamic pricing. We calculated 95%

confidence intervals for profit, retention rate, and market

share using the bootstrap resampling method. We

resampled the simulation results 1000 times with

replacement. The 95% confidence interval is calculated

as the mean plus or minus 1.96 times the standard

deviation. Non-overlapping confidence intervals

between different algorithms indicate statistically

significant performance differences.

Figure 2: Multi-objective Pareto frontier of

cumulative profit and user retention rate.

4.3.3 Dynamic weight heat map

A weight heat map (Figure 3) illustrates the adaptive

process of multi-objective weights. During the

promotion period (Days 8-14), the user retention weight

rose from 25% to 38%, while the profit weight dropped

to 52%, showing the algorithm's willingness to sacrifice

short-term profits for user retention. In the non-

promotion period (Days 15-21), the market share weight

increased from 15% to 22%, aligning with differentiated

pricing when competitors reduced prices. Unlike

132 Informatica 49 (2025) 123–134 G. Zhang

traditional fixed-weight models (e.g., NSGA-II's

0.6:0.3:0.1), this dynamic adjustment highlights the

attention mechanism's adaptability to different

scenarios. The attention parameters i are updated

based on the gradient of the loss function with respect to

i . The learning rate for i is set to 0.0001. In the

policy learning loop, after calculating the loss between

the predicted and actual rewards, we compute the

gradients of the loss with respect to i . These gradients

are then fed into the Adam optimizer to update i . This

adjustment of attention weights is an integral part of the

overall policy learning process, enabling the model to

better balance different objectives in the reward

calculation.

Figure 3: Promotional period-non-promotional

period weight heat map.

4.3.4 Market share fluctuation waterfall chart

The weekly market share fluctuation waterfall chart

(Figure 4) shows MOHRL's performance in the

competition dimension. When competitors reduced

prices collectively by 10% in the second week,

MOHRL increased its market share against the trend by

2.3% (from 18.7% to 21.0%) through real -time micro -

level price adjustments (average 8% price drop). In

contrast, NSGA -II's share decreased by 1.5% due to the

absence of a real -time correction layer. Notably, on

Wednesday (promotion day), MOHRL's hierarchical

decision -making advantage was evident: the macro

level set a 15% discount base, and the micro level added

a 3% floating discount based on real -time traffic,

forming a "base price + dynamic coupons" strategy.

This combination is challenging to implement in

traditional single -layer models. The Y-axis title

"Market Share" is now set to a horizontal position (0

degrees), making it much easier to read.

Figure 4: Market share weekly fluctuation

waterfall chart.

4.4 Ablation experiment

Ablation experiments were conducted to evaluate the

online meta -learning adapter's role in MOHRL. Results

showed that removing the Meta -Adapter extended the

cold start period from 7 to 12 days and significantly

reduced performance. Quantitative analysis revealed a

41% performance contribution from the Meta -Adapter.

It quickly generates reasonable initial strategies for new

environments using historical data, shortening the time

to achieve stable performance and enhancing the

algorithm's efficiency and adaptability. This underscores

the Meta -Adapter's importance in accelerating cold

starts and improving overall algorithmic effectiveness.

5 Conclusion

This paper addresses the "profit-user-competition"

balance problem in dynamic pricing using the

MOHRL framework. Its innovations include: 1) a

hierarchical decision-making architecture separating

strategic and execution layer objectives; 2) an

attention mechanism for dynamic multi-objective

weight allocation, reducing manual presetting

subjectivity; and 3) online meta-learning adapters

enabling rapid scene migration and cutting the cold

start cycle by 68%. Simulation experiments on a

dataset with over 100,000 SKUs show MOHRL

achieves an average daily profit of $18,492, a 13.8%

increase over NSGA-II, with a user retention rate

exceeding 53% (compared to the industry average of

45%). In promotional scenarios, it reduces price

adjustment trial-and-error costs by 32%, confirming

its commercial value. Future work could integrate

causal reasoning to handle policy interventions and

RS-Net: A Dynamic Weight Hybrid Model Integrating SDE… Informatica 49 (2025) 123–134 133

expand into complex scenarios like cross-border e-

commerce. This study offers a theoretical framework

and engineering implementation path for data-driven

intelligent pricing, providing universal reference

value for dynamic markets in shared travel, fresh

food retail, and beyond. However, the study also has

limitations, such as simulation-real-world

generalization gaps and potential fairness

implications of dynamic pricing. Future research will

focus on enhancing real-world applicability and

addressing ethical considerations. Dynamic pricing

using MOHRL has several ethical and practical

limitations. One major concern is fairness. Dynamic

pricing may result in price discrimination, as

different users may be charged different prices based

on their characteristics, such as purchase history or

location. This could lead to unfair treatment of

certain customer groups. Another issue is overfitting

to historical bias. If the training data has biases, the

model may incorporate and even amplify these biases

in its pricing decisions. Moreover, dynamic pricing

can have unintended consequences. For instance,

sudden price changes may cause customer

dissatisfaction, which could damage brand

reputation. It may also lead to market instability if

competitors react unpredictably to price changes.

References

[1] Zhang, P., Wang, C., Aujla, G. S., & Batth, R. S.

ReLeDP: Reinforcement-learning-assisted dynamic

pricing for wireless smart grid. IEEE Wireless

Communications, 28(6), 62-69, 2022 .

https://doi.org/10.1109/mwc.011.2000431

[2] Kastius, A., & Schlosser, R. Dynamic pricing

under competition using reinforcement learning.

Journal of Revenue and Pricing Management, 21(1),

50-62, 2022. https://doi.org/10.1057/s41272-021-

00285-3

[3] Zhao, Z., & Lee, C. K. Dynamic pricing for EV

charging stations: A deep reinforcement learning

approach. IEEE Transactions on Transportation

Electrification, 8(2), 2456-2468, 2021.

https://doi.org/10.1109/tte.2021.3139674

[4] Wan, Y., Qin, J., Yu, X., Yang, T., & Kang, Y.

Price-based residential demand response

management in smart grids: A reinforcement

learning-based approach. IEEE/CAA Journal of

Automatica Sinica, 9(1), 123-133, 2021.

https://doi.org/10.1109/jas.2021.1004287

[5] Chen, W., Qiu, J., Zhao, J., Chai, Q., & Dong, Z. Y.

Customized rebate pricing mechanism for virtual

power plants using a hierarchical game and

reinforcement learning approach. IEEE

Transactions on Smart Grid, 14(1), 424-439, 2022.

https://doi.org/10.1109/tsg.2022.3185138

[6] Kilčiauskas, A., Bendoraitis, A., & Sakalauskas, E.

Confidential Transaction Balance Verification by the

Net Using Non-Interactive Zero-Knowledge Proofs.

Informatica, 35(3), 601-616, 2024.

https://doi.org/10.15388/24-INFOR564.

[7] Famil Alamdar, P., & Seifi, A. Dynamic pricing of

differentiated products under competition with

reference price effects using a neural network-based

approach. Journal of Revenue and Pricing

Management, 23(6), 575-587, 2024.

https://doi.org/10.1057/s41272-023-00444-8

[8] Yang, C., Feng, Y., & Whinston, A. (2022).

Dynamic pricing and information disclosure for

fresh produce: An artificial intelligence approach.

Production and Operations Management, 31(1), 155-

171. https://doi.org/10.1111/poms.13525.

[9] Qian, T., Shao, C., Li, X., Wang, X., Chen, Z., &

Shahidehpour, M. (2021). Multi-agent deep

reinforcement learning method for EV charging

station game. IEEE Transactions on Power Systems,

37(3), 1682-1693.

https://doi.org/10.1109/TPWRS.2021.3111014.

[10] Bagherpour, R., Mozayani, N., & Badnava, B.

(2021). Improving demand‐response scheme in

smart grids using reinforcement learning.

International Journal of Energy Research, 45(15),

21082-21094. https://doi.org/10.1002/er.7165

[11] Luo, Y., Sun, W. W., & Liu, Y. Distribution-free

contextual dynamic pricing. Mathematics of

Operations Research, 49(1), 599-618, 2024.

https://doi.org/10.1287/moor.2023.1369

[12] Ghane, S., Jacobs, S., Huybrechts, T., Hellinckx, P.,

Mercelis, S., Verhaert, I., & Mannens, E. Model-

free deep reinforcement learning for adaptive supply

temperature control in collective space heating

systems. ACM Transactions on Intelligent Systems

and Technology, 16(2), 1-31, 2025.

https://doi.org/10.1145/3709010

[13] Yan, L., Chen, X., Zhou, J., Chen, Y., & Wen, J.

Deep reinforcement learning for continuous electric

vehicles charging control with dynamic user

behaviors. IEEE Transactions on Smart Grid, 12(6),

5124-5133, 2021.

https://doi.org/10.1109/tsg.2021.3098298

[14] Kasprzak, M. Beyond Quasi-Adjoint Graphs: On

Polynomial-Time Solvable Cases of the Hamiltonian

Cycle and Path Problems. Informatica, 35(4), 807-

816, 2024. https://doi.org/10.15388/24-INFOR568.

[15] Xiong, L., Tang, Y., Mao, S., Liu, H., Meng, K.,

Dong, Z., & Qian, F. A two-level energy

management strategy for multi-microgrid systems

134 Informatica 49 (2025) 123–134 G. Zhang

with interval prediction and reinforcement learning.

IEEE Transactions on Circuits and Systems I:

Regular Papers, 69(4), 1788-1799, 2022.

https://doi.org/10.1109/tcsi.2022.3141229

[16] Liu, X. Dynamic coupon targeting using batch deep

reinforcement learning: An application to

livestream shopping. Marketing Science, 42(4),

637-658, 2023.

https://doi.org/10.1287/mksc.2022.1403

[17] Zhang, D., Zhu, H., Zhang, H., Goh, H. H., Liu, H.,

& Wu, T. Multi-objective optimization for smart

integrated energy system considering demand

responses and dynamic prices. IEEE Transactions

on Smart Grid, 13(2), 1100-1112, 2021.

https://doi.org/10.1109/tsg.2021.3128547

