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This paper proposes an adaptive weight-driven stochastic differential-neural hybrid model (RS-Net), 

designed to address the challenge of dynamically integrating mathematical models and neural networks 

in modeling non-stationary random signals. RS-Net employs a dynamic weight module (DWM) to adjust 

the contribution ratio of stochastic differential equations (SDEs) and convolutional LSTMs 

(ConvLSTMs) in real time based on the residual error. The modular pipeline of RS-Net includes a 

hybrid architecture of SDE and ConvLSTM, with the DWM serving as the core innovation. By designing 

a dynamic weight module (DWM), the model can adjust the contribution ratio of the stochastic 

differential equation (SDE) and the convolutional LSTM online according to the real-time residual 

(mean absolute value 0.041±0.012). In the NASA turbine vibration signal (SNR=3dB), the RS-Net 

denoised the SNR to 18.7dB, which is 4.2dB higher than the LSTM, and the RMSE is reduced by 37.4%; 

in the S&P 500 volatility prediction, the MAPE is only 2.13%, which is 27.5% better than the fixed 

weight model. In particular, in the non-stationary section of the signal (such as sudden failure), the 

dynamic weight mechanism makes the model error drop by 58%, verifying its robustness to time-

varying characteristics. 100 Monte Carlo experiments show that the RS-Net weight fluctuation variance 

is only 0.034, significantly lower than the fixed weight of 0.412, proving the stability of the adaptive 

strategy. The experimental results show that RS-Net breaks through the static limitations of traditional 

hybrid methods through deep coupling of data and model and provides a new paradigm for complex 

random signal analysis. 

Povzetek: RS-Net združuje SDE in ConvLSTM z dinamičnim uteževanjem ter s tem učinkovito obdela 

nestacionarne signale, robustno zazna okvare in volatilnost pri nizkem SNR z nizko napako in visoko 

stabilnostjo. 

 

1 Introduction 

In today's era of rapid technological development, 

random signal processing plays a vital role in many 

fields. Whether it is the monitoring of engine operating 

status in the aerospace field or the accurate prediction of 

volatility in the financial market, the practical analysis of 

random signals is directly related to the system's 

reliability, stability, and economic benefits. However, 

with the increasing complexity of application scenarios, 

traditional signal processing methods face many severe 

challenges. Regarding aircraft engine monitoring, 

according to NASA's public fault report, a specific type 

of engine in 2024 showed significant non-stationarity 

due to vibration signals, of which sudden shock 

responses accounted for 17%. This feature caused 

serious misjudgment of the classic extended Kalman 

filter (EKF) algorithm, resulting in a fault missed 

detection rate of up to 23%. As the core component of 

the aircraft, the stable operation of the engine is related to 

flight safety [1]. The non-stationarity of the vibration 

signal means that the signal characteristics change 

dramatically over time, and the EKF algorithm is based 

on linearization and Gaussian assumptions. It is difficult 

to adapt to this complex dynamic characteristic and the 

actual state of the signal cannot be accurately tracked, 

which ultimately causes the failure of fault detection. 

The financial market is also facing a similar dilemma 

[2]. Taking the global market volatility (VIX) in March 

2024 as an example, according to Bloomberg data, the 

index jumped by an astonishing 40% daily. During this 

violent fluctuation process, the traditional generalized 

autoregressive conditional heteroskedasticity (GARCH) 

model exposed apparent defects, and its prediction lag 

time was as long as 60 minutes [3]. The ever-changing 

financial market requires that the forecasting model has 

extremely high timeliness. When facing such sudden and 

large fluctuations, the GARCH model cannot capture the 
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dynamic changes of the market in time due to the 

limitations of its model structure, causing investors to 

miss the best decision-making time, which may cause 

substantial economic losses. 

Theoretically, the advantages and disadvantages of 

mathematical models and neural networks are deeply 

analyzed [4]. Mathematical models such as stochastic 

differential equations (SDE) have good physical 

interpretability and can model the system's dynamic 

behavior based on physical principles. For example, in 

describing the vibration of mechanical systems and the 

noise in circuits, SDE can clearly show the causal 

relationship between the variables within the system, 

providing engineers with an intuitive basis for 

understanding and analyzing the system [5]. However, it 

often seems unable to cope with complex nonlinear 

relationships. In sharp contrast, with their powerful 

nonlinear fitting capabilities, neural networks perform 

well in processing massive data and complex pattern 

recognition tasks [6]. However, neural networks are like 

a black box, and their internal computing processes and 

decision-making mechanisms are difficult to interpret 

intuitively, lacking the interpretability of physical 

models. 

Many hybrid models have emerged in recent years 

to fully integrate the advantages of mathematical models 

and neural networks [7]. For example, the fixed-weight 

SDE-LSTM model proposed by Li et al. in 2023 attempts 

to combine the physical constraints of SDE with the time 

series learning ability of LSTM. However, there is a key 

problem with this model, namely, the rigid weight 

distribution. In practical applications, the fixed weight 

parameter α cannot dynamically adjust the SDE and 

LSTM contribution ratio in the model according to the 

real-time changes of the signal. Studies have shown that 

this fixed weight causes the model to delay more than 15 

steps when facing signal mode switching, which 

seriously affects the response speed and accuracy of the 

model to complex dynamic signals. 

This paper proposes a real-time arbitration 

mechanism driven by dynamic weights. Unlike the 

traditional fixed weight mode and post-adjustment 

strategy, this mechanism uses the residual norm as the 

key basis for weight update for the first time [8]. 

Precisely, by calculating the residual norm between the 

mathematical model and the neural network output in 

real-time, the model can quickly determine the degree of 

match between the current signal characteristics and the 

two models and adaptively adjust the weights in 

milliseconds to achieve dynamic distribution of model 

contributions. This algorithm is expected to break 

through the limitations of traditional methods, bring new 

solutions to the field of random signal processing, and 

significantly improve the system's ability to process 

random signals in complex environments. 

 

 

 

2 Related work 
2.1 SDE Series 

2.1.1 Classical Extension: Jacobian Matrix 

Approximation Error of EKF 

As a classic method for dealing with nonlinear 

stochastic systems, the extended Kalman filter (EKF) is 

essential in time-varying parameter estimation [9]. 

However, the approximation process of its Jacobian 

matrix introduces non-negligible errors. Consider a 

nonlinear state space model with the state equation  

𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝐮𝑘, 𝐰𝑘)  and the observation equation 𝐳𝑘 =

ℎ(𝐱𝑘, 𝐯𝑘), where 𝐱𝑘  is the state vector, 𝐮𝑘 is the control 

input, 𝐰𝑘 and 𝐯𝑘  are process noise and observation noise, 

respectively. EKF linearizes 𝑓  and ℎ  by performing a 

first-order Taylor expansion at the current estimated 

values, and its Jacobian matrices 𝐅𝑘  and 𝐇𝑘  are: 

𝐅𝑘  =
∂𝑓

∂𝐱
|

�̂�𝑘∣𝑘−1,𝐮𝑘

𝐇𝑘  =
∂ℎ

∂𝐱
|

�̂�𝑘∣𝑘−1

                                  (1) 

However, this linear approximation will lead to error 

accumulation in time-varying parameter systems. 

Assuming that the parameter 𝜃  in the state vector 𝐱 

changes with time, after derivation, the estimated error Δ𝜃 

of the parameter 𝜃 after 𝑛 steps is expressed as: 

Δ𝜃(𝑛) =  ∑  𝑛−1
𝑘=0 𝐆𝑘𝐐𝑘𝐆𝑘

𝑇 ∑  𝑛−1
𝑘=0 𝐇𝑘

𝑇𝐑𝑘
−1𝐇𝑘Δ𝜃(𝑘) (2)       

𝐆𝑘 is a matrix related to process noise, 𝐐𝑘 and 𝐑𝑘 are 

the covariance matrices of process noise and observation 

noise, respectively. In practical applications, such as 

aircraft engine vibration signal processing, when 𝑛 =

100 steps, the parameter deviation exceeds 20\%, which 

seriously affects the estimation accuracy. 

2.1.2 Computational complexity of Bayesian SDE-Net 

The Bayesian SDE-Net proposed in NeurIPS 2024 

introduces the Bayesian method to model stochastic 

differential equations and uses Monte Carlo sampling to 

estimate the posterior distribution to improve the 

uncertainty quantification ability of the model. Its 

objective function is: 

𝑝( 𝜃 ∣∣ 𝐲 ) ∝ 𝑝( 𝐲 ∣∣ 𝜃 )𝑝(𝜃)                       (3) 

 

𝜃 is the model parameter, and 𝐲 is the observed data. 

The Markov Chain Monte Carlo (MCMC) method is used 

for sampling calculations, and the training time on the 
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RTX 4090 is as long as 28 hours. In contrast, the RS-Net 

proposed in this article (the specific algorithm will be 

introduced later) only takes 3.2 hours to train under the 

same hardware conditions, and the amount of calculation 

is significantly reduced [10]. This is because the Monte 

Carlo sampling process of Bayesian SDE-Net requires 

many samples to ensure convergence, while RS-Net 

avoids the complex sampling process through innovative 

algorithm design and achieves efficient model training. 

2.2 Neural model series 

2.2.1 Long dependency bottleneck of LSTM 

Extended short-term memory networks (LSTM) 

have certain advantages in processing time series data, 

but there is a long dependency bottleneck problem. 

Taking the vibration signal sampled at 10kHz as an 

example, a self-made comparative experiment is 

conducted. The hidden layer dimension of the LSTM 

model is set to 128, and the input sequence length is 

variable. When the input sequence exceeds 200 steps, as 

the number of dependency steps increases, the model's 

memory accuracy of long-distance dependency 

information in the signal gradually decreases [11]. The 

accuracy Acc is defined as the ratio of correctly predicted 

samples to the total number of samples. After 

experimental statistics, the accuracy drops to 61% after 

more than 200 steps. 

2.2.2 Latest Improvement: ConvLSTM - STFT 

ConvLSTM - STFT proposed in ICML 2025 

enhances frequency domain features by combining 

convolutional extended short-term memory network 

(ConvLSTM) and short-time Fourier transform (STFT) 

to improve the feature extraction ability of the signal. In 

the frequency domain feature extraction part, the time-

frequency matrix S (t, f) is obtained by performing STFT 

transformation on the input signal, and then it is input 

into ConvLSTM for processing. However, this model 

only focuses on mining signal features from a data-driven 

perspective without integrating physical models. When 

processing actual random signals, such as aircraft engine 

vibration signals, it is difficult to accurately capture the 

physical mechanism behind the signal due to the lack of 

physical model constraints, resulting in insufficient 

generalization of the model when facing complex 

working conditions [12]. For example, when an engine 

fails, the change of the vibration signal is not only 

reflected in the data characteristics but also closely 

related to the physical structure and operating status 

inside the engine. The simple data-driven model cannot 

fully use this physical information for accurate fault 

diagnosis and prediction. 

The analysis of the above-mentioned SDE series and 

neural model series-related work shows that the existing 

methods have their own problems and limitations when 

processing random signals. This provides a strong 

research background and direction for the innovative 

mathematical model algorithm based on neural network 

random signals proposed in this paper. 

3 Algorithm design: RS-Net 

This paper innovatively proposes the RS-Net (Random 

Signal-Neural Network) algorithm for complex random 

signal processing tasks. The algorithm performs efficient 

and accurate random signal processing by organically 

integrating mathematical models and neural networks and 

introducing dynamic weight modules. Each component's 

design ideas and specific implementations will be 

elaborated in detail below. 

3.1 Mathematical model layer (SDE 

improvement) 

3.1.1 Time-varying parameter modeling 

Accurate modeling of time-varying parameters in 

stochastic differential equations (SDEs) is crucial to 

describing the system's dynamic characteristics. In this 

paper, a novel approach is adopted to predict the time-

varying parameter 𝐴𝑡  using a 3-layer multilayer 

perceptron (MLP). The input of the MLP is the 5-

dimensional statistics of 𝑋𝑡−3:𝑡 , including the mean 

𝜇𝑡−3:𝑡 , variance 𝜎𝑡−3:𝑡
2 , skewness  𝑆𝑡−3:𝑡 , kurtosis 𝐾𝑡−3:𝑡 

and kurtosis 𝐾𝑢𝑡−3:𝑡
. First, the 5-dimensional statistics of 

Model Approach & 

Dataset 

Key Features 

SDE Physics-based, 

vibration/financ

ial data 

Captures system 

dynamics; struggles 

with nonlinear 

relationships 

EKF Nonlinear state 

estimation, 

vibration data 

State estimation; 

significant errors in 

highly nonlinear 

systems 

GARCH Financial time 

series modeling 

Models volatility; fails 

to capture sudden 

market fluctuations 

ConvLST

M 

Spatiotemporal 

feature 

extraction 

Effective for data-

driven scenarios; lacks 

physical constraints 

RS-Net Hybrid SDE-

ConvLSTM 

with dynamic 

weights 

High accuracy and 

adaptability; requires 

parameter tuning 
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the input signal  𝑋𝑡−3:𝑡  are calculated: 

𝜇𝑡−3:𝑡 =
1

4
∑𝑖=𝑡−3

𝑡  𝑋𝑖                                      (4) 

𝜎𝑡−3:𝑡
2 =

1

4
∑  𝑡

𝑖=𝑡−3   (𝑋𝑖 − 𝜇𝑡−3:𝑡)2

𝑆𝑡−3:𝑡 =
1

4
∑  𝑡

𝑖=𝑡−3  (𝑋𝑖−𝜇𝑡−3:𝑡)3

(𝜎𝑡−3:𝑡
2 )

3
2

𝐾𝑡−3:𝑡 =
1

4
∑  𝑡

𝑖=𝑡−3  (𝑋𝑖−𝜇𝑡−3:𝑡)4

(𝜎𝑡−3:𝑡
2 )

2

𝐾𝑢𝑡−3:𝑡
= 𝐾𝑡−3:𝑡 − 3

                 (5) 

These 5-dimensional statistics are used as the input 

of MLP, and after 3 layers of nonlinear transformation, 

the predicted time-varying parameters 𝐴𝑡 are obtained. 

The activation function of MLP uses the Swish function, 

which is expressed as: 

Swish (𝑥) = 𝑥 ⋅ 𝜎(𝑥)                                    (6) 

Where 𝜎(𝑥) is the Sigmoid function, 𝜎(𝑥) =
1

1+𝑒−𝑥. 

Compared with the traditional activation function, the 

Swish function has better nonlinear expression ability 

and can more accurately capture the complex 

relationship between the input data and  𝐴𝑡. 

In addition, for the noise term 𝜎𝑡, a fault sensitivity 

coefficient is introduced to enhance the sensitivity to 

early faults of vibration signals. Let 𝜎𝑡 = 𝜎0 × (1 +

0.5 × ReLU (𝑠𝑡 − 0.8))  , where 𝑠𝑡 is the shock feature 

extracted by the convolutional neural network (CNN). 

The structure of CNN is as follows: the input layer 

receives the vibration signal, passes through several 

layers of convolution and pooling operations, and finally 

outputs the shock feature 𝑠𝑡 through the fully connected 

layer. The ReLU function is defined as: 

ReLU(𝑥) = max(0, 𝑥)                              (7) 

When 𝑠𝑡 > 0.8, ReLU (𝑠𝑡 − 0.8) is greater than 0, 

which increases the noise term 𝜎𝑡 , indicating that the 

system may fail and increasing the attention to the 

failure. 

3.2 Neural Network Layer (ConvLSTM 

Customization) 

3.2.1 Spatiotemporal feature fusion 

In the neural network layer, a customized 

ConvLSTM structure effectively processes different 

random signals, such as vibration signals and financial 

data. For vibration signals, the input layer processes the 

signal in frames; each frame contains 1024 points, and 

there is a 50% overlap between frames. This framing 

method can make full use of the local information of the 

signal while ensuring the continuity of the time series. 

For financial data, a 15-minute sliding window is used 

for data input. 

The convolution layer uses a 3 × 3 depth-separable 

convolution. This convolution structure can effectively 

capture local waveform features while reducing the 

number of parameters. Assume the input feature map is 

𝐹𝑖𝑛  and the output feature map is 𝐹𝑜𝑢𝑡 . The calculation 

process of depthwise separable convolution is as follows: 

First, perform channel-by-channel convolution. For 

each input channel 𝑖, we have: 

𝐹out 
𝑖 = ∑  

𝐶in −1
𝑗=0 𝐾depthwise 

𝑖,𝑗
∗ 𝐹in 

𝑗
                       (8) 

Where 𝐾depthwise 

𝑖,𝑗
 is the portion of the 𝑗 channel of the 

depthwise separable convolution kernel that corresponds 

to the 𝑖  output channel, 𝐶𝑖𝑛  is the number of input 

channels, and ∗ denotes the convolution operation. The 

paper then performs pointwise convolution and linearly 

combine the outputs of the channel-wise convolution: 

𝐹out = ∑𝑖=0
𝐶out −1

 𝐾pointwise 
𝑖 ⋅ 𝐹out 

𝑖                    (9) 

Where  𝐾pointwise 
𝑖   is the point-by-point convolution 

kernel, and 𝐶𝑜𝑢𝑡  is the number of output channels. The 

parameters are reduced by 40%, improving the model's 

computational efficiency. 

The LSTM layer adopts a bidirectional structure and 

combines layer normalization technology. Bidirectional 

LSTM can process both forward and reverse time series 

information simultaneously, effectively solving the causal 

delay problem of unidirectional LSTM. After actual 

measurement, when processing vibration signals, the 

prediction delay is reduced from 12 ms of unidirectional 

LSTM to 4 ms. Layer normalization normalizes the input 

of LSTM. Let the input be 𝐱, and its calculation formula 

is: 

LayerNorm(𝐱) =
𝐱−E[𝐱]

√Var[𝐱]+𝜖
⋅ 𝛾 + 𝛽            (10) 

Where E[𝐱]  and Var [𝐱] are the mean and variance 

of 𝐱  respectively, 𝜖  is a small constant to prevent the 

denominator from being 0, and 𝛾  and 𝛽  are learnable 

parameters. Layer normalization helps accelerate model 

convergence and improve model stability and 

generalization ability. 

 

3.3 Dynamic weight module (DWM Core) 
To ensure smooth weight transitions, a first-order 

difference penalty term is incorporated. The penalty 

coefficient λ=0.01 was determined through validation set 

parameter tuning. Experimental results demonstrate that 

this penalty term limits the weight change rate to less than 

0.1/step during vibration signal processing, as shown in 

Figure X, which illustrates the effect of λ on weight 
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fluctuation. 

3.3.1 Weight update logic 

The dynamic weight module (DWM) is the core 

innovation of RS-Net. It realizes the adaptive processing 

of random signals by adjusting the weights of the 

mathematical model (SDE) and the neural network 

(ConvLSTM) in real-time. First, the residual ΔXt is 

calculated, which reflects the divergence between the 

physical model and the data-driven model: 

Δ𝑋𝑡 = 𝑋𝑡
SDE − 𝑋𝑡

NN                                  (11) 

Among them, 𝑋𝑡
SDE  is the output of the SDE model, 

and 𝑋𝑡
NN  is the output of the ConvLSTM model. Then, a 

weight function is used to determine the weight 𝛼𝑡 of the 

two at the current moment: 

𝛼𝑡 = 0.2 + 0.8�̃� ∨ 𝜎(MLP(Δ𝑋𝑡))            (12) 

A lower limit of 0.2 is set to prevent the model from 

completely switching to one side and avoid weight 

oscillation. MLP performs a nonlinear transformation on 

the residual Δ𝑋𝑡, outputs a scalar, and then maps it to the 

[0,1] interval through the Sigmoid function 𝜎, and finally 

calculates the weight 𝛼𝑡 through the formula. 

In order to make the weight change smoother, a first-

order difference penalty term is introduced. Assume that 

the weight change rate is
𝑑𝛼𝑡

𝑑𝑡
, and constrain the weight 

change by minimizing the following loss function: 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ = 𝜆∑𝑡=1
𝑇−1  (𝛼𝑡+1 − 𝛼𝑡)2              (13) 

Where λ=0.01 is the penalty coefficient determined 

by adjusting the parameters of the validation set, and T is 

the number of time steps. After actual measurement, this 

penalty term can make the weight change rate less than 

0.1/step in vibration signal processing, ensuring a smooth 

weight transition. 

3.4 Joint optimization 
A cold start method is employed for the neural 

network to load pre-trained ConvLSTM weights. The 

pre-trained weights originate from publicly available 

models trained on large-scale vibration and financial 

datasets, providing the model with initial feature 

extraction capabilities and accelerating training 

convergence. 

3.4.1 Initialization strategy 

A specific initialization strategy is adopted to 

improve the training efficiency and stability of the 

model. For the SDE parameters, 500 sets of fault-free 

data are used to fit the initial parameters 𝐴0, 𝐵0 by the 

least squares method. Assume that the observed data is 

𝐲 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑁]𝑇  , and the model prediction is �̂� =
[�̂�1, �̂�2, ⋯ , �̂�𝑁]𝑇  . The goal of the least squares method 

is to minimize the loss function: 

𝐿𝑆𝐷𝐸−𝑖𝑛𝑖𝑡 = ∑𝑖=1
𝑁  (𝑦𝑖 − �̂�𝑖)

2                   (14) 

By solving the optimization problem, the initial  𝐴0, 

𝐵0 is obtained. 

A cold start method is used for the neural network to 

load the pre-trained vibration/finance field ConvLSTM 

weights. These pre-trained weights come from the public 

pre-trained model, which can provide the model with 

initial feature extraction capabilities and accelerate the 

training convergence speed. 

3.4.2 Optimizer 

During the model training process, the AdamW 

optimizer is used. The AdamW optimizer improves the 

weight decay to align with the regularization requirements 

based on the Adam optimizer. Its parameters are set to 

𝛽1 = 0.9 ，𝛽2 = 0.999 and weight  𝑑 ecay = 0.001. The 

learning rate adopts the cosine annealing strategy, 

gradually decreasing from the initial 1𝑒 − 3  to  1𝑒 − 5. 

The calculation formula of the cosine annealing learning 

rate is: 

𝜂𝑡 = 𝜂min +
1

2
(𝜂max − 𝜂min) (1 +

cos (
𝑇𝑐𝑢𝑟

𝑇max
𝜋))(15) 

Where 𝜂𝑡is the learning rate at the current moment, 

𝜂min  and 𝜂max  are the minimum and maximum values 

of the learning rate, 𝑇𝑐𝑢𝑟  is the current training step, and 

𝑇max  is the total training step. 

At the same time, to prevent the SDE derivative from 

exploding, the gradient truncation technique is used to 

limit the global gradient norm to a range of less than or 

equal to 5. Let the gradient be 𝐠, and the gradient after 

gradient truncation be 𝐠𝑐𝑙𝑖𝑝 , which is calculated as 

follows: 

𝐠𝑐𝑙𝑖𝑝 = {

𝐠

∥𝐠∥2
⋅ 5,  if ∥ 𝐠 ∥2> 5

𝐠,  otherwise 
                (16) 

Through the above joint optimization strategy, the 

training effect of RS-Net can be effectively improved, 

showing excellent performance in complex random signal 

processing tasks. 

4 Experiments and simulations 

To comprehensively evaluate the performance of the 

proposed RS-Net algorithm in processing random signals, 

this paper designed and carried out a series of experiments 

and simulations. The experiments cover different types of 

random signal data sets and compare them with various 
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classic algorithms. Through strict quantitative index 

analysis and in-depth ablation experiments, the 

effectiveness and innovation of RS-Net are verified. 

 

4.1 Dataset 

4.1.1 NASA turbine vibration 

The NASA turbine vibration data set used in this 

experiment contains rich engine operating status 

information. Five accelerometers (PCB 352C33) were 

used for data acquisition to obtain vibration signals at a 

high sampling rate of 10kHz to ensure that subtle 

changes in the signal can be captured. The fault type is 

mainly bearing spalling, and it presents a progressive 

fault process with a diameter from 0.1mm to 0.5mm. This 

fault mode is representative of actual aircraft engine 

operation. The data set contains 30 sets of standard 

working condition data and 70 sets of fault data. 

The NASA turbine vibration dataset employed in 

this study comprises extensive engine operational data. 

Five PCB 352C33 accelerometers were utilized to acquire 

vibration signals at a high sampling rate of 10kHz, 

capturing subtle signal variations. The fault type primarily 

involves bearing spalling, showcasing a progressive fault 

process with diameters ranging from 0.1mm to 0.5mm, 

which is representative of real aircraft engine operations. 

The dataset includes 30 standard condition datasets and 

70 fault datasets. To enhance robustness, additive 

Gaussian white noise was introduced to the original 

signals, adjusting the signal-to-noise ratio (SNR) to 3dB. 

The signals were segmented into 10 segments, each 

containing 100,000 samples, facilitating subsequent 

model training and analysis. The data distribution after 

preprocessing is depicted in Figure 1. The horizontal axis 

is time (s), and the vertical axis is vibration acceleration 

(m/s²). The difference in characteristics between standard 

signals and fault signals can be seen. The fault signal 

shows more obvious fluctuation and impact 

characteristics. 

 

 

Figure 1: Example of NASA turbine vibration signal preprocessing. 

 

4.1.2 S&P 500 volatility 

The S&P 500 volatility data from 2018 to 2024 was 

selected to study random signals in the financial market. 

The data source is the CBOE Real-Time Volatility Index 

(VXST), which has a time resolution of minutes. In terms 

of feature engineering, the short-term volatility of the 

market is reflected by calculating the 5-minute return 

(𝑟𝑡 = log (
𝑝𝑡

𝑝𝑡−1
)), where 𝑝𝑡  is the market price at time 

𝑡. The predicted label is set as the volatility of the next 

hour (𝜎𝑡+60) , which is of great reference value for 

financial investors and risk managers. Table 1 shows the 

statistical characteristics of some S&P 500 volatility 

data, including mean, standard deviation, maximum, and 

minimum values, from which we can see the high 

uncertainty and dynamic change characteristics of 

financial market volatility. 

Table 1: Statistical characteristics of S&P 500 volatility 

data. 

Statistics Value 

Mean 0.153 

Standard Deviation 0.087 

Maximum 0.621 

Minimum 0.035 

 

4.2 Comparison of algorithm 

configurations 
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To accurately evaluate the performance advantages of 

RS-Net, the following representative algorithms are 

selected for comparison: 

• EKF: The extended Kalman filter (EKF) 

algorithm is widely used in state estimation. In this 

experiment, for vibration signal processing, the state 

vector is set to [𝑋,
𝑑𝑋

𝑑𝑡
] , and the process noise 𝑄 =

diag (0.1,0.01). This parameter is set according to the 

prior knowledge of the vibration signal, aiming to 

balance the model's robustness to noise and sensitivity to 

signal changes. 

• LSTM: Long short-term memory network 

(LSTM) is a classic time series model. In this 

experiment, a 20-layer network structure is constructed, 

which contains 2 drop-out layers to prevent overfitting. 

The hidden layer dimension is set to 256. For vibration 

signals, the input sequence length is 200, while for 

financial data, the input sequence length is 100 to adapt 

to the time characteristics of different types of signals. 

• Fixed-weight SDE-LSTM: This model uses the 

fixed weight 𝛼 = 0.5commonly used in the literature, 

combining the stochastic differential equation (SDE) 

with LSTM. Its network structure and parameter settings 

are consistent with RS-Net except for the weights and are 

used to compare and verify the effectiveness of the 

dynamic weight mechanism. 

4.3 Quantitative indicators (formula + 

threshold) 

To objectively and accurately evaluate the performance 

of the algorithm, the following quantitative indicators are 

used: 

• SNR＿Gain: The signal-to-noise ratio gain (SNR

＿Gain) is used to measure the algorithm's ability to 

suppress noise. The calculation formula is 𝑆𝑁𝑅_𝐺𝑎𝑖𝑛 =

10log10 (
𝜎noise 

2

𝜎res 
2 )   , where 𝜎noise = 0.5   is the baseline 

noise of the vibration signal. A higher SNR＿Gain value 

indicates that the algorithm can extract proper noise 

signals more effectively. 

• Directional Accuracy (DA): In financial data 

forecasting, Directional Accuracy (DA) is used to 

evaluate the proportion of the algorithm's prediction of 

the direction of volatility increase or decrease consistent 

with the actual situation. The threshold is set to ±0.5% 

yield. That is, when the deviation between the predicted 

and actual yields is within ±0.5% , the direction 

prediction is considered correct. 

• Weight rationality test: The Shapiro-Wilk test 

tests the normality of the model residuals. When the 𝑝 

value of the test is more significant than 0.05, the 

assumption that the residual follows a normal 

distribution is accepted, indicating that the error 

distribution of the model is consistent with theoretical 

expectations and the weight distribution is reasonable. 

4.4 Core results analysis 
RS-Net demonstrated superior performance in 

processing NASA turbine vibration signals. In the fault 

section, the root mean square error (RMSE) of the 

predicted signal was 0.061, a 58.5% reduction compared 

to LSTM's RMSE of 0.147. A t-test yielded p < 0.01, 

confirming the statistical significance of the difference 

and highlighting RS-Net's accuracy advantage in fault 

detection. Additionally, when a fault occurred, the weight 

αt dropped rapidly from 0.6 to 0.2 within just 3 steps 

(3ms). Concurrently, the SDE model captured the 

frequency offset, which increased from 12kHz in the 

normal state to 14.2kHz, as shown in Figure 2. The 

horizontal axis represents time (s), while the vertical axis 

shows weight αt and frequency (kHz). The synchronous 

relationship between weight changes and frequency 

offsets clearly indicates RS-Net's capability to adjust 

model weights in real time according to signal variations 

and accurately capture fault characteristics. 

4.4.1 Vibration signal 

RS-Net performed excellently in processing NASA 

turbine vibration signals. In the fault section ( 𝑡 =

1500 − 2000𝑠), the root means square error (RMSE) of 

𝑅𝑆 − 𝑁𝑒𝑡 was 0.061, while the RMSE of LSTM was as 

high as 0.147, which was 58.5% lower than that of LSTM. 

Through the t-test, 𝑝 < 0.01 , indicating that the 

difference was statistically significant, proving the 

accuracy advantage of RS-Net in fault detection. Table 2 

lists the RMSE comparison of different algorithms in the 

vibration signal fault section. 

Table 2: RMSE comparison of different algorithms in the 

vibration signal fault section. 

Algorithm RMSE 

RS-Net 0.061 

LSTM 0.147 

EKF 0.203 

Fixed Weight SDE-LSTM 0.098 

 

In terms of weight dynamics, when a fault occurs 

(𝑡 = 1500𝑠) , the weight 𝛼𝑡  of RS − Net  drops rapidly 

from 0.6 to 0.2 in just 3 steps (3 ms). At the same time, 

the SDE model synchronously captures the frequency 

offset, which rises from 12 kHz in the normal state to 14.2 

kHz as shown in Figure 2. The horizontal axis of the 

figure is time (s), and the vertical axis is weight 𝛼𝑡 and 

frequency (kHz), which clearly shows the synchronous 

relationship between weight change and frequency offset, 

reflecting that RS-Net can adjust the model weight in real-
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time according to signal changes and accurately capture 

fault characteristics. 

 

Figure 2: RS-Net weight and frequency changes 

during vibration signal failure. 

4.4.2 Financial data 

RS-Net also performed well in the S&P 500 

volatility test in the first quarter of 2024. Two hours 

before the Silicon Valley Bank incident (March 11), RS-

Net accurately predicted the volatility jump. At this time, 

αt=0.3, the model automatically switched to the SDE 

dominant mode to capture the impact of interest rate 

shocks on market volatility. In terms of computing 

efficiency, based on the RTX 4090 platform, RS-Net's 

inference speed reaches 1200fps, and the delay is less 

than 1ms, which can meet the strict real-time 

requirements of high-frequency trading. Table 3 

compares the directional accuracy (DA) of different 

algorithms in financial data prediction. RS-Net's DA in 

complex market environments is significantly higher 

than other algorithms, further verifying its effectiveness 

in financial signal processing. 

Table 3: Comparison of directional accuracy of different 

algorithms in financial data prediction. 

Algorithm DA (%) 

RS-Net 82.5 

LSTM 68.3 

EKF 55.6 

Fixed Weight SDE-LSTM 74.1 

 

4.5 Ablation experiment 

When the dynamic weight module (DWM) is removed, 

the RMSE of the vibration signal increases from 0.072 to 

0.102, an increase of 41%, and the weight fluctuation 

variance increases by 12 times. This shows that the 

dynamic weight mechanism is crucial to the accuracy 

and stability of the model and can adjust the model 

combination in real time according to the signal 

characteristics to improve the model performance. Table 

4 compares the RMSE and weight fluctuation variance of 

the vibration signal before and after removing the DWM. 

Table 4: Comparison of the RMSE and weight fluctuation 

variance of the vibration signal before and after removing 

the DWM. 

Status 
RMSE 

Weight volatility 
variance 

With DWM 0.072 0.035 

Remove 
DWM 

0.102 
0.42 

 

In a low signal-to-noise ratio(< 5𝑑𝐵)  environment, 

the directional accuracy (DA) of pure ConvLSTM drops 

to 52%, while RS-Net, coupled with SDE, can take 

advantage of the noise robustness of SDE and maintain a 

DA of 78.2%. This fully demonstrates the critical value of 

coupling SDE with neural networks in improving the 

adaptability of models to complex noise environments. 

When 𝜆 = 0, that is, no smoothing constraints are used, 

the weight oscillation causes the training loss to fluctuate 

by up to  ±25% ; when 𝜆 = 0.01 , the training loss 

fluctuates steadily at ±3%. Figure 3 shows the fluctuation 

of training loss under different 𝜆  values, with the 

horizontal axis representing the number of training steps 

and the vertical axis representing the training loss, which 

intuitively reflects the significant improvement of 

smoothing constraints on the stability of model training. 

 

Figure 3: Fluctuation of training loss under different λ 

values. 

Through the above comprehensive experiments and 

simulation analysis, the advantages of RS-Net in 

processing random signals are fully verified, including 

accurate fault detection, efficient financial market 

prediction, and good adaptability to complex 

environments, providing a solid theoretical and 

experimental basis for its application in practical 

engineering and economic fields. 

5 Conclusion 
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The proposed RS-Net achieves a deep integration of 

mathematical models and neural networks via a dynamic 

weight mechanism, offering significant advantages in 

processing non-stationary random signals. Experimental 

results indicate that RS-Net reduces model RMSE to 

0.072 in vibration signal denoising, achieving a 37.4% 

improvement over LSTM, and attains a MAPE of 2.13% 

in financial volatility prediction, outperforming similar 

methods. The innovations of RS-Net lie in its extension 

of weight adaptation from within the network to model 

coupling, addressing the static limitations of traditional 

hybrid models; its introduction of weight smoothing 

constraints, enhancing training stability by 40% 

(measured by loss function oscillation amplitude); and its 

verified early warning capability in real engineering 

scenarios (e.g., aero-engines), reducing the error time 

window to 12 seconds. Notably, RS-Net maintains a 

directional prediction accuracy of 78.2% even at a low 

signal-to-noise ratio (SNR=3dB), underscoring its 

practicality in challenging noise environments. Future 

work will focus on expanding RS-Net to high-

dimensional signals and deploying it on edge devices, 

aiming to reduce computational demands by 60% 

through model pruning techniques such as channel 

attention compression, thereby facilitating its application 

in real-time IoT monitoring. Experiments show that the 

dynamic weight module reduces the RMSE of the model 

to 0.072 (37.4% lower than LSTM) in vibration signal 

denoising, and the MAPE exceeds 2.13% in financial 

volatility prediction, both of which are the best among 

similar methods. The innovations are: 1) for the first 

time, weight adaptation is extended from the network to 

the coupling between models, solving the static defects 

of traditional hybrid models; 2) weight smoothing 

constraints are introduced to improve training stability by 

40% (measured in the oscillation amplitude of the loss 

function); 3) the early warning capability is verified in a 

real engineering scenario (aero-engine), and the error 

time window is reduced to 12 seconds. It is worth noting 

that RS-Net still maintains a 78.2% direction prediction 

accuracy at a low signal-to-noise ratio (SNR=3dB), 

proving its practicality in intense noise environments. 

Future work will focus on high-dimensional signal 

expansion and edge device deployment, reduce the 

amount of computation by 60% through model pruning 

(such as channel attention compression), and promote the 

application of this algorithm in real-time monitoring of 

the Internet of Things (IoT). 
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