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The Adaptive Neuro-Fuzzy Inference System (ANFIS) controller is a modern alternative to the 

conventional PID controller. This paper presents the design of the ANFIS controller for pH regulation in 

cooling towers based on the dataset from the PID controller. This paper aims to design the ANFIS 

controller to achieve a lower RMSE than benchmark models, with improved transient response 

specifications such as rise time, settling time, and overshoot to optimize pH regulation characteristics. 

One of the fundamental requirements for designing the ANFIS controller is the availability of a dataset. 

The challenge in the design process is how to prepare the dataset. This issue was addressed by recording 

the PID controller dataset, which includes the error (e), the change in error (∆e), and the output. The 

methodology consists of the following steps: (1) modeling the pH loop of the cooling tower; (2) tuning a 

PID controller using the Particle Swarm Optimization (PSO) algorithm; (3) recording the PID 

controller's dataset, including error (e), change of error (∆e), and output; (4) training the ANFIS model 

using the MATLAB ANFIS Toolbox; and (5) enhancing the transient response by modifying the dataset. 

Following Instructions for design, the simulated results showed that the ANFIS controller achieved a root 

mean square error (RMSE) of 0.0081. The transient response characteristics of the best-performing 

ANFIS controller (Modified ANFIS_4) include: rise time = 0.5863 s, settling time = 1.4867 s, overshoot 

= 2.7958%, and peak = 7.6548. In comparison, the baseline PSO-tuned PID controller yielded a rise time 

of 0.6046 seconds, a settling time of 2.3155 seconds, an overshoot of 8.6770%, and a peak value of 8.0916. 

The results confirm that the ANFIS controller outperforms the PID controller in all key transient response 

parameters, offering improved accuracy, faster stabilization, and reduced overshoot. These findings 

demonstrate the effectiveness of the ANFIS design based on real PID controller data, supported by 

Instructions for design for reliable implementation in nonlinear industrial control systems. 

Povzetek: Članek uvaja nov ANFIS regulator za regulacijo pH v industrijskih hladilnih stolpih na osnovi 

podatkov PID, nastavljenega s PSO. Znanstveni prispevek je metoda simetričnega zajema podatkov in 

podatkovne augmentacije. 

 

1 Introduction 
pH control is critically important in industrial 

applications. Accurate pH control prevents corrosion and 

scaling in mechanical equipment such as heat exchangers 

and pipelines. Extreme pH levels can lead to rapid 

corrosion or scale buildup, resulting in costly repairs, 

downtime, and safety hazards. Proper pH regulation 

enhances the efficiency of chemical reactions, reducing 

chemical usage and environmental impact [1]. The task of 

regulating pH is of high importance. Additionally, it is 

utilized in various industrial applications, with a particular 

emphasis on cooling towers. The neutralization of 

industrial cooling towers is contingent upon the correct pH 

control, which will facilitate the biological treatment of 

cooling water and significantly influence the utilization of  

 

chemical resources [2-4]. The pH neutralization process is 

exceedingly difficult to regulate. It is characterized by  

high nonlinearities and dynamic process dynamics, which 

are typically challenging to model [5]. Due to the pH 

regulation system's nonlinearity and time latency, the 

conventional PID controller finds it challenging to 

accomplish precise pH control [6]. According to the 

Mitsubishi operation limit, the pH should be maintained 

between 7.1 and 7.8. A PID controller maintains a pH of 

7.45 [7]. The performance analysis of PID controllers in 

the Acid, Neutral, and Base regions is conducted with a 

set point of 7.45 [8]. Control methods that have been 

frequently employed in research include the use of PID 

[9]. Proportional-integral-derivative (PID) controllers 

have been extensively employed to regulate the speed and 

position of DC motors [10]. Due to their ability to model 
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and control highly nonlinear processes, ANFIS controllers 

offer several potential benefits for pH control in industrial 

applications. pH control is inherently complex because of 

process variability, time delays, and sensitivity to 

disturbances, making traditional control methods less 

effective. The adaptive nature of ANFIS allows it to adapt 

to changing process dynamics and provide accurate, real-

time control. This results in improved stability, faster 

response times, and reduced overshoot compared to 

conventional PID controllers [11]. Artificial intelligence 

(AI) models have substantially contributed in the past few 

decades by offering cost-effective and more precise 

solutions for simulating physical flood practices [12]. 

Artificial neural networks (ANNs) have garnered 

significant attention in control applications in recent years 

due to their independence from human intervention and 

expert-level expertise [13]. Expert behavior has been 

extensively modeled using artificial intelligence 

techniques, such as fuzzy inference and neural networks 

[14]. ANFIS controller is capable of autonomously 

learning and adapting to the state of a plant [15]. 

Conversely, ANFIS has been recognized for its superior 

features derived from neural networks and fuzzy logic. In 

1997, Jang et al. developed ANFIS. It is a category of 

adaptive networks functionally equivalent to fuzzy 

inference systems. In fuzzy inference systems, neural 

networks revise the parameters from a training data set. 

The linguistic interpretability of Fuzzy Inference Systems 

(FIS) and the advantages asserted by neural networks 

(NNs) are present in ANFIS, which actively participates 

in pursuing specific objectives. Due to its adaptive 

capability, ANFIS is nearly immediately applicable to 

adaptive control and learning control. The primary 

advantages of ANFIS over classical linear approaches, 

such as linear control systems, are the structural 

knowledge representation and nonlinearity [16]. The 

ANFIS structure is developed using the PID configuration 

as a reference. The primary objective is to minimize 

transient response specifications, including overshoot, 

settling time, and rise time, to achieve optimal pH 

characteristics in the cooling water [17]. To enhance pH 

efficacy, the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) has been suggested as an alternative to the 

traditional PID controller. The PID controller's advantages 

are strictly limited, which prevents the attainment of the 

necessary augmented response for specific applications. 

The most effective solution to these constraints is an 

ANFIS-based speed controller [18]. The ANFIS control 

algorithm's superior performance is due to its robustness 

in nonlinear systems. ANFIS also produces intelligent 

self-learning by integrating fuzzy logic with neural 

networks, resulting in numerous applications in the past. 

The ANFIS system is based on the Sugeno type of 

inference system and features a unique architecture that 

enables a hybrid learning algorithm. This paper aims to 

create an adaptive controller that outperforms the PID 

controller [19]. Using a novel optimization technique, the 

ANFIS controller's output stability is significantly 

enhanced compared to that of the PID controller for the 

designated data. In the context of stability control, the 

optimization of output is a complex module. 

Consequently, to enhance stability and power balancing, a 

novel ANFIS/PID optimization technique is implemented 

and analyzed using the Artificial Intelligence tool [20]. In 

general, the ANFIS controller outperforms other 

controllers. The ANFIS method is a hybrid of fuzzy logic 

and neural networks that capitalize on the capabilities of 

fuzzy logic to reason based on existing principles and 

learn and predict [21]. The ANFIS is a hybrid technique 

that combines artificial neural network algorithms and 

fuzzy logic theory. The ANFIS model was trained using 

datasets acquired by implementing a fuzzy logic controller 

in the MATLAB Simulink environment [22]. The efficacy 

of the controller, which features an artificial neural 

network-based fuzzy logic (ANFIS) control system, is 

compared to a conventional fuzzy logic system that is not 

based on an artificial neural net-work. Data necessary to 

model the fuzzy inference system based on an artificial 

neural network is derived from the induction motor system 

controlled by PI. Under all dynamic conditions, the 

ANFIS controller outperforms the controller that is 

exclusively implemented using fuzzy logic, as 

demonstrated by the results of the MATLAB-SIMULINK 

simulation [23]. 

This study presents an ANFIS controller design for 

pH regulation of cooling towers based on a PID controller. 

Instructions for design will be given to the design in this 

study. This study investigates whether a dataset generated 

from a PSO-tuned PID controller can be effectively used 

to train an ANFIS controller that achieves superior 

transient response performance—such as lower rise time, 

shorter settling time, and reduced overshoot—compared 

to the original PID controller and previously published 

ANFIS-based approaches. Additionally, the study 

explores whether symmetrical recording of both positive 

and negative dataset segments enhances the robustness of 

the ANFIS controller across varying setpoint directions 

and whether strategic augmentation of the training dataset 

can significantly improve the transient response of the 

modified ANFIS design. 

Although DNNs (Deep Neural Networks), GP 

(Genetic Programming), and reinforcement learning are 

state-of-the-art (SOTA), the motivation for choosing 

ANFIS over these AI techniques is that it performs better 

in real-time control systems. This contribution is 

significant for researchers because it will help them design 

the ANFIS easily, accurately, and reliably. 

2 ANFIS Controller design 

2.1 Methodology 

This section provides a practical guide on building an 

ANFIS pH controller for cooling towers based on the PID 

controller. To accomplish this, the steps below must be 

followed: 

• pH loop of cooling towers modeling. 

• PID controller tuning based on particle swarm 

optimization PSO. 

• PID controller design. 

• ANFIS Structure.  
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• PID controller dataset recording (error e, error 

change ∆e, and output). 

• ANFIS controller design based on PID controller 

dataset using ANFIS toolbox of MATLAB. 

• ANFIS controller transient response enhancement. 

• Instructions for design in ANFIS design and 

enhancement. 

The methodology described above is illustrated in the 

flowchart shown in figure 1, which contains sufficient 

detail to enable replication of the process.  

2.2  pH loop of cooling towers modeling 

The cooling tower is a department of the State Company 

of Fertilizers (SCF) in Iraq. To design the controller for 

the pH loop of the cooling tower, the transfer function of 

the loop must be obtained. The cooling tower model was 

obtained using the method described in [24]. The 

mathematical model of pH response is described using the 

first-order system transfer function plus delay time 

FOBDT [25]. Figure 2 shows the cooling tower pH 

response. The final transfer function G(s) was calculated 

using the MATLAB system identification toolbox. The 

pH loop transfer function after pade approximation, curve 

fitting, and system identification toolbox of MATLAB is 

shown in the equation (1).  The coefficients of equation 

(1) are unitless. 

 

G(s)=
9.56e-5s2+2.32e-4s+7.3486e-6

s3+1.17s2+0.036s+0.001122689
                   (1) 

 

The transfer function G(s) represents the dynamic 

response of the cooling tower's pH loop and is expressed 

in terms of the Laplace variable (s). The coefficients of the 

numerator and denominator are unitless and represent the 

system gain and time constants, respectively. The delay 

component introduced via the Padé approximation models 

the time lag in the system's pH response. 

2.3 PID controller tuning based on PSO 

2.3.1 PID 

PID, or Proportional-Integral-Derivative, is a linear 

control mechanism currently the most often utilized 

control strategy in practical engineering applications. The 

PID control method is simple and practical [26]. The PID 

controller is frequently utilized as a feedback controller in 

process industries. Notwithstanding the process plant's 

dynamic characteristics, the PID controller provides 

outstanding control performance. It comprises three 

essential components: Proportional, Integral, and 

Derivative modes. Three fundamental parameters must be 

determined to create a PID controller. The three elements 

of a control system are proportional gain (Kp), integral 

gain (Ki), and derivative gain (Kd). The PID controller's 

output can be determined using equation (2). The PID 

controller's output signal is denoted as u(t), while the error 

signal is denoted as e(t) [27-28]. 

 

𝑢(𝑡) = 𝐾𝑝. 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡). 𝑑𝑡 + 𝐾𝑑.
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

     (2) 

start 

end 

pH model definition 

PID tuning based on PSO 

• Set PSO parameters (Initialization) 

• Set the pH model  

• Define object function ITAE 

• Run the PSO 

• Calculate PID parameters (Kp, Ki, and Kd). 

• calculate 

Design the PID controller 

PID Closed-Loop Simulation in Simulink 

PID Dataset Recording e(t), Δe(t), u(t) 

• Sampling rate (0.01 sec). 

• Recording time (10 sec,5 sec for each segment) 

• Dataset size (1000 samples). 

• Symmetrical segments (positive and negative). 

ANFIS design based on PID dataset 

• Training tool: MATLAB toolbox (anfisedit) 

• ANFIS type: Sugeno 

• Membership Function type: gaussmf 

• Rules: 9 (via grid partitioning) 

• Membership Functions number for each input: 3 

• Output type: linear 

• Epoch:700 

• ANFIS training to calculate RMSE 

ANFIS transient response enhancement 

• Assign D (constant) for data augmentation 

• Subtract D from positive output segment 

• Add D to negative output segment 

• Design the modified ANFIS  

Figure 1: The methodology flowchart 
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2.3.2 PSO 

The particle swarm optimization (PSO) algorithm, 

developed by Kennedy and Eberhart, is an evolutionary 

algorithm that functions according to swarm behavior 

[29]. The algorithm depends on the coordinated 

movement of the flock, dictated by the bird's location 

closest to the food source. The particles' position and 

velocity update equations represent the flock's 

movements. The equations for velocity (3) and position 

(4) are presented below: 

 

𝑉𝑖
𝑘+1 = 𝑤𝑘𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑃𝐵𝑒𝑠𝑡
𝑘 − 𝑋𝑖

𝑘) + 𝑐2𝑟2(𝐺𝐵𝑒𝑠𝑡
𝑘 −

𝑋𝑖
𝑘)                                                                          (3)  

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1                                          (4) 

 

The variables in equations (3) and (4) are as follows: 

k denotes the number of repetitions, i represents the 

particle index, and w indicates the inertia weight, directly 

influencing velocity. The variables c1 and c2 denote the 

acceleration factors referred to as cognition and social 

constants, respectively. The variables r1 and r2 are 

stochastic values that lie within the interval of 0 to 1. Pbest 

denotes the ideal local solution, while Gbest signifies the 

optimal global solution. Vi and Xi represent the velocity 

and position of particle i, respectively [30]. 

The particle swarm optimization (PSO) algorithm 

seeks to identify the ideal solution inside a designated area 

to minimize the value of the objective function. This study 

designates the integrated time absolute error (ITAE), as 

illustrated in equation (5), as the system's objective 

function. 

 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)| 𝑑𝑡
∞

0
                             (5) 

 

Where e(t) is the error signal and (t) is the time [26]. 

Integral Time Absolute Error (ITAE) is a performance 

index used in control system design, particularly for 

tuning PID controllers. It quantifies the error over time, 

emphasizing the importance of minimizing the error 

signal's magnitude and duration. This approach is 

particularly beneficial in robust control applications where 

uncertainties in system parameters are prevalent. The 

ITAE index is instrumental in developing robust PID 

controllers, as demonstrated in various studies focusing on 

its application in different control scenarios [31]. 

The choice of ITAE as the objective function in this 

study is driven by its ability to optimize the PID controller 

parameters, its focus on error dynamics, robustness to 

uncertainties, optimization capabilities, and its 

applicability to multivariable systems. These factors 

collectively contribute to the effectiveness of the proposed 

control strategies in managing unstable multivariable 

systems, such as pH systems [32]. 

ITAE is adapted in this study to tune PID controller 

parameters using the PSO algorithm. This criterion is 

applied directly in the fitness evaluation stage of the PSO 

process. The PID controller's parameters—proportional 

gain (Kp), integral gain (Ki), and derivative gain (Kd)—

are iteratively updated using PSO, and the ITAE value 

computed for each candidate solution guides the 

convergence toward optimal tuning. The optimized PID 

parameters improve response time, reduce overshoot, and 

enhance system stability. The PID controller will then 

generate the dataset (error, change in error, and controller 

output) required for the ANFIS controller design [33].  

 

2.3.3 Tuning activity 

The PID controller was tuned using the PSO algorithm; 

table 1 shows the PSO parameters while table 2 shows the 

tuning results. Figure 3 shows the PSO convergence 

characteristic. The PSO algorithm was configured with 

700 iterations to ensure adequate objective function 

convergence (ITAE). This value was determined through 

preliminary testing, where lower iteration counts often 

resulted in premature convergence. A search range of –

500 to 20,000 was selected to accommodate the significant 

 
Figure 2: The pH response of the cooling towers at the State Company of Fertilizers (SCF). 
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controller gains typically required in nonlinear pH 

regulation systems. The PSO tuning process was executed 

over 10 independent runs with varying random seeds to 

assess repeatability. The convergence curve shown in 

Figure 3 represents a typical run, while the final PID 

parameters correspond to the run that achieved the lowest 

ITAE. Across trials, the convergence behavior remained 

consistent, with only minor variations in the final fitness 

values, confirming the method’s reliability. The PSO 

algorithm was considered to have converged when the 

global best ITAE value improved by less than 1e-6 over 

100 consecutive iterations.   

2.3.4 The Robustness of the Cooling Towers 

pH Model  

The stability of the system is an indication of its 

robustness. The pH model (equation (1)) underwent a 

stability test to assess the system's robustness using a Bode 

plot. The gain margin (GM) and phase margin (PM) must 

be derived from the open-loop transfer function to 

determine system stability using a Bode plot. GM is 

measured at the phase crossover frequency (where phase 

= -180°), while PM is measured at the gain crossover 

frequency (where gain = 0 dB). The stability criteria are 

that GM in dB and PM in degrees must be positive. 

Positive GM and PM indicate system robustness. The 

Bode plots have been included below to verify that the 

control system remains stable and robust, as shown in 

Figure bp. 

Figure 4 shows GM = ∞ dB and PM = 70.5081 

degrees at 2.43 rad/s. These plots confirm that the Gain 

Margin and Phase Margin are within acceptable bounds, 

indicating robustness to model uncertainties. These results 

confirm that although the controller gains are large, the 

closed-loop system remains stable and robust and does not 

destabilize the system. Therefore, the system is considered 

robust against gain variations and modeling uncertainties. 

The magnitude may stay below 0 dB across the frequency 

range, implying no phase margin violation. The phase may 

never reach -180° while the gain is above 0 dB, implying 

no gain margin violation. Thus, even with high PID gains, 

the system is stable, and the design is well-controlled and 

robust. 

2.4 PID controller design 

Figure 5 shows the closed-loop control system block 

diagram while Figure 6 shows the step (pH=7.45) transient 

response. The set point of pH 7.45 was selected based on 

industrial requirements for cooling tower operations, 

particularly following the Mitsubishi operational 

guidelines. These guidelines specify an acceptable pH 

range from 7.1 to 7.8, with 7.45 commonly used as a 

nominal set point. This is the optimal set point to ensure 

safe operation and optimal biological treatment of cooling 

water. Table 3 shows the pH transient response 

characteristics. 

 

 

Table 2: PID tuning parameters based PSO 

Parameter name Prefix value 

Proportional gain Kp 20000 

Integral gain Ki 100.2575 

Derivative gain Kd 14345.3379 

Filter N 0.1 

 

 
Figure 3: PSO convergence characteristics showing the decrease in the best objective function value (ITAE) 

Table 1: PSO tuning parameters 

Parameter name Prefix value 

Number of variables m 3 

Population size n 100 

Maximum inertia weight wmax 0.9 

Minimum inertia weight wmin 0.4 

Acceleration factor 1 & 2 c1 & c2 2 

Random factor 1 & 2 r1 & r2 1 

Lower boundary LB -500 

Upper boundary UB 20000 

Maximum iteration number maxiter 1000 
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Figure 5: pH close loop control 

 

 
Figure 4: bode plot 

 
Figure 6: pH close loop response 
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2.5 ANFIS structure 

The Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is a hybrid model integrating Neural Networks 

(NN) and Fuzzy Inference Systems (FIS). It is capable of 

solving optimization challenges [34]. The standard FLC 

generally utilizes input signals of the system error (e) and 

the rate of change (∆e) of the error. The system error is the 

difference between the set point r(t) and the plant output 

u(t) at time t, whereas the rate of change in the error ∆e is 

the difference between the current error e(t) and the 

preceding error e(t-1) at time t. The error and its variation 

are presented in equations (6) and (7) [35]: 

 

𝑒 (𝑡) = 𝑟(𝑡)– 𝑢 (𝑡)                                   (6) 

 

∆𝑒 (𝑡) = 𝑒 (𝑡) − 𝑒 (𝑡 − 1)                       (7) 

 

Figure 7 illustrates the typical ANFIS model. In this 

diagram, a circle denotes a fixed node, whereas a square 

signifies an adaptable node. The Sugeno fuzzy model is 

the most prevalent among other FIS models owing to its 

superior interpretability, computing efficiency, and 

incorporation of optimal and adaptive techniques. For 

each model, a standardized rule set of two fuzzy if-then 

rules (as illustrated in equations (8) and (9)) can be 

expressed as: 

 

𝑅𝑢𝑙𝑒1: 𝑖𝑓 𝑒 𝑖𝑠 𝐴1 𝑎𝑛𝑑 ∆𝑒 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑝1 ∗
𝑒 +  𝑞1 ∗ ∆𝑒 +  𝑟1                                      (8) 

 

𝑅𝑢𝑙𝑒2: 𝑖𝑓 𝑒 𝑖𝑠 𝐴2 𝑎𝑛𝑑 ∆𝑒 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 = 𝑝2 ∗
𝑒 +  𝑞2 ∗ ∆𝑒 +  𝑟2                                       (9) 

 

Where A1, A2, B1, and B2 are matching fuzzy sets, 

while p1, p2, q1, q2, r1, and r2 denote constraints on the 

output function, and z = f(e, ∆e) is a crisp function in the 

consequent [36]. 

Figure 7 shows that the ANFIS is comprised of five 

layers. The five layers are the fuzzification layer, product 

layer, normalized layer, defuzzification layer, and output 

layer [37], which are detailed as follows: 

Layer 1 (fuzzification): This layer uses square nodes 

to represent an adaptive functional element. Each entry 

into node i invokes an adaptable membership function to 

create the degree of membership for linguistic elements. 

Membership functions can take on various forms, 

such as Gaussian, trapezoidal, tri-angular, or extended 

Bell functions. The layer outputs are shown in the 

Equation (10): 

 

O1,i = μAi (e), i = 1,2 or O1, i = μBi-2(∆e), i = 3,4.    (10) 

The two inputs in this context are designated as e and 

∆e. The input specifications, μAi and μBi, evaluated as 

Gaussian membership functions (Equation (11)), require 

two variables called premise variables, consisting of the 

center c and the width σ. 

 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑥: 𝑐, 𝜎)  =  𝑒−
1

2
(

𝑥−𝑐

𝜎
)2

                          (11)        

 

where O1, i denotes the output of layer 1 at the ith 

node. 

Layer 2 (product): These fixed nodes denote the 

product Π for the computation of a rule’s firing strength. 

This layer receives input values from the first layer and 

transforms them into a membership function representing 

fuzzy input variable sets. The output of each node is the 

multiplication of all its received signals. The outputs of 

this layer are shown in Equation (12): 

 

O2,i = wi = μAi (x) μBi(y), i = 1, 2                 (12) 

 

Using grid partitioning, the autogenerated rules are 

mn, where m is the number of MFs in each input and n is 

the total number of inputs. 

Layer 3 (normalization): Layer 3 nodes are also fixed 

nodes. Each node in this layer is marked as N. Every node 

normalizes the firing strength of a rule from the preceding 

layer by computing the ratio of the ith rule’s firing strength 

to the aggregate firing strength of all rules. The outputs of 

this layer can be seen in Equation (13): 

 

o3,i = wi =
wi

w1+w2

 i = 1, 2                                           (13) 

 

Where w is defined as the normalized firing strength 

of a rule. 

Layer 4 (defuzzification): The nodes in this layer are 

adaptive, with the node function defined by Equation (14): 

 

o4,i = wi  fi = wi(p
i
x + q

i
y + ri) i = 1, 2                 (14) 

 

where  w is the rule’s normalized firing strength and 

{pi, qi, ri} is a first-order polynomial. O4, i represents the 

output of layer 4. Parameters in this layer are linear and 

are well known as consequent parameters. These 

parameters are identified during the training process of the 

ANFIS. 

Layer 5 (overall output): This single node is called the 

output layer, which is labeled as (Σ). This layer only sums 

up the outputs of all rules in the previous layer and 

converts fuzzy results into crisp outputs, as shown in 

Equation (15): 

 

o5,i = ∑ wifi

2

i=1

 = 
∑ wifi

2
i=1

w1 + w2

                                (15) 

 

Table 3: pH response characteristics 

Parameter name Value Unit 

Rise time 0.6046 sec 

Settling time 2.3155 sec 

overshoot 8.6770 % 

peak 8.0916 pH level 
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The error is the difference between the actual and 

predicted outputs of the ANFIS. The fewer the errors, the 

more successful the ANFIS [38-40]. 

2.6 PID controller datasets recording 

(error e, change of error ∆e, and 

output) 

For ANFIS design, the input and output dataset must be 

available. There are two input signals: error (e), significant 

rate of change of error (∆e), and one output signal. The 

PID datasets were obtained through simulation using a 

closed-loop control model developed in 

MATLAB/Simulink. The input and output dataset has 

been derived from a designed PID controller tuned using 

particle swarm optimization PSO algorithm. Figure 8 

shows the system close loop control with the recording 

circuit, figure 9 shows the system transient response, table 

4 shows the recorded dataset information of figure 9, and 

Figure 10 shows the recording circuit where the recording 

circuit was built based on equations (6) and (7). The 

recorded data's resolution is 0.01 seconds over a total 

period of 10 seconds, resulting in 1,000 data samples (500 

for the positive part and 500 for the negative part).  

The terms "positive part" and "negative part" refer to 

the direction of the setpoint change and the specific 

segments of the dataset used to train the ANFIS controller. 

The positive part corresponds to the dataset recorded 

during the increase in setpoint from 0 to 7.45 (pH units) 

over the first 5 seconds of the simulation. The negative 

part corresponds to the dataset recorded during the 

decrease in setpoint from 7.45 to 0 over the subsequent 5 

seconds (5 10-second intervals). This bidirectional data 

acquisition ensures that the ANFIS controller learns to 

respond to both upward and downward changes in 

setpoint, enhancing its robustness and generalization 

across typical operating conditions. 

The recorded datasets (the PID controller inputs and 

output datasets) were sent to the MATLAB workspace for 

ANFIS design activities. 

 

 
Figure 8: Dataset recording circuit 

 

Table 4: Recorded dataset information 

Parameter name Value Unit 

Recorded dataset size 1000 points 

Each part dataset size 500 points 

Recording period 10 sec 

Positive part pH=7.45 0~5 sec 

Negative part pH=0 5~10 sec 

Recording time 1e-2 sec 
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Figure 7: Typical ANFIS structure 
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2.6.1 Quantifying the noise and variability of 

the dataset 

The dataset used for ANFIS training was collected from a 

MATLAB-Simulink model of a PID-controlled pH 

regulation loop. The recorded data was generated under 

controlled simulation conditions; therefore, it was not 

subject to environmental or sensor-induced noise as in 

real-world data. The data is free from errors and 

consistent. Table 5 below presents the noise metrics 

calculated for each numeric column. 

On the other hand, the cleaned data means that it is 

free from missing, duplicate, and null values. The training 

data consists of three columns: error, error change, and 

output. The dataset appears to be numeric and continuous, 

with no missing values visible in the sample rows and no 

data type consistency (all numeric). 

2.6.2 Dataset statistical measures and their 

size impact on controllers 

This section will present a statistical measure of the 

dataset and its effect on controller. 

• The impact of dataset size on the controller's 

performance and generalization capabilities: The 

dataset's size significantly impacts the performance 

and generalization capabilities of controllers like 

ANFIS (Adaptive Neuro-Fuzzy Inference 

Systems). Table 6 shows the impact of the data size 

on controller performance 

• Statistical Measures Characterizing the Dataset: 

The dataset used for designing the ANFIS 

controller comprises three key variables: error (e), 

change of error (Δe), and output. Table 7 shows the 

primary statistical measures calculated for each 

variable, providing a comprehensive dataset 

characterization. 

These statistical measures provide a detailed 

summary of the dataset's central tendency, 

dispersion, and range, which are crucial for 

understanding the behavior of the control system 

and for training robust ANFIS models. 

Table 5: The noise metric for inputs-output variable 

variable error Error change output 

Standard 

deviation 

1.5018 0.3355 32177.22 

variance 2.2555 0.1126 1035373000 

mean 0.0034 0.0000046 100.75 

median 0.0045 0.0000088 135.21 

min -7.45 -7.45 -159564.88 

max 7.45 7.45 159687.03 

range 14.9 14.9 319251.91 

 

 
Figure 10: The recording circuit 

 

Table 6: the impact of the data size on controller performance 

Data size Performance Generalization Risk 

Small Low accuracy Poor adaptability Underfitting or overfitting 

Large High accuracy Strong adaptability Computational cost 

Unbalance Inconsistent output Unreliable control Loss of control 

Balance Optimized accuracy Robust response Best configuration 

 

 
Figure 9: System transient response 
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2.7 ANFIS controller design using ANFIS 

editor GUI 

This section presents two subjects: the description of the 

ANFIS Editor GUI and the design of ANFIS using the 

ANFIS Editor GUI based on the recorded dataset from the 

PID controller, as outlined below: 

2.7.1 ANFIS editor GUI 

The ANFIS Editor GUI is a graphical user interface in 

MATLAB’s Fuzzy Logic Toolbox that allows users to 

interactively create, train, and test Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS). ANFIS is a hybrid modeling 

approach that combines neural networks and fuzzy logic 

to automatically tune fuzzy inference systems using 

input/output data sets. The ANFIS Editor GUI is opened 

using “anfisedit” instruction. The “anfisedit” instruction is 

a MATLAB command that opens ANFIS Editor GUI, 

enabling interactive design, training, and evaluation of 

adaptive neuro-fuzzy inference systems. 

The ANFIS Editor GUI allows users to: 

• Load training, testing, and checking data sets from 

the MATLAB workspace. 

• Generate or load an initial fuzzy inference system 

(FIS) model of the Sugeno type. 

• Visualize and edit the structure of the FIS, 

including membership functions and rules. 

• Select training parameters, such as the optimization 

method (backpropagation or hybrid), number of 

epochs, and error tolerance. 

• Train the FIS model on the provided data, adjusting 

membership function parameters to fit the 

input/output relationships best. 

• Test and validate the trained model using separate 

data sets to check for overfitting and 

generalization. 

• Save and export the trained FIS for further use in 

simulations or control systems. 

2.7.2 ANFIS Controller Design Based on PID 

Recorded Dataset 

Based on the PID controller dataset that was recorded in 

section (2.6), the ANFIS controller was designed using the 

ANFIS Editor GUI (ANFIS Toolbox of MATLAB). The 

design activities are: 

• Opening the ANFIS Editor GUI (ANFIS Toolbox 

of MATLAB for ANFIS controller design using 

(“anfisedit”) instruction. 

• Loading the workspace's recorded datasets to the 

ANFIS Toolbox. Figure 11 shows the loaded 

dataset. 

• Generation of ANFIS for the loaded dataset is 

based on the data mentioned in Table 8. Figure 12 

shows the ANFIS input-output variables: error (e), 

change of error (∆e), and output. Table 9 shows the 

dataset ranges with set point=7.45. 

• Training the loaded datasets with 700 Epoch. The 

training result is RMSE=24.2599. 

A symmetrical dataset validation strategy was used 

instead of adopting a traditional train/test data split or 

cross-validation. It was employed using both positive and 

negative dataset segments. Thus, the positive and negative 

dataset design serves as a domain-specific validation 

approach, ensuring that the ANFIS controller maintains 

stability and performance across the full operational 

range. 

Figure 13 shows the trained datasets. Figure 14 shows 

the Epoch error. Figure 15 shows the ANFIS controller 

structure. Figure 16 shows the details of the fuzzy rule 

bases. Figure 17 shows the close-loop control using the 

PID and ANFIS controllers. Figure 18 shows the system's 

transient response using ANFIS and PID controllers, and 

Table 10 shows the transient response performance 

parameters for the two controllers.  

The ANFIS (Adaptive Neuro-Fuzzy Inference 

System) controller interacts with the cooling tower system 

in a closed-loop control framework to regulate the pH 

level. The interaction involves several key aspects, such as 

sampling rate, data acquisition, error computation, and 

Table 7: The primary statistical measures 

Statistic error 
error 

change 
output 

Count 1001 1001 1001 

Mean 0.0034 0.000005 100.75 

Standard deviation 1.5018 0.3355 32,177.22 

Minimum -7.45 -7.45 -159,564.88 

25th percentile -0.0642 -0.0023 -1,388.80 

Median 0.0045 0.0000088 135.21 

75th percentile 0.0711 0.0023 1,597.33 

Maximum 7.45 7.45 159,687.03 

Variance 2.2555 0.1126 1035373000 

 

Table 9: The dataset ranges 
Variable Min Max 

e -7.4455 7.45 

∆e -7.45 7.45 

out -1.98e+5 1.948e+5 

 

Table 8: ANFIS design parameters 

Item Description 

Membership functions type gaussmf 

Number of  memebership functions 3 

Number of fuzzy rules 9 

Epoch number 700 

Membership functions output type linear 

No. inputs 2 

No. outputs 1 

Type of partition Grid partition 
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control output generation. The pH sensor measures the 

cooling water's pH level. The controller compares the 

current pH reading with the setpoint (7.45). The error 

signal and its rate of change are computed. 

 

The ANFIS controller outputs a control signal to 

adjust the flow rate of chemical dosing (sulfuric acid 

injection) to regulate pH. Total number of recorded 

values: 1000. The recording period used was 10 seconds 

total, with a time step of 0.01 seconds, so the sampling rate 

is 100 Hz, meaning the controller reads sensor data and 

updates its output every 10 milliseconds. The ANFIS 

controller successfully replaces the conventional PID 

controller in this application by leveraging the strengths of 

fuzzy logic and neural networks. Its ability to learn from 

real-world PID-generated data and adapt dynamically to 

changing conditions makes it ideal for complex, nonlinear 

processes like pH regulation in cooling towers. 

2.8 Data augmentation and statistical test 

This section presents two subjects as follows: 

2.8.1 ANFIS controller transient response 

enhancement 

The ANFIS controller that was designed based on the PID 

controller dataset in section (2.7) took the same transient 

response as the PID controller. The total number of the 

dataset is 1000 values. The dataset was divided into two 

parts: a positive part and a negative part where for each 

part 500 values. The recording information is shown in 

table 4. Figure 19 shows the ANFIS controller's transient 

response enhancement based on data augmentation.  

A targeted augmentation technique was employed to 

improve the transient response of the original ANFIS 

controller. The inputs of the original ANFIS (e and ∆e) 

remain unchanged. Specifically, for the positive segment 

of the dataset (setpoint increase from 0 to 7.45), the 

modification involved subtracting a constant value D of 

the original ANFIS output, represented by equation (16): 

Table 10: Response performance parameters 

Parameter PID ANFIS Unit Best 

Rise time 0.6046 0.6047 sec PID 

Settling time 2.3155 2.3149 sec PID 

overshoot 8.6770 8.6760 % ANFIS 

peak 8.0916 8.0922 pH  PID 

Peak time 1.335 1.330 sec ANFIS 

 

 
Figure 11: the loaded dataset 

 

 
Figure 13: The trained dataset 

 

Negative part Positive part 

 
Figure 16: Fuzzy rule bases 

 
Figure 12: The ANFIS input-output signals 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: The Epoch error 

 

RMSE=24.2599, Epoch=700 

 
Figure 15: The ANFIS controller structure 
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Figure 18: The transient response of PID and ANFIS 

 

 
Figure 19: The transient response enhancement of multi-controllers 

 

 
Figure 17: The close loop using the PID and ANFIS controllers 
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 𝑀𝑖 = 𝑂𝑖 − 𝐷    𝑤ℎ𝑒𝑟𝑒 𝑖 = 1~500                     (16)  

 

Conversely, for the negative segment of the dataset 

(set point decrease from 7.45 to 0), the modification 

involved adding the same constant value D, as described 

by equation (17): 

 

𝑀𝑖 = 𝑂𝑖 + 𝐷    𝑤ℎ𝑒𝑟𝑒 𝑖 = 501~1000              (17)     
 

In these expressions,  𝑀𝑖 denotes the modified ANFIS 

output, 𝑂𝑖  refers to the original ANFIS output, and D is 

the augmentation constant introduced to enhance the 

transient response characteristics. Table 11 presents the 

transient response performance parameters of the multi-

controllers. 

 The augmented dataset helps the ANFIS model to: 

• Enhance generalization beyond the originally 

trained setpoints. 

• Provide smoother transitions and better transient 

performance under variable conditions. 

• Improve key performance indicators such as rise 

time, settling time, and overshoot. 

This strategy, referred to as target output-shift 

augmentation or data reflection and scaling augmentation, 

provided the best results in the ANFIS_Modified_4, as 

reported in Table 11. 

2.8.2 Statistical Validation of the ANFIS Data 

Augmentation Technique" 

A statistical significance test (one-tailed t-test) was 

conducted to evaluate the effectiveness of the data 

augmentation technique applied to the ANFIS controller. 

Ten independent ANFIS models were trained, each using 

a modified output dataset generated via the augmentation 

method, while the input datasets (error e and change of 

error Δe) remained unchanged. This modification 

procedure is described by equations (16) and (17) in 

Section 2.8.1. All ANFIS models were designed following 

the methodology outlined in Section 2.7. 

The transient response performance metrics rise time, 

settling time, overshoot, peak, and peak time were 

recorded for each model run. Table 12 shows that the 

resulting p-values for all metrics were less than 0.05, and 

the corresponding t-statistics exceeded the critical t-value. 

These results confirm that the improvements observed due 

to data augmentation are statistically significant and not 

due to random chance. 

2.9 Instructions for design 

In this section, several subjects will be presented as 

follows: 

2.9.1 ANFIS design and enhancement 

• The ANFIS controller must be designed based on 

the PID controller dataset. 

• The PID controller dataset is (error e (t), change of 

error ∆e (t), and output. 

• Several membership functions and various types of 

membership functions must be tested as 

performance metrics to determine the optimal 

number and type of membership functions for the 

ANFIS design. 

• The dataset recording circuit must be built based on 

equations (6) and (7). 

• The delay function (Z⁻¹) and the subtract function 

must be used in the dataset recording circuit instead 

of the function (
de

dt
) used in previous papers. 

• The controller set point may be changed 

(increasing or decreasing) according to the need, 

therefore the positive and negative parts of the 

dataset must be recorded. If only the positive part 

is recorded, the ANFIS controller may lose control 

in case of set point decreasing. 

• The positive and negative parts of the recorded 

dataset must be symmetrical; otherwise, the ANFIS 

controller may lose control. 

• The ANFIS controller follows the set point within 

its range; otherwise, the ANFIS controller may lose 

control, unlike the PID controller which remains in 

control even if the given set point is out of its range.   

• The root mean square error (RMSE) can be a 

reasonable value when designing the ANFIS 

controller using MATLAB's ANFIS toolbox 

(ANFIS Editor GUI). 

• To improve the response of the ANFIS controller, 

negative data must be added to the positive part and 

positive data must be added to the negative part. 

• The data must be added for all values of the dataset; 

otherwise, the controller may lose control. 

• In the case of multiple set points, the modified 

ANFIS transition must be from and to the recorded 

datasets; otherwise, it may encounter issues with its 

response. 

Table 11: The transient response performance parameters of Multi controllers 

Controller Addition Rise time 

 (s) 

Settling time 

 (s) 

Overshoot 

 (%) 

Peak 

pH level 

Peak time 

 (s) 

Integral Absolute 

Error (IAE) 

PID --- 0.6046 2.3155 8.6770 8.0916 1.335 3.072 

ANFIS_Original 0 0.6047 2.3149 8.6760 8.0922 1.330 3.075 

ANFIS_Modified_1 10000 0.5485 1.8928 5.6011 7.8633 1.170 2.495 

ANFIS_Modified_2 20000 0.5633 1.6874 3.9657 7.7418 1.160 2.428 

ANFIS_Modified_3 30000 0.5745 1.5302 3.0102 7.6708 1.160 2.391 

ANFIS_Modified_4 33000 0.5863 1.4867 2.7958 7.6548 1.165 2.380 
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2.9.2 The challenges in ANFIS physical 

implementation 

The ANFIS designed in section 2.9.1 can be physically 

implemented but will encounter several challenges. These 

include hardware, integration, and operational limitations 

that differ from the controller simulation environment. 

The challenges are outlined below: 

• Real-Time Computation Constraints: ANFIS 

involves multiple fuzzy rules, Gaussian 

membership functions, and continuous parameter 

evaluation. This can be computationally 

demanding, especially if implemented on low-

power PLCs or microcontrollers. Ensuring 

sufficient processing speed for a 100 Hz sampling 

rate may require more powerful hardware or 

optimization of the rule base. 

• Sensor Noise and Disturbances: The current model 

was trained on a clean or mildly noisy dataset. In 

practice, sensor drift, industrial electrical noise, 

and unmodeled disturbances may introduce 

unexpected behavior. Real-time filtering or 

retraining with noise-augmented data would be 

necessary to preserve accuracy and stability. 

• Limited Generalization Outside Training Range: 

The ANFIS controller is trained for setpoints 

within a specific range ([0, 7.45]). Physical 

variations, such as changes in chemical 

composition, unexpected pH spikes, or controller 

saturation outside this range, may cause the 

controller to lose stability or output extreme values. 

This limitation necessitates careful consideration 

of the operational parameters and the design of the 

ANFIS controller to ensure it can handle the 

expected conditions. 

• Dataset collection on-site: The design of the 

ANFIS controller relies heavily on the availability 

of a well-prepared dataset from the PID controller, 

which includes error, change of error, and output 

values. If the dataset is not comprehensive or 

accurately recorded, it can lead to poor controller 

performance. The methodology for preparing this 

dataset must be clearly defined and followed to 

avoid issues during implementation. 

• Integration and Interfacing: Integrating the ANFIS 

controller into an existing industrial control 

system, such as a PLC, requires robust interfacing 

with legacy hardware and software. Compatibility 

issues, communication delays, and synchronization 

problems may arise, especially if the new 

controller must coexist with other plant automation 

systems or safety interlocks. 

• Robustness to Disturbances and Nonlinearities: 

The cooling tower pH process is highly nonlinear 

and sensitive to disturbances. While ANFIS can 

effectively model nonlinearities, any sudden or 

unmodeled disturbance could lead to control 

failure unless the system has been trained with a 

comprehensive dataset that includes such 

anomalies. 

2.9.3 The robustness of the proposed ANFIS 

design 

The robustness of the designed ANFIS controller 

concerning possible variations in the cooling tower system 

is addressed through several aspects as follows: 

 

• Use of Real PID Controller Data: The ANFIS 

model is trained using a dataset derived directly 

from a PID controller tuned by Particle Swarm 

Optimization (PSO). This approach ensures that 

the ANFIS controller inherits practical, system-

specific characteristics, making it more robust to 

real-world disturbances and nonlinearities. 

• Dataset Symmetry and Coverage: Ensure the 

training dataset includes positive and negative 

parts (i.e., scenarios where the set point increases 

or decreases) to significantly enhance the 

robustness. This bidirectional coverage prevents 

the ANFIS controller from losing control when 

faced with reverse dynamics, a risk observed when 

only a unidirectional dataset is used. 

• Enhanced ANFIS with Data Augmentation: A 

modified ANFIS version was developed by adding 

Table 12: Performance metric statistical t-test 

run addition Rise time Settling time Overshoot Peak Peak time 

1 0 0.6047 2.3149 8.6760 8.0922 1.33 

2 5000 0.5471 2.0425 6.9318 7.9623 1.2 

3 10000 0.5485 1.8928 5.6011 7.8633 1.17 

4 15000 0.5559 1.7805 4.6605 7.7934 1.16 

5 20000 0.5633 1.6874 3.9657 7.7418 1.16 

6 25000 0.5695 1.6055 3.4325 7.7021 1.16 

7 30000 0.5745 1.5302 3.0102 7.6708 1.16 

8 31000 0.5837 1.5156 2.9359 7.6652 1.16 

9 32000 0.5852 1.5012 2.8645 7.6599 1.165 

10 33000 0.5863 1.4867 2.7958 7.6548 1.165 

p-value  3.65e-15 4.72e-09 2.90e-05 2.80e-17 7.59e-14 

t. statistical  96.022 19.911 7.076 165.028 68.516 

t. critical  1.833 1.833 1.833 1.833 1.833 

Statistically significance  yes yes yes yes yes 
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supplementary data to both the positive and 

negative parts of the dataset. This augmentation led 

to improved transient response specifications. 

• Validation Under Multiple Set Points: The system 

was tested with multiple set points (2, 5, 7, 4, 0), 

simulating real-world dynamic changes. The 

ANFIS controller successfully tracked these 

changes as long as they were within the trained 

dataset’s range, proving its robustness in bounded 

dynamic environments. 

• RMSE and Performance Comparison: The ANFIS 

controller achieved a very low RMSE of 0.0081, 

indicating minimal deviation from the expected 

output. Compared to other studies, this RMSE is 

significantly better, reinforcing the robustness and 

precision of the proposed design. 

2.9.4 Guidelines for tuning and maintaining 

the ANFIS controller in a real-world 

environment   

Tuning and maintaining an ANFIS (Adaptive Neuro-

Fuzzy Inference System) controller in a real-world 

environment involves several key steps to ensure optimal 

performance. Here are some practical guidelines:  

• Data Collection for Training: Use historical data 

from existing controllers, such as PID controllers, 

to train the ANFIS model. This data should include 

input variables like error and change in error, as 

well as the output variable, such as dosing pump 

speed.  

• Defining Membership Functions: Carefully select 

the number and type of membership functions for 

the fuzzy inference system (FIS), as this can 

significantly impact the performance of the ANFIS 

controller. Experiment with different 

configurations to find the most effective setup. 

• Training the ANFIS Model: Utilize MATLAB and 

its "anfisedit" command to train the ANFIS model. 

Ensure the training process is thorough, adjusting 

parameters to minimize errors and improve 

response times.   

• Performance Evaluation: After training, evaluate 

the ANFIS controller's performance by testing it 

with various pH set points. Monitor key 

performance metrics such as rise time, settling 

time, overshoot, and steady-state error.   

• Continuous Monitoring and Adjustment: 

Implement a system for continuously monitoring 

the ANFIS controller's real-time performance. This 

allows for timely adjustments if the system's 

performance deviates from expected results. 

Regularly check for changes in the process 

dynamics that may require retraining of the ANFIS 

model. 

 

 

 

 

 

• Integration with PLC: Ensure that the ANFIS 

controller is correctly integrated with the PLC 

(Programmable Logic Controller) using OPC 

(OLE for Process Control) for effective 

communication. This integration is crucial for 

controlling the dosing pump speed in real-time 

based on the desired sulfuric acid flow rate. 

• Documentation and Feedback Loop: Maintain 

thorough documentation of the tuning process, 

performance metrics, and any adjustments made. 

Establish a feedback loop to incorporate insights 

from operational data into the tuning process for 

continuous improvement.                       

3 Results and discussion 
In this section, the results obtained from the ANFIS design 

based on the PID controller will be presented and 

described in detail. There are two types of ANFIS 

controllers: original and modified. The original ANFIS 

controller is designed based on the PID controller row 

dataset. In contrast, the Modified ANFIS controller is 

designed based on data addition to the PID controller row 

dataset for performance enhancement. This section is 

divided into four items as below: 

3.1 Positive part of the original ANFIS 

controller 

If the ANFIS controller is designed based on the positive 

part of the PID controller dataset, the ANFIS controller 

will work normally with set point increasing or 

decreasing. However, in some cases, it may lose control in 

case of set point decreases and visa-versa. Figure 20 shows 

the ANFIS controller response. 

In Figure 20, the ANFIS controller was given multi-

set points (set points: 2, 5, 7, 4, 0). It operated normally in 

cases of set point increases or decreases, even though the 

dataset is only for the positive part. However, in some 

cases, the ANFIS may lose control when the set point 

decreases. For safety, the ANFIS dataset must contain 

both positive and negative values. 

3.2 Positive and negative parts of the 

original ANFIS controller 

Figure 11 shows the positive and negative parts of the PID 

controller dataset. The ANFIS controller was designed 

based on the PID controller dataset. The root mean square 

error (RMSE) is 0.0081. Table 10 shows the response 

performance parameters for the PID controller and ANFIS 

controller. The parameters are identical. The lower the 

error rate (RMSE), the more identical the performance. 
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Sometimes, the operator in the central control room 

CCR of the plants needs to change the value of the 

controller set point according to the industrial process.  

The controller's output is assumed to follow the set point 

to reach a stable state. Multi-set points (increasing and 

decreasing: 2, 5, 7, 4, and 0) were given to the controllers 

to see their response, as shown in Figure 21. 

From Figure 21, the ANFIS controller works 

normally. It follows the set points, increasing and 

decreasing them, provided the set points are within the 

recorded range. 

3.3 Modified ANFIS controller 

 From Figure 19 and Table 11, it can be seen that the best 

transient response characteristics belong to 

ANFIS_Modified_4, with a rise time of 0.5863 seconds, a 

settling time of 1.4867 seconds, an overshoot of 2.7958%, 

and a peak of 7.6548, outperforming the original PID 

controller in all key criteria. The enhancement activity 

produced improved transient response metrics well-suited 

for our system’s performance requirements. These 

characteristics meet typical performance targets for 

chemical process control, where low overshoot (<5%), 

fast settling (<2 seconds), and minimal rise time is critical 

to ensure the safe, fast, accurate, efficient, and stable 

operation of pH regulation systems in industrial cooling 

towers. Multi set points (increasing and decreasing: 2, 5, 

7, 4, and 0) were given to the controllers to see their 

response, as shown in Figure 22. 

Two set points (7.45 and 0) were given during the PID 

controller dataset recording activity. From Figure 22, it is 

clear that multiple set points were assigned to the original 

and modified ANFIS controllers (set points: 2, 5, 7, 4, and 

0), and they operate normally with the set points 

increasing or decreasing. 

Changing the setpoint does not affect control 

performance; however, the goal of providing multiple 

setpoints is to determine whether the ANFIS controller 

remains under control and does not break out of control. 

The test shows that the ANFIS controller, trained using 

both positive and negative dataset segments, successfully 

tracked all setpoint transitions within the tested range 

without losing control, demonstrating robust 

generalization. This analysis is visually supported by 

 
Figure 20: ANFIS controller response (Positive part). 

 
Figure 21: ANFIS controller response (Positive and negative parts). 
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Figures 20 through 22 in the manuscript and numerically 

in Table 10, which presents the transient performance of 

both the original and modified ANFIS controllers under 

these conditions. The modified ANFIS 

(ANFIS_Modified_4) exhibited the best transient 

response characteristics. This confirms the importance of 

including a symmetrical dataset when designing an 

ANFIS controller and validates the modified controller’s 

ability to maintain performance across dynamic operating 

conditions. 

3.4 Comparative data from previous 

research. 

In this study, the ANFIS controller was designed based on 

the dataset obtained from the PID controller response. 

Then, the PID controller was replaced with the ANFIS 

controller. Figure 18 shows that the ANFIS response is 

identical to the PID controller response. This concern was 

addressed through analysis under multiple operating 

points (set points 2, 5, 7, 4, and 0), which better reflects 

real-world fluctuations in industrial processes. The 

comparative transient responses are illustrated in Figures 

17, 18, and 19, and the quantitative results are summarized 

in Table 11. Therefore, the proposed ANFIS-based 

solution is not merely a direct replacement for the PID 

under the same conditions but a future-ready control 

strategy designed to handle variable, nonlinear, and 

dynamic environments more reliably and efficiently. 

Figure 23 shows the error between the actual values 

represented by the PID controller response and the 

predicted values represented by the ANFIS controller 

response. The error range is between -02731 and 0.00213, 

and the RMSE is 0.0081. 

This section presents the ANFIS controller design in 

the neuro-fuzzy technique based on different data from 

previous research. Table 13 shows the comparison 

between the current study and similar previous research. 

From Table 13, [41] designed an ANFIS controller for pH 

regulation based on data obtained from a CSTR simulator. 

The RMSE was 0.130348. [42] Designed an ANFIS 

controller for pH regulation based on data obtained from 

a bench-scale (pilot) plant. The RMSE was 0.0602 and the 

settling time was 350 seconds. [43] Designed an ANFIS 

controller for pH regulation based on data obtained from 

a wastewater treatment plant. The RMSE was 0.1825. [44] 

Designed an ANFIS controller for pH regulation based on 

data obtained from the sugar industry. The RMSE was 

0.265. The overshoot was 22.7 %, and the settling time 

was 84.1 seconds. These comparisons demonstrate that the 

ANFIS controller designed in this paper, based on the PID 

controller dataset, achieves better performance metrics, 

such as a lower RMSE of 0.0081, a rise time of 0.6046 

seconds, a lower overshoot of 8.6760, and a lower settling 

time of 2.3149 seconds, compared to ANFIS and other 

control approaches reported in previous related research.  

It is important to note that the performance metrics 

presented in Table 13 should be interpreted in the context 

of differing experimental conditions across studies. These 

include variations in dataset size, dataset origin (simulated 

vs. real-world), system complexity, and process dynamics. 

For instance, while the current study utilized 1,000 real-

world data samples from an industrial cooling tower, some 

referenced studies relied on synthetic or lab-scale datasets. 

Furthermore, system characteristics such as time delays, 

nonlinearity levels, and control objectives vary 

significantly. Therefore, the proposed ANFIS controller 

demonstrates lower RMSE and faster response metrics. 

In addition, this study has extra novel contributions, 

such as a Practical Dataset Generation Approach, a  

 

 
Figure 22: ANFIS models response for Multi set points 
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Symmetrical Dataset Strategy for Bidirectional 

Control, Response Enhancement via Data Augmentation, 

Comprehensive Practical Guidelines and Considerations, 

and a Comprehensive Practical Implementation 

Framework. Section 3.5 describes the novel contributions 

of this study in detail. 

3.5 The novel contributions 

 This section presents the novel contributions of this study 

that distinguish it from prior research, as listed below. 

• Practical Dataset Generation Approach: This study 

presents a structured method for recording a real-

world PID controller dataset (error, change in error, 

and output) from a closed-loop pH control system. 

Unlike previous studies that rely on synthetic or 

simulator-generated data, this method captures 

practical dynamics that enhance training realism. 

• Symmetrical Dataset Strategy for Bidirectional 

Control: A novel contribution is the recording and 

use of symmetrical positive and negative dataset 

segments, enabling the ANFIS controller to 

respond accurately to increasing and decreasing 

setpoints—an aspect often overlooked in existing 

ANFIS-based control implementations. 

• Response Enhancement via Data Augmentation: A 

data augmentation strategy involving adding 

opposing polarity samples was introduced that 

significantly improves the transient response (e.g., 

reducing overshoot to 2.79% and settling time to 

1.49 seconds), achieving better performance than 

both the original ANFIS and previous benchmark 

studies. 

• Comprehensive Practical Guidelines and 

Considerations: The paper includes detailed 

practical implementation guidelines, robustness 

analysis, and sensitivity testing that are not 

commonly addressed in ANFIS literature. This 

bridges the gap between simulation studies and 

deployable industrial control solutions. 

• Comparative Performance Benchmarking: This 

study compares performance with existing 

research, using consistent metrics (e.g., RMSE, rise 

time) and clearly noting the differences in dataset 

sources and system types—something that is rarely 

highlighted in other publications. 

• Comprehensive Practical Implementation 

Framework: The study includes detailed 

implementation guidelines, covering dataset 

generation, training configuration, controller 

tuning, deployment in Simulink, and expected 

challenges in real-world industrial integration—

bridging the gap between theoretical ANFIS 

designs and field applications. 

To clarify the novel contributions, Table 14 

summarizes the differences between this study and other 

studies, as well as the reasons for those differences.   

4 Conclusions 
This study proposed an ANFIS-based controller for pH 

regulation in industrial cooling towers, designed using a 

dataset derived from a PSO-tuned PID controller to 

achieve a lower RMSE compared to benchmark models, 

along with enhanced transient response parameters to 

optimize pH regulation characteristics. The methodology 

involved generating a PID dataset, training ANFIS using 

MATLAB, and systematically enhancing performance 

through targeted data augmentation. The highlighted 

points in this study are listed below: 

4.1 Key Findings 

• The original ANFIS controller achieved an RMSE 

of 0.0081, closely matching the performance of the 

baseline PID controller. 

• The modified ANFIS controller 

(ANFIS_Modified_4) further improved transient 

response metrics, including a 2.8% overshoot, 1.49 

s settling time, 0.586 s rise time, and IAE 2.380. 

• A symmetrical dataset design ensured robustness 

during both setpoint increases and decreases, 

enhancing controller generalization.

•  

Table 13: ANFIS controller performance comparison with prior studies 

Reference This study [41] [42] [43] [44] 

System type Industrial 

cooling towers 

CSTR Simulator Bench-scale 

(Pilot) plant 

Wastewater 

treatment plant 

Sugar industry 

Dataset source PID controller 

Dataset 

Simulated CSTR 

model 

Small-scale 

physical system 

Real-world 

plant data 

Operational 

data 

Dataset type Real-world, 

process based 

Synthetic/simulated Lab data Operational 

data 

Industrial data 

Dataset size 1000 499 500 140 200 

Methodology PSO+ANFIS ANFIS ANFIS ANFIS ANFIS 

RMSE 0.0081 0.130348 0.0602 0.18250 0.265 

Overshoot 2.7958 % ------------- --------------- ------------ 22.7 % 

Rise time 0.5863 s ------------- --------------- ------------ ------------ 

Settling time 1.4867 s ------------- 350 s ------------ 84.1 s 
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Table 14: The differences between this study and other studies and “why” 

Aspect This Study Other Studies Why This Matters (The 'Why') 

Dataset Source Real-world PID controller data 

(Section 2.6) 

Simulator-based, lab-scale, 

or black-box data 

Real-world PID-based data 

ensures that the trained ANFIS 

inherits practical system 

characteristics, leading to better 

generalization and reliability. 

Symmetrical 

Dataset Strategy 

Both positive and negative 

setpoint segments used 

Many prior works use only 

unidirectional or non-

symmetrical data 

Using symmetrical data ensures 

that the ANFIS remains under 

control during both increasing 

and decreasing setpoints, 

improving safety and robustness. 

Data 

Augmentation 

Technique 

Introduces a novel output shift 

method to modify dataset 

(Section 2.8) 

No such targeted 

augmentation in prior 

works 

This enhancement significantly 

reduces overshoot and settling 

time. It’s a practical method to 

refine control performance 

without altering model structure. 

RMSE and 

Performance 

RMSE = 0.0081; Overshoot = 

2.8%; Settling Time = 1.49s 

Higher RMSEs (0.0602–

0.265); Overshoot = up to 

22.7%; Settling time = up 

to 84.1s 

Your method clearly 

outperforms prior studies in 

quantitative metrics, showing the 

effectiveness of your data 

preparation and ANFIS tuning 

strategy. 

Implementation 

Focus 

Discusses simulation-to-

physical deployment and 

practical limitations (Section 

3.6, 3.7) 

Focuses mainly on 

simulation or academic 

benchmarking 

You offer practical design 

guidance (e.g., dataset 

symmetry, augmentation 

strategy) that can be used by 

engineers in real systems. 

Statistical 

Validation 

One-tailed t-test to confirm 

significance of improvements 

(Table 12) 

No statistical validation of 

performance 

Including statistical tests 

demonstrates rigor and makes 

your conclusions more credible 

and reproducible. 

 

 

Table 15: Assumptions and limitations of ANFIS design 

Aspect Assumption Limitation 

Dataset PID-generated data is sufficient May not capture all dynamics or disturbances 

Process Model First-order + delay is adequate Real system may be more nonlinear/complex 

Simulation  

Environment 
MATLAB is representative of reality Ignores hardware, noise, delays, faults 

ANFIS Structure Standard structure is suitable 
Suboptimal parameterization 

can harm performance 

Disturbances Not fully modeled 
Real-world disturbances  

can degrade performance 

Fault Handling No explicit consideration Vulnerable to unexpected events 

Data Dependency PID dataset captures all relevant dynamics Poor generalization beyond training data 

Setpoint Range Controller operates within training range Fails or becomes unstable outside this range 

Dataset Symmetry Positive/negative parts are balanced Unbalanced data leads to instability 

Extrapolation Behavior predictable within known ranges Cannot handle unknown/unseen scenarios 

Online Adaptability System dynamics are static No real-time adaptation capability 

 

 

 

 



20 Informatica 49 (2025) 1–22 B. Al-Najari et al. 

4.2 Novel contributions compared to prior 

work 

• Real-world dataset generation from a PSO-tuned 

PID controller rather than simulated systems. 

• A bidirectional (positive and negative) dataset 

structure is introduced for improved control 

stability. 

• Application of target output-shift data 

augmentation to enhance transient response. 

• Practical design guidelines bridging simulation and 

real-world deployment, including robustness 

testing and statistical validation. 

Table 14 summarizes the differences between this 

study and other studies to clarify the novel contributions. 

As shown in Table 14, this study outperforms 

previous works by using real-world PID data, a 

symmetrical dataset strategy, and a novel data 

augmentation method, resulting in significantly better 

control performance. It achieves a lower RMSE, minimal 

overshoot, and a faster settling time, and its findings are 

statistically validated, making it more practical and 

credible than earlier studies. 

4.3 Limitations 

• The controller is trained within a fixed setpoint 

range; extrapolation beyond this range may lead to 

instability. 

• Real-time deployment challenges such as hardware 

limitations and sensor noise were not modeled. 

• The controller lacks online learning or adaptation 

capabilities. 

• Table 15 presents the assumptions and limitations 

of the ANFIS controller design. 

4.4 Future work 

• The methodology presented in this study is broadly 

applicable to various systems. It can be utilized to 

design an Adaptive Neuro-Fuzzy Inference System 

(ANFIS) controller using datasets derived from 

PID controllers. Moreover, the performance of the 

ANFIS controller can be further improved through 

dataset augmentation techniques, thereby 

enhancing its overall response. 

• Future studies will focus on implementing the 

ANFIS controller in a physical industrial setting, 

introducing online adaptation, and expanding the 

training dataset to include a broader range of 

operational conditions and disturbance scenarios. 
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