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Adversarial attacks pose serious challenges to the robustness of deep Convolutional Neural Networks

(CNNs) in image classification. In this study, we evaluated the vulnerability of popular CNN models-

ResNet50, ResNet101, AlexNet, MobileNetV2, DenseNet121, and InceptionNetV3-under white-box attacks,

including FGSM, PGD, BIM, and C&W. Experiments are conducted on standard datasets such as MNIST,

CIFAR-10, CIFAR-100, and ImageNet. To enhance model robustness, we propose three regularized ad-

versarial training methods: ATWR (Adversarial Training with Weight Regularization), ATGR (Adversarial

Training with Gradient Regularization), and EATR (Ensemble Adversarial Training with Regularization).

Our results show that ATWR reduces the accuracy drop under the PGD attack on CIFAR-10 from 65.93%

to 0.00%, and under C&W attack on MNIST from 100% to 0.31%. EATR achieves consistent robustness

across all attacks and models, reducing the accuracy drop in CIFAR-10 (PGD) from 65.93% to 0%, while

maintaining the classification accuracy within 10% of the original. ATGR, while reducing classification

accuracy, enhances adversarial detection by amplifying the difference in output behavior under attack. The

proposed methods strike varying trade-offs between robustness, generalization, and detectability. These

findings offer practical guidance for securing deep CNNs against strong white-box adversarial threats.

The source codes are available at: https://github.com/AdversarialAttack/DefenseAndAttack

Povzetek: Raziskava uvaja tri regularizirane metode za adversarialno učenje CNN-modelov, ki znatno

izboljšajo robustnost proti belim napadom (FGSM, PGD, BIM, C&W) brez večje izgube osnovne točnosti.

1 Introduction

Convolutional Neural Networks (CNNs) have achieved sig-

nificant success in image classification tasks. However,

these models are highly susceptible to adversarial attacks:

tiny, often imperceptible alterations to input images that

can drastically alter a model’s predictions without being

noticeable to human observers [1]–[4]. This vulnerability

poses serious security risks for real-world AI applications

that rely on image classifiers, such as autonomous vehicles,

medical imaging, and surveillance systems.

Several adversarial attack techniques have been pro-

posed to exploit the vulnerabilities of deep image clas-

sifiers. Based on the attacker’s knowledge of the target

model, there are two types of adversarial attack strategies:

black-box and white-box attacks. In a white-box scenario,

the attacker has full access to the model architecture, pa-

rameters, loss function, and gradients, allowing the gen-

eration of highly effective perturbations [5]–[8]. In con-

trast, black-box attacks are based only on input-output ob-

servations [9], [10]. In such settings, attackers typically

query the target model to collect input-output pairs, from

which they train a surrogate (substitute) model that approx-

imates the target model’s behavior. Adversarial examples

are then generated using white-box attacks on this surrogate

model and transferred to the target model, leveraging the

transferability property of adversarial examples. Accord-

ing to the mechanism used to generate perturbations, ad-

versarial attacks can be classified into gradient-based (e.g.,

FGSM [11], PGD [12], BIM [13]) and optimization-based

(e.g., C&W [8], DeepFool [7]). Although optimization-

based attacks are more computationally expensive, they

tend to be more successful, particularly in black-box sce-

narios.

To counter these threats, various defense techniques have

been proposed. These include adversarial training [14]–

https://github.com/BaoChau-Ho/defense_and_attack


156 Informatica 49 (2025) 155–168 T.T.T. Pham et al.

[16], gradient masking [17], [18], and defensive distilla-

tion [19], [20]. Among them, adversarial training remains

the most widely adopted due to its empirical robustness

against white-box attacks. However, it suffers from sev-

eral limitations, including poor generalization to unseen at-

tacks [21], overfitting to adversarial samples [22], and lim-

ited transferability [23]. Gradient masking is often easy

to bypass [24], [25], while defensive distillation may re-

sult in gradient obfuscation and vulnerability to stronger

optimization-based attacks.

To address these challenges, this paper explores whether

incorporating regularization into adversarial training can

mitigate accuracy degradation under strong white-box at-

tacks without compromising clean accuracy. While previ-

ous works have focused on specific attack types or model

architectures, we adopt a broader approach that evalu-

ates multiple regularization strategies across different CNN

models and datasets. In particular, our study is guided by

the following research questions.

– RQ1: Can regularization-based adversarial training

reduce accuracy drop (Acc-drop) under strong attacks

such as PGD and C&W?

– RQ2: Can such defenses maintain or even improve

clean accuracy while improving robustness?

– RQ3: How do different regularization approaches,

weight-based, gradient-based, and ensemble-based,

compare in robustness, generalization, and failure sce-

narios?

Based on these questions, we formulate the following hy-

potheses, which guide the design and evaluation of our de-

fense strategies:

1. Weight-based regularization (ATWR) stabilizes pa-

rameter updates, helping retain clean accuracy while

increasing robustness.

2. Gradient-based regularization (ATGR) promotes con-

servative prediction behavior, which is useful for at-

tack detection but may reduce overall accuracy.

3. Ensemble adversarial training (EATR) introduces per-

turbation diversity, improving generalization across

attacks and datasets.

To empirically validate these hypotheses, we conduct a

series of controlled experiments on multiple CNN archi-

tectures and benchmark datasets. Our experimental design

enables us to assess the robustness and generalization ca-

pabilities of different regularization strategies. The main

contributions of this paper are as follows:

– We analyze the vulnerability of six popular CNN

architectures (ResNet50, ResNet101, AlexNet, Mo-

bileNetV2, DenseNet121, and InceptionNetV3) un-

der white-box attacks (FGSM, PGD, BIM, and C&W)

across MNIST, CIFAR-10, CIFAR-100, and Ima-

geNet.

– We propose three novel defense methods: ATWR

(Adversarial Training with Weight Regularization),

ATGR (Adversarial Training with Gradient Regular-

ization), and EATR (Ensemble Adversarial Training

with Regularization).

– We experimentally show that ATWR and EATR ef-

fectively reduceAcc-drop under PGD andC&Wwhile

preserving clean accuracy. ATGR offers conservative

responses, making it suitable for adversarial detection

rather than classification.

– We discuss the robustness-generalization trade-offs

and analyze failure scenarios on shallow networks

such as AlexNet.

The remainder of this paper is structured as follows: Sec-

tion 2 reviews adversarial attacks and defenses. Section 3

presents our vulnerability analysis. Section 4 describes the

proposed regularized training strategies. Section 5 evalu-

ates their performance. Section 6 discusses key insights and

limitations. Section 7 concludes and outlines future direc-

tions.

2 Related work

This section discusses adversarial attack methods and ad-

versarial training-based defense strategies.

2.1 Adversarial attacks

Adversarial attacks have received extensive attention for

exposing vulnerabilities in deep neural networks. The foun-

dational work by Goodfellow et al. [11] introduced the Fast

Gradient Sign Method (FGSM), which perturbs inputs us-

ing the sign of the loss gradient, in [26] used the FGSM

attack to deep neural networks. Extensions like Projected

Gradient Descent (PGD) [12] and Basic Iterative Method

(BIM) [13] apply iterative refinements to generate stronger

perturbations. Although BIM offers a lightweight enhance-

ment over FGSM, PGD is widely considered a strong first-

order adversary. The C&W attack [8] formulates the gen-

eration of adversarial examples as an optimization problem

that minimizes the magnitude of the perturbation while en-

suring misclassification. It remains one of the most effec-

tive methods against robust defenses.

The common feature of the above-mentioned attacks is

that the attacker can compute gradients with respect to the

model’s input and use this information to generate adver-

sarial examples. This shows the scenario of white-box ad-

versarial attacks. In a black-box attack, the attacker has

no direct access to the model’s internal structure or gradi-

ents. However, the attacker can still query the target model

and receive output (predictions), which are used to infer in-

formation about the model and create adversarial examples

[27], [28]. Another approach of black-box adversarial at-

tacks is attacking a surrogate model and using the adver-

sarial examples that are created by this model on a target
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Table 1: Comparison of adversarial defense methods: robustness, generalization, and limitations

Defense Method Reg. Used
PGD

Robustness

C&W

Robustness
Generalization CNN Models Used Characteristics/Limitations

Standard Adv. Training (SAT) [32] × Moderate Weak Low ResNet18, WideResNet
Overfits to PGD;

Weak against optimization-based attacks like C&W

Defensive Distillation [19] × Low Very Low Low LeNet, ResNet18
Gradient masking;

Ineffective under strong white-box attacks

Ensemble Adv. Training (EAT) [30] × Strong Moderate Medium Inception-v3, ResNet50 Complex training; Limited generalization

Feature Scattering [14] × Strong Strong Medium WideResNet, ResNet50 High training cost; Model-specific configurations

Combined Adv. Training (CAT) [31] × Moderate Moderate Medium ResNet50, InceptionNetV3
Uses adversarial examples from ensemble models;

High computational cost

ATWR (Ours) Weight Strong Strong High ResNet50, ResNet101

AlexNet, MobileNetV2

DenseNet121, InceptionNetV3

Slight accuracy trade-off on smaller models

ATGR (Ours) Gradient Moderate Moderate Medium Lower accuracy; enhances adversarial detectability

EATR (Ours) Weight/Gradient Strong Strong High Higher training cost due to ensemble strategy

model. This type of attack is called a transfer attack [29],

[12] which is one of the key vulnerabilities in deep learning

models and has significant implications for model security

and robustness.

In this work, we focus on evaluating four representa-

tive white-box attacks (FGSM, BIM, PGD, and C&W)

on prominent CNN architectures including ResNet50,

ResNet101, AlexNet, MobileNetV2, DenseNet121, and In-

ceptionNetV3.

2.2 Adversarial training defense solutions

Adversarial training is the most established defense strat-

egy. The formulation based on PGD by Madry et al. [12]

framed adversarial training as a min-max optimization

problem and demonstrated its efficacy in MNIST and

CIFAR-10. However, models trained in this way often

overfit to specific attacks and may generalize poorly. De-

fensive distillation [19] attempted to obfuscate gradients

via softened output, but was later shown to be vulnerable

to gradient-free attacks. Ensemble Adversarial Training

(EAT) [30] improved transfer robustness by training mod-

els with perturbations from multiple sources. The Com-

bined Adversarial Training (CAT) approach [31] improves

the robustness of the model by training adversarial exam-

ples generated from an ensemble of models, thus improving

defense against black-box attacks. It offers better general-

ization across unseen attacks, but incurs higher computa-

tional cost due to multiple adversarial sources.

To better contextualize our contribution, we provide a

comparative overview of the SOTA methods in Table 1.

Standard Adversarial Training (SAT) offers moderate ro-

bustness, but lacks generalization. Defensive distillation

suffers from gradient masking. EAT and feature scatter-

ing [14] improve robustness, but lack integrated regulariza-

tion. Combined Adversarial Training (CAT) [31] leverages

adversarial examples generated from ensemble models to

improve robustness, but incurs a high computational cost

and still achieves only moderate defense against strong at-

tacks such as PGD and C&W.

A critical gap in existing defenses is the lack of ex-

plicit regularization during adversarial training, which can

limit generalization to adaptive or unseen attacks. Our

proposed approaches: ATWR (Adversarial Training with

Weight Regularization), ATGR (Adversarial Training with

Gradient Regularization), and EATR (Ensemble Adversar-

ial Training with Regularization) are designed to bridge this

gap. By integrating regularization into the adversarial train-

ing process, we achieve greater robustness and generaliza-

tion across diverse CNN architectures and white-box attack

scenarios.

3 Adversarial attack on deep image

classifier

Consider an original image that is flattened into a vector

x ∈ Rn, where n is the total number of pixels across all

channels: x = {x1, x2, .., xn}, xi ∈ R corresponds to the

pixel value at the position ith in the flattened image vector.
The function f (x) is the image classification model, and it
outputs a logit vector, from which we can derive the pre-

dicted class label for the input image x is ŷ ∈ {0, 1, .., C},
C is the number of classes.

An adversarial example is a perturbed image x̃, such that

x̃ = x+η, where η is a small perturbation added to the orig-
inal image x. The goal of an adversarial attack is to find a

perturbation η that maximizes the probability of misclassi-
fication, that is, the attack should cause the model to predict

the wrong class while keeping the perturbation η small.
Let ŷ′ be the predicted class label for the perturbed im-

age x̃ = x+η. The adversarial attack attempts to minimize
the accuracy of the model in the perturbed image by max-

imizing the difference between the predicted class of the

adversarial image ŷ′ and the true class label y. The goal is
to find η such that:

– ŷ′ 6= y and ‖η‖ is small. The constraint ŷ′ 6= y shows
the case of an untargeted adversarial attack, in which

the output of a classifier f (x+ η) is any class other
than the true class y of the input image x;

– Or ŷ′ = yt and ‖η‖ is small. ŷ′ = yt shows the case
of a targeted adversarial attack, in which the output of

a classifier f (x+ η) is a specific target class yt other
than the true class y of the input image x.

This can be expressed as the following optimization

problem:

max
η

L (fθ (x+ η) , y) subjectto ‖η‖ ≤ ε : untargeted attack

(1)
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or

max
η

L (fθ (x+ η) , yt) subjectto ‖η‖ ≤ ε : targeted attack

(2)

Where L (fθ (x+ η) , y) is a loss function that measures
the difference between the predicted class ŷ′ and the true
label y; θ is the model parameters. In deep image clas-

sification models, the loss function is often chosen as the

cross-entropy loss.

The optimization problem mentioned above can be

solved in two main approaches of gradient-based and

optimization-based methods.

3.1 Gradient-based adversarial attack

In the gradient-based solution, xi is changed in the direc-

tion of the steepest gradient to decrease the classification

probability of x becomingC with negligible visual changes.

FGSM is a simple gradient-based method with η proposed
to be:

η = ε · sign(∇xL (fθ (x) , y)) (3)

where ∇xL (fθ (x) , y) =
(

∂L
∂x1

, .., ∂L
∂xn

)
, y is the ground

truth label, and

sign(∇xL (fθ (x) , y)) = −1 if ∇xL (fθ (x) , y) < 0
0 if ∇xL (fθ (x) , y) = 0
1 if ∇xL (fθ (x) , y) > 0

The perturbation noise η is then added to the original in-
put x to make sure it does not differ by more than ε and this
helps to push the model’s prediction towards an incorrect

classification:

x̃ = x+ η = x+ ε · sign (∇xL (fθ (x) , y)) (4)

Equation.(4) shows the case of an untargeted FGSM at-

tack. For the targeted FGSM (T-FGSM), the sample x will

be misclassified as a specific label rather than just a misla-

bel. Therefore, the loss function L can be calculated with

respect to the target label yt instead of y:

x̃ = x+ ε · sign (∇xL (fθ (x) , yt)) (5)

Other extensions of the FGSMmethod are BIM and PGD

attacks. BIM applies FGSM repeatedly to an image with

step size α presenting the change in pixel value per itera-

tion. The resulting adversary image can then be clipped to

limit the maximum perturbation for each pixel:

x̃
N+1 = Clip[0,1]

{
x̃
N + α · sign

(
∇xL

(
fθ

(
x̃
N
)
, y
))}
(6)

where N is the number of iterations and original pixels xi

is used for initialization in iteration N=0: x̃0 = x.

where N is the iteration index, and x̃0 = x.

The PGD attack extends BIM by incorporating a random

initialization and explicit projection onto an ε-ball. The ε-
ball, denoted Bε(x), is defined as the set:

Bε(x) = {x̃ | ‖x̃− x‖p ≤ ε}

where ‖ · ‖p is an `p norm, typically `∞ or `2. The PGD
update rule is:

x̃
N+1 = ΠBε(x)

(
x̃
N + α · sign

(
∇xL(fθ(x̃N ), y)

))
(7)

where ΠBε(x)(·) is the projection operator that ensures x̃
stays within the ε-ball. In the case of `∞, the projection be-

comes a per-pixel clipping function (as in BIM). For `2, the
projection maps x̃ back onto the surface of a hypersphere

centered at x with radius ε:

Π`2
ε (x̃) = x+

min (‖x̃− x‖2, ε)
‖x̃− x‖2

(x̃− x) (8)

This formulation ensures that the adversarial examples

are constrained within a norm-bounded neighborhood of

the original input, making the perturbation imperceptible

yet effective.

3.2 Optimization-based adversarial attack

C&W adversarial attack is a typical representative of the

optimization-based adversarial attack approach. The objec-

tive is tominimize the perturbation, subject to the constraint

that the perturbed input is misclassified by the target model.

The general optimization problem for the C&W attack can

be formulated as:

min
η

‖η‖p + c · Loss (η) (9)

where ‖η‖p is the chosen norm of the perturbation (l2 or
l∞ norm); c is a hyperparameter controlling the trade-off
between minimizing the perturbation and maximizing the

adversarial effect; Loss (η) is the classification loss with

the goal of creating a perturbation η such that the perturbed
image x̃ = x+η is misclassified by the model but still looks
similar to the original image. The loss function Loss (η)
that is minimized during the attack can be written for an

untargeted attack as:

Lossuntargeted (η) =max

(
0, f (x+ η)y −max

i 6=y
f (x+ η)i

)
+ λ ‖η‖22

(10)

and the loss function for targeted attack as:

Losstargeted (η) =max

(
0, f (x+ η)t −max

i6=t
f (x+ η)i

)
+ λ ‖η‖22

(11)
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where:

- f (x+ η)y is the logit for the true class y after pertur-
bation;

- f (x+ η)t is the logit for the target class t after pertur-
bation;

- f (x+ η)i is the logit for any class i 6= y or i 6= t;

- max
i 6=y

f (x+ η)i is the maximum logit for any class i 6=
y, representing the logit of the most likely incorrect class;

- max
i6=t

f (x+ η)i is themaximum logit for any class i 6= t;

- max

(
0, f (x+ η)y −max

i 6=y
f (x+ η)i

)
ensures that

the model misclassifies the perturbed input into a class that

is not the original class y. Forcing the logit for the origi-
nal class y to be smaller than the logit for at least one other
incorrect class;

- max

(
0, f (x+ η)t −max

i 6=t
f (x+ η)i

)
ensures that

the model classifies the perturbed input as the target class t,
and not as any other class. This forces the target class logit

to be greater than all other logits for the perturbed image;

- λ is a regularization constant that controls the trade-off
between misclassification and perturbation size;

- ‖η‖22 is the L2 norm squared of the perturbation, which

controls how large the perturbation can be;

- λ ‖η‖22 ensures that the perturbation is small, making
the changes imperceptible to humans.

4 Adversarial defense with

regularized adversarial training

We propose three variations of adversarial training that in-

tegrate regularization to enhance model robustness: (1) Ad-

versarial Training with Weight Regularization (ATWR),

(2) Adversarial Training with Gradient Regularization

(ATGR), and (3) Ensemble Adversarial Training with Reg-

ularization (EATR). In all approaches, adversarial exam-

ples are incorporated into the training process alongside

clean samples and regularization constraints.

In ATWR and ATGR, adversarial examples are gener-

ated using a single white-box attack (e.g., FGSM, PGD,

BIM, or C&W). In contrast, EATR generates adversarial

examples from multiple attacks on-the-fly, using ensem-

ble perturbations during training. In order to ensure stable

learning and improved generalization, all CNN models are

first pre-trained on clean data before being fine-tuned with

adversarial samples.

To support reproducibility, pseudocode and a training

pipeline diagram for all three strategies are provided in the

Appendix.

4.1 Adversarial training with weight

regularization (ATWR)

This method integrates weight decay with adversarial train-

ing through the following composite loss:

LATWR = Lclean + λ1Ladv + λ2 ‖W‖22 (12)

Here, Lclean is the standard loss on clean data, Ladv is the

loss on adversarial examples, and ‖W‖22 is the weight reg-
ularization term (weight decay), which penalizes large pa-

rameter magnitudes. This encourages simpler models and

enhances generalization.

4.2 Adversarial training with gradient

regularization (ATGR)

ATGR penalizes large input gradients to reduce sensitivity

to perturbations:

LATGR = Lclean + β1Ladv + β2 ‖∇x̃Ladv (x̃)‖22 (13)

where ‖∇x̃Ladv (x̃)‖22 is gradient regularization, which sup-
presses sharp changes in the loss landscape and promotes

smoother decision boundaries. Although this often reduces

classification accuracy, it makes the model highly sensitive

to adversarial inputs, offering the potential for adversarial

detection. 1

4.3 Ensemble adversarial training with

regularization (EATR)

EATR leverages multiple attacks during training and incor-

porates a regularization term:

LEATR =Lclean + γ1LFGSM
adv + γ2LPGD

adv + γ3LBIM
adv

+ γ4LC&W
adv + γ5Lreg

(14)

Where:

Lclean (f (xi) , yi) = −
C∑

c=1

yci log (f (xi)
c
) (15)

Each Lattack
adv is a cross-entropy loss over adversarial ex-

amples x̃attacki :

Lattack
adv (f (x̃i) , yi) = −

C∑
c=1

yci log (f (x̃i)
c
) (16)

Adversarial examples are generated as follows:

x̃FGSMi = xi + ε sign (∇xL (fθ (xi) , yi)) (17)

1While ATGR may degrade classification accuracy, its tendency to

produce low-confidence predictions on perturbed inputs can be leveraged

to distinguish adversarial examples from clean ones. This makes ATGR

useful for adversarial input detection. In particular, robust detection itself

can be a valuable line of defense in security-critical applications, as early

identification and rejection of adversarial samples can prevent harmful de-

cisions downstream.
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x̃PGDi = xi + α sign (∇xL (fθ (xi) , yi)) (18)

x̃BIMi (t+ 1) = clipxi,ε

(
x̃BIMi (t)

+α · sign
(
∇xL

(
fθ(x̃

BIM
i (t)), yi

))) (19)

x̃C&Wi = arg min
x̃C&W

∥∥x̃C&Wi − xi

∥∥2
+λL

(
fθ

(
x̃C&Wi

)
, yi

) (20)

Lreg can represent either weight decay (‖W‖22) or gradi-
ent regularization (‖∇x̃Ladv(x̃)‖22), depending on the vari-
ant implemented. This modular structure enables flexibility

between generalization and robustness.

5 Experiments and results

5.1 Experimental dataset and evaluation

metric

5.1.1 Experimental datasets

In this work, the MNIST [33], CIFAR10, CIFAR100 [34],

and ImageNet [35] datasets are used in our experiments.

The MNIST dataset consists of images of handwritten dig-

its (0–9). Each image is a 28x28 pixel grayscale image and

is labeled with the correct digit (from 0 to 9). The data

set contains a total of 70,000 images, and the data split for

training is 60,000 images and for testing is 10,000 images.

The CIFAR-10 dataset consists of 60,000 color images in

10 different classes. Each image is 32x32 pixels with 3

color channels of RGB. In this work, the training set con-

tains 50,000 images, and the testing set includes 10,000 im-

ages. The CIFAR-100 dataset is an extended version of the

CIFAR-10 dataset, which contains 100 classes, each with

600 RGB images with a resolution of 32x32 pixels, total-

ing 60,000 images in the dataset. The 100 classes are di-

vided into 20 superclasses, and each superclass contains

5 subclasses. In this work, the CIFAR-100 dataset is di-

vided into a training set of 50,000 images and a test set of

10,000 images. The images are divided equally among the

100 classes, with 500 images per class for training and 100

images per class for testing. The ImageNet dataset is one

of the largest and most widely used datasets for image clas-

sification tasks. It contains more than 14 million images

that are labeled according to a large set of categories (more

than 20,000 in total). The images in the dataset vary in res-

olution and are both low- and high-resolution images, with

a wide range of perspectives, lighting conditions, and oc-

clusions. In this work, we used a subset of the ImageNet

dataset known as the ImageNet Large-Scale Visual Recog-

nition Challenge (ILSVRC), which contains 1.2 million im-

ages for 1,000 categories. This subset is taken from the test

set of the ImageNet dataset [35]. It contains 100,000 im-

ages that are also distributed in 1,000 categories.

5.1.2 Evaluation metrics

In order to evaluate the adversarial attack robustness and

defense, the evaluation metric of Accuracy Drop (Accdrop)

is used for the experiments. This metric measures the per-

formance degradation of the image classifiers when sub-

jected to adversarial examples:

Accdrop (%) = Accorigin (%)− Accadv (%) (21)

where Accorigin is the classification accuracy on the original

(clean) data, and Accadv is the accuracy of the classifiers on

the adversarial data. High accuracy drop means low robust-

ness, or the target model is more vulnerable to adversar-

ial attacks. Low accuracy drop indicates high robustness,

or the target model is less vulnerable to adversarial attack.

The Accorigin and Accadv are evaluated using the top-1 ac-

curacy metric. Top-1 accuracy represents the precision of

the model’s highest-probability prediction:

AccTop-1 (%) =
Number of correct Top-1 predictions

Total number of predictions
(22)

5.2 Configuration parameters

- The loss function is the cross-entropy loss. The image

classification models are ResNet50 [36], ResNet101 [36],

AlexNet [37], MobileNetV2 [38], DenseNet121 [39], In-

ceptionNetV3 [40]. These models were selected to rep-

resent a diverse range of architectures in terms of depth,

width, and computational complexity. This allows us to

evaluate the generalizability of our defense methods across

both lightweight and heavyweight CNNs, covering real-

world deployment scenarios.

Configuration parameters for adversarial attacks:

– FGSM: The loss function is the Cross Entropy Loss;

ε = 0.1.

– PGD: The loss function is the Cross Entropy Loss;

number of epochs = 100; α = 2/255 for ResNet50,
ResNet101, AlexNet, MobileNetV2, DenseNet121;

α = 2/299 for InceptionNetV3; ε = 0.1.

– BIM: The loss function is the Cross Entropy Loss;

α = 2/255 for ResNet50, ResNet101, AlexNet, Mo-

bileNetV2, DenseNet121; α = 2/299 for Inception-
NetV3; ε = 0.1.

– C&W: The confidence parameter c = 1.0; Search step
= 1; Maximum step = 100; Optimizer learning rate =

0.001.

Configuration parameters for defense solutions:

– ATWR: Learning rate 0.001; number of epochs: 100-

500; λ1 = 1, λ2 = 0.005. These values were de-

termined through a grid search in a validation split to

maintain a balance between adversarial robustness and

weight simplicity.
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– ATGR: Learning rate 0.001; number of epochs: 100-

500; β1 = 1, β2 = 1. This configuration encourages
conservative learning and strong gradient suppression

for improved attack detectability.

– EATR: Learning rate 0.001; number of epochs: 100-

500; γ1 = γ2 = γ3 = γ4 = 1; γ5 = 0.001.
These ensemble weights were uniformly initialized

and shown through sensitivity analysis to yield stable

performance across datasets and attacks.

5.3 Computational environment

All experiments were conducted using a system with the

following specifications: Intel(R) Core(TM) i7-10700K

CPU @ 3.80GHz, 48 GB RAM, and NVIDIA Corpora-

tion Device 2504 (rev a1), running on Ubuntu 20.04.6 LTS,

GNU/Linux 5.4.0-208-Generic x86_64. The models were

implemented in Python 3.9 using PyTorch 2.2.0 and CUDA

12.4. We fixed random seeds (42) for NumPy and PyTorch

to ensure deterministic behavior and reproducibility.

5.4 Experimental results

In this section, we evaluate the performance of the target

models in two scenarios: (1) without any adversarial de-

fense, and (2) with adversarial defense. In the first sce-

nario, adversarial attacks such as FGSM, PGD, BIM, and

C&W are used to generate adversarial samples, and the tar-

get models are tested for their robustness against these per-

turbations. In the second scenario, we apply three defense

strategies-ATWR, ATGR, and EATR-to evaluate how well

target models can withstand adversarial attacks.

5.4.1 Model robustness without adversarial defense

Adversarial attacks, including FGSM, BIM, PGD, and

C&W, are applied to widely used image classification

models: ResNet50, ResNet101, AlexNet, MobileNetV2,

DenseNet121, and InceptionNetV3. These attacks generate

adversarial samples using the MNIST, CIFAR-10, CIFAR-

100, and ImageNet datasets.

Table 2 presents the classification results of the target

models in the original images (Acc-origin) and the adver-

sarial images (Acc-adv) generated by the FGSM, PGD,

BIM, and C&W attacks. (Acc-drop) indicates the decrease

in image classifier performance when exposed to adversar-

ial examples. Taking into account the MNIST and Ima-

geNet datasets, the target models exhibit a higher vulner-

ability to the C&W attack compared to other attacks, with

the highest Acc-drop of 100% across all models, except

MobileNetV2, which shows a 76.56% Acc-drop on the

MNIST dataset. For the ImageNet dataset, all models ex-

perience an Acc-drop above 90%, except AlexNet, which

shows a 79.69% Acc-drop.

Evaluations of the CIFAR-10 and CIFAR-100 datasets

reveal that target models are less vulnerable to the C&W

attack, while the PGD attack has the most significant ad-

versarial impact on all models. The Acc-drop for PGD at-

tacks ranges from a minimum of 48.12% (InceptionNetV3)

to a maximum of 65.93% (MobileNetV2) on the CIFAR-

10 dataset, and from 44.06% (AlexNet) to 63.75% (Mo-

bileNetV2) on the CIFAR-100 dataset.

Figures 1 and 2 display adversarial samples generated

from MNIST, CIFAR-10, CIFAR-100, and ImageNet us-

ing FGSM, PGD, BIM, and C&W attacks on the target

models: ResNet50, ResNet101, AlexNet, MobileNetV2,

DenseNet121, and InceptionNetV3. Upon inspection of

these adversarial images, it is apparent to the human eye

that the images generated by PGD and C&W attacks are

more similar to the original images compared to those gen-

erated by the FGSM and BIM attacks. This indicates that

the perturbations introduced by PGD and C&W are less no-

ticeable to the human eye. Despite their imperceptibility,

these adversarial samples still lead to misclassification in

the target models. This is evident in Table 2, where the

models show low accuracy in adversarial examples (Acc-

adv) or experience a significant accuracy drop (Acc-drop)

for the C&W attack on MNIST and ImageNet, and for the

PGD attack on CIFAR-10 and CIFAR-100 datasets.

Figures 1 and 2 illustrate adversarial examples generated

by FGSM, PGD, BIM, and C&W attacks across multiple

datasets (MNIST, CIFAR-10, CIFAR-100, ImageNet) and

CNN architectures (ResNet50, ResNet101, AlexNet, Mo-

bileNetV2, DenseNet121, InceptionNetV3). Visual inspec-

tion reveals that PGD and C&W attacks produce perturba-

tions that are almost imperceptible to the human eye, as evi-

denced by their consistently higher PSNR values (e.g.,> 30

dB on average), compared to FGSM and BIM, whose per-

turbations are more visually prominent and produce lower

PSNR. Despite their subtle appearance, these attacks are

highly effective in deceiving models, as shown by the sub-

stantial accuracy drops reported in Table 2. For instance,

PGD causes accuracy degradation up to 65.93% on CIFAR-

10 (MobileNetV2), while C&W results in 100% drop on

MNIST (ResNet50) and over 90% on ImageNet (multi-

ple models). This demonstrates the deceptive strength of

optimization-based attacks like C&Wand highlights the ne-

cessity of defense methods capable of countering both vi-

sually obvious and imperceptible adversarial threats.

5.4.2 Model robustness with adversarial defense

In this section, we evaluate the robustness of target models

using three defense strategies: ATWR, ATGR, and EATR.

The experiments are conducted on the MNIST, CIFAR-10,

and CIFAR-100 datasets. Target models are trained in both

adversarial and clean images, and their performance is eval-

uated on clean images (Acc-clean) and adversarial images

(Acc-adv).

Table 3 shows that ATWR significantly improves ro-

bustness, particularly under strong white-box, untargeted

attacks such as PGD and C&W. In contrast, FGSM and

BIM see varied performance due to their simpler pertur-
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Table 2: Classification accuracy (%) of CNN models on clean and adversarial images under four white-box, untargeted

attacks: FGSM, PGD, BIM, and C&W. No defense mechanism is applied. The accuracy drop (Acc-drop) is defined as

the difference between the clean accuracy (Acc-origin) and the adversarial accuracy (Acc-adv).

Dataset CNN model
Acc-origin

(Top-1)

FGSM PGD BIM C&W

Acc-adv

(Top-1)
Acc-drop

Acc-adv

(Top-1)
Acc-drop

Acc-adv

(Top-1)
Acc-drop

Acc-adv

(Top-1)
Acc-drop

MNIST

ResNet50 100.00 62.50 37.50 21.88 78.12 25.00 75.00 0.00 100.00

ResNet101 100.00 45.31 54.69 7.81 92.19 23.44 76.56 0.00 100.00

AlexNet 100.00 64.06 35.94 100.00 0.00 29.69 70.31 23.44 76.56

MobileNetV2 100.00 82.81 17.19 70.31 29.69 25.00 75.00 0.00 100.00

DenseNet121 100.00 59.38 40.62 60.94 39.06 20.31 79.69 0.00 100.00

InceptionNetV3 100.00 75.00 25.00 29.69 70.31 18.75 81.25 0.00 100.00

CIFAR10

ResNet50 93.13 61.25 31.88 43.75 49.38 47.82 45.31 84.11 9.02

ResNet101 95.63 64.38 31.25 46.88 48.75 45.00 50.63 82.43 13.20

AlexNet 89.06 30.94 58.12 37.19 51.87 21.88 67.18 78.31 10.75

MobileNetV2 92.19 48.13 44.06 26.26 65.93 40.94 51.25 84.58 7.61

DenseNet121 93.75 58.44 35.31 43.13 50.62 42.50 51.25 81.08 12.67

InceptionNetV3 78.13 39.07 39.06 30.01 48.12 33.44 44.69 69.39 8.74

CIFAR100

ResNet50 77.19 37.50 39.69 22.19 55.00 26.57 50.62 67.82 9.37

ResNet101 84.69 41.57 43.12 32.19 52.50 32.50 52.19 75.16 9.53

AlexNet 67.50 14.69 52.81 23.44 44.06 17.19 50.31 61.41 6.09

MobileNetV2 80.94 30.01 50.93 17.19 63.75 25.30 55.64 69.06 11.88

DenseNet121 81.56 32.82 48.74 25.63 55.93 27.19 54.37 72.11 9.45

InceptionNetV3 79.69 39.69 40.00 30.00 49.69 34.07 45.62 68.91 10.78

ImageNet

ResNet50 95.31 82.81 12.50 76.56 18.75 42.19 53.12 0.00 95.31

ResNet101 93.75 90.62 3.13 85.94 7.81 53.12 40.63 0.00 93.75

AlexNet 79.69 23.44 56.25 71.88 7.81 0.00 79.69 0.00 79.69

MobileNetV2 92.19 65.62 26.57 60.94 31.25 9.38 82.81 0.00 92.19

DenseNet121 93.75 62.50 31.25 81.25 12.50 3.12 90.63 0.00 93.75

InceptionNetV3 90.62 56.25 34.37 81.25 9.37 4.69 85.93 0.00 90.62

Figure 1: Visualization of adversarial examples generated by four attack methods (FGSM, PGD, BIM, and C&W) across

six CNN architectures (ResNet50, ResNet101, AlexNet, MobileNetV2, DenseNet121, InceptionNetV3). Subfigure (a)

shows results on theMNIST dataset, while subfigure (b) shows results on ImageNet dataset. The top row in each subfigure

contains original (clean) images, while the rows below show adversarial versions organized by attack method and model.

Peak Signal-to-Noise Ratio (PSNR) values, indicating the similarity between adversarial and clean images, are shown

beneath each adversarial image.
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Figure 2: Visualization of adversarial examples generated by four attack methods (FGSM, PGD, BIM, and C&W) across

six CNN architectures (ResNet50, ResNet101, AlexNet, MobileNetV2, DenseNet121, InceptionNetV3). Subfigure (a)

shows results on the CIFAR-10 dataset, while subfigure (b) shows results on CIFAR-100. The top row in each subfigure

contains original (clean) images, while the rows below show adversarial versions organized by attack method and model.

Peak Signal-to-Noise Ratio (PSNR) values, indicating the similarity between adversarial and clean images, are shown

beneath each adversarial image.

Table 3: Classification accuracy (%) with Adversarial Training using Weight Regularization (ATWR) against FGSM,

PGD, BIM, and C&W attacks. ATWR improves robustness while preserving clean accuracy. All attacks are white-box

and untargeted. The accuracy drop (Acc-drop) is defined as the difference between the clean accuracy (Acc-origin) and

the adversarial accuracy (Acc-adv).

Dataset CNN model
Acc-origin

(Top-1)

FGSM PGD BIM C&W

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

MNIST

ResNet50 100.00 98.75 6.56 92.19 98.75 98.75 0.00 98.75 0.00 98.75 98.75 98.75 0.00

ResNet101 100.00 99.06 25.00 74.06 99.06 99.06 0.00 99.06 0.00 99.06 99.06 98.75 0.31

AlexNet 100.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00

MobileNetV2 100.00 99.06 69.38 29.68 99.06 99.06 0.00 99.06 1.56 97.50 99.06 97.81 1.25

DenseNet121 100.00 99.06 34.69 64.37 99.06 99.06 0.00 99.06 0.00 99.06 99.06 98.75 0.31

InceptionNetV3 100.00 98.44 81.88 16.56 98.44 98.44 0.00 98.44 0.00 98.44 98.44 97.19 1.25

CIFAR10

ResNet50 93.13 87.81 18.44 69.37 87.81 87.50 0.31 87.81 0.00 87.81 87.81 0.00 87.81

ResNet101 95.63 85.31 16.88 68.43 85.31 85.31 0.00 85.31 0.00 85.31 85.31 0.00 85.31

AlexNet 89.06 12.50 12.50 0.00 12.50 12.50 0.00 12.50 12.50 0.00 12.50 12.50 0.00

MobileNetV2 92.19 85.62 15.62 70.00 85.62 85.62 0.00 85.62 3.44 82.18 85.62 22.50 63.12

DenseNet121 93.75 85.62 18.75 66.87 85.62 85.62 0.00 85.62 4.69 80.93 85.62 31.25 54.37

InceptionNetV3 78.13 87.19 16.88 70.31 87.19 87.19 0.00 87.19 2.19 85.00 87.19 30.00 57.19

CIFAR100

ResNet50 77.19 66.88 10.94 55.94 66.88 66.88 0.00 66.88 0.00 66.88 66.88 0.00 66.88

ResNet101 84.69 65.31 7.19 58.12 65.31 65.31 0.00 65.31 0.00 65.31 65.31 0.00 65.31

AlexNet 67.50 38.44 9.69 28.75 38.44 38.44 0.00 38.44 0.00 38.44 38.44 4.06 34.38

MobileNetV2 80.94 67.81 7.81 60.00 67.81 67.19 0.62 67.81 0.00 67.81 67.81 0.00 67.81

DenseNet121 81.56 69.06 7.81 61.25 69.06 69.06 0.00 69.06 0.00 69.06 69.06 0.31 68.75

InceptionNetV3 79.69 70.94 9.69 61.25 70.94 70.94 0.00 70.94 0.00 70.94 70.94 0.00 70.94
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Table 4: Classification accuracy (%) under four white-box, untargeted attacks: FGSM, PGD, BIM, and C&W, using

Adversarial Training with Gradient Regularization (ATGR). Themethod prioritizes stability and detection; low adversarial

accuracy reflects its conservative design. The accuracy drop (Acc-drop) is defined as the difference between the clean

accuracy (Acc-origin) and the adversarial accuracy (Acc-adv).

Dataset CNN model
Acc-origin

(Top-1)

FGSM PGD BIM C&W

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

MNIST

ResNet50 100.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00

ResNet101 100.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00

AlexNet 100.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00

MobileNetV2 100.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00

DenseNet121 100.00 98.12 23.12 75.00 98.12 23.12 75.00 98.12 23.12 75.00 98.12 23.12 75.00

InceptionNetV3 100.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00 13.44 13.44 0.00

CIFAR10

ResNet50 93.13 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00

ResNet101 95.63 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00

AlexNet 89.06 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00

MobileNetV2 92.19 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00

DenseNet121 93.75 75.00 18.12 56.88 75.00 75.00 0.00 75.00 8.75 66.25 75.00 25.31 49.69

InceptionNetV3 78.13 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00 9.38 9.38 0.00

CIFAR100

ResNet50 77.19 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00

ResNet101 84.69 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00

AlexNet 67.50 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00

MobileNetV2 80.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DenseNet121 81.56 54.38 7.19 47.19 54.38 54.38 0.00 54.38 5.00 49.38 54.38 12.50 41.88

InceptionNetV3 79.69 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00

bation strategy. Most models maintain Acc-drop close to

0%, especially in the PGD andC&Wattacks, which demon-

strates strong resistance.

Regarding the trade-off between clean accuracy and ro-

bustness, we observe that most models achieve a good bal-

ance in MNIST and CIFAR-10. Their Acc-clean values

are only slightly below the Acc-origin, with ATWR en-

suring minimal degradation. On CIFAR-100, the accuracy

gap is larger - expected due to the complexity of the data

set - but still manageable. However, AlexNet consistently

shows poor results in all datasets with extremely low preci-

sion. This inconsistency suggests that weight regularization

may overly constrain shallow architectures like AlexNet,

hindering their ability to learn robust representations. This

also implies that ATWR requires depth-dependent hyper-

parameter tuning.

Table 4 presents the results for ATGR, where Acc-clean

and Acc-adv values are nearly identical for each model,

resulting in nearly zero Acc-drop. Although absolute ac-

curacy is lower than with ATWR, this pattern suggests

strong attack detectability due to conservative predictions.

DenseNet121 is an exception, where clean accuracy is rela-

tively high but robustness varies. ATGR’s behavior aligns

with its design: suppressing the sensitivity of the input gra-

dient encourages models that perform poorly on clean data

but respond dramatically to adversarial perturbations, mak-

ing them viable for detection purposes.

Finally, Table 5 shows that EATR provides a well-

rounded improvement in robustness. For MNIST, it helps

even AlexNet reach high adversarial accuracy. On CIFAR-

10 and CIFAR-100, EATR improves robustness over all

four attacks, although at a cost to clean accuracy. How-

ever, this trade-off remains preferable compared to ATWR

in scenarios where robustness across various attacks is crit-

ical. For AlexNet, the accuracy drop under EATR is sub-

stantial, similar to ATGR, but can be leveraged for adver-

sarial input identification.

These results collectively highlight that while ATWR

is best for preserving clean accuracy under strong attacks,

ATGR and EATR offer complementary benefits-either for

detection (ATGR) or ensemble generalization (EATR).

These experimental insights motivate a deeper analysis

of defense effectiveness, which is further elaborated in the

following section 6.

6 Discussion

This section provides a comparative analysis of the pro-

posed defense strategies, ATWR, ATGR, and EATR,

against baseline adversarial training and other state-of-the-

art methods reviewed in Section 2. We highlight key

performance trends, justify method-specific behaviors un-

der different attacks, and discuss observed limitations and

trade-offs.

6.1 Comparison with existing methods

Tables 6 and Table 7 present a quantitative compari-

son between our proposed methods (ATWR, EATR) and

the state-of-the-art adversarial defenses, including Stan-

dard Adversarial Training (SAT) [32], Defensive Dis-

tillation (DD) [19], and Combined Adversarial Training

(CAT) [31], across three datasets: MNIST, CIFAR-10, and

CIFAR-100, all evaluated on ResNet50.

Under PGD attack:

– In CIFAR-10, SAT achieves only robust accuracy

30% (Acc-adv) with anAcc-drop of 63.13%. CAT im-

proves this to 45.00% (Acc-drop 48.13%), while DD

remains ineffective at 18.00%. In contrast, ATWR re-

tains full clean accuracy (93.13%) with 0%Acc-drop,

and EATR achieves 83.75%Acc-adv with only 9.38%

drop.

– In CIFAR-100, SAT and CAT reach 22.00% and

30.00% Acc-adv, respectively, while ATWR again

achieves 0% Acc-drop, and EATR maintains 65.50%

Acc-adv and 11.69% Acc-drop.
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Table 5: Classification accuracy (%) with Ensemble Adversarial Training and Regularization (EATR) under white-box,

untargeted attacks: FGSM, PGD, BIM, and C&W. EATR combines multiple attacks for improved generalization. Note:

In some cases (e.g., MobileNetV2 on MNIST), the adversarial accuracy slightly exceeds clean accuracy, resulting in a

negative Acc-drop (The accuracy drop (Acc-drop) is defined as the difference between the clean accuracy (Acc-origin)

and the adversarial accuracy (Acc-adv).). This is a valid outcome due to regularization and perturbation diversity acting

as implicit data augmentation, leading to improved calibration under adversarial settings.

Dataset CNN model
Acc-origin

(Top-1)

FGSM PGD BIM C&W

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

Acc-clean

(Top-1)

Acc-adv

(Top-1)
Acc-drop

MNIST

ResNet50 100.00 99.06 98.44 0.62 99.06 99.06 0.00 99.06 98.75 0.31 99.06 98.44 0.62

ResNet101 100.00 98.75 98.12 0.63 98.75 98.75 0.00 98.75 98.75 0 98.75 98.12 0.63

AlexNet 100.00 99.38 99.06 0.32 99.38 99.38 0.00 99.38 98.75 0.63 99.38 99.38 0.00

MobileNetV2 100.00 95.00 96.25 -1.25 95.00 95.00 0.00 95.00 95.31 -0.31 95.00 94.38 0.62

DenseNet121 100.00 99.69 98.75 0.94 99.69 99.69 0.00 99.69 99.38 0.31 99.69 99.06 0.63

InceptionNetV3 100.00 97.50 96.88 0.62 97.50 97.50 0.00 97.50 97.19 0.31 97.50 96.56 0.94

CIFAR10

ResNet50 93.13 83.75 41.56 42.19 83.75 83.75 0.00 83.75 21.25 62.50 83.75 68.75 15.00

ResNet101 95.63 83.44 41.25 42.19 83.44 83.44 0.00 83.44 15.94 67.50 83.44 65.94 17.50

AlexNet 89.06 9.06 9.06 0.00 9.06 9.06 0.00 9.06 9.06 0.00 9.06 9.06 0.00

MobileNetV2 92.19 82.19 33.75 48.44 82.19 82.19 0.00 82.19 16.88 65.31 82.19 62.81 19.38

DenseNet121 93.75 83.44 33.12 50.32 83.44 83.44 0.00 83.44 18.44 65.00 83.44 65.62 17.82

InceptionNetV3 78.13 85.94 48.12 37.82 85.94 85.94 0.00 85.94 15.31 70.63 85.94 58.12 27.82

CIFAR100

ResNet50 77.19 67.50 29.69 37.81 67.50 67.50 0.00 67.50 5.31 62.19 67.50 45.94 21.56

ResNet101 84.69 61.56 25.00 36.56 61.56 61.56 0.00 61.56 6.25 55.31 61.56 41.25 20.31

AlexNet 67.50 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00 0.94 0.94 0.00

MobileNetV2 80.94 43.75 15.00 28.75 43.75 43.75 0.00 43.75 9.69 34.06 43.75 22.50 21.25

DenseNet121 81.56 15.94 11.88 4.06 15.94 15.94 0.00 15.94 11.88 4.06 15.94 8.12 7.82

InceptionNetV3 79.69 47.50 17.81 29.69 47.50 47.50 0.00 47.50 15.62 31.88 47.50 25.62 21.88

Table 6: Comparison of defense methods under PGD attack on MNIST, CIFAR-10, and CIFAR-100 using ResNet50.

Defense Method
MNIST CIFAR-10 CIFAR-100

Acc-clean

(%)

Acc-adv

(%)

Acc-drop

(%)

Acc-clean

(%)

Acc-adv

(%)

Acc-drop

(%)

Acc-clean

(%)

Acc-adv

(%)

Acc-drop

(%)

SAT [32]

100

40.00 60.00

93.13

30.00 63.13

77.19

22.00 55.19

DD [19] 0.00 100.00 18.00 75.13 12.00 65.19

CAT [31] 70.00 30.00 45.00 48.13 30.00 47.19

ATWR (Ours) 98.75 1.25 93.13 0.00 77.19 0.00

EATR (Ours) 98.44 1.56 83.75 9.38 65.50 11.69

– In MNIST, ATWR and EATR reduce Acc-drop to

1.25% and 1.56%, respectively, compared to 60.00%

for SAT, 30.00% for CAT, and 100% for DD.

Under C&W attack:

– In CIFAR-10, SAT, DD, and CAT achieve 33.00%,

19.00%, and 47.00% Acc-adv, respectively. ATWR

achieves 91.50% (Acc drop 1.63%), and EATR

achieves 87.00% (Acc drop 6.13%).

– In CIFAR-100, CAT achieves 32.00%Acc-adv, while

ATWR and EATR achieve 70.00% and 64.80%, re-

spectively.

– In MNIST, both ATWR and EATR reduce the Acc-

drop to near zero (1.25% and 1.56%) while maintain-

ing full clean accuracy.

These results clearly highlight the effectiveness of

our regularization-based methods. ATWR consistently

achieves a minimal accuracy drop across all datasets and

attacks. EATR, while slightly behind ATWR in robust-

ness, provides stronger generalization across attack types

and datasets. In general, both methods outperform tradi-

tional adversarial training, defensive distillation, and en-

semble adversarial approaches in both robustness and sta-

bility.

6.2 Method-specific behaviors

ATWR achieves the best balance of robustness and clean

accuracy. Its superior performance on PGD and C&W

can be attributed to the inclusion of weight regularization,

which prevents overfitting to adversarial samples and pro-

motes smoother decision boundaries. This is especially ef-

fective on datasets like CIFAR-10 and MNIST, where per-

turbations are subtle.

ATGR performs conservatively by design. Gradient reg-

ularization penalizes sharp gradients in the loss landscape,

resulting in models that are more stable but also more un-

derfitted. Consequently, ATGR exhibits lower clean and

adversarial accuracy (e.g., constant 13.44% on MNIST),

but this behavior enhances its potential as an adversarial

detector rather than a conventional classifier.

EATR combines the strengths of both approaches.

By training on adversarial samples from multiple attacks

(FGSM, BIM, PGD, and C&W), EATR generalizes well

across attack types. It matches the robustness of ATWR

(for example, 0% Acc-drop in CIFAR-10 under PGD)

while improving the robustness against simpler attacks such

as FGSM and BIM, where ATWR sometimes performs

poorly.

Trade-offs and Observations Across Architectures:

Across the experiments, we observe that different net-

work architectures respond differently to the applied reg-

ularization strategies. For example, weight regularization
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Table 7: Comparison of defense methods under C&W attack on MNIST, CIFAR-10, and CIFAR-100 using ResNet50.

Defense Method
MNIST CIFAR-10 CIFAR-100

Acc-clean

(%)

Acc-adv

(%)

Acc-drop

(%)

Acc-clean

(%)

Acc-adv

(%)

Acc-drop

(%)

Acc-clean

(%)

Acc-adv

(%)

Acc-drop

(%)

SAT [32]

100

40.00 60.00

93.13

33.00 60.13

77.19

24.00 53.19

DD [19] 0.00 100.00 19.00 74.13 13.00 64.19

CAT [31] 70.00 30.00 47.00 46.13 32.00 45.19

ATWR (Ours) 98.75 1.25 91.50 1.63 70.00 7.19

EATR (Ours) 98.44 1.56 87.00 6.13 64.80 12.39

(ATWR) performs consistently well on deeper architec-

tures such as ResNet101 and DenseNet121, promoting ro-

bustness while maintaining clean accuracy. However, for

shallower or lightweight models such as AlexNet or Mo-

bileNetV2, strong regularization can hinder the model’s

ability to learn effectively, leading to performance degrada-

tion. In contrast, gradient regularization (ATGR) tends to

over-constrain all models uniformly, leading to extremely

conservative outputs that, while useful for adversarial de-

tection, are suboptimal for general classification. These

findings emphasize the importance of architecture-specific

tuning of regularization parameters.

6.3 Observed limitations

A notable limitation arises with the AlexNet model, where

all three defense methods fail to maintain high clean accu-

racy. For example, under ATWR, AlexNet’s clean accu-

racy on MNIST drops from 100% to 13.44%. This sug-

gests that regularization strength may need model-specific

tuning and that shallow architectures like AlexNet lack the

capacity to learn simultaneously from clean and adversarial

examples under strong constraints.

6.4 Generalization vs. robustness trade-off

Our experiments confirm the known trade-off between

clean accuracy (generalization) and adversarial robustness

(Acc-adv) [41]. ATWR and EATR offer high robustness

with minimal loss in clean accuracy on deeper models (e.g.,

ResNet101, DenseNet121). In contrast, ATGR heavily sac-

rifices clean accuracy in exchange for stability, which can

be advantageous for adversarial detection but not for stan-

dard classification.

These results indicate that robustness and generalization

can be simultaneously improved with proper regularization

and ensemble strategies, but optimal results depend on ar-

chitecture depth, attack strength, and dataset complexity.

Interestingly, on simpler datasets such as MNIST, we

observe that adversarial accuracy can occasionally exceed

clean accuracy, particularly under the EATR framework.

This leads to negative Acc-drop values (for example, -

1.25%), which may seem counterintuitive, but are valid in

our setting. We attribute this to the regularization and per-

turbation diversity in EATR acting as a form of implicit data

augmentation. As a result, the model becomes better cali-

brated under perturbed conditions, sometimes generalizing

slightly better than on unperturbed inputs. This behavior

has been verified across multiple runs and aligns with re-

cent findings on robustness-generalization synergy in over-

regularized regimes.

7 Conclusion and future work

This work underscores the vulnerability of widely used

deep image classifiers to adversarial attacks such as FGSM,

PGD, BIM, and C&W. To address these challenges, we

propose three defense strategies: ATWR, ATGR, and

EATR that offer distinct advantages in enhancing model

robustness. ATWR and EATR effectively improve re-

silience against strong optimization-based attacks (e.g.,

PGD, C&W) while maintaining a favorable trade-off with

clean accuracy. In contrast, ATGR introduces a comple-

mentary perspective by transforming standard classifiers

into effective adversarial detectors. These findings high-

light the critical role of tailored regularization in adversar-

ial training and the broader need for robust defense mech-

anisms to secure deep learning systems in real-world de-

ployments. In future work, we plan to evaluate the trans-

ferability of adversarial attacks across CNN architectures

and extend the analysis to vision transformers, paving the

way for stronger and more adaptable adversarial defenses.
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Appendix: pseudocode for

regularized adversarial training

Algorithm 1: Training with ATWR / ATGR /

EATR

Input: Training set D, pre-trained model fθ, loss
function L, regularization type, attack
methods

Output: Fine-tuned model parameters θ
Initialize model parameters θ using pre-trained
weights (fine-tuned on D)
for each epoch do

for each mini-batch {(xi, yi)}Bi=1 in D do
Generate adversarial examples x̃i using

selected attack(s) (on-the-fly)

Form mini-batch Bclean = {xi} and
Badv = {x̃i}
Mix batch: Bmix = Bclean ∪Badv

Compute Lclean and Ladv

if ATWR then

Ltotal = Lclean + λ1Ladv + λ2‖W‖2
else

if ATGR then
Ltotal =
Lclean + β1Ladv + β2‖∇xLadv‖2

else

EATR: Use multiple Lattack
adv terms

and apply ensemble aggregation

Backpropagate and update θ using optimizer

return θ
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