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To solve the challenges of dynamic topology changes and multi-stage decision-making dependencies in 

virtual network embedding, a Collaborative Sequential Optimization Multi-Agent Virtual Network 

Embedding Model (CSO-MAVNE) is proposed. The model integrates three core mechanisms. The 

topological features of the underlying and virtual networks are extracted through graph convolutional 

networks. The virtual network topology graph is dynamically constructed and evaluated with the help of 

generative adversarial networks to optimize the embedding strategy. The distributed collaborative 

mapping of virtual nodes and links is realized by combining multi-agent reinforcement learning. The 

Internet Topology Zoo and Synthetic Topology datasets are used for experimental testing with DRL-VNE, 

MS-GCN, and D-GANE models. The experimental results show that when the number of requests is 300, 

the embedding success rate of CSO-MAVNE is 82.9%, the cost-benefit ratio is 4.5, the resource utilization 

rate is 92.5%, and the embedding time is 7.1 s. In the scenario of 10% link failure, the recovery rate 

remains above 91.7% and the embedding success rate reaches 86.5%. Under high load conditions, the 

request throughput is 267.9 times/second. The results show that this method is superior to traditional 

methods in terms of virtual network request embedding success rate, resource utilization rate, and 

dynamic environment adaptability, and provides a reliable solution for building an efficient and robust 

resource allocation mechanism. 

Povzetek: Razvit je večagentni model CSO-MAVNE, ki združuje GAN, GCN in ojačitveno učenje za 

učinkovito in robustno razporejanje virov v virtualnih omrežjih z dinamično topologijo. 

 

1 Introduction 
With the rapid development of the Internet and the surge 

of information demand, the traditional network 

architecture is facing increasingly severe challenges. The 

continuous emergence of emerging technologies such as 

the Internet of Things, 5G communication, and cloud 

computing has led to a rapid increase in network traffic, 

while also placing higher demands on the flexibility of 

resource scheduling and management [1]. Traditional 

network architecture is difficult to adapt to dynamic and 

changing business requirements and heterogeneous 

environments due to its fixed hardware resources and rigid 

configuration [2]. To address these issues, network 

virtualization technology has gradually become a research 

hotspot. It abstracts physical resources into multiple 

logical network slices, providing the possibility of 

resource sharing and customized services, and providing 

theoretical and practical support for next-generation 

network design [3]. In the framework of network 

virtualization, Virtual Network Embedding (VNE) is the 

core link of resource allocation, which directly affects the 

performance and resource utilization rate of the network 

[4]. The VNE problem involves mapping virtual nodes to 

physical nodes and allocating virtual links to the paths of 

physical links, which is essentially a complex 

combinatorial optimization problem [5]. In recent years,  

 

with the development of artificial intelligence technology, 

significant progress has been made in solving VNE. Zhang  

W et al. proposed a reproducible multidimensional VNE  

problem and its solutions to address the scalability and 

diversity challenges faced by VNEs. Through topology 

aware preprocessing and embedding methods, in 

simulation experiments, the average embedding success 

rate, revenue, and revenue cost ratio were increased by 

40.45%, 40.45%, and 299.03%, respectively, and the 

average cost rate was reduced by 64.16% [6]. Ogino N et 

al. proposed a distance-based elastic VNE method to 

address network connectivity issues after critical node 

failures during the VNE process. Problems were modeled 

through integer linear programming, and the embedding 

process was optimized using efficient algorithms. The 

simulation results showed that VNE solutions with 

approximate ratios less than 1.2 were derived within 10 

seconds [7]. Rezaeimoghaddam P et al. studied the VNE 

problem in wireless sensor networks and proposed a trust 

aware algorithm. By adding trust constraints to virtual 

nodes and links, efficient resource allocation could be 

achieved while improving network security. The results 

indicated that this method had significant advantages in 

throughput, error efficiency, and processing time [8]. 

Minardi M et al. proposed a dynamic topology aware 

embedding algorithm and its efficient solution method for 

the VNE problem in dynamic networks of non-
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geostationary orbit satellites. The experiment results 

showed that the algorithm outperformed the baseline 

method in terms of computational efficiency, migration 

cost, and packet loss rate [9]. 

Graph Convolutional Network (GCN), as a deep 

learning technique capable of processing graph structured 

data, has significant advantages in extracting topological 

information and aggregating node features. Pasa L et al. 

proposed a new strategy for polynomial graph 

convolutional layers to address the issue of GCN mainly 

utilizing local topological information and introducing 

topological information bias when stacking multiple 

layers. By independently utilizing neighboring nodes with 

different topological distances in a single layer, 

decoupling representations could be generated to avoid the 

limitations of multi-layer stacking. The results indicated 

that this method outperformed traditional methods on 

multiple commonly-used graph classification benchmarks 

[10]. Bhattacharjee V et al. proposed an enhanced graph 

representation method to tackle the problem that 

traditional methods fail to adequately capture the 

structural similarity of node features in graph data. The 

method incorporated the concept of overlap into graph 

data to improve the accuracy of node classification. By 

inputting the enhanced graph into GCN, this method 

significantly improved the accuracy in classification tasks 

[11]. Liu Q et al. proposed a traffic condition prediction 

method that combined GCN and long short-term memory 

network. By jointly modeling the urban road topology and 

traffic flow dynamic characteristics, high-precision 

prediction of traffic trends was achieved [12]. Li S et al. 

proposed a dynamic data detection method that combined 

GCN and temporal convolutional network to address the 

problem of insufficient accuracy in dynamic data 

processing under network environment. This method 

modeled and analyzed network data from two dimensions, 

time and space, effectively improving the accuracy and 

processing efficiency of data detection [13]. 

Combined with Table 1, previous methods mostly use 

separate processing of node and link embedding, ignoring 

the coupling between the two in topology and resource 

dependency, resulting in local optimality and lack of 

global coordination in the embedding scheme. To 

overcome the above shortcomings, this study integrates 

the Generative Adversarial Network (GAN) and GCN for 

joint modeling, and proposes the Collaborative Generative 

and Graph Convolutional Network Embedding Algorithm 

(CGCNE). GCN extracts the structural features of the 

underlying network and virtual requests, and GAN is used 

to dynamically generate and optimize the virtual network 

topology, thereby achieving integrated coordination of 

node and link mapping and improving the global 

consistency of embedding and resource allocation 

efficiency. Finally, the key contents of the above VNE and 

GCN related methods are detailed in Table 1. 

In addition, in the face of dynamic scenarios such as 

continuous expansion of network scale and frequent 

node/link failures in actual applications, the centralized 

embedding strategy performs poorly in terms of timeliness 

and robustness. To this end, the study further introduces a 

multi-agent reinforcement learning framework and 

proposes a Collaborative Sequential Optimization Multi-

Agent Virtual Network Embedding Model (CSO-

MAVNE). The self-attention mechanism is used to model 

the temporal dependencies in the embedded tasks, and the 

joint advantage function is used to coordinate the 

strategies of each agent to achieve efficient decoupling 

and collaborative optimization of virtual node and link 

mapping. This mechanism supports distributed 

deployment, adapts to dynamic network topology 

changes, and enhances the system's recovery capability 

and strategic robustness in fault scenarios. 

To address the structural modeling deficiencies and 

policy coordination performance bottlenecks in VNE, this 

study proposes a joint modeling method that integrates 

generative adversarial networks and GCNs, and designs a 

collaborative decision-making mechanism in combination 

with multi-agent reinforcement learning to improve the 

distributed optimization capabilities of the system in 

resource scheduling tasks. The main innovations include: 

(1) Introducing GAN and GCN into embedding modeling 

to improve the collaborative perception capabilities of 

nodes and links; (2) Constructing a multi-agent 

architecture based on a joint advantage function to achieve 

policy distribution optimization and collaborative 

improvement; (3) Designing a dynamic sequence input 

mechanism to enhance the model's stability in handling 

burst requests. Experimental results show that CSO-

MAVNE outperforms existing methods in multiple 

dimensions, including resource utilization, acceptance 

rate, embedding efficiency, and fault-tolerant recovery. 

 

Table 1: Summary table of related work. 

Author Method Dataset Evaluation metrics Results summary 

Zhang W et al. [6] ReMiDvne 
OpenStack 

platform 

Average rates of 

acceptance 

ratio,communication 

costs 

Reduce communication costs 

by up to 45.93 and 63.43 

percent 

Ogino N [7] 

Distance-

based resilient 

VNE 

Synthetic 

topology 

Computation time, 

Approximation ratio 

Approximate solution with 

ratio <1.2 within 10s 

Rezaeimoghadda

m P et al. [8] 
TA-VWSN WSN 

Average network 

throughput, and 

processing time 

Improved throughput, reduced 

errors, better efficiency 
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Minardi M et al. 

[9] 
DTA-VNE MIRSAT quantify the packet lost 

Reduce the packet lost by ~ 2.5 

– 5% compared to baselines. 

Pasa L et al. [10] 

GNN with 

single PGC 

layer 

Graph 

classification 

benchmarks 

Classification accuracy 
Outperformed conventional 

GCNs 

Bhattacharjee V et 

al. [11] 

Enhanced 

graph 

representation 

Real-world 

graphs 

Node classification 

accuracy 
Improved GCN accuracy 

Liu Q et al. [12] LSTM - GCN Real traffic data 
Prediction accuracy, 

Reliability 
High accuracy and adaptability 

Li S et al. [13] 

Proposed 

GCN + 

temporal 

convolution 

Simulated 

dynamic 

network data 

MAE, MAPE, RMSE, 

Processing time 

Higher accuracy and lower 

delay 

 

2 Methods and materials 
To solve the global optimization problems caused by the 

decoupling of virtual node and link mapping and improve 

the system's adaptability in large-scale dynamic 

environments, the following core model modules are 

designed. First, to solve the problem of separation of node 

and link mapping in traditional methods, the CGCNE 

method (Section 2.1) is proposed to enhance the 

coordination and structural perception of embedded 

strategies. Second, to deal with the problems of slow 

response and poor robustness of centralized strategies, the 

CSO-MAVNE model (Section 2.2) is constructed to 

realize distributed decision-making and dynamic 

adaptation of resource scheduling. 

2.1 Joint modeling VNE method based on 

GAN and GCN 

Traditional VNE methods often adopt a staged processing 

mode, modeling node mapping and link mapping 

separately, but lack effective decision coordination 

between the two stages, resulting in insufficient global 

optimization capability for resource allocation [14-15]. A 

joint modeling VNE method is proposed to address this 

issue, which optimizes the mapping decisions of nodes 

and links simultaneously to avoid segmentation and 

limitations in the solution space. GAN and GCN are 

introduced, with their powerful feature extraction 

capabilities being utilized to capture network topology 

information and design more coordinated embedding 

strategies. 

To capture the structural dependency and dynamic 

characteristics between physical links, three interaction 

relationship modeling methods are constructed: equation 

(1) describes the resource competition intensity between 

links, equation (2) describes the link dependency caused 

by upstream traffic, and equation (3) reflects the degree of 

coordination between bidirectional links. The three 

formulas jointly generate a link similarity matrix, which is 

used as a graph structure prior input to the GCN and GAN 

modules to guide the network to more accurately perceive 

the topological structure and its resource status. 

Firstly, in virtual network topology, different links 

may compete with each other due to the traffic allocation 

of the target node, and their weight matrix is shown in 

equation (1). 
2

,( , ),( , ) 2

( ( ) ( ) )
exp

f f

E u v v w

T u T v M
A



+ + + −
= − 

 
 (1) 

In equation (1), T  is the time window, and f +  

represents the positive direction link, that is, the direction 

in which data flows out from the current node. ( )fT u+  

and ( )fT v+  respectively represent the total outflow of 

nodes u  and v . M  is the average traffic output of the 

node.   is the standard deviation. Secondly, to capture 

the mutual influence between upstream and downstream 

nodes, node correlation is shown in equation (2). 
2

,( , ),( , ) 2

( ( ) ( ) )
exp

f f

E u v v u

T u T v M
A



− + + −
= − 

 
 (2) 

In equation (2), f −  represents the reverse link, that 

is, the direction in which data flows toward the current 

node. ( )fT u−  represents the total incoming traffic of node 

u  to describe the traffic interaction and influence 

mechanism between nodes. Finally, to characterize the 

correlation between bidirectional interactions of links, the 

weight matrix of bidirectional relationships is shown in 

equation (3). 

2

,( , ),( , ) 2

( ( ) ( ) )
exp

v uf f

E u v v u

T u T v M
A



+ +

 + −
= − 

 
 

 (3) 

In equation (3), ( )vfT u
+

 represents the traffic from 

node u  to node v , and ( )ufT v
+

 represents the traffic from 

node v  to node u . By constructing these three link 

modes, the competition, upstream and downstream, and 

bidirectional interaction relationships between links can 

be fully characterized. By combining the feature 

aggregation capability of GCN, these link features are 

extracted and fused to optimize the effectiveness of VNE. 

Subsequently, to further optimize VNE, GAN is 

introduced to automatically generate and evaluate the 

effectiveness of the network topology graph, as shown in 

Figure 1. 
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Figure 1: VNE topology generation model based on GAN. 

As shown in Figure 1, it includes two core modules: 

builder G  and arbiter D . The generator generates node 

information matrices and link information matrices based 

on the input network structure characteristics (including 

node degree distribution, topological connectivity, link 

bandwidth range, etc.) and virtual request information, 

which together constitute the simulated topology 

structure. Next, the generated topology is compared with 

the actual topology. This comparison result is then fed into 

the discriminator, which assesses the structural 

consistency between them. Based on this assessment, the 

discriminator provides feedback that guides the generator. 

Through adversarial training, the generator is prompted to 

continually enhance the structural rationality and 

distribution diversity of the topologies it produces. The 

whole process focuses on enhancing the structural 

authenticity of the generated topology rather than directly 

evaluating its mapping effectiveness. 

The goal of Builder G  is to optimize the generated 

graph structure by minimizing the following objective 

function, as shown in equation (4) [16]. 

( ) [min( ( ) , ( ( ),1 ,1 ) ) ( ( ))]t t t t t t tL E r A clip r A D a s      = − + +

(4) 

In equation (4), ( )tr   is an estimate of the 

dominance function. tA  is the advantage of the state. 

( )t ta s  is the strategy probability, and ( ( )t tD a s   is 

the weighted loss term output by the discriminator.   is 

the temperature coefficient, which is used to control the 

"smoothness" of the policy distribution and affects the 

Underlying network Virtual request network

Node 

diagram

Link 

diagram

Builder

Generative 

topology
Real topology

Arbiter

Real? Fake?

Critic module optimization

Target network

 

Figure 2: VNE algorithm framework based on CGCNE. 
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Figure 3: Information flow process of CGCNE framework. 

trade-off between exploration and exploitation in policy 

sampling. A smaller value of   will make the policy more 

focused on the dominant action and increase the tendency 

of deterministic selection; while a larger value of   

encourages the policy to explore more in the action space, 

thereby improving the generalization ability of the policy. 

The clipping operation mechanism is introduced in the 

formula to limit the amplitude of the policy update to 

avoid training instability caused by excessive updates 

during the policy optimization process. 

( ( ),1 ,1 )tclip r   − +  will limit the probability ratio ( )tr   

within the threshold range to ensure smooth convergence 

of the optimization process. 

Subsequently, arbiter D  optimizes its ability to 

judge the true topology by minimizing the objective 

function, as shown in equation (5) [17-18]. 

~( ) ( ( )) ( )
rt t x PL E D a s E D x

       = −     (5) 

In equation (5), rP  is the true data distribution. D  is 

used to measure the difference between the generated 

topology and the real topology. In addition, to improve the 

learning performance of the builder, the Critic objective is 

achieved by minimizing empirical error, as shown in 

equation (6). 
2

1( ( , ) ( ) ( ))critic t t t t tL E R s a V s V s +
 = + −    (6) 

In equation (6), ( , )t tR s a  represents the immediate 

reward for the current state and action.   is the discount 

factor. ( )tV s  and 1( )tV s +  are the value functions for the 

current and next states, respectively. Therefore, based on 

the above calculations, the VNE algorithm framework 

based on CGCNE is shown in Figure 2. 

As shown in Figure 2, the CGCNE framework first 

extracts the structural features of virtual requests and the 

underlying network through GCN to generate a resource 

requirement matrix for nodes and links. The generator 

combines these features to generate candidate topologies, 

the discriminator determines the authenticity of its 

structure, and the Critic module compares the target 

topology and optimizes the generation scheme. Finally, 

the Arbiter combines the feedback from the discriminator 

and the Critic module to output an embedding strategy that 

better meets the requirements of the target network. To 

demonstrate more clearly the specific information 

transmission and resource allocation process between 

modules in the CGCNE framework, the information flow 

diagram is shown in Figure 3. 

As shown in Figure 3, the CSO-MAVNE model 

receives the environment state and generates embedding 

decisions through a multi-agent structure, where each 

agent outputs the mapping object of the virtual node or 

link. After verification and fusion in the Critic module, the 

mapping relationship is passed to the resource execution 

module to complete the actual allocation of virtual 

resources to physical nodes and links. The resource state 

is refreshed using the mapping and subsequently relayed 

back to the agent, thus establishing a closed-loop 

optimization system. This process enables dynamic 

resource scheduling and adaptive embedding. 

2.2 Distributed VNE strategy based on 

multi-agent reinforcement learning 

Although the CGCNE strategy proposed in the previous 

section can improve the joint embedding quality of nodes 

and links, its modeling method based on centralized 

control has problems such as slow response speed and 

difficulty in policy convergence in large-scale and 

dynamic environments. In particular, it is difficult to 

achieve rapid adaptation and concurrent optimization in 

multi-region resource scheduling [19]. Therefore, based 

on the previous section, a multi-agent VNE model based 

on collaborative sequence optimization, CSO-MAVNE, is 

further proposed. Multiple agents collaborate to embed 

tasks in a phased manner. First, the node agent completes 

node mapping based on the physical resource status, and 
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Figure 4: Schematic diagram of single-agent and multi-agent reinforcement learning. 

then the link agent selects the link path based on the node 

decision. The agents transmit feedback through shared 

state representation and centralized evaluation modules to 

achieve collaborative optimization between strategies and 

improve embedding adaptability. Multi-agent 

reinforcement learning can effectively adapt to the 

complexity and real-time requirements of VNE in 

dynamic environments through the collaboration of 

multiple agents, as shown in Figure 4. The environment 

includes resource state input, embedded action output, 

execution feedback and reward signals. The agent makes 

embedded decisions based on the current state and 

continuously optimizes the strategy through the reward 

mechanism. 

In the scenario of a single-agent in Figure 4 (a), the 

agent selects actions based on the state information of the 

environment and obtains state rewards through interaction 

with the environment, thereby optimizing the strategy. In 

the multi-agent scenario shown in Figure 4 (b), the 

environmental state is not only influenced by the actions 

of individual agents, but also by the combined actions of 

other agents. This interactive characteristic determines 

that agents need to cooperate in learning to adapt to the 

globally optimal embedding strategy. 

To better capture sequence dependencies in VNE 

problems, Self Attention Mechanism (SAM) is introduced 

as the core of multi-agent collaborative optimization in 

CSO-MAVNE. SAM can effectively handle global 

dependencies between sequence data, especially for tasks 

with complex interaction characteristics. As a typical 

application of self-attention mechanism, the Transformer 

model maps the input sequence to the latent representation 

space through the encoder-decoder structure and generates 

optimization strategies. The calculation is shown in 

equation (7). 

 ( , , )
T

k

QK
Att Q K V softmax V

d

 
=  

 
 

 (7) 

In equation (7), Q , K , and V  represent the query, 

key, and value, respectively. 
kd  is the dimension of the 

key vector, which indicates the feature dimension size of 

each position in the sequence and determines the 

information projection space in the attention calculation. 

The softmax  function normalizes the dot product result 

into weights. In multi-agent scenarios, virtual nodes and 

links are treated as independent sequences, and SAM is 

used to achieve dependency modeling and global 

optimization between tasks. 

On the basis of SAM, to solve the sequence 

dependency problem in VNE, the multi-agent strategy 

further formalizes the embedding task of virtual nodes and 

links as a sequential decision-making problem. 

Specifically, each agent is responsible for selecting the 

optimal strategy for mapping a virtual node or link to the 

underlying network in the current state. The local priority 

calculation of the intelligent agent is shown in equation 

(8). 

 ( , )( , , ) ( , )
lvne n l node n link s aA s a a A s a A= +  (8) 
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Figure 5: Virtual node and link embedding order decision framework. 
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Figure 6: Encoder-decoder architecture for embedding virtual nodes. 

In equation (8), s  represents the current system 

operation. 
na  and 

la  are the embedding actions of virtual 

nodes and virtual links. ( , )node nA s a  and ( , )llink s aA  

respectively measure the local priority of node and link 

embeddings. Furthermore, to ensure the collaborative 

consistency of multiple agents, a joint advantage function 

is proposed, as shown in equation (9). 

 ( , , ) ( , , )global

vne n l vne i n l

i

A s a a A s a a=  (9) 

In equation (9), 
is  represents the current state of 

agent i . By leveraging the joint advantage function, 

intelligent agents are able to harmonize their individual 

decision-making processes while taking into account 

overarching global objectives. Therefore, the sequential 

decision-making process and collaborative embedding 

logic of virtual nodes and links in CSO-MAVNE are 

shown in Figure 5. 

As shown in Figure 5, in the embedding process, the 

virtual node agent first selects the appropriate physical 

node for mapping according to the node status. Then, 

based on the node mapping results, the virtual link agent 

selects the underlying link resources that meet the 

bandwidth and path constraints, as shown by the red line 

in the figure. Finally, the target mapping structure is 

formed through embedding and merging, providing 

optimization strategy support for subsequent resource 

allocation. To achieve efficient mapping of nodes and 

links in the sequential decision-making framework, an 

encoder decoder structure is introduced in multi-agent 

collaboration to dynamically extract network features and 

generate embedding strategies. The structure is shown in 

Figure 6. 

As shown in Figure 6, for each virtual network 

request, the encoder extracts the structural features of 

nodes and links, forms an input vector and sends it to the 

decoder together with the request features. Initially, the 

decoder utilizes Mask attention to model the sequential 

dependencies among nodes. Subsequently, it integrates 

the structural information generated by the Graph 

aggregation module, resulting in a fused feature vector. 

Subsequently, the Multi-Layer Perceptron (MLP) 

generates the embedding action of the current virtual node 

based on the vector and outputs the embedding strategy 

until all nodes are embedded. After all virtual nodes 

complete the mapping, the decoding process stops and 

outputs the final embedding scheme. Firstly, the encoder 

uses the adaptive network feature extraction module GCN 

to encode the topological features of virtual network 

requests and underlying physical networks, learning the 

representational latent space. Encoding parameters are 

optimized by minimizing experience loss, as shown in 

equation (10). 

 

Request input
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features

GAN generates topological 

structure

Node/link embedding 

features

Multi-agent embedding 
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Figure 7: Overall architecture of CSO-MAVNE for VNE. 
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1

0

1
( ) ( , ) ( ) ( )

T

encoder t t t t

t

L R s a V s V s
T
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−

+

=

 = + −  (10) 

In equation (10),   is the encoder parameter. ( )tV s
 

represents the estimated value of the current state. Each 

time step decoder receives the output features of the 

encoder and generates a set of embedded action sequences 

0:

m

Ma  based on the virtual node or link set, maximizing the 

joint advantage function of the embedding decision, as 

shown in equation (11). 
1

1 1

1
( ) min( ( ) , ( ( ),1 ,1 ) )

2

T M
m m m m

t t t t

t m

L r A clip r A
T

    
−

= =

  = − +  (11) 

In equation (11), m

tA  is the dominant function.    

controls the strategy generation scope. ( )m

tr   is the ratio 

estimation of the strategy function. Finally, Figure 7 

shows its system architecture and main processing stages. 

As shown in Figure 7, the overall process of the CSO-

MAVNE model includes three stages: feature extraction, 

candidate topology generation, and multi-agent 

embedding decision. GCN is used to extract the structural 

features of nodes and links, and the GAN module 

generates a well-structured embedding candidate 

topology. On this basis, a multi-agent reinforcement 

learning strategy is used to complete the collaborative 

embedding of nodes and links respectively. This method 

has the advantages of task decoupling, parallel execution, 

and strategy sharing, and can effectively improve the 

resource scheduling efficiency and robustness of the 

model in large-scale and dynamic environments. 

3 Results 

3.1 Performance testing of CSO-MAVNE 

network resource allocation model 

The experiment was completed in Windows 11 

environment using a desktop computer with 32GB 

memory and AMD Ryzen 9 5900X processor. The 

datasets used include typical physical topologies in 

Internet Topology Zoo and virtual topologies generated by 

Synthetic Topology based on Waxman model. The former 

covers the real network structure of operators in multiple 

regions, and the latter constructs 100 random topologies 

with a node size of 100–300. The link generation 

probability was set to 0.3, and the node and link resource 

requirements were sampled from the uniform distribution 

U(10,100). The corresponding physical network resources 

were randomly generated in the range of 1.5–2 times, and 

all topologies were normalized. Requests were entered 

into the system in time series order, without batch 

processing, to simulate the dynamic arrival process. 

Internet Topology Zoo was used to verify the resource 

allocation adaptability of the model under the real network 

structure, and Synthetic Topology was used to evaluate the 

performance stability and generalization ability of the 

model under different scales and topological complexities. 

For training, the Adam optimizer was uniformly used, 

and the learning rates of the GCN and the generative 

adversarial network modules were 0.001 and 0.0002 

respectively, and the batch size was 32. GCN used a two-

layer graph convolution structure with output dimensions 

of 64 and 32 respectively, and the activation function was 

ReLU. The multi-agent strategy adopted the Actor-Critic 

architecture based on the advantage function, and used the 

centralized critic to achieve state sharing and independent 

policy update. Each round of training simulated 300 

virtual network requests, with a cumulative number of 

interaction rounds of 50,000. Performance fluctuations of 

less than 0.01% for 20 consecutive rounds were 

considered convergence. The reward function combined 

resource utilization rate, benefit-cost ratio, and 

reconstruction overhead, and the basic comparison 

strategy was to prioritize the maximum residual resources. 

To quantify the independent contribution of each key 

module to the model performance, ablation experiments 

were carried out, see Table 2. 

The results showed that after removing the GAN 

module, the request throughput dropped to 164.9 req/s and 

the link utilization increased, indicating that the diversity 

of the generated structure decreased, resulting in a 

decrease in embedding efficiency. Removing the joint 

advantage function increased the number of remappings to 

1.44, reflecting its optimization role in multi-agent 

collaboration. The lack of the self-attention mechanism 

mainly affected the accuracy of resource scheduling and 

link pressure distribution. 

To verify the generation ability and structural 

effectiveness of the GAN module in the VNE task, the 

structural characteristics and training convergence of its 

output topology were further quantitatively analyzed. The 

results are shown in Table 3. 

 

Table 2: Ablation study with supplementary metrics. 

Model Variant Request Throughput (req/s) Avg. Link Utilization (%) Avg. Remapping Attempts 

CSO-MAVNE (Full Model) 183.4 42.1 1.12 

w/o GAN (GCN only) 164.9 46.3 1.38 

w/o Self-Attention 170.5 44.7 1.26 

w/o Joint Advantage Func. 158.7 47.5 1.44 
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Table 3: Validation results of GAN-Generated topologies. 

Metric Type 
Real Topologies 

(Mean) 
GAN-Generated Topologies (Mean) Relative Difference 

Average Node Degree 3.85 3.78 -1.80% 

Degree Distribution Skewness 0.42 0.39 -7.10% 

Average Clustering Coefficient 0.31 0.30 -3.20% 

Link Density 0.22 0.23 4.50% 

 

The results showed that the topological structure 

generated by GAN was highly similar to the real network 

topology in terms of overall morphology. The differences 

between key structural indicators such as node average 

degree, connection density and clustering coefficient and 

the real topology were all controlled within 5%, indicating 

that it had high structural fidelity. In addition, the degree 

distribution skewness was also consistent, indicating that 

the generated topology could better restore the 

connectivity pattern of the real network in terms of 

connection characteristics. 

Deep Reinforcement Learning-based VNE (DRL-

VNE), Multi-Stage GCN (MS-GCN), and Distributed 

GAN-based Embedding (D-GANE) were selected as 

comparative algorithms. DRL-VNE represents the 

traditional deep reinforcement learning embedding 

method, MS-GCN integrates graph structure perception 

capabilities, and D-GANE combines generation 

mechanism with deep strategy optimization. All three are 

currently mainstream single-agent VNE algorithms, 

which are typical and comparable. The bandwidth 

requirements for the links in the experiment were 

randomly distributed between 10Mbps and 1Gbps. Firstly, 

the resource allocation capability and efficiency results 

under different request scales are shown in Figure 8. 

Figures 8(a) and 8(b) show the changes in embedding 

success rate and Revenue Cost Ratio (RCR) with the 

number of Virtual Network Requests (VNR), respectively. 

The number of VNRs refers to the number of virtual 

network requests received continuously by the system, 

and the test interval was set to 100 to 300.The embedding 

success rate is the ratio of successfully completed 

embedded requests to the total number of requests. The 

benefit-cost ratio is the ratio between resource benefits 

and resource overheads (ROs) during the embedding 

process. The higher the value, the higher the resource 

utilization rate. In Figure 8(a), when the number of VNRs 

was 300, the embedding success rates of DRL-VNE, MS-

GCN, D-GANE, and CSO-MAVNE were 72.3%, 73.3%, 

75.3%, and 82.9%, respectively. In Figure 8(b), when the 

number of VNRs was 300, the cost-benefit ratios of each 

model were 4.1, 4.2, 4.4, and 4.5, respectively. CSO-

MAVNE utilized the collaborative feature extraction 

capabilities of GAN and GCN, as well as the collaborative 

optimization of multiple agents, effectively capturing the 

dependency relationships between nodes and links. D-

GANE performed better in generating features, thanks to 

the optimization capabilities of its distributed builder. MS-

GCN performed slightly worse due to insufficient 

modeling of topological dependencies. Additionally, it 

lacks effective global optimization strategies for resource 

allocation. DRL-VNE had the lowest embedding success 

rate, and its reinforcement learning model was susceptible 

to sparse feature interference when facing large-scale 

requests, making it difficult to adapt to the distributed 

embedding requirements of complex scenarios. 

Subsequently, the results of resource utilization rate and 

embedding time testing are shown in Figure 9. 
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Figure 8: Embedding success rate and benefit-cost testing. 



146 Informatica 49 (2025) 137–152 G. Sheng et al. 

R
U

R
 (

%
)

100 150 200 250 300
75

50

Node scale

(a) RUR test

90

80

95

85

DRL-VNE

MS-GCN

D-GANE

CSO-MAVNE

E
m

b
e
d

d
in

g
 t

im
e
 (

s)

100 150 200 250 300
3.0

50

Node scale

(b) Embedding time test

8.0

4.0

5.0

6.0

9.0

7.0

DRL-VNE

MS-GCN

D-GANE

CSO-MAVNE

 

Figure 9: Resource utilization rate and embedding time testing. 

Figures 9(a) and 9(b) show the resource utilization 

rate and embedding time changes under different numbers 

of physical network nodes, respectively. Figures 9(a) and 

9(b) show the changes in resource utilization rate and 

embedding time under different node sizes, respectively. 

Resource utilization refers to the ratio of the allocated 

node and link resources in the system to the total 

resources. Embedding time refers to the time required to 

complete a virtual network request embedding. The 

shorter the time, the stronger the response capability. In 

Figure 9(a), when the node size was 300, the resource 

utilization rates decreased to 81.0%, 83.0%, 85.7%, and 

87.2%, respectively. In Figure 9(b), as the node size 

increased to 300, the embedding time increased to 8.2 

seconds, 7.5 seconds, 7.2 seconds, and 7.1 seconds, 

respectively. The fast strategy generation and 

collaborative optimization strategy of CSO-MAVNE 

encoder-decoder structure achieved efficient allocation of 

global resources. Finally, multiple experimental scenarios 

were designed, namely static scenario fault free network, 

dynamic scenario 1 simulating 10% link failure, dynamic 

scenario 2 simulating 10% link failure, and dynamic 

scenario 3 simulating 10% node failure. The results are 

shown in Table 4. 

 

Table 4: Embedding success rate and network stability test results. 

Scenario Index Model 100 Nodes 200 Nodes 300 Nodes 

Scenario 1 Embedding success rate (%) 

DRL-VNE 84.3 83.2 82.1 

MS-GCN 87.5 86.5 85.5 

D-GANE 89.8 89.1 88.3 

CSO-MAVNE 92.0 91.2 90.5 

Scenario 2 

Embedding success rate (%) 

DRL-VNE 79.1 78.3 77.8 

MS-GCN 83.2 82.1 81.2 

D-GANE 86.7 85.7 84.5 

CSO-MAVNE 88.5 87.8 86.5 

Recovery rate (%) 

DRL-VNE 85.6 84.7 84.3 

MS-GCN 88.9 88.1 87.5 

D-GANE 90.4 89.7 88.5 

CSO-MAVNE 93.2 92.5 91.7 

Scenario 3 

Embedding success rate (%) 

DRL-VNE 76.5 75.4 74.3 

MS-GCN 81.1 80.2 79.4 

D-GANE 84.3 83.5 82.5 

CSO-MAVNE 86.5 85.7 84.3 

Recovery rate (%) 

DRL-VNE 89.3 88.5 88.1 

MS-GCN 85.4 84.6 84.3 

D-GANE 87.5 86.8 86.4 

CSO-MAVNE 90.5 89.7 88.5 
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RO (%) 

DRL-VNE 16.2 16.9 17.5 

MS-GCN 14.3 15.0 15.7 

D-GANE 12.1 12.8 13.5 

CSO-MAVNE 10.5 11.2 11.8 

 

In Table 4, the embedding success rate indicated the 

proportion of virtual network mappings that were 

successfully completed under the initial conditions. The 

recovery rate indicated the proportion of affected requests 

that were successfully re-embedded after a link or node 

failure. The RO indicated the proportion of additional 

resource consumption required to maintain the service 

during failure recovery. 

Under 300 nodes, the embedding success rate of CSO-

MAVNE reached 90.5%, and the recovery rates were 

91.7% (link failure) and 92.1% (node failure), 

respectively, with the lowest RO of only 11.8%. The 

recovery rates of D-GANE were 89.5% and 89.8%, 

respectively, and the RO was slightly higher. The recovery 

rate of MS-GCN in dynamic scenarios was maintained at 

around 85%, and the resource utilization rate was average. 

DRL-VNE had the lowest recovery rate, only 79.3%, and 

the highest RO, reaching 17.5%. The dynamic test used 

link and node failure scenarios to simulate common link 

interruption and device offline problems, respectively. It 

had the characteristics of high frequency, strong 

controllability, and clear interference in real networks, and 

was more suitable for evaluating the robustness and 

recovery capabilities of the model in emergency 

situations. 

3.2 Application analysis of CSO-MAVNE 

network resource allocation model 

To verify the optimization ability of the model in cross 

regional data center resource allocation, the scenario of A, 

B, and C regional data centers collaborating to process 

virtual network requests was simulated. Regions A, B, and 

C each contained 50, 70, and 100 computing nodes, with 

a total bandwidth of 1 Tbps, 1.5 Tbps, and 2 Tbps, 

respectively. The experiment randomly generated virtual 

network requests, which required computing resources, 

storage resources, and link bandwidth. The model was 

required to maximize resource allocation efficiency and 

maintain load balancing between regions while meeting 

resource requirements. Firstly, the average processing 

delay and Inter-region Load Balancing Rate (IRLBR) 

results are shown in Figure 10. 

Figures 10(a) and 10(b) show the average processing 

delay and IRLBR results of each model in three regions, 

respectively. The average processing delay is the average 

processing time from the generation of a virtual network 

request to the completion of mapping. IRLBR was used to 

measure the balance of resource allocation between 

different data centers. A higher value indicates a more 

balanced resource allocation. In Figure 10(a), CSO-

MAVNE performed the best in all three regions, with 

delays of 40ms, 42ms, and 45ms, respectively. The 

latency of D-GANE and MS-GCN was slightly higher in 

each region, ranging from 50-55ms and 55-60ms, 

respectively. DRL-VNE performed the worst, with delays 

reaching 60ms, 62ms, and 65ms in regions A, B, and C, 

respectively. In Figure 10(b), the IRLBR of CSO-

MAVNE in regions A, B, and C reached 95%, 93%, and 

91.5%, respectively. D-GANE performed second best, 

with IRLBRs of 92.3%, 89.5%, and 88% in the three 

regions. The equilibrium rate of MS-GCN further 

decreased, ranging from 90.8% to 85%, while the 

equilibrium rate of DRL-VNE was the lowest, at 88.5%, 

84%, and 80%, respectively. CSO-MAVNE balanced the 

resource load of each region through a global optimization 

strategy, while DRL-VNE failed to effectively alleviate 

resource competition between regions due to policy 

limitations, resulting in insufficient balance. 
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Figure 10: Average processing delay and IRLBR results. 
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Figure 11: FRT and RO test results under dynamic failure scenarios. 

Subsequently, tests were conducted on link failure 

and node failure in dynamic scenarios to simulate the fault 

recovery time (FRT) and RO of the model under different 

failure ratios. Scenario 1 was a dynamic link failure test, 

with simulated link failure rates of 5%, 10%, and 15%, 

respectively. Scenario 2 was a dynamic node failure test, 

with simulated node failure rates of 2%, 5%, and 8%, 

respectively. Under each condition, the model needed to 

perform real-time resource remapping, as shown in Figure 

11. 

Figures 11(a) and 11(b) show the FRT and RO results 

in link and node failure tests, respectively. FRT was used 

to measure the time required for the system to restore 

service from the occurrence of a fault, reflecting the 

system's response speed to emergencies. RO was used to 

describe the proportion of additional resources consumed 

in the process of completing fault repair, reflecting the 

system resource pressure brought by the fault tolerance 

mechanism. In Figure 11(a), the FRTs of CSO-MAVNE 

were 0.8s, 1.1s, and 1.5s, respectively, and the ROs were 

15%, 18%, and 20%, respectively. In Figure 11(b), the 

recovery times of CSO-MAVNE were 0.7s, 1.0s, and 1.3s, 

respectively, and the ROs were 12%, 15%, and 18%, 

respectively. The FRT of DRL-VNE was the highest, at 

1.6s, 2.0s, and 2.4s respectively, with ROs of 20%, 23%, 

and 27%, respectively. CSO-MAVNE achieved the lowest 

FRT and RO through collaborative optimization strategies 

among multiple agents and efficient dynamic remapping 

mechanisms. Finally, experiments were conducted to 

analyze the distribution of request flows and scheduling 

efficiency under different load conditions. The indicators 

include Regional Request Distribution Deviation (RDD), 

Average Latency (AL), Success Allocation Rate (SAR), 

and Request Throughput Rate (RTR). The results are 

shown in Table 5. 

Table 5: Dynamic request flow distribution and scheduling efficiency results. 

Load Level Model RDD (%) AL (s) SAR (%) RTR (requests/s) 

Low (100/s) 

DRL-VNE 22.3 1.82 85.7 85.7 

MS-GCN 18.7 1.53 89.3 89.3 

D-GANE 15.2 1.19 92.8 92.8 

CSO-MAVNE 10.8 1.02 95.6 95.6 
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Medium (200/s) 

DRL-VNE 26.7 2.48 82.1 164.2 

MS-GCN 22.1 2.23 85.4 170.8 

D-GANE 19.1 1.79 88.3 176.6 

CSO-MAVNE 12.6 1.51 91.7 183.4 

High (300/s) 

DRL-VNE 30.4 3.21 79.4 238.2 

MS-GCN 25.8 2.83 83.2 249.6 

D-GANE 20.7 2.41 86.1 258.3 

CSO-MAVNE 15.3 1.81 89.3 267.9 

 

Table 6: Scalability and time complexity evaluation of different models. 

Node Scale Metric DRL-VNE MS-GCN D-GANE CSO-MAVNE 

500 

Throughput 176.2 ± 1.8 180.5 ± 1.5 182.1 ± 1.2 188.7 ± 1.0 

Runtime (s) 5.3 4.8 5 4.3 

P-value (vs CSO) 0.003 0.012 0.025 / 

1000 

Throughput 168.3 ± 1.5 175.9 ± 1.2 178.0 ± 1.1 183.4 ± 0.9 

Runtime (s) 9.6 8.9 8.3 7.5 

P-value (vs CSO) 0.0012 0.0074 0.019 / 

1500 

Throughput 151.9 ± 2.0 161.0 ± 1.8 165.7 ± 1.6 172.8 ± 1.2 

Runtime (s) 18.4 17.1 15.8 13.9 

P-value (vs CSO) 0.0008 0.0061 0.011 / 

 

In Table 5, RDD is used to measure whether the 

request distribution between different regions is balanced. 

Its value is the standard deviation of the request 

distribution, expressed in percentage (%). The smaller the 

value, the more uniform the distribution. AL represents 

the average time from generation to response of all 

requests, expressed in seconds (s), reflecting the overall 

processing efficiency of the system. SAR is used to count 

the proportion of requests that are successfully mapped 

under the current load, expressed in percentage (%), which 

is a reflection of system stability. RTR measures the 

number of virtual network requests that the system can 

process per unit time, expressed in requests/s, and is an 

important indicator for evaluating the system's processing 

capabilities. 

Under low load conditions, the RDD of CSO-

MAVNE was 10.8%, AL was 1.02s, SAR reached 95.6%, 

and RTR was 95.6 request/s. Under medium load, CSO-

MAVNE achieved the best overall performance with an 

RDD of 12.6%, AL of 1.51s, SAR of 91.7%, and RTR of 

183.4 requests/s, outperforming all baseline models under 

the same load conditions. Under high load conditions, the 

RDD of CSO-MAVNE was 15.3%, AL was 1.81s, SAR 

was 89.3%, and RTR was 267.9 request/s, all of which 

were better than D-GANE and MS-GCN, while DRL-

VNE performed the worst. CSO-MAVNE benefited from 

its efficient resource allocation and load balancing 

strategy, while other models experienced significant 

performance degradation under high loads. 

Finally, to further verify the scalability and efficiency 

advantages of the proposed model in a larger network, this 

paper built an embedded test environment at three node 

scales and introduced a virtual network request flow that 

simulated the workload of a real data center, referring to 

the business characteristics of platforms such as Facebook 

and Alibaba. The experiment conducted multiple rounds 

of tests on CSO-MAVNE and three comparison models 

under the same resource configuration and request scale, 

and the results are shown in Table 6. 

As shown in Table 6, CSO-MAVNE showed higher 

request throughput and lower embedding running time at 

all node scales, reflecting good scalability and computing 

efficiency. The results of the independent sample t-test on 

the throughput difference between CSO-MAVNE and 

other models showed that at all node scales, CSO-

MAVNE reached a significant level of P< 0.05 compared 

with other models, further proving the significant 

advantages of the proposed model in scalability and 

processing efficiency. 

4 Discussion 
Compared with the traffic flow prediction model 

combining GCN and LSTM proposed by Liu Q et al. in 

the literature [12], this method mainly focused on time 

series data modeling under static structure, achieved high 

prediction accuracy and adaptability through feature 

fusion, and was suitable for small and medium-sized urban 

traffic scenarios. When facing the problem of embedding 

large-scale virtual networks, the CSO-MAVNE model 

proposed in the study introduced bidirectional link 

modeling and collaborative multi-agent architecture, 

which enhanced the model's processing capabilities for 

link competition, resource coupling, and task parallelism. 

Performance test results showed that when the number of 
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VNRs was 300, the acceptance rate of CSO-MAVNE was 

82.9%, the benefit-cost ratio was 4.5, the resource 

utilization rate was 87.2%, and the embedding time was 

7.1s. 

Compared with the spatiotemporal dynamic data 

detection method based on GCN and temporal 

convolutional network proposed by Li S et al. in the 

literature [13], this study focused on solving the problem 

of data accuracy degradation in high-frequency dynamic 

network environments, and achieved a balance between 

detection accuracy and efficiency through multi-scale 

modeling. The CSO-MAVNE model in the study focused 

more on the optimization of resource allocation strategies. 

Under the guidance of the joint advantage function, the 

strategy synchronization and global consistency of node 

and link embedding were achieved. In static scenarios, the 

embedding success rate of CSO-MAVNE was as high as 

90.5%. After the failure of links and nodes, the recovery 

rate remained above 91.7%. It showed good fault response 

capability and task continuity guarantee capability. 

In summary, the CSO-MAVNE model's performance 

improvement can be primarily attributed to three key 

factors: the GCN's ability to embed structural awareness, 

the GAN-enhanced mechanism for generating feasible 

topologies, and the optimization of task decoupling 

execution along with state sharing within the multi-agent 

collaborative architecture. All the data used in this article 

were sourced from public simulation networks, did not 

involve personal privacy or sensitive user information, 

and posed no ethical or data usage risks. 

5 Conclusion 
To address the challenges of resource allocation efficiency 

and complex dynamic topology processing in VNE, a 

network resource allocation model based on CSO-

MAVNE was proposed. In actual application tests, the 

latency of CSO-MAVNE in three areas was 40ms, 42ms, 

and 45ms, respectively, and the IRLBR reached 95%, 

93%, and 91.5%, respectively. In the dynamic link failure 

test, the link failure ratios were 5%, 10%, and 15%, 

respectively, and the FRTs were 0.8s, 1.1s, and 1.5s, 

respectively, and the ROs were 15%, 18%, and 20%, 

respectively. In scenarios where the node failure ratios 

were 2%, 5%, and 8%, respectively, the recovery times 

were 0.7s, 1.0s, and 1.3s, respectively. Finally, its RDD 

under high load conditions was only 15.3%, and AL was 

1.51s. Experiments results showed that the new method 

improved the virtual network request acceptance rate, 

resource utilization, and benefit-cost ratio, providing a 

reliable basis for optimizing virtual network resource 

allocation. 

Nevertheless, the model may experience 

communication delays or local strategy convergence 

problems between multiple agents in ultra-large-scale 

networks, affecting the overall coordination performance. 

In addition, due to the extensive use of synthetic 

topological data during training, there is a potential risk 

that the model strategy will overfit to a specific structural 

distribution. In a highly dynamic network environment, 

the state update of some agents may lag behind the global 

state change, affecting the real-time performance of 

embedded decisions. The above problems will be 

improved in future work by introducing heterogeneous 

structures, adaptive agent update mechanisms, and 

expanding real-world data samples. 

6 List of nomenclature 
CSO-MAVNE: Collaborative Sequential Optimization 

Multi-Agent Virtual Network Embedding Model 

VNE: Virtual Network Embedding 

GCN: Graph Convolutional Network 

GAN: Generative Adversarial Network 

CGCNE: Graph Convolutional Network Embedding 

Algorithm 

SAM: self attention mechanism 

MLP: Multi-Layer Perceptron 

DRL-VNE: Deep Reinforcement Learning-based VNE 

MS-GCN: Multi-Stage GCN 

D-GANE: Distributed GAN-based Embedding 

RCR: Revenue Cost Ratio 

VNR: Virtual Network Requests 

IRLBR: Inter-region Load Balancing Rate 

FRT: Fault recovery time 

RDD: Regional Request Distribution Deviation 

AL: Average Latency 

SAR: Success Allocation Rate 

RTR: Request Throughput Rate 

T : Time window 

f + : Positive directional links 

f − : Reverse directional links 

( )fT u+ : Total outgoing traffic for node u  

M : Average value of outgoing traffic from the node 

 : Standard deviation 

( )vfT u
+

: Traffic from node u  to node v  

D : Generator 

D : Discriminator 

( )tr  : Estimation of the dominance function 

tA : Advantages of Status 

( )t ta s : Strategy Probability 

( ( )t tD a s  : Weighted loss term in the output of the 

discriminator 

 : Temperature coefficient 

rP : Real data distribution 

( , )t tR s a : Instant rewards for current states and actions 

 : Discount factor 

( )tV s : Value function for the current state 

Q , K  , V : query, key and value 

kd : Dimension of the key vector 

s : Current system operations 

na , la  : virtual node, virtual link embedding action 

( , )node nA s a , ( , )llink s aA : Local priority of node, link 

embedding. 

i : The current state of the smartbody i  
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 : Coder Parameters 

( )tV s
: Estimation of the value of the current state 

0:

m

Ma : Embedded Action Sequences 

m

tA : Dominance functions 

  : Control policy update scope 

( )m

tr  : Ratio estimation of the strategy function 
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