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The prediction of live birth outcomes using Assisted Reproductive Technologies (ART) remains a complex
task owing to the high inter-patient variability and non-linear clinical interactions. This study presents a
comparative evaluation of hybrid machine-learning models to improve in vitro fertilization (IVF) success
prediction using a real-world anonymized dataset of 2,000 ART cases. After pre-processing (including
missing value imputation, feature selection via Recursive Feature Elimination with Cross-Validation, and
class balancing using SMOTE with k=5), four hybrid models were developed: stacking with XGBoost as
the meta-learner, weighted ensemble, autoencoder-based feature fusion, and cascading classifiers.
Models were evaluated using accuracy, AUC, precision, recall, and F1-score metrics, and compared
against a baseline Random Forest classifier. The stacking model (XGBoost with Random Forest, MLP,
and SVM base learners) achieved the best performance, with an accuracy and 0.999 AUC of 0.985. The
weighted hybrid ensemble followed an accuracy of 0.953 and AUC of 0.994. The statistical significance
of the improvements was confirmed using Wilcoxon Signed-Rank and McNemar’s tests (p < 0.05). To
enhance model transparency, SHapley Additive exPlanations (SHAP) was applied to interpret base model
contributions in the stacking architecture. These results support the application of Al-driven hybrid
modelling for personalized IVF treatment planning. Future work will focus on prospective validation and
clinical decision support system (CDSS) integration to assess deployment feasibility.

Povzetek: Studija na 2000 primerih ART primerja hibridne modele za napoved rojstva Zivorojenega. Po
obdelavi (RFECV, SMOTE) najboljsi sistem z XGBoostom doseZe najboljSe rezultate. SHAP zagotovi
razlozljivost; Wilcoxon/McNemar potrdita izboljsave. Predvidena validacija in vkljucitev v klinicni CDSS
sistem.

1 Introduction and th_eir effects are still heterogepeous [3], [4]. Machine

e . L. Learning (ML) and Deep Learning (DL) models have
In ART, it is crucial to develop predictive models 0 recently emerged as powerful tools for enhancement of
forecast live birth outcomes after IVF. However, even in - pregictive abilities with reproductive medicine [5], [6].
the era of reproductive medicine and embryology, IVF  Nevertheless, standalone models often suffer from
procedures have not been able to realize larger, more  oyerfitting, data bias, and low generalizability [7]. To
effective success rates, which depend on patient-specific  5qdress  such challenges, hybrid machine  learning
factors, including age, h_ormonal levels, and the quality of ¢ utions can offer a worthy possibility through the
embryos [1], [2]Previous attempts have employed  compination of several algorithms to exploit the positive
traditional statistical models to estimate IVF success aspects of multiple models and increase prediction

probabilities, which are, unfortunately, never overly  accyracy and robustness [8], [9]. Successful IVF treatment
accurate since biological and clinical factors are complex
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relies on a range of variables including patient
characteristics, clinical indicators, and embryo
developmental aspects [2], [10], [11], [12], [13].

Traditionally implemented predictive models have limited
generalizability because IVF-related data contain high
dimensions and non-linear patterns [14], [15], [16]. The
main reason for adopting hybrid models is the six core
difficulties.

1. The complex connections between IVF data
elements, including patient information, hormone
patterns, and embryonic results, remain inaccessible
to the standard statistical techniques for
interpretation.

2. Many ART predictive features display non-linear
behavior with specific effects on different patient
populations, thus creating obstacles for developing a
unified generalized model.

3. Class Imbalance exists because successful live births
occur less frequently than unsuccessful cases, thus
causing an unbalanced dataset that affects the model
performance.

4. Medical staff need interpretable predictive models to
demonstrate their analytical reasoning, rather than
forcing them to use machine learning methods as
unexplainable systems.

5. Multiple sensory data sources influence IVF success
rates through clinical records combined with patient
imaging results and time-based medical histories,
which require sophisticated data-fusion systems to
extract involvement information.

6. There is a lack of interpretable, personalized insights
for supporting clinical decision-making in IVF
treatments.

This study presents and evaluates five novel cross-
hybrid models for predicting IVF live birth outcomes,
further refining the specificity of prediction through
multiple machine learning paradigms. The hybrid
approaches used in this study included stacking (Layered
Learning), weighted hybrid ensembles, cascading models,
feature-level fusion with autoencoder networks, and
SHAP-enhanced gradient boosting. These approaches
were devised to handle data heterogeneity, temporal
dependencies, feature importance selection, and
automated hyperparameter optimization, which are highly
relevant to IVF outcome prediction. This study aimed to
present a robust and scalable predictive framework for
these hybrid approaches to support clinical decision-
making and personalized treatment planning in Assisted
Reproductive Technology (ART).

A hybrid modelling approach provides a synergistic
blending of several machine-learning models to overcome
the weaknesses of individual models, resulting in
increased predictive accuracy and robustness [17], [18],
[19]. This study also introduces SHAP-based
interpretability to align predictive modelling with clinical
transparency, making it easier for fertility specialists to
interpret model outputs.

This study aimed to bridge the gap between
computational intelligence and clinical decision-making
in reproductive medicine, improve the prediction of IVF
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success, and aid fertility specialists in designing optimal
treatment plans tailored to individual patients.

1.1 Novelty and contribution of proposed

system

This paper proposes a novel hybrid framework that
incorporates stacking, weighted ensembles, cascading
classifiers, autoencoder-based feature fusion, and SHAP-
enhanced XGBoost explainability. Compared to existing
methods, the proposed system employs multi-stage
learning to address class imbalance and enhances decision
reliability through trust refinement techniques such as
RFECV-based feature selection and ensemble diversity.
Table 1 summarizes the existing research gaps and
explains how the proposed models were designed to
overcome them through synergistic learning strategies and
explainable outputs.

1.2 Structure of paper

The remainder of this paper is structured as follows:
Section 2 presents a comprehensive literature survey of
prior works on prediction models of IVF using machine
learning applications in ART. Section 3 explains the
methodology, dataset used, pre-processing, and a detailed
description of the four hybrid modelling strategies used in
this study. Section 4 presents the results and a comparison
of the models. Section 5 summarizes the main findings
and concludes the study.

Table 1: Research questions, identified research gaps and
research contribution

Research Identified Research | Research
Questions Gaps Contributions
ROL: How can Existing modf_els !—lybrld mO(_ieIs

- struggle with | integrate multiple

predictive models - .
. generalizing across | learning approaches to
generalize  better | 9. . .
diverse patient data | improve
for complex IVF L S
data? and clinical | generalization and
' variability. robustness.
Conventional .
RQ2: How can | methods may Hybrid - models use
. L RFECV, Bayesian
feature selection be | overlook critical A
P - Optimization, and
optimized for IVF | IVF-specific features d fi
prediction? or suffer  from ?utoenco Iers_to refine
overfitting. eature selection.
Standard classifiers .

. - SMOTE, weighting
RQ3: How can we are b_lased towards mechanisms, and
handle class | majority classes, -

. . . S cascading models
imbalances in IVF | reducing predictive icall handl
datasets? accuracy for minority dy”am'ca y andle
’ class imbalance.
cases.
. Hybrid ensemble
RQ4: How can we Tradltlpnal moQgIs methods provide
. lack interpretability . -
quantify the . . confidence estimates,
AT and fail to quantify .
uncertainty in IVF rediction whereas  cascading
predictions? P : models refine  the
uncertainty. . L
uncertain predictions.
RQS5: How = can Feature  extraction | Autoencoder fusion
deep feature . .
. techniques do not | and hybrid deep
representations be - .
o effectively  capture | learning methods
utilized for .
improved deep, non-linear IVF | enhance the feature

e patterns. representations.
prediction?

RQ6: How can | Manual or grid | Hybrid models
hyperparameter search-based tuning | integrate multiple
tuning be | is inefficient and | learning approaches to
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Research Identified Research | Research

Questions Gaps Contributions
improved to | computationally improve

achieve better | expensive. generalization and
performance? robustness.

2 Literature review

Models of increasing machine learning have been
increasingly used to predict IVF outcomes, with the
possibility of providing the benefits of predicting IVF
outcomes for infertile couples and in healthcare systems.
These models often use a given set of data to predict the
IVF outcomes. Existing machine learning-based
approaches for IVF outcome prediction generally involve
the use of medical and reproductive history, biochemical
indicators, and data regarding reproductive tract
examination, along with information from previous IVF
cycles [13]. These models have proven useful for
assessing subfertile couples and providing clues for
treatment. Nevertheless, they are constrained by their
dependency on conventional clinical parameters and do
not reveal the factors that affect IVF success.

Consequently, scientists are developing increasingly
sophisticated applications that integrate omics data with
Al.  The recent introduction of metabolomics,
transcriptomics, and biomarkers in conjunction with deep
machine learning assessment of oocytes, sperm, and
embryos has been proposed as a novel tool [13]. The
proposed algorithm provides a way to develop artificial
neural network models that can better objectively and
accurately predict this outcome than the traditional
methods used in couples with unexplained infertility or
repeated implantation failures. Several earlier techniques
have been used for multiple-attribute selection methods to
predict outcomes more accurately and efficiently through
IVF prediction.

In one example, researchers integrated omics and
artificial intelligence evidence to suggest the best
treatment options and increase IVF success rates; thus,
they developed a novel tool [13]. First, the lifestyle and
demographic parameters of the subfertile couples,
metabolomics, transcriptomics, and biomarkers were
obtained, and the oocytes, sperm, and embryos were
evaluated using deep machine learning. This study also
emphasizes the value of omics data in facilitating optimal
embryo selection and improving personalized IVF
treatment.

Similarly, a separate study used the XGBoost machine
learning system [20] to minimize multiple embryo
gestation rates in I\VVF by creating a hierarchical model. It
concomitantly learns embryo implantation potential and
double embryo transfer. The variables identified by the
researchers for single-embryo transfer pregnancies were
age, IVF attempts, estradiol level on hCG day, and
endometrial thickness. For double embryo transfer, the
other variables, including P1 and P2, were significant. For
SET pregnancy, DET pregnancy, and DET twin risks, the
model exhibited AUC of 0.7945, 0.8385, and 0.7229,
respectively.
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Issues related to data quality and feature selection are
important in predicting I'VF outcomes. It is also in the
context of challenges in learning deep features and
extracting high-level patterns [21]. Feature selection is
important because it can select redundant and irrelevant
features to remove dimensionality and enhance model
generalization [22]. Specifically, regarding IVF, the
integration of omics data (metabolomics and
transcriptomics) with classic clinical parameters has both
advantages and disadvantages when applied to feature
selection [13].

However, the interpretability of the model remains
challenging. Machine learning methods are capable of
modelling flexibility and robustness; however, it is
difficult to interpret individual features using
sophisticated algorithms [23]. One problem with this lack
of interpretability is that it hinders the identification of
important biomarkers needed to develop novel hypotheses
for the prevention, diagnosis, and treatment of complex
conditions such as infertility.

Interestingly, the choice of modelling approach and
feature selection method strongly depends on the purpose
of the analysis. In [24], it was clearly recommended that
the goal of model selection be specified as data
exploration, inference, or prediction, as it serves the
purpose of selecting the appropriate model to ensure that
there is no confusion when selecting a statistical model.

However, demographic and clinical factors determine
the IVVF outcomes. However, important predictors for both
single and double embryo transfer pregnancies include
age, number of previous IVF attempts, estradiol level on
hCG day, and endometrial thickness [20]. The live birth
and implantation rates for women aged 35 years or
younger with a caesarean section defect were significantly
lower than those for women with a history of vaginal
delivery [25].

Among the causes of low intrauterine insemination
success, semen parameters (sperm concentration and
motility) and female body mass index (BMI) were
identified as the most important predictors [26].
Nevertheless, a meta-analysis of semen quality
(concentration, motility, and morphology) and outcomes
of assisted reproduction technologies [27] could not
determine a significant correlation between these two
variables. This contradiction indicates complications in
predicting IVF success.

Environmental factors have a bearing on IVF
outcomes. Fresh embryo transfer (FET) cycles result in
lower chances of biochemical pregnancy, clinical
pregnancy, and live birth during exposure to air pollutants,
particularly ozone (O3), nitrogen dioxide (NO2), and
carbon monoxide (CO), at various stages of IVF treatment
[28].

The Area Under the Curve (AUC) of a Receiver
Operating Characteristic (ROC) curve is commonly used.
The AUC for live birth prediction was 0.905, and that for
clinical pregnancy with fetal heartbeat was 0.722 [1]. The
AUCs reported for single embryo transfer (SET), DET
pregnancy, and DET twin risks were 0.7945, 0.8385, and
0.7229, respectively [20]. AUCs from 0.70 to 0.78 were
obtained for ploidy prediction [29].
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Other metrics included the accuracy, precision, recall,
and F1 scores. Zou et al. achieved an accuracy of 0.77,
precision of 0.79, recall of 0.86, and F1 score of 0.83 [29].
Values reported by [1] for live births and clinical
pregnancies with fetal heartbeat of 1.12 and 0.77,
respectively, were also used in the Observed: Expected
(O: E) ratio.

Some studies have compared Al models with human
predictions. A meta-analysis was not possible, but a
systematic review indicated that Al-based prediction
models were as good as embryologists, albeit marginally
better [1]. It is also said that Al models have not yet
surpassed clinically embryologists’ predictive capability
significantly.

Furthermore, one study [13] documented the lifestyle
and demographic parameters of subfertile couples,
together with the previous characteristics of IVF cycles. In
addition, they measured and evaluated metabolomics,
transcriptomics, and biomarkers by evaluating oocytes,
sperm, and embryos using deep machine learning. This
bundling of data collection and pre-processing was
comprehensive enough to create artificial neural network
models to increase the objectivity and accuracy of IVF
success rate predictions.

In fact, some studies have investigated only a
particular pre-processing technique, whereas others have
focused on the need to establish the best pre-processing
pipeline to follow before prediction. For example, [30]
used an automated pre-processing model, referred to as a
scenario-based model, in their study of construction
accident severity prediction.

Compared to existing models, such as the protocol-
based ANN framework by [13] and the XGBoost-based
hierarchical model by [20], the proposed hybrid system
significantly advances IVF outcome prediction. While
prior studies lacked either empirical validation or
comprehensive data integration, our model combined
stacking, weighted ensembles, autoencoder-based fusion,
and cascading strategies. This multi-stage approach
addresses critical gaps such as limited data types, lack of
personalization, and poor generalization, achieving
superior accuracy (0.985) and AUC (0.999). Furthermore,
statistical tests confirmed the model’s significant
improvement over traditional methods, establishing a
robust and scalable predictive framework for clinical use.

To execute this model, several pre-processing steps
are reviewed, including the processing of missing data,
binned data, outlying data, scaling methods, and
resampling data. The pre-processing pipeline plays a vital
role, and we observed that in the most efficient scenario,
we obtained the best out-of-prediction performance.

3 Methodology

3.1 Dataset

The dataset analyzed in this study was derived from
anonymized registry data compiled by the Human
Fertilization and Embryology Authority (HFEA),
covering fertility treatments conducted between 2010 and
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2016 [31]. It is publicly available and can be accessed via
the direct download link provided in [31]. This dataset was
previously used in a study by Goyal et al. [32]. It is the
world’s largest database of patient, donor, and offspring
records that safeguards patient, donor, and offspring
confidentiality to support patient care improvements. The
dataset was filtered to include 2,000 samples with 95
attributes from actual in vitro fertilization (IVF)
procedures. These attributes include age, infertility type,
clinical treatment details, and embryonic data. Data were
presented as numerical, categorical, or text. To ensure the
same quality and consistency of the dataset, the missing
values were considered through proper imputation. The
numerical attributes were replaced with their median
values, whereas the categorical attributes were set to their
mode values. The dataset used did not contain attributes
with more than 50% of the missing values. In total, 62
features were available after pre-processing and were
chosen for further analysis.

The probability of a successful live birth with ART is
a complex problem because it contains heterogeneous
clinical, embryonic, and demographic factors. Therefore,
we present a Hybrid Machine Learning Framework to
improve the prediction accuracy and robustness by
incorporating advanced data pre-processing techniques,
utilizing a suite of machine learning models, and
employing ensemble learning strategies. The IVF live
birth prediction pipeline, consisting of data processing and
the hybrid model development workflow, is illustrated in
Figure 1. The proposed framework comprises four
phases: data pre-processing, hybrid model development,
model evaluation and comparison, and statistical
significance testing. A detailed stepwise procedure of this
Hybrid Machine Learning Framework for IVF Live Birth
Prediction Algorithm has been systematically documented
and is presented below to standardize a structured
methodological approach to attain reproducibility.

Algorithm: Hybrid Machine Learning Framework for
IVF Live Birth Prediction

Input: D = {X, Y}, where X represents patient
demographics, clinical treatment details, and embryonic
development data, and Y is the binary target variable
indicating live birth outcomes.

Output: Predicted probability ¥ of live birth outcome.

Step 1: Data Preprocessing

1. Load dataset D.

2. Handle missing values:

a. Remove features F; where |Fimissing| / [Fi| > 0.5.

b. Impute missing numerical values using the median:
Xnum(i) « median(Xnum).

¢. Impute missing categorical values using mode:
Xcat(i) «— mode(Xcat).

3. Encodes categorical variables using one-hot
encoding.

4. Convert target variable: No live birth (Y = 0) and
At least one live birth (Y = 1).

5. Perform stratified sampling: Split dataset into
training and testing
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6. Apply Synthetic Minority Over-Sampling
Technique (SMOTE) to balance class distribution.

7. Perform feature selection using Recursive Feature
Elimination with Cross-Validation (RFECV).

Step 2: Hybrid Model Development: Train machine
learning models:

A. Stacking with Meta-Learners:
a. Train base models: Random Forest (RF), Support
Vector Machine (SVM), Multi-Layer Perceptron
(MLP).
b. Generate meta-features from out-of-fold
predictions of base models using k-fold cross-
validation to avoid data leakage
c. Use predictions Ybase as input features for meta-
learners: XGBoost, MLP, Gradient Boosting
Machine (GBM).

B. Weighted Hybrid Ensemble:
a. Train models: RF, MLP, SVM, Naive Bayes (NB).

@ DATA PREPROCESSING
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b. Assign optimal weights wi via Bayesian
Optimization: Y =X w; Yi.

C. Cascading Models:
a. Train a Decision Tree (SimpleCart) for handling
easy cases.
b. Use MLP for uncertain cases.
c. Final refinement with Random Forest for cases
with ambiguous probability outputs from the MLP.

D. Feature-Level Fusion with Autoencoder:
a. Train Autoencoder A(X) for feature compression:
X' = A(X).
b. Train RF, SVM, and MLP on compressed features
X',
¢. Combine predictions via stacking or voting.

E. SHAP-Enhanced XGBoost Model
a. Train an XGBoost classifier using optimized
hyperparameters on the pre-processed dataset.
b. Compute SHAP values to assess feature
importance and interpretability.

/% HANDLE MISSING VALUES

Remove
Features with
High
Missingness

Load Dataset

14+; ADDRESS IMBALANCE AND
TIT FEATURE SELECTION

.

Apply SMOTE

Feature

Impute
Categorical
Features

Numerical
Features

)

Encode
Categorical
Variables

Evaluate All
Models

Generate
Visualizations

@ MODEL EVALUATION AND COMPARISON

~

Selection with
RFECV

Train Stacking
Ensemble

Train Cascading
Model

Statistical

Significance
Testing

% HYBRID MODEL DEVELOPMENT I

.1l SHAP ENHANCED XGBOOST | r‘@—
Train Weighted
Hybrid
Train XGBoost Ensemble
Classifier
Feature Level
Fusion with
Compute SHAP Autoencoder
Values

Figure 1: Data processing and model development flowchart for ivf live-birth prediction
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c. Use SHAP visualizations (summary plot, force
plot) to support model explainability for clinical
insight.

Step 3: Model Evaluation and Comparison
1. Evaluate models using metrics: Accuracy, Precision,
Recall, F1-Score, AUC
2. Generate ROC curves.
3. Visualize performance metrics.

Step 4: Statistical Significance Testing

1. Perform Wilcoxon Signed-Rank Test to compare
predicted probabilities of the hybrid model vs. baseline
Random Forest model.

2. Perform McNemar’s Test to assess classification
agreement and reduction in misclassification errors.

End of Algorithm

3.2 Data preprocessing

Data pre-processing is an essential component in building
a strong predictive model that allows data quality,
consistency of formats, and reliability for machine
learning processes. The dataset was cleaned and pre-
processed extensively to train the machine learning model.
The target variable (i.e., the number of live births) was
transformed into a binary classification, where 0 indicated
no live births and 1 indicated at least one live birth. The
categorical variables were one-hot encoded for use in
different machine-learning algorithms. In addition, data
stratification was performed to ensure an 80%-20%
training-test split while maintaining a balanced class
distribution.

The process starts with loading the IVF dataset; it then
deals with missing values by either imputation or removal
of feature(s). The approach to handling missing values
involves a two-step process aimed at preserving data
quality and model robustness. First, features with over
50% missing data were removed to avoid unreliable
imputation of severely incomplete variables. Following
this, the remaining missing values in the dataset were
imputed using the median (for numerical features post-
encoding) to ensure consistency and completeness before
training. This combined strategy balances dimensionality
control with the effective handling of data sparsity,
aligning with the pre-processing goals outlined in this
section. Missing values were identified with their
treatment, keeping note of the loss of data with imputation;
numerical features were assigned medians, while
categorical features were assigned modes. Categorical
variables were encoded, and the target variable was
converted to binary for classification.

Moreover, through the synthetic  minority
oversampling  technique, SMOTE provides the
representation of minority classes owing to the class
imbalance problem. To address RQ3, SMOTE was used
to balance the dataset and improve the model fairness.
Before SMOTE, the class distribution was 3.23:1; after
SMOTE, it equalized to 1:1. Finally, in response to RQ2,
Recursive Feature elimination with cross-validation
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(RFECV) was performed to retain the most informative
predictors. This ensures that the input dataset is ready for
machine learning models and improves predictive
accuracy and generalizability.

3.3 Hybrid model development

The proposed methodology integrates multiple machine
learning techniques to enhance the prediction accuracy of
live birth outcomes in IVF treatments. By employing
Stacking with Meta-Learners (Layered Learning),
Weighted Hybrid Ensembles, Cascading Models (multi-
stage  refinement), Feature-Level Fusion  with
Autoencoder Networks, and SHAP-Enhanced XGBoost
for post-hoc explainability, a comprehensive and robust
predictive framework was developed to enhance both
accuracy and interpretability in IVF live birth outcome
prediction. This hybrid approach ensures improved model
reliability and effectiveness in clinical decision-making.
The algorithm outlined below outlines a hybrid machine
learning framework that integrates ensemble learning,
model stacking, and deep learning to improve live birth
outcome predictions in IVF treatments. By using multiple
predictive techniques, the proposed system ensures high
accuracy and reliability in clinical decision making. A
flow diagram of the Hybrid Model Development process
is shown in Figure 2.

3.3.1 Model stacking with different meta-
learners

To address RQ1, a hybrid ensemble approach was
employed, particularly stacking with XGBoost as a meta-
learner, to enhance the generalization across diverse IVF
cases with non-linear patterns. Base learners such as
Random Forest (RF), Support Vector Machine (SVM),
and multilayer perceptron (MLP) were trained separately.
Next, their predictions were used as input features for
meta-learner feature construction using XGBoost, MLP,
and Gradient Boosting equal to Gradient Boosting
(GBM).

Pfinal = fmeta(PRF'PSVM'PMLP) (1)

where Pgingq is the final prediction, Pgg, Psyy, Pyyp are
the predictions from base the learners, and fieta
represents the meta-learner function.

A strict separation between the base learner training
and meta-feature construction was implemented to ensure
methodological rigor and prevent data leakage in the
stacking ensemble. The full dataset was split into 80%
training set and 20% held-out test set. Within the training
data, the base models (Random Forest, SVM, MLP) were
trained using 5-fold stratified cross-validation, and out-of-
fold predictions were collected to construct meta-features.
These meta-features, derived from unseen folds, were
used to train the meta-learners (XGBoost, MLP, Logistic
Regression), ensuring no overlap between the training and
prediction phases.
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Forest
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Case
Uncertain?

Ensemble End

Hybrid

Yes

Stacking End

\

Use MLP for
Uncertain Cases

Final Refinement
with Random
Forest

Cascading End

Figure 2: Flow diagram of hybrid model development step

For the final evaluation, base models were retrained on the
complete resampled training data, and their predictions on
the held-out test set were passed to the trained meta-
learner, thereby enabling an unbiased assessment of the
generalization performance on previously unseen data.

3.3.2  Weighted hybrid ensembles

A weighted ensemble approach was used to weigh the
models based on their performances. Weight assignments
were optimized using an optimization scheme such as
Bayesian Optimization or Genetic Algorithms.

Pfinal = Wy Prp + Wy Pyp + W3Psyy + WaPypp (2)

where w1, w2, w3, and w4 are the optimized weights
assigned to each model prediction.

3.3.3 Feature-level fusion with autoencoder
networks

RQ5 is addressed using autoencoders for feature-level
fusion, which captures non-linear relationships and
compresses high-dimensional IVF data into informative
latent features. This was used to perform the feature
extraction. Random Forest, SVM, MLP were then run-on
compressed feature representations to make predictions
using stacking or weighted voting.

Fcompressed = AE(X) (3)

% FEATURE-LEVEL FUSION WITH AUTOENCODER 1lI SHAP-ENHANCED XGBOOST
Train XGBoost
Train on Selected
Autoencoder for Features
Feature
Compression
Compute SHAP
: Values for
Interpretability
Train Random
Forest for Fusion
SHAP End
Combine
Predictions
€ (=1
Combine via Combine via
Stacking Voting
Pfinal = fmeta (PRFt Py, PMLP) (4)

where AE(X) denotes the autoencoder-transformed
feature set.

3.3.4 Cascading models
predictions)

To address RQ4, a two-stage cascading model was
introduced to improve prediction reliability, particularly
for borderline or uncertain cases. In the first stage,
SimpleCart, a shallow Decision Tree that uses the Gini
impurity criterion, was employed to classify cases that
were easily separable. Predictions with low confidence
were then escalated to include more complex classifiers.
In the second stage, a Multilayer Perceptron (MLP)
handled these uncertain cases, and samples with
ambiguous probability scores (typically between 0.3 and
0.7) from the MLP were further passed to a Random
Forest for final refinement. This cascading strategy
ensures that uncertain predictions are progressively
evaluated by increasingly powerful models, thereby
enhancing classification robustness and clinical decision
support.

(multi-stage

Pfinal = frr (fMLP(fDT(X))) 5)

where, X denotes the input dataset.
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3.3.5 SHAP-enhanced XGBoost

To improve both the predictive performance and
interpretability, we implemented the SHAP-enhanced
XGBoost model. XGBoost is a powerful gradient boosting
algorithm widely used for structured data classification
tasks. However, the decision-making process is often
considered a "black box" because of the complexity of
tree-based ensembles. To overcome this challenge, we
integrated the SHAP into the XGBoost pipeline. SHAP is
a unified framework based on cooperative game theory
that attributes a model’s prediction to each feature, thus
offering instance-level interpretability.

For a specific prediction y,, the SHAP framework
decomposes the output as:

9= o + X1, 0 (6)
where ¢, is the expected value of the model's output over

the training data, and (b]@ is the SHAP value representing

the contribution of feature j for instance i.

Table 2 summarizes the internal architecture of the
proposed hybrid machine learning models. It elucidates
the model components, feature extraction, training, and
optimization for all individual models. It also specifies the
activation functions and decision logic at lower levels of
detail and linkage, thereby illustrating the interactions of
different models within each hybrid framework.

3.4 Hyperparameter tuning

The effectiveness of the proposed hybrid models is not
solely determined by their architectural design, but also by
the precision of the hyperparameter optimization, which
directly addresses RQ6. To ensure robust generalization
and predictive reliability, a systematic hyperparameter-
tuning process was conducted using cross-validation of
resampled training data. This process aims to strike a
balance between model complexity, overfitting control,
and computational efficiency.

Different tuning strategies were applied based on the
model type and complexity. Grid Search Cross-Validation
(GridSearchCV with 5-fold stratified CV) was employed
for the baseline Logistic Regression model, stacking meta-
learners  (XGBoost, Neural Network, Logistic
Regression), and an autoencoder-based classifier. For
SHAP-enhanced XGBoost, a more efficient Random
Search Cross-Validation (RandomizedSearchCV with 5-
fold stratified CV) was adopted to explore a broader
parameter space. The Weighted Hybrid Ensemble
leveraged Bayesian Optimization (Bayesian optimization)
was used to determine the optimal model weights,
assessed via an inner 3-fold stratified cross-validation
loop.

All tuning strategies prioritize the ROC AUC score as
the primary evaluation metric to guide the selection of
optimal parameter combinations. The final tuned
hyperparameters for each model are summarized in Table
3, and collectively contribute to the superior predictive
performance and reliability of the proposed hybrid
framework.

R. Jain et al.

This study utilized a modular implementation
framework in Python 3.10, leveraging multiple machine-
learning  libraries to ensure consistency and
reproducibility across models. Specifically, scikit-learn
(version 1.6.1) was employed for traditional classifiers,
ensemble  techniques, and pre-processing tasks;
TensorFlow (version 2.18.0) via the Keras APl was used
to design and train the autoencoder model; and XGBoost
(version 2.1.4) was used to implement gradient boosting
algorithms. These tools collectively support the
development, tuning, and evaluation of proposed hybrid
models in a unified pipeline.

3.5 Model evaluation and comparison

The various performance metrics, including accuracy,
AUC, precision, recall and F1-score, were used for the
comparative analysis of the proposed hybrid models. A
ROC curve was constructed to assess the discrimination
ability of the models, and radar charts and heat maps were
constructed to compare their strengths and weaknesses.
This evaluation framework enables a strong performance
validation and interpretability for clinical deployment.

3.6 Statistical significance testing

To test the validity of the developed hybrid model, the
significance test of Wilcoxon Signed-Rank Test was used
to compare the predicted probabilities of the hybrid
model with an existing baseline Random Forest model to
evaluate the overall differences in performance.
McNemar’s test was applied to test the classification
agreement, specifically to detect improvements in
misclassification repair. These statistical tests confirmed
that the observed performance improvements were not
simply by chance.

With the methodology established for this study, the
following section presents the empirical results and a
comparative analysis of the proposed hybrid models. The
comparative performance of these methods was evaluated
based on evaluation metrics.

4 Result and discussion

4.1 Comparative performance of hybrid
models

Once the machine learning models were built, the next
critical step was their evaluation across multiple
dimensions of performance: Accuracy, AUC, Precision,
Recall, and F1-Score. Five models were evaluated in this
study—Stacking with Meta-Learners (XGBoost), SHAP-
enhanced XGBoost, Weighted Hybrid Ensemble,
Autoencoder Fusion, and Cascading Model. The results
are presented in Table 4, supplemented with ROC curves,
radar charts, and heatmaps to allow for a comprehensive
comparative analysis.

Among all models, SHAP-enhanced XGBoost
demonstrated the best overall performance, achieving an
accuracy of 0.997, AUC of 1.0, precision of 0.995, recall
of 1.0, and F1-Score of 0.997. This clearly indicates that
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the integration of SHAP explainability mechanisms not
only preserves but also slightly improves the predictive
capability compared to the original stacking approach.
The Stacking (XGBoost) model followed closely, with an
AUC of 0.999 and an F1-score of 0.985. The Weighted
Hybrid model also performed well, while the Autoencoder
Fusion model demonstrated clinically acceptable
performance with high recall and reasonable precision. In
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contrast, the cascading model underperforms across most
evaluation metrics.

Initially, some models exhibited signs of overfitting,
as reflected by the unrealistically high AUC values during
preliminary training. To correct this, multiple
regularization techniques were applied: L2 regularization
(for XGBoost, MLP, and Logistic Regression), reduced
decision-tree depth, and early stopping in MLPs. Dropout

was integrated into autoencoders to mitigate overfitting.
Table 2: Internal architecture details of hybrid models

Aspect

Stacking with Meta-

Weighted Hybrid

Feature-Level

Cascading Model

Learners Ensemble Fusion
Stacking Ensemble with Meta- . - Autoencoder-based Feature Two-Stage Cascading
Model Type Learners Weighted Hybrid Ensemble Fusion with Classifier Model

Architecture

Base models: Random Forest,
SVM, MLP Meta-learners:

Base models: Random
Forest, MLP, SVM, Naive

Autoencoder: Input —
Encoding — Bottleneck —

Stage 1: Decision Tree
(max_depth=3) Stage 2:

Details XGBoost, MLP, Logistic Bayes Final output via Decoding Classifier: MLP and Random Forest
Regression Bayesian-weighted average Random Forest for refinement
Encoded feature :
Feature RFECYV for feature selection R.FECV for fegtur_e representation Random . Recgrswe Fe_a@ure
P o selection Standardization & - Elimination Stratified Data
Engineering Standardization & SMOTE - Forest trained on encoded o
Normalization outputs Splitting
Autoencoder trained for Stage 1 trained on full data
Training 80-20 Train-Test Split 5-Fold Bayesian Optimization (10 dimensionality reduction Stage 2 trained on
Process Cross-Validation initial pts, 20 iterations) Random Forest classifier uncertain predictions (prob.
trained separately =0.3-0.7)
Early stopping (MLP) L2 . .
Lo L S T Dropout (0.4 in encoding
Optimization regularlzat.lon (a_ 0.1 in MLP) L2 re_gularlzat_lor) in M_LP layer) ReLU for encoder, Dropout (0.5 in MLP)
& XGBoost: learning_rate tuned Weights optimized via / . o
o - Sigmoid for decoder L2 Early stopping in MLP
Regularization (0.01-0.1), reg_lambda tuned Bayesian search o
(0.1-1) regularization in RF

MLP: ReLU (hidden), Logistic

MLP: ReLU (hidden),

Autoencoder: ReLU MLP: ReLU (hidden),

XGBoost: Tree Booster (built-
in)

éﬁtr:\clsggg (output) SVM: Linear kernel Softmax (output) SVM: (encoding), Sigmoid Logistic (output) Decision
Logistic Regression: Sigmoid Linear kernel (decoding) Tree: Gini criterion
L e Gt | e s svMara | Ao s | MLE e o

Optimizers g 9 - 1019 Naive Bayes: Random Forest: Not ' PP

Implementation-defined

Decision Tree: Not

Applicable Applicable

MLP: 0.001 (default) XGBoost:
Tuned (0.01-0.1) Logistic
Regression: Controlled by solver

Learning Rate

MLP: 0.001 (default) SVM:
Controlled by
implementation

Autoencoder: 0.001
(default Adam) RF: Not
Applicable

MLP: 0.001 (default) RF
and DT: Not Applicable

Base models predict first —
meta-learners combine via
stacking for final prediction

Decision Flow

sum

Individual model
predictions weighted by
performance — final
prediction via weighted

Input passed through
encoder-decoder —
encoded output classified
by Random Forest

Stage 1: Decision Tree

filters easy predictions

Stage 2: MLP and RF
handle harder cases

Table 3: Hyperparameter tuning for hybrid models

Hybrid Model Component Hyperparameter Value / Setting Purpose
Prevent overfitting, improve
Random Forest — max_depth 5 generalization
SVM-_C 01 Improve robustness, gvoid excessive
complexity
= Base Models MLP — hidden_layer_sizes (20,) Single hidden layer with 20 neurons
= MLP — max_iter 200 Limit training time
g MLP — alpha (L2 reg.) 0.1 Prevent overfitting
= MLP — early_stopping o Enabled. Stop training when validation
3 - (validation_fraction=0.2) performance stagnates
= XGBoost — n_estimators 25 Reduce overfitting and training time
XGBoost — reg_lambda (L2 reg.) 1 Improve generalization
Meta-Learners Neural Network — hidden_layer_sizes (10, Simpler meta-learner architecture
Logistic Regression — penalty L2 Improve model regularization
Logistic Regression — C 0.1 Enhance generalization
Base Models Same as stacking model Same as stacking model -
o D n ]
£z E Search space for weights 0,1) Optimize ensemble performance
=y S Weight Optimization method Bayesian Optimization Find optimal model weight distribution
=T g Optimization Initial points. iterati 10 initial points, 20
points, iterations Lo Improve accuracy
iterations
O ®®n o csT - De?itsai?)i %I'.ree max_depth 3 Simplify early classification
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Stage 2: MLP, . Trained on uncertain cases . - -
RF Same as stacking model only (p=0.3-0.7) Handle uncertain predictions efficiently
L_<c 8 encoded_dim Min(30, half of input dim) Reduce feature dimensionality
é 2 % § s 3 Autoencoder Dropout rate 0.5 Prevent overfitting
e-a 2 Training epochs, batch size 30 epochs, batch size = 32 Ensure stable training
Random Forest n_estimators, max_depth 25,5 Train on compressed features

Table 4: Comparison of our approach with previous research

Study Models Used Accuracy AUC Precision Recall F1-Score
[13] ANN + Deep Imaging >0.75 N/A N/A N/A N/A
[20] XGBoost N/A 0.839 N/A N/A N/A
[25] Statis““;:gfgg‘;gz)('-ogiS“C N/A N/A N/A 0.471 N/A
[26] CNFE-SE (Ensemble) 0.87 0.87 N/A 0.82 0.92
[27] Meta-analysis, Systematic Review N/A 0.905 N/A N/A N/A

SHAP-enhanced XGBoost 0.997 1 0.995 1 0.997

Stacking (XGBoost) 0.985 0.999 0.973 0.997 0.985

z;opprgzecf] Weighted Hybrid Ensemble 0.965 0.993 0.944 0.99 0.966
Autoencoder Fusion 0.875 0.942 0.835 0.933 0.882

Cascading Model 0.512 0.548 0.506 0.978 0.667

These corrections have led to more generalizable and
realistic evaluation metrics.

Table 4 summarizes the performance of the proposed
models and situates them within the context of the prior
IVF prediction literature. It is evident that the SHAP-
augmented and ensemble-based approaches significantly
outperformed traditional statistical and individual
machine learning methods.

4.2 Visual analysis of model discrimination
power

The Receiver Operating Characteristic (ROC) curve
depicted in Figure 3 visually assesses each model’s
classification capability. SHAP-enhanced XGBoost and
Stacking (XGBoost) both achieved near-perfect AUCs
(1.0 and 0.999, respectively), indicating excellent
discriminative power. The Weighted Hybrid model
performed slightly lower, with an AUC of 0.993, whereas
the Autoencoder Fusion model reached 0.942. The
Cascading model, with an AUC of 0.548, performed
marginally better than the random guessing model.

These distinctions are critical in the context of IVF
decision making. Higher AUC values support more
confident treatment recommendations, especially in
borderline cases, where accurate risk estimation is
essential for guiding patients on whether to continue or
adjust treatment strategies.

Receiver Operating Characteristic (ROC) Curve - All Models

0.8

e
o

True Positive Rate

o
Y

o —— stacking (xGBoost) (AUC = 1.00)
Weighted Hybrid (AUC = 0.99)

= Cascading (AUC = 0.55)

—— Autoencoder Fusion (AUC = 0.94)

= SHAP XGBoost (AUC = 1.00}

0.0 0.2 0.4 0.6 08 10
False Positive Rate

Figure 3: Evaluating model performance for ivf success
prediction: roc curve analysis

4.3 Multi-Metric evaluation and

comparative strengths

Figure 4 presents a radar chart that offers a simultaneous
view of all the five-evaluation metrics across the models.
The SHAP-enhanced XGBoost enclosed the widest area,
confirming its balanced and robust predictive capability.
Stacking (XGBoost) and Weighted Hybrid also showed
excellent coverage. The moderate performance of the
Autoencoder Fusion model is visible, whereas the
cascading model reflects poor balance and lower values
across most axes.

Figure 5, a heatmap, further confirms that the SHAP-
enhanced XGBoost and Stacking models consistently
outperform the others across metrics. Lighter shades in the
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heatmap represent a stronger performance. The Cascading
model’s darker cells in Precision and Accuracy reaffirm
its unsuitability for reliable clinical use.

Model Comparison - Radar Chart

Accuracy

—— Stacking (XGBoost)
Weighted Hybrid

—— Cascading

~—— Autoencoder Fusion
SHAP XGBoost

Figure 4: Assessing strengths and weaknesses of IVF
prediction models — radar visualization

Model Comparison - Heatmap

Stacking (XGBoost)

Weighted Hybrid

Figure 5: Performance heatmap of predictive models for
IVF success prediction

In particular, SHAP-enhanced XGBoost excels in
balancing high precision with perfect recall, making it
ideal for clinical scenarios in which both false positives
and false negatives must be minimized. Meanwhile,
Autoencoder Fusion, despite good recall, suffers from
potential information loss owing to aggressive feature
compression. The Cascading model performs the weakest,
likely because of the inability of the initial Decision Tree
to filter uncertain cases effectively, leading to downstream
overfitting and poor generalization.

Together, these hybrid models demonstrate clear
advantages over the traditional standalone ML
approaches. In particular, SHAP-enhanced XGBoost and
Stacking models represent reliable, high-performance
options for Al-assisted decision-making in IVF clinics,
capable of providing explainable, patient-specific
recommendations. Their high AUC and F1-scores make
them suitable for real-world deployment, reducing the
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emotional and financial burden on patients through a more
accurate prognosis.

4.4  Model interpretability with SHAP

To enhance transparency and enable the clinical
interpretability of the predictions made by the stacking
(XGBoost) model, we employed SHAP. SHAP provides a
unified framework to quantify the contribution of each
input feature to a model’s prediction, making it
particularly suitable for medical applications in which
explainability is crucial.

Using TreeExplainer from the SHAP Python library,
optimized for tree-based models such as XGBoost, we
calculated the SHAP values on the meta-features derived
from base learners (Random Forest, MLP, and SVM) in
the stacking model. This allowed us to evaluate both the
global feature influence and the local prediction
explanations for individual patients.

The SHAP summary plot (Figure 6) illustrates the
average magnitude and direction of the SHAP values for
each meta-feature across all the predictions. It is evident
that the Random Forest_Stacking output consistently
contributes the most to the model’s predictions, followed
by MLP_Stacking, whereas SVM_Stacking has a minimal
impact. This aligns with prior performance evaluations,
confirming that Random Forest serves as the most
informative base learner in the stacking ensemble.

Random Forest_stacking |
MLP_Stacking _

SVM_Stacking

0 1 2 3 4 5
mean(|SHAP value|) (average impact on model output magnitud

Figure 6: SHAP Summary Plot of Meta-Feature
Contributions in Stacking (XGBoost)

To complement global interpretability, Figure 7
presents a SHAP force plot for a representative instance
(instance 0). The base value of —0.01528 represents the
average model output before any feature influence. In this
instance, the prediction shifted to f(x) = 2.14, primarily
driven by

» Random Forest_Stacking = 0.8134, and
e MLP_Stacking = 0.7444

higher = lower
base value f(x)
-0.01528 0.9847 14214 2985

Random Forest_Stacking = 0.8134 ‘ MLP_Stacking = 0.7444

-3.015 -2.015 -1.015

Figure 7: SHAP Force Plot of a Representative Patient
Prediction

These values collectively pushed the model output
toward a high probability of successful live births. The
absence of the SVM_Stacking influence indicates its
negligible role in this case.

Together, these SHAP visualizations bridge the gap
between high-performance Al models and human
decision-making.
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» Highlighting the dominant drivers of model
predictions.

» Enabling clinicians to interpret individual patient
outcomes.

 Building trust in model outputs, particularly for
borderline or high-risk cases.

This approach affirms that Stacking with XGBoost,
when  combined  with  SHAP-based  post-hoc
explainability, not only offers exceptional accuracy but
also supports clinically meaningful, interpretable
predictions for IVF success.

4.5 Generalization and overfitting analysis
via learning curves

To evaluate the generalization capability of each proposed
hybrid model and address potential overfitting, we
analyzed learning curves plotting training and validation
error (1 - accuracy) across incremental training set sizes
(Figure 8).

The stacking model with the XGBoost meta-learner
exhibited the most stable and lowest error rates, with
training and validation curves converging closely
throughout, thus validating its AUC of 0.999 and accuracy
of 0.985. Similarly, SHAP-enhanced XGBoost showed
robust generalization, confirming that integrating
explainability did not compromise the predictive
performance.

The cascading model also maintained tight training-
validation alignment, reflecting its ability to progressively
handle easy and difficult cases. In contrast, the
autoencoder fusion and weighted hybrid models showed

Learning Cunes for WHAR 1GScms rarrire) Carve Sr Saciong | EGBao

: {a_:].

{d) .

(&)
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higher variance, especially at mid-level training sizes, but
stabilized with full training data. These results
demonstrate that although all models generalize well,
ensemble-based stacking consistently outperforms the
others in terms of reliability and predictive robustness.
These findings confirm that the reported high performance
is not a result of overfitting, but rather due to strong
architectural generalization supported by regularization,

SMOTE-based balancing, and effective feature

engineering.

4.6 Statistical validation and clinical
relevance

To further validate that the proposed Stacking with Meta-

Learners (XGBoost) hybrid model significantly

outperforms traditional machine learning approaches, a
comparative analysis was performed, which resulted in a
baseline Random Forest model. To assess the statistical
significance and validate the observed enhancements, two
non-parametric statistical tests were employed: the
Wilcoxon Signed-Rank Test, and McNemar’s test. The
Wilcoxon Signed-Rank Test was used to investigate the
differences in the predicted probabilities between the
hybrid and baseline models, which allowed us to evaluate
their relative performance independent of the distribution.
The output showed a test statistic of 20.021 and an
extremely low p-value (p = 1.69 x 107'"), with strong
evidence (overwhelming or red) of the prediction
differences between hybrid and baseline models being
significant, suggesting improved predictive power with
the hybrid model.

Learreng Cutve fof Wesgfited Hybedd

©

Lsaming Curve for Cancading

-{.;j.

Figure %: Learning curves showing training vs. validation error across five hybrid models. {3) SHAP-enhanced
XGBoost (b) Stacking (X GBoost) (c) Weighted Hybrid Ensemble (d) Autcencoder Fusion () Cascading Model.
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Furthermore, McNemar's test, which is limited to
misclassified cases, was performed to assess the
classification agreement between the two models. The test
statistic was 20.02 with p-value 7.66 x 107° confirming
that a significant number of misclassifications from the
baseline Random Forest model were corrected by the
hybrid model. This indicates a significant improvement in
the classification performance, especially when
differentiating between successful and unsuccessful IVF
cases.

Thus, utilizing these comparative statistical tests
provides powerful evidence that stacking with the Meta-
Learners (XGBoost) hybrid methodology is superior to
conventional machine learning approaches, and enables us
to extrapolate this finding with a high level of statistical
confidence, further promoting the reliability and clinical
applicability of the proposed hybrid model for IVF
success prediction. The hybrid model's outperformance
further confirms its predictive power and underscores its
potential to inform personalized ART treatment.

To further validate the robustness of our hybrid
framework, an ablation study was conducted to
systematically quantify the contribution of each model
component. As presented in Table 5, the removal of
individual components  resulted in  measurable
performance degradation, with more pronounced drops
observed when multiple components were simultaneously
excluded. In particular, the absence of SMOTE and
stacking consistently led to lower Fl-scores, reflecting
their critical roles in handling class imbalance and
enabling meta-level learning. Although the removal of
RFECV and Bayesian optimization resulted in smaller
declines, their contributions to feature selection stability
and model tuning remained evident. Notably, the complete
removal of all core components led to a breakdown in
classification performance, confirming the necessity of
each module. Overall, the ablation results demonstrate that
the hybrid architecture is not only modular but also
synergistic, and each element significantly enhances the
model’s robustness and predictive reliability.

Table 5: Ablation study evaluating the contribution of
individual components to the performance of the hybrid
IVF outcome prediction model

Configuration Accuracy | AUC | F1-Score

Full Model (Stacking + Bayes 0.989 0.9991 0.9893
Opt)

- SMOTE 0.9845 0.9987 | 0.9681
- RFECV 0.9879 0.9993 | 0.9880
- Stacking (Weighted Hybrid) 0.9813 0.9939 0.9817

Bayesian ~ Optimization

(Stacking + Simple LR) 0.9810 0.9941 | 0.9813
- SMOTE, - RFECV 0.988 0.9996 | 0.9751
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- SMOTE, -  Stacking
(Weighted Hybrid) 0.9755 0.9930 0.9505
- SMOTE, - Bayesian
Optimization  (Stacking + 0.9755 0.9903 0.9504
Simple LR)
- RFECV, - Stacking (Weighted 0.9840 0.9948 0.9842
Hybrid)

RFECV, Bayesian
Optimization ~ (Stacking  + 0.9826 0.9937 0.9829
Simple LR)

Stacking, Bayesian
Optimization (Simple 0.9473 0.9933 0.9496
Averaging)
- SMOTE, - RFECV, - Stacking
(Weighted Hybrid) 0.9645 0.9898 0.9298
- SMOTE, RFECV,
Bayesian Optimization 0.9755 0.9911 0.9499
(Stacking + Simple LR)

SMOTE, - Stacking,
Bayesian Optimization (Simple 0.973 0.9891 0.9458
Averaging)

RFECV, - Stacking,
Bayesian Optimization (Simple 0.9456 0.9924 0.9481
Averaging)
- All Components (Simple
Averaging) 0.7635 0.9898 0.0000

4.7 Addressing research gaps through
hybrid machine learning model

To systematically illustrate how the proposed hybrid
models address the primary research challenges present
in I\VF prediction, a mapping between the defined research
questions and how hybrid models contribute to resolving
them is shown in Table 6.

These models overcome the individual challenges of
generalization, feature selection, class imbalance,
uncertainty quantification, deep feature representation,
and hyperparameter tuning by capturing the
complementary strengths of different machine-learning
integration of diverse classifiers, with optimal feature
selection from within the weighted hybrid ensemble
using Bayesian Optimization. Autoencoder fusion plays a
role in the extraction of deep feature representations as
well as in improving model interpretability and
performance. Predictive performance is improved by
flexibility in a cascade model, where predictions are
iteratively fine-tuned based on uncertainty estimates; thus,
cases that are harder to predict receive more attuned
processing. The structured hybrid modelling approach
adopted in this study provides a robust and scalable
predictive  framework  for  assisted reproductive
technologies. The proposed methodologies holistically
address existing research gaps in reproductive
management, thereby enabling the development of
accurate and trustworthy decision-support systems in
reproductive  medicine.approaches.  Stacking  with
XGBoost uniquely generalizes across complex IVF
datasets owing to the seamless
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Table 6: Map

ping research questions to hybrid models
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Research Gap

Stacking with XGBoost

Weighted Hybrid

Autoencoder Fusion

Cascading Model

Questions Ensemble

RQ1: How can predictive | Combines diverse | Uses weighted voting to | Extracts deep feature | Refines predictions

models generalize better | classifiers to improve | optimize predictions | representations to | through cascading

for complex IVF data? generalization. across models. enhance generalization. decision layers.

RQ2: How can feature | Uses RFECV  for | Bayesian Optimization | Autoencoder  extracts | Feature selection is

selection be optimized | selecting the  most | fine-tunes feature | hidden features and | refined at  multiple

for IVF prediction? relevant features. importance. reduces dimensionality. classification stages.

RQ3: How can we handle | Applies SMOTE to | Uses SMOTE-based | Learns balanced | Adjusts for class

class imbalances in IVF | rebalance the dataset. weighting in  hybrid | representations using | imbalance dynamically at

datasets? ensemble learning. autoencoder different stages.
transformations.

RQ4: How can we | Uses confidence scores | Weighted ensemble | Autoencoders identify | Uses cascading

quantify the uncertainty | from multiple models to | predictions provide | ambiguous cases based | classifiers to handle

in IVF predictions? assess uncertainty. confidence estimates. on representation | uncertain predictions
patterns. adaptively.

RQ5: How can deep | Meta-learner integrates | Feature-weighted hybrid | Uses autoencoder for | Identifies key deep

feature representations | deep patterns learned by | models leverage complex | deep feature extraction | features dynamically

be utilized for improved | base models. feature interactions. and fusion. across classification

prediction? stages.

RQ6: How can | Applies Bayesian | Uses Bayesian search to | Optimizes feature | Cascading logic ensures

hyperparameter  tuning | Optimization to fine-tune | optimize ensemble | learning through | best-performing

be improved to achieve | meta-learner parameters. | weight distribution. autoencoder parameter | hyperparameters at each

better performance? tuning. stage.

5 Conclusion

This study introduced novel hybrid machine-learning
methodologies to enhance the predictability, reliability,
and interpretability of live birth outcomes in ART. By
integrating multiple predictive paradigms, including
Stacking with Meta-Learners (XGBoost), Weighted
Hybrid Ensembles, Cascading Models, Feature-Level
Fusion using Autoencoder Networks, and SHAP-
Enhanced XGBoost, the proposed framework effectively
addressed key challenges such as data heterogeneity,
nonlinearity, limited interpretability, and class imbalance
inherent in IVF prediction tasks. Among the models
evaluated, Stacking with Meta-Learners (XGBoost)
achieved the highest performance (AUC =0.999, accuracy
=0.985), substantially outperforming traditional statistical
and standalone machine learning approaches.

The robustness and generalizability of the proposed
models were further validated through a rigorous
comparative analysis against a baseline Random Forest
model utilizing RFECV. Statistical validation using the
Wilcoxon Signed-Rank Test and McNemar’s test (both p
< 0.05) confirmed the significant performance gains of the
hybrid models, underscoring their potential to support
personalized IVF treatment planning and clinical
decision-making.

As an avenue for future research, further exploration
of the latent feature space of the Autoencoder Fusion
model using dimensionality reduction techniques such as
t-distributed Stochastic Neighbor Embedding (t-SNE) and
Uniform Manifold Approximation and Projection
(UMAP) may offer deeper insights into feature
separability,  thereby  enhancing  both  model
interpretability and predictive accuracy. Additionally, we
aim to perform prospective validation using real-time
patient data and assess the integration of the proposed

hybrid models into a Clinical Decision Support System
(CDSS). This will facilitate deployment feasibility
evaluations and strengthen the clinical applicability of Al-
driven systems in IVF treatment workflows. Ultimately,
the widespread adoption of such intelligent systems will
require careful attention to explainable Al (XAl)
integration, clinical multicenter validation, and adherence
to ethical and regulatory standards to ensure trustworthy,
patient-centered reproductive care.
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