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The prediction of live birth outcomes using Assisted Reproductive Technologies (ART) remains a complex 

task owing to the high inter-patient variability and non-linear clinical interactions. This study presents a 

comparative evaluation of hybrid machine-learning models to improve in vitro fertilization (IVF) success 

prediction using a real-world anonymized dataset of 2,000 ART cases. After pre-processing (including 

missing value imputation, feature selection via Recursive Feature Elimination with Cross-Validation, and 

class balancing using SMOTE with k=5), four hybrid models were developed: stacking with XGBoost as 

the meta-learner, weighted ensemble, autoencoder-based feature fusion, and cascading classifiers. 

Models were evaluated using accuracy, AUC, precision, recall, and F1-score metrics, and compared 

against a baseline Random Forest classifier. The stacking model (XGBoost with Random Forest, MLP, 

and SVM base learners) achieved the best performance, with an accuracy and 0.999 AUC of 0.985. The 

weighted hybrid ensemble followed an accuracy of 0.953 and AUC of 0.994. The statistical significance 

of the improvements was confirmed using Wilcoxon Signed-Rank and McNemar’s tests (p < 0.05). To 

enhance model transparency, SHapley Additive exPlanations (SHAP) was applied to interpret base model 

contributions in the stacking architecture. These results support the application of AI-driven hybrid 

modelling for personalized IVF treatment planning. Future work will focus on prospective validation and 

clinical decision support system (CDSS) integration to assess deployment feasibility. 

Povzetek: Študija na 2000 primerih ART primerja hibridne modele za napoved rojstva živorojenega. Po 

obdelavi (RFECV, SMOTE) najboljši sistem z XGBoostom doseže najboljše rezultate. SHAP zagotovi 

razložljivost; Wilcoxon/McNemar potrdita izboljšave. Predvidena validacija in vključitev v klinični CDSS 

sistem.

1 Introduction 
In ART, it is crucial to develop predictive models to 

forecast live birth outcomes after IVF. However, even in 

the era of reproductive medicine and embryology, IVF 

procedures have not been able to realize larger, more 

effective success rates, which depend on patient-specific 

factors, including age, hormonal levels, and the quality of 

embryos [1], [2]Previous attempts have employed 

traditional statistical models to estimate IVF success 

probabilities, which are, unfortunately, never overly 

accurate since biological and clinical factors are complex  

 

and their effects are still heterogeneous [3], [4]. Machine 

Learning (ML) and Deep Learning (DL) models have 

recently emerged as powerful tools for enhancement of  

predictive abilities with reproductive medicine [5], [6]. 

Nevertheless, standalone models often suffer from 

overfitting, data bias, and low generalizability [7]. To 

address such challenges, hybrid machine learning 

solutions can offer a worthy possibility through the 

combination of several algorithms to exploit the positive 

aspects of multiple models and increase prediction 

accuracy and robustness [8], [9]. Successful IVF treatment 
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relies on a range of variables including patient 

characteristics, clinical indicators, and embryo 

developmental aspects [2], [10], [11], [12], [13]. 

Traditionally implemented predictive models have limited 

generalizability because IVF-related data contain high 

dimensions and non-linear patterns [14], [15], [16]. The 

main reason for adopting hybrid models is the six core 

difficulties.  

1. The complex connections between IVF data 

elements, including patient information, hormone 

patterns, and embryonic results, remain inaccessible 

to the standard statistical techniques for 

interpretation.  

2. Many ART predictive features display non-linear 

behavior with specific effects on different patient 

populations, thus creating obstacles for developing a 

unified generalized model.  

3. Class Imbalance exists because successful live births 

occur less frequently than unsuccessful cases, thus 

causing an unbalanced dataset that affects the model 

performance.  

4. Medical staff need interpretable predictive models to 

demonstrate their analytical reasoning, rather than 

forcing them to use machine learning methods as 

unexplainable systems.  

5. Multiple sensory data sources influence IVF success 

rates through clinical records combined with patient 

imaging results and time-based medical histories, 

which require sophisticated data-fusion systems to 

extract involvement information.  

6. There is a lack of interpretable, personalized insights 

for supporting clinical decision-making in IVF 

treatments. 

This study presents and evaluates five novel cross-

hybrid models for predicting IVF live birth outcomes, 

further refining the specificity of prediction through 

multiple machine learning paradigms. The hybrid 

approaches used in this study included stacking (Layered 

Learning), weighted hybrid ensembles, cascading models, 

feature-level fusion with autoencoder networks, and 

SHAP-enhanced gradient boosting. These approaches 

were devised to handle data heterogeneity, temporal 

dependencies, feature importance selection, and 

automated hyperparameter optimization, which are highly 

relevant to IVF outcome prediction. This study aimed to 

present a robust and scalable predictive framework for 

these hybrid approaches to support clinical decision-

making and personalized treatment planning in Assisted 

Reproductive Technology (ART). 

A hybrid modelling approach provides a synergistic 

blending of several machine-learning models to overcome 

the weaknesses of individual models, resulting in 

increased predictive accuracy and robustness [17], [18], 

[19]. This study also introduces SHAP-based 

interpretability to align predictive modelling with clinical 

transparency, making it easier for fertility specialists to 

interpret model outputs.  

This study aimed to bridge the gap between 

computational intelligence and clinical decision-making 

in reproductive medicine, improve the prediction of IVF 

success, and aid fertility specialists in designing optimal 

treatment plans tailored to individual patients. 

1.1 Novelty and contribution of proposed 

system 

This paper proposes a novel hybrid framework that 

incorporates stacking, weighted ensembles, cascading 

classifiers, autoencoder-based feature fusion, and SHAP-

enhanced XGBoost explainability. Compared to existing 

methods, the proposed system employs multi-stage 

learning to address class imbalance and enhances decision 

reliability through trust refinement techniques such as 

RFECV-based feature selection and ensemble diversity. 

Table 1 summarizes the existing research gaps and 

explains how the proposed models were designed to 

overcome them through synergistic learning strategies and 

explainable outputs. 

1.2 Structure of paper 

The remainder of this paper is structured as follows: 

Section 2 presents a comprehensive literature survey of 

prior works on prediction models of IVF using machine 

learning applications in ART. Section 3 explains the 

methodology, dataset used, pre-processing, and a detailed 

description of the four hybrid modelling strategies used in 

this study. Section 4 presents the results and a comparison 

of the models. Section 5 summarizes the main findings 

and concludes the study. 

 

Table 1: Research questions, identified research gaps and 

research contribution 

Research 

Questions 

Identified Research 

Gaps 

Research 

Contributions 

RQ1: How can 

predictive models 

generalize better 
for complex IVF 

data?  

Existing models 

struggle with 
generalizing across 

diverse patient data 

and clinical 
variability. 

Hybrid models 

integrate multiple 
learning approaches to 

improve 

generalization and 
robustness.  

RQ2: How can 
feature selection be 

optimized for IVF 

prediction?  

Conventional 

methods may 
overlook critical 

IVF-specific features 

or suffer from 
overfitting. 

Hybrid models use 

RFECV, Bayesian 

Optimization, and 
autoencoders to refine 

feature selection.  

RQ3: How can we 

handle class 
imbalances in IVF 

datasets?  

Standard classifiers 

are biased towards 

majority classes, 
reducing predictive 

accuracy for minority 

cases. 

SMOTE, weighting 
mechanisms, and 

cascading models 

dynamically handle 
class imbalance.  

RQ4: How can we 

quantify the 
uncertainty in IVF 

predictions?  

Traditional models 
lack interpretability 

and fail to quantify 

prediction 
uncertainty. 

Hybrid ensemble 

methods provide 

confidence estimates, 
whereas cascading 

models refine the 

uncertain predictions. 

RQ5: How can 
deep feature 

representations be 
utilized for 

improved 

prediction?  

Feature extraction 

techniques do not 
effectively capture 

deep, non-linear IVF 
patterns. 

Autoencoder fusion 

and hybrid deep 
learning methods 

enhance the feature 
representations.  

RQ6: How can 
hyperparameter 

tuning be 

Manual or grid 
search-based tuning 

is inefficient and 

Hybrid models 
integrate multiple 

learning approaches to 
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Research 

Questions 

Identified Research 

Gaps 

Research 

Contributions 

improved to 
achieve better 

performance? 

computationally 
expensive. 

improve 
generalization and 

robustness.  

2 Literature review 
Models of increasing machine learning have been 

increasingly used to predict IVF outcomes, with the 

possibility of providing the benefits of predicting IVF 

outcomes for infertile couples and in healthcare systems. 

These models often use a given set of data to predict the 

IVF outcomes. Existing machine learning-based 

approaches for IVF outcome prediction generally involve 

the use of medical and reproductive history, biochemical 

indicators, and data regarding reproductive tract 

examination, along with information from previous IVF 

cycles [13]. These models have proven useful for 

assessing subfertile couples and providing clues for 

treatment. Nevertheless, they are constrained by their 

dependency on conventional clinical parameters and do 

not reveal the factors that affect IVF success. 

Consequently, scientists are developing increasingly 

sophisticated applications that integrate omics data with 

AI. The recent introduction of metabolomics, 

transcriptomics, and biomarkers in conjunction with deep 

machine learning assessment of oocytes, sperm, and 

embryos has been proposed as a novel tool [13]. The 

proposed algorithm provides a way to develop artificial 

neural network models that can better objectively and 

accurately predict this outcome than the traditional 

methods used in couples with unexplained infertility or 

repeated implantation failures. Several earlier techniques 

have been used for multiple-attribute selection methods to 

predict outcomes more accurately and efficiently through 

IVF prediction. 

In one example, researchers integrated omics and 

artificial intelligence evidence to suggest the best 

treatment options and increase IVF success rates; thus, 

they developed a novel tool [13]. First, the lifestyle and 

demographic parameters of the subfertile couples, 

metabolomics, transcriptomics, and biomarkers were 

obtained, and the oocytes, sperm, and embryos were 

evaluated using deep machine learning. This study also 

emphasizes the value of omics data in facilitating optimal 

embryo selection and improving personalized IVF 

treatment. 

Similarly, a separate study used the XGBoost machine 

learning system [20] to minimize multiple embryo 

gestation rates in IVF by creating a hierarchical model. It 

concomitantly learns embryo implantation potential and 

double embryo transfer. The variables identified by the 

researchers for single-embryo transfer pregnancies were 

age, IVF attempts, estradiol level on hCG day, and 

endometrial thickness. For double embryo transfer, the 

other variables, including P1 and P2, were significant. For 

SET pregnancy, DET pregnancy, and DET twin risks, the 

model exhibited AUC of 0.7945, 0.8385, and 0.7229, 

respectively. 

Issues related to data quality and feature selection are 

important in predicting IVF outcomes. It is also in the 

context of challenges in learning deep features and 

extracting high-level patterns [21]. Feature selection is 

important because it can select redundant and irrelevant 

features to remove dimensionality and enhance model 

generalization [22]. Specifically, regarding IVF, the 

integration of omics data (metabolomics and 

transcriptomics) with classic clinical parameters has both 

advantages and disadvantages when applied to feature 

selection [13]. 

However, the interpretability of the model remains 

challenging. Machine learning methods are capable of 

modelling flexibility and robustness; however, it is 

difficult to interpret individual features using 

sophisticated algorithms [23]. One problem with this lack 

of interpretability is that it hinders the identification of 

important biomarkers needed to develop novel hypotheses 

for the prevention, diagnosis, and treatment of complex 

conditions such as infertility. 

Interestingly, the choice of modelling approach and 

feature selection method strongly depends on the purpose 

of the analysis. In [24], it was clearly recommended that 

the goal of model selection be specified as data 

exploration, inference, or prediction, as it serves the 

purpose of selecting the appropriate model to ensure that 

there is no confusion when selecting a statistical model. 

However, demographic and clinical factors determine 

the IVF outcomes. However, important predictors for both 

single and double embryo transfer pregnancies include 

age, number of previous IVF attempts, estradiol level on 

hCG day, and endometrial thickness [20]. The live birth 

and implantation rates for women aged 35 years or 

younger with a caesarean section defect were significantly 

lower than those for women with a history of vaginal 

delivery [25]. 

Among the causes of low intrauterine insemination 

success, semen parameters (sperm concentration and 

motility) and female body mass index (BMI) were 

identified as the most important predictors [26]. 

Nevertheless, a meta-analysis of semen quality 

(concentration, motility, and morphology) and outcomes 

of assisted reproduction technologies [27] could not 

determine a significant correlation between these two 

variables. This contradiction indicates complications in 

predicting IVF success. 

Environmental factors have a bearing on IVF 

outcomes. Fresh embryo transfer (FET) cycles result in 

lower chances of biochemical pregnancy, clinical 

pregnancy, and live birth during exposure to air pollutants, 

particularly ozone (O3), nitrogen dioxide (NO2), and 

carbon monoxide (CO), at various stages of IVF treatment 

[28]. 

The Area Under the Curve (AUC) of a Receiver 

Operating Characteristic (ROC) curve is commonly used. 

The AUC for live birth prediction was 0.905, and that for 

clinical pregnancy with fetal heartbeat was 0.722 [1]. The 

AUCs reported for single embryo transfer (SET), DET 

pregnancy, and DET twin risks were 0.7945, 0.8385, and 

0.7229, respectively [20]. AUCs from 0.70 to 0.78 were 

obtained for ploidy prediction [29]. 
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Other metrics included the accuracy, precision, recall, 

and F1 scores. Zou et al. achieved an accuracy of 0.77, 

precision of 0.79, recall of 0.86, and F1 score of 0.83 [29]. 

Values reported by [1] for live births and clinical 

pregnancies with fetal heartbeat of 1.12 and 0.77, 

respectively, were also used in the Observed: Expected 

(O: E) ratio. 

Some studies have compared AI models with human 

predictions. A meta-analysis was not possible, but a 

systematic review indicated that AI-based prediction 

models were as good as embryologists, albeit marginally 

better [1]. It is also said that AI models have not yet 

surpassed clinically embryologists’ predictive capability 

significantly. 

Furthermore, one study [13] documented the lifestyle 

and demographic parameters of subfertile couples, 

together with the previous characteristics of IVF cycles. In 

addition, they measured and evaluated metabolomics, 

transcriptomics, and biomarkers by evaluating oocytes, 

sperm, and embryos using deep machine learning. This 

bundling of data collection and pre-processing was 

comprehensive enough to create artificial neural network 

models to increase the objectivity and accuracy of IVF 

success rate predictions. 

In fact, some studies have investigated only a 

particular pre-processing technique, whereas others have 

focused on the need to establish the best pre-processing 

pipeline to follow before prediction. For example, [30] 

used an automated pre-processing model, referred to as a 

scenario-based model, in their study of construction 

accident severity prediction.  

Compared to existing models, such as the protocol-

based ANN framework by [13] and the XGBoost-based 

hierarchical model by [20], the proposed hybrid system 

significantly advances IVF outcome prediction. While 

prior studies lacked either empirical validation or 

comprehensive data integration, our model combined 

stacking, weighted ensembles, autoencoder-based fusion, 

and cascading strategies. This multi-stage approach 

addresses critical gaps such as limited data types, lack of 

personalization, and poor generalization, achieving 

superior accuracy (0.985) and AUC (0.999). Furthermore, 

statistical tests confirmed the model’s significant 

improvement over traditional methods, establishing a 

robust and scalable predictive framework for clinical use. 

To execute this model, several pre-processing steps 

are reviewed, including the processing of missing data, 

binned data, outlying data, scaling methods, and 

resampling data. The pre-processing pipeline plays a vital 

role, and we observed that in the most efficient scenario, 

we obtained the best out-of-prediction performance. 

3 Methodology 

3.1 Dataset 

The dataset analyzed in this study was derived from 

anonymized registry data compiled by the Human 

Fertilization and Embryology Authority (HFEA), 

covering fertility treatments conducted between 2010 and 

2016 [31]. It is publicly available and can be accessed via 

the direct download link provided in [31]. This dataset was 

previously used in a study by Goyal et al. [32]. It is the 

world’s largest database of patient, donor, and offspring 

records that safeguards patient, donor, and offspring 

confidentiality to support patient care improvements. The 

dataset was filtered to include 2,000 samples with 95 

attributes from actual in vitro fertilization (IVF) 

procedures. These attributes include age, infertility type, 

clinical treatment details, and embryonic data. Data were 

presented as numerical, categorical, or text. To ensure the 

same quality and consistency of the dataset, the missing 

values were considered through proper imputation. The 

numerical attributes were replaced with their median 

values, whereas the categorical attributes were set to their 

mode values. The dataset used did not contain attributes 

with more than 50% of the missing values. In total, 62 

features were available after pre-processing and were 

chosen for further analysis. 

The probability of a successful live birth with ART is 

a complex problem because it contains heterogeneous 

clinical, embryonic, and demographic factors. Therefore, 

we present a Hybrid Machine Learning Framework to 

improve the prediction accuracy and robustness by 

incorporating advanced data pre-processing techniques, 

utilizing a suite of machine learning models, and 

employing ensemble learning strategies. The IVF live 

birth prediction pipeline, consisting of data processing and 

the hybrid model development workflow, is illustrated in 

Figure 1.  The proposed framework comprises four 

phases: data pre-processing, hybrid model development, 

model evaluation and comparison, and statistical 

significance testing.   A detailed stepwise procedure of this 

Hybrid Machine Learning Framework for IVF Live Birth 

Prediction Algorithm has been systematically documented 

and is presented below to standardize a structured 

methodological approach to attain reproducibility. 

 

Algorithm: Hybrid Machine Learning Framework for 

IVF Live Birth Prediction 

Input: D = {X, Y}, where X represents patient 

demographics, clinical treatment details, and embryonic 

development data, and Y is the binary target variable 

indicating live birth outcomes. 

 

Output: Predicted probability Ŷ of live birth outcome. 

 

Step 1: Data Preprocessing 

1. Load dataset D. 

2. Handle missing values: 

a. Remove features Fᵢ where |Fᵢmissing| / |Fᵢ| > 0.5. 

b. Impute missing numerical values using the median: 

Xnum(i) ← median(Xnum). 

c. Impute missing categorical values using mode: 

Xcat(i) ← mode(Xcat). 

3. Encodes categorical variables using one-hot 

encoding. 

4. Convert target variable: No live birth (Y = 0) and 

At least one live birth (Y = 1). 

5. Perform stratified sampling: Split dataset into 

training and testing 
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6. Apply Synthetic Minority Over-Sampling 

Technique (SMOTE) to balance class distribution. 

7. Perform feature selection using Recursive Feature 

Elimination with Cross-Validation (RFECV). 

 

Step 2: Hybrid Model Development: Train machine 

learning models: 

 

A. Stacking with Meta-Learners: 

a. Train base models: Random Forest (RF), Support 

Vector Machine (SVM), Multi-Layer Perceptron 

(MLP). 

b. Generate meta-features from out-of-fold 

predictions of base models using k-fold cross-

validation to avoid data leakage 

c. Use predictions Ŷbase as input features for meta-

learners: XGBoost, MLP, Gradient Boosting 

Machine (GBM). 
 

B. Weighted Hybrid Ensemble: 

a. Train models: RF, MLP, SVM, Naive Bayes (NB). 

b. Assign optimal weights wᵢ via Bayesian 

Optimization: Ŷ = Σ wᵢ Ŷᵢ. 
 

C. Cascading Models: 

a. Train a Decision Tree (SimpleCart) for handling 

easy cases. 

b. Use MLP for uncertain cases. 

c. Final refinement with Random Forest for cases 

with ambiguous probability outputs from the MLP. 
 

D. Feature-Level Fusion with Autoencoder: 

a. Train Autoencoder A(X) for feature compression: 

X' = A(X). 

b. Train RF, SVM, and MLP on compressed features 

X'. 

c. Combine predictions via stacking or voting. 
 

E. SHAP-Enhanced XGBoost Model 

a. Train an XGBoost classifier using optimized 

hyperparameters on the pre-processed dataset. 

b. Compute SHAP values to assess feature 

importance and interpretability. 

 
Figure 1: Data processing and model development flowchart for ivf live-birth prediction 
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c. Use SHAP visualizations (summary plot, force 

plot) to support model explainability for clinical 

insight. 

 

Step 3: Model Evaluation and Comparison 

1. Evaluate models using metrics: Accuracy, Precision, 

Recall, F1-Score, AUC 

2. Generate ROC curves. 

3. Visualize performance metrics. 

 

Step 4: Statistical Significance Testing 

1. Perform Wilcoxon Signed-Rank Test to compare 

predicted probabilities of the hybrid model vs. baseline 

Random Forest model. 

2. Perform McNemar’s Test to assess classification 

agreement and reduction in misclassification errors. 

End of Algorithm 

3.2 Data preprocessing 

Data pre-processing is an essential component in building 

a strong predictive model that allows data quality, 

consistency of formats, and reliability for machine 

learning processes. The dataset was cleaned and pre-

processed extensively to train the machine learning model. 

The target variable (i.e., the number of live births) was 

transformed into a binary classification, where 0 indicated 

no live births and 1 indicated at least one live birth. The 

categorical variables were one-hot encoded for use in 

different machine-learning algorithms. In addition, data 

stratification was performed to ensure an 80%-20% 

training-test split while maintaining a balanced class 

distribution. 

The process starts with loading the IVF dataset; it then 

deals with missing values by either imputation or removal 

of feature(s). The approach to handling missing values 

involves a two-step process aimed at preserving data 

quality and model robustness. First, features with over 

50% missing data were removed to avoid unreliable 

imputation of severely incomplete variables. Following 

this, the remaining missing values in the dataset were 

imputed using the median (for numerical features post-

encoding) to ensure consistency and completeness before 

training. This combined strategy balances dimensionality 

control with the effective handling of data sparsity, 

aligning with the pre-processing goals outlined in this 

section. Missing values were identified with their 

treatment, keeping note of the loss of data with imputation; 

numerical features were assigned medians, while 

categorical features were assigned modes. Categorical 

variables were encoded, and the target variable was 

converted to binary for classification. 

Moreover, through the synthetic minority 

oversampling technique, SMOTE provides the 

representation of minority classes owing to the class 

imbalance problem. To address RQ3, SMOTE was used 

to balance the dataset and improve the model fairness. 

Before SMOTE, the class distribution was 3.23:1; after 

SMOTE, it equalized to 1:1. Finally, in response to RQ2, 

Recursive Feature elimination with cross-validation 

(RFECV) was performed to retain the most informative 

predictors. This ensures that the input dataset is ready for 

machine learning models and improves predictive 

accuracy and generalizability.   

3.3 Hybrid model development 

The proposed methodology integrates multiple machine 

learning techniques to enhance the prediction accuracy of 

live birth outcomes in IVF treatments. By employing 

Stacking with Meta-Learners (Layered Learning), 

Weighted Hybrid Ensembles, Cascading Models (multi-

stage refinement), Feature-Level Fusion with 

Autoencoder Networks, and SHAP-Enhanced XGBoost 

for post-hoc explainability, a comprehensive and robust 

predictive framework was developed to enhance both 

accuracy and interpretability in IVF live birth outcome 

prediction. This hybrid approach ensures improved model 

reliability and effectiveness in clinical decision-making. 

The algorithm outlined below outlines a hybrid machine 

learning framework that integrates ensemble learning, 

model stacking, and deep learning to improve live birth 

outcome predictions in IVF treatments. By using multiple 

predictive techniques, the proposed system ensures high 

accuracy and reliability in clinical decision making. A 

flow diagram of the Hybrid Model Development process 

is shown in Figure 2. 

3.3.1 Model stacking with different meta-

learners 

To address RQ1, a hybrid ensemble approach was 

employed, particularly stacking with XGBoost as a meta-

learner, to enhance the generalization across diverse IVF 

cases with non-linear patterns. Base learners such as 

Random Forest (RF), Support Vector Machine (SVM), 

and multilayer perceptron (MLP) were trained separately. 

Next, their predictions were used as input features for 

meta-learner feature construction using XGBoost, MLP, 

and Gradient Boosting equal to Gradient Boosting 

(GBM).   

   

𝑃𝑓𝑖𝑛𝑎𝑙 =  𝑓𝑚𝑒𝑡𝑎(𝑃𝑅𝐹 , 𝑃𝑆𝑉𝑀 , 𝑃𝑀𝐿𝑃)  (1) 

 

where 𝑷𝒇𝒊𝒏𝒂𝒍 is the final prediction, 𝑷𝑹𝑭, 𝑷𝑺𝑽𝑴, 𝑷𝑴𝑳𝑷 are 

the predictions from base the learners, and 𝒇𝒎𝒆𝒕𝒂 

represents the meta-learner function. 

A strict separation between the base learner training 

and meta-feature construction was implemented to ensure 

methodological rigor and prevent data leakage in the 

stacking ensemble. The full dataset was split into 80% 

training set and 20% held-out test set. Within the training 

data, the base models (Random Forest, SVM, MLP) were 

trained using 5-fold stratified cross-validation, and out-of-

fold predictions were collected to construct meta-features. 

These meta-features, derived from unseen folds, were 

used to train the meta-learners (XGBoost, MLP, Logistic 

Regression), ensuring no overlap between the training and 

prediction phases. 
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Figure 2: Flow diagram of hybrid model development step 

 

 

 

For the final evaluation, base models were retrained on the 

complete resampled training data, and their predictions on 

the held-out test set were passed to the trained meta-

learner, thereby enabling an unbiased assessment of the 

generalization performance on previously unseen data. 

3.3.2 Weighted hybrid ensembles 

A weighted ensemble approach was used to weigh the 

models based on their performances. Weight assignments 

were optimized using an optimization scheme such as 

Bayesian Optimization or Genetic Algorithms. 

 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑤1𝑃𝑅𝐹 + 𝑤2𝑃𝑀𝐿𝑃 + 𝑤3𝑃𝑆𝑉𝑀 + 𝑤4𝑃𝑁𝐵𝑃  (2) 

where w1, w2, w3, and w4 are the optimized weights 

assigned to each model prediction. 

3.3.3 Feature-level fusion with autoencoder 

networks 

RQ5 is addressed using autoencoders for feature-level 

fusion, which captures non-linear relationships and 

compresses high-dimensional IVF data into informative 

latent features.  This was used to perform the feature 

extraction. Random Forest, SVM, MLP were then run-on 

compressed feature representations to make predictions 

using stacking or weighted voting. 

    𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 = 𝐴𝐸(𝑋)  (3) 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑓𝑚𝑒𝑡𝑎(𝑃𝑅𝐹 , 𝑃𝑆𝑉𝑀 , 𝑃𝑀𝐿𝑃) (4) 

where AE(X) denotes the autoencoder-transformed 

feature set. 

3.3.4 Cascading models (multi-stage 

predictions) 

To address RQ4, a two-stage cascading model was 

introduced to improve prediction reliability, particularly 

for borderline or uncertain cases. In the first stage, 

SimpleCart, a shallow Decision Tree that uses the Gini 

impurity criterion, was employed to classify cases that 

were easily separable. Predictions with low confidence 

were then escalated to include more complex classifiers. 

In the second stage, a Multilayer Perceptron (MLP) 

handled these uncertain cases, and samples with 

ambiguous probability scores (typically between 0.3 and 

0.7) from the MLP were further passed to a Random 

Forest for final refinement. This cascading strategy 

ensures that uncertain predictions are progressively 

evaluated by increasingly powerful models, thereby 

enhancing classification robustness and clinical decision 

support. 

𝑃𝑓𝑖𝑛𝑎𝑙 = 𝑓𝑅𝐹 (𝑓𝑀𝐿𝑃(𝑓𝐷𝑇(𝑋)))  (5) 

where, X denotes the input dataset. 
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3.3.5 SHAP-enhanced XGBoost 

To improve both the predictive performance and 

interpretability, we implemented the SHAP-enhanced 

XGBoost model. XGBoost is a powerful gradient boosting 

algorithm widely used for structured data classification 

tasks. However, the decision-making process is often 

considered a "black box" because of the complexity of 

tree-based ensembles. To overcome this challenge, we 

integrated the SHAP into the XGBoost pipeline. SHAP is 

a unified framework based on cooperative game theory 

that attributes a model’s prediction to each feature, thus 

offering instance-level interpretability.  

For a specific prediction 𝑦𝑖̂, the SHAP framework 

decomposes the output as: 

𝑦𝑖̂ = 𝜙0 + ∑ ∅𝑗
(𝑖)𝑛

𝑗=1     (6) 

where 𝜙0 is the expected value of the model's output over 

the training data, and ∅𝑗
(𝑖)

 is the SHAP value representing 

the contribution of feature j for instance i. 

Table 2 summarizes the internal architecture of the 

proposed hybrid machine learning models. It elucidates 

the model components, feature extraction, training, and 

optimization for all individual models. It also specifies the 

activation functions and decision logic at lower levels of 

detail and linkage, thereby illustrating the interactions of 

different models within each hybrid framework. 

3.4  Hyperparameter tuning 

The effectiveness of the proposed hybrid models is not 

solely determined by their architectural design, but also by 

the precision of the hyperparameter optimization, which 

directly addresses RQ6. To ensure robust generalization 

and predictive reliability, a systematic hyperparameter-

tuning process was conducted using cross-validation of 

resampled training data. This process aims to strike a 

balance between model complexity, overfitting control, 

and computational efficiency. 

Different tuning strategies were applied based on the 

model type and complexity. Grid Search Cross-Validation 

(GridSearchCV with 5-fold stratified CV) was employed 

for the baseline Logistic Regression model, stacking meta-

learners (XGBoost, Neural Network, Logistic 

Regression), and an autoencoder-based classifier. For 

SHAP-enhanced XGBoost, a more efficient Random 

Search Cross-Validation (RandomizedSearchCV with 5-

fold stratified CV) was adopted to explore a broader 

parameter space. The Weighted Hybrid Ensemble 

leveraged Bayesian Optimization (Bayesian optimization) 

was used to determine the optimal model weights, 

assessed via an inner 3-fold stratified cross-validation 

loop. 

All tuning strategies prioritize the ROC AUC score as 

the primary evaluation metric to guide the selection of 

optimal parameter combinations. The final tuned 

hyperparameters for each model are summarized in Table 

3, and collectively contribute to the superior predictive 

performance and reliability of the proposed hybrid 

framework. 

This study utilized a modular implementation 

framework in Python 3.10, leveraging multiple machine-

learning libraries to ensure consistency and 

reproducibility across models. Specifically, scikit-learn 

(version 1.6.1) was employed for traditional classifiers, 

ensemble techniques, and pre-processing tasks; 

TensorFlow (version 2.18.0) via the Keras API was used 

to design and train the autoencoder model; and XGBoost 

(version 2.1.4) was used to implement gradient boosting 

algorithms. These tools collectively support the 

development, tuning, and evaluation of proposed hybrid 

models in a unified pipeline. 

3.5  Model evaluation and comparison  

The various performance metrics, including accuracy, 

AUC, precision, recall and F1-score, were used for the 

comparative analysis of the proposed hybrid models. A 

ROC curve was constructed to assess the discrimination 

ability of the models, and radar charts and heat maps were 

constructed to compare their strengths and weaknesses. 

This evaluation framework enables a strong performance 

validation and interpretability for clinical deployment. 

3.6  Statistical significance testing  

To test the validity of the developed hybrid model, the 

significance test of Wilcoxon Signed-Rank Test was used 

to compare the predicted probabilities of the hybrid 

model with an existing baseline Random Forest model to 

evaluate the overall differences in performance. 

McNemar’s test was applied to test the classification 

agreement, specifically to detect improvements in 

misclassification repair. These statistical tests confirmed 

that the observed performance improvements were not 

simply by chance.  

With the methodology established for this study, the 

following section presents the empirical results and a 

comparative analysis of the proposed hybrid models. The 

comparative performance of these methods was evaluated 

based on evaluation metrics. 

4 Result and discussion 

4.1 Comparative performance of hybrid 

models 

Once the machine learning models were built, the next 

critical step was their evaluation across multiple 

dimensions of performance: Accuracy, AUC, Precision, 

Recall, and F1-Score. Five models were evaluated in this 

study—Stacking with Meta-Learners (XGBoost), SHAP-

enhanced XGBoost, Weighted Hybrid Ensemble, 

Autoencoder Fusion, and Cascading Model. The results 

are presented in Table 4, supplemented with ROC curves, 

radar charts, and heatmaps to allow for a comprehensive 

comparative analysis. 

Among all models, SHAP-enhanced XGBoost 

demonstrated the best overall performance, achieving an 

accuracy of 0.997, AUC of 1.0, precision of 0.995, recall 

of 1.0, and F1-Score of 0.997. This clearly indicates that 
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the integration of SHAP explainability mechanisms not 

only preserves but also slightly improves the predictive 

capability compared to the original stacking approach. 

The Stacking (XGBoost) model followed closely, with an 

AUC of 0.999 and an F1-score of 0.985. The Weighted 

Hybrid model also performed well, while the Autoencoder 

Fusion model demonstrated clinically acceptable 

performance with high recall and reasonable precision. In 

contrast, the cascading model underperforms across most 

evaluation metrics. 

Initially, some models exhibited signs of overfitting, 

as reflected by the unrealistically high AUC values during 

preliminary training. To correct this, multiple 

regularization techniques were applied: L2 regularization 

(for XGBoost, MLP, and Logistic Regression), reduced 

decision-tree depth, and early stopping in MLPs. Dropout 

was integrated into autoencoders to mitigate overfitting. 

Table 2: Internal architecture details of hybrid models 

 

Aspect 
Stacking with Meta-

Learners 

Weighted Hybrid 

Ensemble 

Feature-Level 

Fusion 
Cascading Model 

Model Type 
Stacking Ensemble with Meta-

Learners 
Weighted Hybrid Ensemble 

Autoencoder-based Feature 

Fusion with Classifier 

Two-Stage Cascading 

Model 

Architecture 
Details 

Base models: Random Forest, 

SVM, MLP Meta-learners: 
XGBoost, MLP, Logistic 

Regression 

Base models: Random 

Forest, MLP, SVM, Naïve 
Bayes Final output via 

Bayesian-weighted average 

Autoencoder: Input → 

Encoding → Bottleneck → 
Decoding Classifier: 

Random Forest 

Stage 1: Decision Tree 

(max_depth=3) Stage 2: 
MLP and Random Forest 

for refinement 

Feature 

Engineering 

RFECV for feature selection 

Standardization & SMOTE 

RFECV for feature 

selection Standardization & 
Normalization 

Encoded feature 
representation Random 

Forest trained on encoded 

outputs 

Recursive Feature 

Elimination Stratified Data 
Splitting 

Training 

Process 

80–20 Train–Test Split 5-Fold 

Cross-Validation 

Bayesian Optimization (10 

initial pts, 20 iterations) 

Autoencoder trained for 

dimensionality reduction 

Random Forest classifier 
trained separately 

Stage 1 trained on full data 

Stage 2 trained on 

uncertain predictions (prob. 
= 0.3–0.7) 

Optimization 

& 
Regularization 

Early stopping (MLP) L2 

regularization (α = 0.1 in MLP) 

XGBoost: learning_rate tuned 
(0.01–0.1), reg_lambda tuned 

(0.1–1) 

L2 regularization in MLP 

Weights optimized via 
Bayesian search 

Dropout (0.4 in encoding 
layer) ReLU for encoder, 

Sigmoid for decoder L2 

regularization in RF 

Dropout (0.5 in MLP) 

Early stopping in MLP 

Activation 

Functions 

MLP: ReLU (hidden), Logistic 
(output) SVM: Linear kernel 

Logistic Regression: Sigmoid 

MLP: ReLU (hidden), 
Softmax (output) SVM: 

Linear kernel 

Autoencoder: ReLU 
(encoding), Sigmoid 

(decoding) 

MLP: ReLU (hidden), 
Logistic (output) Decision 

Tree: Gini criterion 

Optimizers 

MLP: Adam (default in sklearn) 

Logistic Regression: lbfgs 
XGBoost: Tree Booster (built-

in) 

MLP: Adam SVM and 

Naïve Bayes: 

Implementation-defined 

Autoencoder: Adam 

Random Forest: Not 

Applicable 

MLP: Adam Random 

Forest: Not Applicable 
Decision Tree: Not 

Applicable 

Learning Rate 
MLP: 0.001 (default) XGBoost: 

Tuned (0.01–0.1) Logistic 

Regression: Controlled by solver 

MLP: 0.001 (default) SVM: 
Controlled by 

implementation 

Autoencoder: 0.001 
(default Adam) RF: Not 

Applicable 

MLP: 0.001 (default) RF 

and DT: Not Applicable 

Decision Flow 
Base models predict first → 
meta-learners combine via 

stacking for final prediction 

Individual model 

predictions weighted by 
performance → final 

prediction via weighted 

sum 

Input passed through 

encoder-decoder → 

encoded output classified 
by Random Forest 

Stage 1: Decision Tree 

filters easy predictions 

Stage 2: MLP and RF 
handle harder cases 

 

Table 3: Hyperparameter tuning for hybrid models 

 

Hybrid Model Component Hyperparameter Value / Setting Purpose 

M
o
d
el

 S
ta

ck
in

g
 

Base Models 

Random Forest – max_depth 5 
Prevent overfitting, improve 

generalization 

SVM – C 0.1 
Improve robustness, avoid excessive 

complexity 

MLP – hidden_layer_sizes (20,) Single hidden layer with 20 neurons 

MLP – max_iter 200 Limit training time 

MLP – alpha (L2 reg.) 0.1 Prevent overfitting 

MLP – early_stopping 
Enabled 

(validation_fraction=0.2) 

Stop training when validation 

performance stagnates 

Meta-Learners 

XGBoost – n_estimators 25 Reduce overfitting and training time 

XGBoost – reg_lambda (L2 reg.) 1 Improve generalization 

Neural Network – hidden_layer_sizes (10,) Simpler meta-learner architecture 

Logistic Regression – penalty L2 Improve model regularization 

Logistic Regression – C 0.1 Enhance generalization 

W
ei

g
h

te
d

 

H
y

b
ri

d
 

E
n

se
m

b
le

 Base Models Same as stacking model Same as stacking model - 

Weight 

Optimization 

Search space for weights (0,1) Optimize ensemble performance 

Optimization method Bayesian Optimization Find optimal model weight distribution 

Initial points, iterations 
10 initial points, 20 

iterations 
Improve accuracy 

C a s c a d i n g
 

M o d e ls
 Stage 1: 

Decision Tree 
max_depth 3 Simplify early classification 
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Stage 2: MLP, 

RF 
Same as stacking model 

Trained on uncertain cases 

only (p = 0.3 - 0.7) 
Handle uncertain predictions efficiently 

F
ea

tu
re

-

L
ev

el
 

F
u
si

o
n
 

w
it

h
 

A
u
to

en
co

d
er

 Autoencoder 

encoded_dim Min(30, half of input dim) Reduce feature dimensionality 

Dropout rate 0.5 Prevent overfitting 

Training epochs, batch size 30 epochs, batch size = 32 Ensure stable training 

Random Forest n_estimators, max_depth 25, 5 Train on compressed features 

 

Table 4: Comparison of our approach with previous research 

 

Study Models Used Accuracy AUC Precision Recall F1-Score 

[13] ANN + Deep Imaging >0.75 N/A N/A N/A N/A 

[20] XGBoost N/A 0.839 N/A N/A N/A 

[25] 
Statistical Methods (Logistic 

Regression) 
N/A N/A N/A 0.471 N/A 

[26] CNFE-SE (Ensemble) 0.87 0.87 N/A 0.82 0.92 

[27] Meta-analysis, Systematic Review N/A 0.905 N/A N/A N/A 

Proposed 
Approach 

SHAP-enhanced XGBoost 0.997 1 0.995 1 0.997 

Stacking (XGBoost) 0.985 0.999 0.973 0.997 0.985 

Weighted Hybrid Ensemble 0.965 0.993 0.944 0.99 0.966 

Autoencoder Fusion 0.875 0.942 0.835 0.933 0.882 

Cascading Model 0.512 0.548 0.506 0.978 0.667 

 

 

These corrections have led to more generalizable and 

realistic evaluation metrics. 

Table 4 summarizes the performance of the proposed 

models and situates them within the context of the prior 

IVF prediction literature. It is evident that the SHAP-

augmented and ensemble-based approaches significantly 

outperformed traditional statistical and individual 

machine learning methods. 

4.2 Visual analysis of model discrimination 

power 

The Receiver Operating Characteristic (ROC) curve 

depicted in Figure 3 visually assesses each model’s 

classification capability. SHAP-enhanced XGBoost and 

Stacking (XGBoost) both achieved near-perfect AUCs 

(1.0 and 0.999, respectively), indicating excellent 

discriminative power. The Weighted Hybrid model 

performed slightly lower, with an AUC of 0.993, whereas 

the Autoencoder Fusion model reached 0.942. The 

Cascading model, with an AUC of 0.548, performed 

marginally better than the random guessing model. 

These distinctions are critical in the context of IVF 

decision making. Higher AUC values support more 

confident treatment recommendations, especially in 

borderline cases, where accurate risk estimation is 

essential for guiding patients on whether to continue or 

adjust treatment strategies. 

 

 

Figure 3: Evaluating model performance for ivf success 

prediction: roc curve analysis 

4.3 Multi-Metric evaluation and 

comparative strengths 

Figure 4 presents a radar chart that offers a simultaneous 

view of all the five-evaluation metrics across the models. 

The SHAP-enhanced XGBoost enclosed the widest area, 

confirming its balanced and robust predictive capability. 

Stacking (XGBoost) and Weighted Hybrid also showed 

excellent coverage. The moderate performance of the 

Autoencoder Fusion model is visible, whereas the 

cascading model reflects poor balance and lower values 

across most axes. 

Figure 5, a heatmap, further confirms that the SHAP-

enhanced XGBoost and Stacking models consistently 

outperform the others across metrics. Lighter shades in the 
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heatmap represent a stronger performance. The Cascading 

model’s darker cells in Precision and Accuracy reaffirm 

its unsuitability for reliable clinical use. 

 

Figure 4: Assessing strengths and weaknesses of IVF 

prediction models – radar visualization 

 

 

 
Figure 5: Performance heatmap of predictive models for 

IVF success prediction 

 

In particular, SHAP-enhanced XGBoost excels in 

balancing high precision with perfect recall, making it 

ideal for clinical scenarios in which both false positives 

and false negatives must be minimized. Meanwhile, 

Autoencoder Fusion, despite good recall, suffers from 

potential information loss owing to aggressive feature 

compression. The Cascading model performs the weakest, 

likely because of the inability of the initial Decision Tree 

to filter uncertain cases effectively, leading to downstream 

overfitting and poor generalization. 

Together, these hybrid models demonstrate clear 

advantages over the traditional standalone ML 

approaches. In particular, SHAP-enhanced XGBoost and 

Stacking models represent reliable, high-performance 

options for AI-assisted decision-making in IVF clinics, 

capable of providing explainable, patient-specific 

recommendations. Their high AUC and F1-scores make 

them suitable for real-world deployment, reducing the 

emotional and financial burden on patients through a more 

accurate prognosis. 

4.4 Model interpretability with SHAP 

To enhance transparency and enable the clinical 

interpretability of the predictions made by the stacking 

(XGBoost) model, we employed SHAP. SHAP provides a 

unified framework to quantify the contribution of each 

input feature to a model’s prediction, making it 

particularly suitable for medical applications in which 

explainability is crucial. 

Using TreeExplainer from the SHAP Python library, 

optimized for tree-based models such as XGBoost, we 

calculated the SHAP values on the meta-features derived 

from base learners (Random Forest, MLP, and SVM) in 

the stacking model. This allowed us to evaluate both the 

global feature influence and the local prediction 

explanations for individual patients. 

The SHAP summary plot (Figure 6) illustrates the 

average magnitude and direction of the SHAP values for 

each meta-feature across all the predictions. It is evident 

that the Random Forest_Stacking output consistently 

contributes the most to the model’s predictions, followed 

by MLP_Stacking, whereas SVM_Stacking has a minimal 

impact. This aligns with prior performance evaluations, 

confirming that Random Forest serves as the most 

informative base learner in the stacking ensemble. 

 

 
Figure 6: SHAP Summary Plot of Meta-Feature 

Contributions in Stacking (XGBoost) 

 

To complement global interpretability, Figure 7 

presents a SHAP force plot for a representative instance 

(instance 0). The base value of −0.01528 represents the 

average model output before any feature influence. In this 

instance, the prediction shifted to f(x) = 2.14, primarily 

driven by 

• Random Forest_Stacking = 0.8134, and 

• MLP_Stacking = 0.7444 

 

 
Figure 7: SHAP Force Plot of a Representative Patient 

Prediction 

 

These values collectively pushed the model output 

toward a high probability of successful live births. The 

absence of the SVM_Stacking influence indicates its 

negligible role in this case. 

Together, these SHAP visualizations bridge the gap 

between high-performance AI models and human 

decision-making. 
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• Highlighting the dominant drivers of model 

predictions. 

• Enabling clinicians to interpret individual patient 

outcomes. 

• Building trust in model outputs, particularly for 

borderline or high-risk cases. 

This approach affirms that Stacking with XGBoost, 

when combined with SHAP-based post-hoc 

explainability, not only offers exceptional accuracy but 

also supports clinically meaningful, interpretable 

predictions for IVF success. 

4.5 Generalization and overfitting analysis 

via learning curves 

To evaluate the generalization capability of each proposed 

hybrid model and address potential overfitting, we 

analyzed learning curves plotting training and validation 

error (1 - accuracy) across incremental training set sizes 

(Figure 8). 

The stacking model with the XGBoost meta-learner 

exhibited the most stable and lowest error rates, with 

training and validation curves converging closely 

throughout, thus validating its AUC of 0.999 and accuracy 

of 0.985. Similarly, SHAP-enhanced XGBoost showed 

robust generalization, confirming that integrating 

explainability did not compromise the predictive 

performance. 

The cascading model also maintained tight training-

validation alignment, reflecting its ability to progressively 

handle easy and difficult cases. In contrast, the 

autoencoder fusion and weighted hybrid models showed 

higher variance, especially at mid-level training sizes, but 

stabilized with full training data. These results 

demonstrate that although all models generalize well, 

ensemble-based stacking consistently outperforms the 

others in terms of reliability and predictive robustness. 

These findings confirm that the reported high performance 

is not a result of overfitting, but rather due to strong 

architectural generalization supported by regularization, 

SMOTE-based balancing, and effective feature 

engineering. 

4.6 Statistical validation and clinical 

relevance 

To further validate that the proposed Stacking with Meta-

Learners (XGBoost) hybrid model significantly 

outperforms traditional machine learning approaches, a 

comparative analysis was performed, which resulted in a 

baseline Random Forest model. To assess the statistical 

significance and validate the observed enhancements, two 

non-parametric statistical tests were employed: the 

Wilcoxon Signed-Rank Test, and McNemar’s test. The 

Wilcoxon Signed-Rank Test was used to investigate the 

differences in the predicted probabilities between the 

hybrid and baseline models, which allowed us to evaluate 

their relative performance independent of the distribution. 

The output showed a test statistic of 20.021 and an 

extremely low p-value (p = 1.69 × 10⁻¹¹), with strong 

evidence (overwhelming or red) of the prediction 

differences between hybrid and baseline models being 

significant, suggesting improved predictive power with 

the hybrid model.   
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Furthermore, McNemar's test, which is limited to 

misclassified cases, was performed to assess the 

classification agreement between the two models. The test 

statistic was 20.02 with p-value 7.66 × 10⁻⁶ confirming 

that a significant number of misclassifications from the 

baseline Random Forest model were corrected by the 

hybrid model. This indicates a significant improvement in 

the classification performance, especially when 

differentiating between successful and unsuccessful IVF 

cases.   

Thus, utilizing these comparative statistical tests 

provides powerful evidence that stacking with the Meta-

Learners (XGBoost) hybrid methodology is superior to 

conventional machine learning approaches, and enables us 

to extrapolate this finding with a high level of statistical 

confidence, further promoting the reliability and clinical 

applicability of the proposed hybrid model for IVF 

success prediction. The hybrid model's outperformance 

further confirms its predictive power and underscores its 

potential to inform personalized ART treatment. 

To further validate the robustness of our hybrid 

framework, an ablation study was conducted to 

systematically quantify the contribution of each model 

component. As presented in Table 5, the removal of 

individual components resulted in measurable 

performance degradation, with more pronounced drops 

observed when multiple components were simultaneously 

excluded. In particular, the absence of SMOTE and 

stacking consistently led to lower F1-scores, reflecting 

their critical roles in handling class imbalance and 

enabling meta-level learning. Although the removal of 

RFECV and Bayesian optimization resulted in smaller 

declines, their contributions to feature selection stability 

and model tuning remained evident. Notably, the complete 

removal of all core components led to a breakdown in 

classification performance, confirming the necessity of 

each module. Overall, the ablation results demonstrate that 

the hybrid architecture is not only modular but also 

synergistic, and each element significantly enhances the 

model’s robustness and predictive reliability. 

 

Table 5: Ablation study evaluating the contribution of 

individual components to the performance of the hybrid 

IVF outcome prediction model 

 

Configuration Accuracy AUC F1-Score 

Full Model (Stacking + Bayes 

Opt) 
0.989 0.9991 0.9893 

- SMOTE 0.9845 0.9987 0.9681 

- RFECV 0.9879 0.9993 0.9880 

- Stacking (Weighted Hybrid) 0.9813 0.9939 0.9817 

- Bayesian Optimization 

(Stacking + Simple LR) 
0.9810 0.9941 0.9813 

- SMOTE, - RFECV 0.988 0.9996 0.9751 

- SMOTE, - Stacking 
(Weighted Hybrid) 

0.9755 0.9930 0.9505 

- SMOTE, - Bayesian 

Optimization (Stacking + 

Simple LR) 

0.9755 0.9903 0.9504 

- RFECV, - Stacking (Weighted 

Hybrid) 
0.9840 0.9948 0.9842 

- RFECV, - Bayesian 

Optimization (Stacking + 
Simple LR) 

0.9826 0.9937 0.9829 

- Stacking, - Bayesian 

Optimization (Simple 
Averaging) 

0.9473 0.9933 0.9496 

- SMOTE, - RFECV, - Stacking 

(Weighted Hybrid) 
0.9645 0.9898 0.9298 

- SMOTE, - RFECV, - 
Bayesian Optimization 

(Stacking + Simple LR) 

0.9755 0.9911 0.9499 

- SMOTE, - Stacking, - 

Bayesian Optimization (Simple 

Averaging) 

0.973 0.9891 0.9458 

- RFECV, - Stacking, - 

Bayesian Optimization (Simple 
Averaging) 

0.9456 0.9924 0.9481 

- All Components (Simple 

Averaging) 
0.7635 0.9898 0.0000 

4.7 Addressing research gaps through 

hybrid machine learning model 

To systematically illustrate how the proposed hybrid 

models address the primary research challenges present 

in IVF prediction, a mapping between the defined research 

questions and how hybrid models contribute to resolving 

them is shown in Table 6.   

These models overcome the individual challenges of 

generalization, feature selection, class imbalance, 

uncertainty quantification, deep feature representation, 

and hyperparameter tuning by capturing the 

complementary strengths of different machine-learning 

integration of diverse classifiers, with optimal feature 

selection from within the weighted hybrid ensemble 

using Bayesian Optimization. Autoencoder fusion plays a 

role in the extraction of deep feature representations as 

well as in improving model interpretability and 

performance. Predictive performance is improved by 

flexibility in a cascade model, where predictions are 

iteratively fine-tuned based on uncertainty estimates; thus, 

cases that are harder to predict receive more attuned 

processing. The structured hybrid modelling approach 

adopted in this study provides a robust and scalable 

predictive framework for assisted reproductive 

technologies. The proposed methodologies holistically 

address existing research gaps in reproductive 

management, thereby enabling the development of 

accurate and trustworthy decision-support systems in 

reproductive medicine.approaches. Stacking with  

XGBoost uniquely generalizes across complex IVF 

datasets owing to the seamless
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Table 6: Mapping research questions to hybrid models 
Research Gap 

Questions 
Stacking with XGBoost Weighted Hybrid 

Ensemble 
Autoencoder Fusion Cascading Model 

RQ1: How can predictive 

models generalize better 
for complex IVF data? 

Combines diverse 

classifiers to improve 
generalization. 

Uses weighted voting to 

optimize predictions 
across models. 

Extracts deep feature 

representations to 
enhance generalization. 

Refines predictions 

through cascading 
decision layers. 

RQ2: How can feature 

selection be optimized 
for IVF prediction? 

Uses RFECV for 

selecting the most 
relevant features. 

Bayesian Optimization 

fine-tunes feature 
importance. 

Autoencoder extracts 

hidden features and 
reduces dimensionality. 

Feature selection is 

refined at multiple 
classification stages. 

RQ3: How can we handle 

class imbalances in IVF 

datasets? 

Applies SMOTE to 

rebalance the dataset. 

Uses SMOTE-based 

weighting in hybrid 

ensemble learning. 

Learns balanced 

representations using 

autoencoder 
transformations. 

Adjusts for class 

imbalance dynamically at 

different stages. 

RQ4: How can we 

quantify the uncertainty 
in IVF predictions? 

Uses confidence scores 

from multiple models to 
assess uncertainty. 

Weighted ensemble 

predictions provide 
confidence estimates. 

Autoencoders identify 

ambiguous cases based 
on representation 

patterns. 

Uses cascading 

classifiers to handle 
uncertain predictions 

adaptively. 

RQ5: How can deep 

feature representations 

be utilized for improved 

prediction? 

Meta-learner integrates 

deep patterns learned by 

base models. 

Feature-weighted hybrid 

models leverage complex 

feature interactions. 

Uses autoencoder for 

deep feature extraction 

and fusion. 

Identifies key deep 

features dynamically 

across classification 

stages. 

RQ6: How can 
hyperparameter tuning 

be improved to achieve 

better performance? 

Applies Bayesian 
Optimization to fine-tune 

meta-learner parameters. 

Uses Bayesian search to 
optimize ensemble 

weight distribution. 

Optimizes feature 
learning through 

autoencoder parameter 

tuning. 

Cascading logic ensures 
best-performing 

hyperparameters at each 

stage. 

5 Conclusion 
 

This study introduced novel hybrid machine-learning 

methodologies to enhance the predictability, reliability, 

and interpretability of live birth outcomes in ART. By 

integrating multiple predictive paradigms, including 

Stacking with Meta-Learners (XGBoost), Weighted 

Hybrid Ensembles, Cascading Models, Feature-Level 

Fusion using Autoencoder Networks, and SHAP-

Enhanced XGBoost, the proposed framework effectively 

addressed key challenges such as data heterogeneity, 

nonlinearity, limited interpretability, and class imbalance 

inherent in IVF prediction tasks. Among the models 

evaluated, Stacking with Meta-Learners (XGBoost) 

achieved the highest performance (AUC = 0.999, accuracy 

= 0.985), substantially outperforming traditional statistical 

and standalone machine learning approaches. 

The robustness and generalizability of the proposed 

models were further validated through a rigorous 

comparative analysis against a baseline Random Forest 

model utilizing RFECV. Statistical validation using the 

Wilcoxon Signed-Rank Test and McNemar’s test (both p 

< 0.05) confirmed the significant performance gains of the 

hybrid models, underscoring their potential to support 

personalized IVF treatment planning and clinical 

decision-making. 

As an avenue for future research, further exploration 

of the latent feature space of the Autoencoder Fusion 

model using dimensionality reduction techniques such as 

t-distributed Stochastic Neighbor Embedding (t-SNE) and 

Uniform Manifold Approximation and Projection 

(UMAP) may offer deeper insights into feature 

separability, thereby enhancing both model 

interpretability and predictive accuracy. Additionally, we 

aim to perform prospective validation using real-time 

patient data and assess the integration of the proposed  

 

hybrid models into a Clinical Decision Support System 

(CDSS). This will facilitate deployment feasibility 

evaluations and strengthen the clinical applicability of AI-

driven systems in IVF treatment workflows. Ultimately, 

the widespread adoption of such intelligent systems will 

require careful attention to explainable AI (XAI) 

integration, clinical multicenter validation, and adherence 

to ethical and regulatory standards to ensure trustworthy, 

patient-centered reproductive care. 
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