
https://doi.org/10.31449/inf.v49i24.8515 Informatica 49 (2025) 135–150 135 

Path Planning Optimization for Industrial Robots using an Adaptive 

Improved Differential Evolution Algorithm 

Yang Zhang, Gaofeng Xu* 

School of Artificial Intelligence Application, Shanghai Urban Construction Vocational College, Shanghai 201415, 

China 

E-mail: hd_2323@126.com 
*Corresponding author 

Keywords: path planning, robotics, DE, IASCV, velocity steps 

Received: March 6, 2025 

Industrial robot path planning faces mechanical stress accumulation and motion instability caused by 

velocity step in complex scenarios. In this study, an adaptive optimization model is proposed, integrating 

the improved differential evolutionary algorithm and asymmetric S-type velocity planning. This model 

achieves global-local cooperative optimization through dynamic parameter coupling and velocity field 

feedback mechanism. Moreover, this study constructed a 10m×6m dynamic simulation environment 

(including 12 static/dynamic obstacles) based on the Gazebo platform, and set parameters such as the 

maximum linear velocity of the robot as 2m/s and the safety distance as 0.3m. The performance of the 

model was also compared with traditional benchmark methods (ant colony optimization algorithm, etc.) 

and most advanced methods (improved dynamic window algorithm, etc.). Simulation experiments showed 

that the average path error of the model was reduced by 76.3%, the number of convergence iterations was 

reduced by 33.3%, and the AUC value was improved by 9.6%. The model's dynamic obstacle scenario 

planning efficiency in real-world environments was improved by 23.5%, the motion stability index was 

improved by 7.2%, and the trajectory tracking energy consumption was reduced by 34.7%. In summary, 

the adaptive population initialization strategy of IDE and the segmented plus acceleration constraints of 

IASCV achieve a smooth transition of the velocity profile through the dynamic replanning mechanism in 

the overspeed region, breaking the limitation of the decoupling of the existing trajectory optimization and 

dynamics constraints. In conclusion, the research model reaches the advanced level in terms of 

convergence speed, environmental adaptability and industrial energy efficiency, providing a highly robust 

solution for complex industrial scenarios. 

Povzetek: Razvit je adaptivni algoritem A-I-DE za načrtovanje poti industrijskih robotov, ki z integracijo 

IDE in IASCV doseže večjo natančnost, točnost, stabilnost in energetsko učinkovitost v kompleksnih 

okoljih. 

 

1 Introduction 
As the market demand for industrial products is increasing 

day by day. Mobile industrial robots instead of manual 

labor to participate in the inspection, sorting, handling and 

other production processes and gradually become the main 

development trend of intelligent industry [1]. Optimal 

path planning (OPP) is an important guarantee for 

industrial robots to complete their work successfully, and 

it is also the focus of current industrial robot research. 

Through the optimization of path planning (PP), the 

robot's work efficiency and work accuracy can be 

significantly improved, reducing energy consumption and 

ensuring the efficient completion of the task [2]. The two 

primary categories of robot trajectory planning algorithms 

now in use are joint space trajectory planning (STP) and 

Cartesian STP. Joint STP is concerned with the change in 

angle of each joint, whereas Cartesian STP is concerned 

with the end-effector's path in the workspace [3]. 
However, these traditional PP algorithms have many 

problems. For example, linear interpolation has limited 

planning ability for complex paths and cannot handle  

 

higher order curves or surfaces [4]. Inverse kinematics  

algorithms have no solution or multiple solutions in some 

cases, increasing the computational complexity [5].  

Dynamic PP algorithms rely on accurate robot dynamics 

models and are computationally intensive with high real-

time requirements [6]. Consequently, while extant 

methods optimize the global search path, they do not 

integrate velocity profile smoothing, resulting in 

mechanical stress accumulation. Moreover, they rely on 

data-driven approaches and lack explicit optimization of 

trajectory excitation parameters. Both of them do not 

synergistically solve the velocity step and excitation 

mechanism problems, leading to limited motion stability. 

The motion step problem refers to the accumulation of 

mechanical stresses caused by sudden velocity changes. It 

is a common challenge in dynamic PP (not inherent to DE 

algorithms), but directly affects the accuracy of robot 

motion. Therefore, this study focuses on the underlying 

logic and excellent performance of differential evolution 

(DE), proposes improved DE (IDE), and then establishes 

an OPP model for industrial robots based on adaptive IDE 

(A-I-DE). The objective of the research is to develop a 
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dynamic coupling framework of heterogeneous 

algorithms to address the timing synergy problem between 

global trajectory optimization and local mechanical 

constraints through velocity field-driven multimodal real-

time feedback. The aim is to achieve the simultaneous 

enhancement of PP accuracy and motion stability in 

complex industrial scenarios. The innovation of the 

research lies in the closed-loop collaborative optimization 

mechanism of IDE and improved asymmetric s-curve 

velocity profile (IASCV): It dynamically identifies the 

trajectory risk region through velocity extremum search, 

combines adaptive parameter adjustment and iterative 

correction of multi-speed regions, and realizes the global 

search capability and local trajectory smoothing of DE in 

deep coupling. The deep coupling of DE global search 

capability and local trajectory smoothing breaks through 

the unidirectional serial connection mode between 

traditional DE variants and trajectory post-processing. 

There are four parts to the research. The first part 

introduces the current worldwide research on the logic and 

related algorithms of PP for industrial robots. The second 

part establishes an accurate and efficient OPP model for 

industrial robots from DE algorithm and IASCV. In the 

third part, the proposed PP algorithm model is analyzed 

with examples to verify its reliability. The last part 

summarizes and analyzes the article comprehensively. 

2 Related works 
The use of robots in the production of many industrial 

domains has demonstrated a fast-expanding tendency as 

large-scale development in numerous industries has 

advanced [7]. OPP is one of the core performances of 

industrial robots, and it is also an application direction that 

needs to be continuously expanded and deepened in smart 

industry [8]. However, in complex real-world 

environments, the PP of robots is often accompanied by 

various uncertainties, so many researchers are improving 

this problem. Aiming at the traditional A* algorithm's 

slow planning speed and paths close to obstacles, Li Y et 

al. proposed an improved A* algorithm based on extended 

distance and bi-directional search, which improved the 

algorithm's PP efficiency [9]. For the three-dimensional 

environmental PP problem, Dong L proposed an improved 

A* algorithm with multi-sensor fusion. It significantly 

improved the path search efficiency and environmental 

adaptability by optimizing the heuristic function and the 

cost factor [10]. To address the problems of industrial 

robots in terms of coordination constraints as well as poor 

performance in task allocation, Hartmann VN et al. 

proposed a PP method based on a sampling-based bi-

directional spatio-temporal path planner. The method was 

highly robust and scalable in the long-time dimension 

[11]. Sun D et al. developed a PP approach based on 

temporal signposts to enhance the performance of multi-

robot collaborative task PP in a long-time domain, aiming 

to address the issue of standard algorithms' restricted 

scalability in terms of planning time domain [12]. A new 

hybrid method based on the firefly algorithm and genetic 

algorithm was presented by Zhang T W et al. with the goal 

of improving the robot's computational ability and 

responsiveness in PP. The firefly algorithm would easily 

fall into the local optimal solution (OS) and other 

difficulties [13]. Zan J. suggested a hybrid PP algorithm 

based on genetic and whale optimization algorithms to 

increase the effectiveness of robot PP for issues like PP in 

dynamic and complicated situations [14]. Liu Y et al. 

proposed an enhanced jumping frog swarm algorithm to 

address issues like traditional PP algorithms' poor search 

capabilities and propensity to fall into local optimization. 

This algorithm enhanced the quality of the OS and the 

stability of both low and high dimensional searches [15]. 

Furthermore, to address the problem of planning 

optimal maneuvering trajectories in uncertain 

environments, Chai R et al. proposed a prioritized 

empirical playback algorithm with noise to improve the 

performance of robot motion planning and collision 

avoidance [16]. Chen P et al. developed a PP approach 

based on the soft actor-critic algorithm to address issues 

like the difficulties of PP in dynamic environments. This 

method was able to successfully avoid shifting 

impediments in the environment and finish the planning 

assignment with a high success rate [17]. The time 

required for the robot to visit a series of objects under 

complex operating conditions was significantly decreased 

by Nawaz F et al.'s suboptimal method, which was 

polynomial at each time step [18]. Khlif N et al. proposed 

a Q-learning PP method based on an improved exploration 

strategy for the utilization and exploration balance in PP 

algorithms. The method addressed the shortcomings of the 

algorithm in terms of reduced cumulative rewards in 

exploration and falling into local optimality in utilization 

[19]. Aiming at the problem of ship path smoothness and 

disturbance adaptation, Li D proposed a PP method based 

on Fermat curves. This study could optimize the motion 

trajectories between waypoints and compensate for the 

side-slip angle, and improve the navigation accuracy and 

energy efficiency [20]. In summary, many researchers 

around the world have considered the problems of PP for 

robots in different environments and have conducted 

several research efforts to solve these problems, as shown 

in Table 1. 

Table 1: Recent advances in PP for robots. 

Method Clusters Advantages Disadvantages Key findings References 

Improved A algorithm with 

dynamic window approach 

(IA-DWA) 

Modification of 

the classical 

algorithm 

Combine global and 

local planning to 
improve obstacle 

avoidance efficiency; 

support dynamic 
environment 

adaptation. 

High computational 

complexity and 
limited real-time 

performance. 

Bidirectional search 

strategy reduces path 

redundancy and 
dynamic window 

improves obstacle 

avoidance flexibility. 

[9] 
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Bidirectional spatiotemporal 
path planner (Bi-STP) 

Sampling-based 
path planning 

Long-time domain 

task robustness; 
multi-robot 

collaboration support. 

High-dimensional 

space computational 
complexity increases 

significantly. 

Spatio-temporal 
separation strategy 

reduces planning 

dimensions and 
improves scalability. 

[11] 

Hybrid genetic-firefly 

algorithm (HGFA) 

Hybrid 
optimization 

algorithms 

Balancing global 

search and local 

optimization to avoid 
local optima. 

Parameter sensitivity 

is high and requires 

complex parameter 
tuning. 

The cross mutation 

mechanism of genetic 
algorithm enhances the 

convergence of firefly 

algorithm. 

[13] 

Polynomial-time suboptimal 
multi-target algorithm 

(PTSMA) 

Multi-intelligent 

body 

collaborative 
planning 

Polynomial time 

solutions to multi-
objective access 

problems are 

efficient. 

Suboptimal solutions 
may deviate from the 

global optimum. 

Hierarchical 

optimization strategy 
based on Markov 

decision process 

shortens the task time. 

[18] 

Deep reinforcement learning 

with prioritized experience 

replay (DRL-PER) 

Reinforcement 

learning for 
dynamic 

environments 

Strong real-time 

obstacle avoidance 

performance; no need 
for accurate 

environment 

modeling. 

Depends on a large 

amount of training 
data, high hardware 

resource demand. 

Prioritized experience 

playback mechanism 

accelerates strategy 
convergence, noise 

injection improves 

robustness. 

[16] 

Modified Q-Learning with 

exploration strategy (MQL-
ES) 

Heuristic search 

optimization 

Balance exploration 

and exploitation to 
avoid local optima. 

Convergence is slow 

and relies on initial 
parameter settings. 

Improved exploration 

strategy reduces invalid 

path search and 
improves cumulative 

reward efficiency. 

[19] 

 

In addition, the accuracy and stability of PP are 

crucial for industrial robots to work efficiently and 

industrial production to be conducted in a safe and orderly 

manner, and its importance is self-evident. However, the 

majority of the aforementioned methods prioritize global 

path optimization or dynamic obstacle avoidance, yet they 

do not systematically address the mechanical stresses 

induced by the velocity step. Moreover, these methods 

lack adaptive optimization mechanisms for the trajectory 

excitation parameters, which hinders the integration of 

motion stability and path accuracy. Therefore, based on 

the DE algorithm, the study proposes an OPP model for 

industrial robots based on the A-I-DE algorithm, taking 

the rationality of the incentive mechanism and the stability 

of the motion as the optimization objectives. The study 

provides a comprehensive and innovative solution to solve 

the uncertainty and efficiency problems of industrial robot 

PP in real complex environments. 

3 Methods and materials 
This section describes in detail the A-I-DE algorithm, 

which consists of IDE and IASCV. Among them, IDE is 

responsible for the implementation of the orbit excitation 

mechanism, and the performance of the model in solving 

the motion steps is further improved when combined with 

IASCV. 

 

3.1 IDE algorithm based on track 

excitation design for industrial robots 

In the industrial robot motion model, the track excitation 

mechanism can guide the robot to reach the destination 

accurately, optimize the path selection, and realize the 

industrial collaborative production operation of multi-

robot system. It consists of trajectory length L , maximum 

velocity 
maxv , acceleration 

maxa , and additive acceleration 

maxj . Moreover, it enhances path diversity to approximate 

the global optimum by dynamically adjusting the above 

parameters, which is mathematically expressed as 

minimizing the number of observation matrix conditions. 

The motion stability is related to whether the industrial 

robot can maintain a stable motion state and accurately 

perform the scheduled tasks in the complex and changing 

industrial production environment. Therefore, the study 

proposes an OPP model for industrial robots based on the 

A-I-DE algorithm with respect to the track excitation 

mechanism and motion stability performance of industrial 

robots. Among them, the DE algorithm is the basic 

framework for realizing the track excitation of the PP 

model. Its algorithm flow is shown in Figure 1. 
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Figure 1: The process of the differential evolution algorithm. 

In Figure 1, the DE generates candidate solutions by 

initializing the population, performs mutation, crossover, 

and selection operations sequentially, perturbs the 

individuals using difference vectors and greedily retains 

the superior solution, and iterates in a loop until 

convergence. The procedure first performs an 

initialization operation, giving each population member's 

dimension a value. Each individual is denoted by 

( ), 1,2,i Gx i NP= . i  denotes the number of the 

individual in the population. G  is the number of 

evolutionary generations. NP  represents the population 

size. Every population that has been randomly initiated is 

thought to follow a uniform distribution. It is set that the 

bounds of the parameter variables are 
L U

j j jx x x  , at 

this time, the initialized individual assignments can be 

expressed by Equation (1). 

  ( ),0 0,1 * U L L

jx j j jx rand x x x= − +              (1) 

In Equation (1),  0,1rand  denotes the real number 

that produces uniformity among  0,1 . 
U

jx  and 
L

jx  are 

the upper and lower limits of the parameter variables, 

respectively. After that, the mutation operation is 

performed, and for each target ( ), 1,2,i Gx i NP= , the 

mutation vector is generated as shown in Equation (2). 

( ), 1 1, 2, 3,*i G r G r G r Gv x F x x+ = + −              (2) 

In Equation (2), 1r , 2r , and 3r are randomly 

selected individual serial numbers. Each ordinal number is 

different from each other and cannot be the same as the 

vector ordinal number i , which must satisfy 4NP  . The 

operator for variation The scaling of the deviation variable 

is regulated by the real constant factor  0, 2F  . DE adds 

a crossover operation to the interference parameter vectors 

to make them more diverse. The test vector is now 

displayed in (3). 

( )

( ) ( )

( )

, 1 1 , 1 2 , 1 , 1

, 1 , 1

, 1 , 1

, ,

! 0 !

i G i G i G Di G

ji G ji G

ji G ji G

v u u u

u v randb j CR or j rnbr i

u x x and j rnbr i

+ + + +

+ +

+ +

 =


=  =


= = =

  (3) 

In Equation (3), The random number generator that 

generates  0,1  has an j th estimate, which is represented 

by the ( )randb j . To guarantee that , 1i Gu +  receives at 

least one parameter from , 1i Gv + , ( ) ( )1,2, ,rnbr i D  

stands for a randomly chosen sequence, where D  is the 

population dimension. CR  denotes the crossover 

operator, which takes the value range  0,1 . The selection 

operation is performed after the variation and crossover 

operations are completed. In this process, the test vectors 

are compared with the target vector ,i Gx  according to the 

greedy criterion and the superior one goes to the next 

generation. This process is inter-individual comparison, 

not group competition. If a solution outside the feasible 

domain, i.e., , 1

L

ji G ju x+   or , 1

U

ji G ju x+  , is compiled 

during the mutation process, the operation shown in 

Equation (4) is performed. 

  ( ), 1 0,1 * U L L

ji G j j ju rand x x x+ = − +              (4) 

In Equation (4), the solution generated by the 

mutation is always within the bounds of the parameter 

variables by re-initializing the assignment. In summary, 

population initialization, mutation and crossover 

operations are the key to achieve computational accuracy 

and convergence speed [21]. Therefore, this study 

improves the three in the framework of DE and proposes 

the IDE algorithm. First, the population initialization is 

improved, and the distance between the optimal 

individuals and the initial population's members 

influences the DE algorithm's computation time. Random 

people don't have direction. The initial population is 

optimized by the optimal worst-case backward learning 

strategy to determine the direction of feasible solutions. 

Therefore, the initial individuals are close to the OS, 

which speeds up the convergence of the algorithm while 

maintaining the global search capability. The 

mathematical definition of the reverse learning strategy is 

shown in Equation (5). 
( ) ( )

,opp

j U L j

i j j ix x x x= + −                        (5) 

In Equation (5), 
( )

,opp

j

ix  is the reverse solution of 

individual ix  in dimension j . 
U

jx  and 
L

jx  are the upper 

and lower bounds of the parameters, respectively. The 

study merges the original population P  with the inverse 

population oppP , and retains the highly adapted 

individuals as the optimized initial population. Second, the 

variation operator F 's is improved. The operator is too 

small, which reduces the population diversity. If it is too 

large, it will reduce the search efficiency and affect the 

accuracy of the OS. This study designs the adaptive 
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variation operator, which is calculated as shown in 

Equation (6). 
max

max

1
1

0, *2

g

g g
e F F 

−
+ −

= =                     (6) 

In Equation (6), 0F  is the initial mutation operator. 

maxg  is the maximum evolutionary algebra. g  is the 

current evolutionary generation. The initial adaptive 

variation operator, 02F F= , can maintain individual 

diversity at the beginning. As the number of evolutionary 

generations increases, F  gradually decreases and 

approaches 0F . The linear decay design is predicated on a 

balance between global exploration and local exploitation 

of the algorithm. This is achieved by dynamically 

adjusting the perturbation strength, thereby avoiding local 

optimization in the early stages and suppressing 

oscillations in the later stages. In addition, the value of the 

crossover operator CR  will directly affect the 

convergence time of the algorithm, resulting in missing 

the global OS or reducing the efficiency of the algorithm. 

Similarly, the study designs adaptive crossover operator, 

which is calculated as shown in Equation (7). 

( )min max min

max

k
CR CR CR CR

g
= + −              (7) 

In Equation (7), maxR  and minR  denote the maximum 

and minimum values of the crossover operator, 

respectively. In terms of specific parameter settings, the 

study sets the initial value of the adaptive variance factor 

of IDE to 0.5 and gradually decreases to 0.3 with the 

number of iterations. The dynamic adaptive adjustment 

range of the crossover rate is 0.3-0.9. The adaptive 

variance factor enhances the global search ability in the 

initial stage and improves the convergence accuracy in the 

later stage. The dynamic crossover rate balances the 

diversity of the populations with the convergence speed. 

Through the hyperparameter adaptive dynamic adjustment 

mechanism in Equations (5) and (6), the model is able to 

avoid the subjectivity of manual parameter tuning, while 

adapting to the convergence requirement in different 

environments to ensure the robustness of the algorithm. 

Improving the identification accuracy and reducing the 

condition number of the observation matrix are the main 

goals of optimizing the PP algorithm's excitation 

trajectory criterion. Therefore, the flow of IDE to optimize 

the trajectory excitation parameters is shown in Figure 2. 

As illustrated in Figure 2, IDE incorporates adaptive 

variance factors and dynamic crossover rates, integrates 

optimal backward learning to initialize the population, 

generates incentive parameters through constraint 

validation and cyclic optimization, and iteratively updates 

them until the termination conditions are met. First, IDE 

initializes the population, and the incentive track 

parameter is the population dimension. Then, the 

individual objective value of the current population is 

calculated, which is quantified by a weighted multi-

objective function as shown in Equation (8). 
2

obj 1 2 3 42

max max min

1L T d
f w w w w

L T ddt


=  +  +  + ∣ ∣  

(8) 

In Equation (8), L  is the planning path length. maxL  

is the maximum theoretical path length of the scene. T  is 

the path execution time. maxT  is the maximum time 

threshold allowed by the task.
2

2

d

dt


∣ ∣  is the sum of the 

absolute values of the joint angular acceleration, which 

measures the smoothness of the trajectory. mind  is the 

minimum distance between the path and the obstacle. 

Furthermore, the weight coefficients satisfy 

1 2 3 4 1w w w w+ + + = , and the study is set to 

1 2 3 40.4, 0.3, 0.2, 0.1w w w w= = = = . If the current 

individual does not meet the constraints, the objective 

value is set. If it does, compare the initial value and the 

current individual's objective function value. If the initial 

value is greater, the initial value of the individual is 

updated, otherwise genetic operations are performed to 

generate new individuals, i.e. mutation, crossover, 

selection. If the new individual value is greater than the 

original individual value, the population is reinitialized. At 

this point, the number of evolutionary generations is 

increased by one, and the cycle optimization is restarted 

until the OS for the population is obtained, or the evolution 

reaches the maximum number of generations. 
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Figure 2: The process of optimizing the trajectory excitation parameters in the IDE. 
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3.2 A-I-DE path planning modeling for 

motion step problems 

Orbital excitation mechanisms and motion stability are at 

the core of learning and adaptive path optimal planning for 

industrial robots. The study proposes that IDEs optimize 

the design of the excitation mechanism. However, in 

industrial dynamic environments or collaborative 

production operations, the operating speed of industrial 

robots often undergoes jumping changes. This process 

will generate huge mechanical stress, which affects the 

motion accuracy and stability of industrial robots, and thus 

poses a threat to industrial production [22]. IASCV makes 

the velocity profile of industrial robots smoother by 

processing the trajectory in segments, reduces the impact 

when starting and stopping, and improves the stability and 

accuracy of the motion. Therefore, the research addresses 

the velocity step problem, combines IASCV to further 

optimize the IDE, and proposes A-I-DE. Among them, the 

curve model of IASCV is shown in Figure 3. 

In Figure 3, the IASCV is predicated on the 

enhancement of the ASCV, with the absence of mid-

beginning and end-end acceleration. The red point 

demarcates the transition moment of the acceleration 

phase to ensure a seamless transition of motion. The green 

point identifies the critical state of uniform and variable 

speeds to regulate the magnitude of the velocity step. 

Furthermore, the blue point calibrates the point of 

cumulative inversion of the displacement to inhibit motion 

oscillations. IASCV restricts the second-order derivative 

continuity of the velocity profile by adding acceleration 

constraints to the segmented trajectory and dynamic time 

allocation. This ensures that the acceleration in each phase 

transitions smoothly to avoid mechanical shocks. The 

parameters when IASCV runs are mainly trajectory length 

L , initial velocity sv  and final velocity ev , maximum 

acceleration maxa , maximum deceleration maxa− , initial 

acceleration sa , and final acceleration ea . It constructs a 

curve model by using the parameters and outputs, and the 

model parameter changes can be calculated based on the 

change curves when the curve trajectory runs. For 

example, when 10 t t  , the parameter changes are 

shown in Equation (9). 

( )

( )

( )

max 1

2

1 max 1

2 3

1 1 max 1

*

* 0.5 *

* 0.5 * ( * ) / 6

st

s st

s st

a a j

v v a j

S v a j



 

  

 = +


= + +
 = + +


     (9) 

In Equation (9), maxj  denotes the maximum additive 

acceleration. 
1

, 1,2, ,7
k

k i

i

t T k
=

= =  denotes the elapsed 

point moments of each motion phase of the trajectory.   

denotes the local time coordinates, where 

1 1, , 2, 7k kt t t k  −= = − = . Similar to ASCV, IASCV 

finds the values of the running time T  for different phases 

based on the input parameters. Its algorithm flow is shown 

in Figure 4. 
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Figure 3: Improved asymmetric S-curve model. 
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Figure 4: The process of improved asymmetric s-curve velocity profile. 
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In Figure 4, the known trajectory parameters, 

including L , sv , ev , etc., are firstly inputted into the 

algorithm. After that, the segmental displacement 

trajectory a dL L L= +  is calculated for the initial and 

terminal velocities to reach the maximum uniform 

velocity maxv . In this case, aL  and dL  are calculated as 

shown in Equation (10). 

( ) ( )

( )

( ) ( )

( )

2 2 2 2
max max max

max

max max max

0.5
2

max max

max max

max max

2 2 2 2
max max max

max

max max max

0.5
2

max max

max max

max max

0.5 0.5

*

0.5 0.5

*

s s

a s

s

a s s

e e

d e

e

d e e

v v v v a
L v v

a j j

v v a
L v v v v

j j

v v v v d
L v v

d j j

v v d
L v v v v

j j

− +
= + − 

 −
= + −  

 

− +
= + − 

 −
= + −  

 

















                                         (10) 

In Equation (10), maxd  is the maximum acceleration 

in the deceleration phase. If the shortest trajectory required 

to change ev  from sv  is less than L , it means that sv  and 

ev  satisfy the planning conditions. Then, based on the 

displacement length and the actual sv  and ev , the actual 

maxv  is calculated by dichotomization and proceeds to the 

next step. Otherwise, the bisection operation is skipped, 

and the different stages running time T  is calculated 

directly based on the actual track parameters. Then the 

different phase running times T  are summed up to obtain 

the shortest total running time. Finally, the actual values 

of sv , ev , and maxv  are output, as well as the values of 

each phase and the shortest total running time. For 

IASCV, the study sets the maximum additive acceleration 

to be set at 1000 cm/s3, the maximum acceleration to be 

500 cm/s2, and the initial acceleration to be 50 cm/s2 

during PP. The IASCV parameter ensures the smooth 

transition of the velocity profile by constraining the upper 

limit of additive acceleration and acceleration to reduce 

the mechanical shocks and improve the stability of the 

motion. On this basis, the study combines IASCV with 

IDE to propose the A-I-DE PP model. Its algorithm flow 

is shown in Figure 5. 

In Figure 5, A-I-DE achieves collaborative 

optimization through a bidirectional closed-loop feedback 

mechanism. In this mechanism, IDE generates path 

parameters, and then IASCV detects velocity anomalies in 

real time and triggers dynamic adjustment of the 

parameters with feedback. Both of these processes are 

iteratively corrected between path generation and velocity 

smoothing. This ensures a dynamic balance between 

global optimization and local motion constraints. That is, 

A-I-DE is divided into two main components: the 

computation of the overspeed region and the replanning of 

the trajectory. The former is used for the preliminary 

detection of individual overspeeds, while the latter is 

based on multi-area computation to realize accurate 

trajectory correction, taking into account both global 

safety and local optimization needs. The A-I-DE 

algorithm first generates the initial path through IDE PP 

and identifies the peaks of velocity mutation through the 

velocity extreme value search module. The overspeed 

determination link is responsible for detecting any 

potential violations of the dynamics constraints. In the 

event of overshoots, the continuous risk period is divided 

into single or multiple overspeed regions. The trajectory 

correction module is tasked with dynamically adjusting 

the excitation parameters and relaying these adjustments 

back to the IDE for iterative optimization. The corrected 

trajectory is looped again until all overspeed regions are 

eliminated, and the final output is a smooth velocity 

profile. This sequence of operations helps to ensure the 

safety and efficiency of the robot's motion while 

optimizing time. 
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Figure 5: The structure of A-I-DE. 
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4 Results 
For verifying the effectiveness and superiority of the A-I-

DE algorithm proposed in the study, the study synthesizes 

the theoretical foundation and algorithm analysis 

mentioned above, and carries out simulation simulation 

running experiments and real environment motion 

experiments on the industrial robot model under different 

algorithms. Moreover, the experimental results are 

analyzed in detail to compare their PP accuracy and 

motion stability. 

4.1 Simulation simulation operation 

experiment 

The industrial robot PP model's application environment 

is combined with the simulation running experiments to 

provide a compatible system development environment 

that is separated into a software environment and a 

hardware environment. The detailed configuration is 

shown in Table 2. 
In Table 2, the study selects Windows 10 as the 

operating system and the robot operating system as the 

software platform. Gazebo 3D physical simulation 

platform is used to build the simulation scene, and the 

industrial robot model is constructed through the unified 

robot description format. The simulation environment is a 

10m×6m rectangular space containing 12 obstacles: 8 

static cylinders (diameter 0.5-1.2m) and 4 dynamic 

moving cubes (side length 0.8m). The robot has a 

maximum linear velocity of 2m/s, a safety distance 

threshold of 0.3m, and a joint torque limit of 80%. 

Moreover, the constraint values are set based on the robot 

dynamics model and industry standards. Furthermore, the 

study selects ant colony optimization algorithm, firefly 

algorithm, DE, and IASCV as the comparison methods 

and named ACO, FA, DE, and IASCV respectively. A-I-

DE is taken as the object of the study and named A-I-DE. 

These baseline methods can systematically verify the 

comprehensive performance of this algorithm in multi-

dimensional performance metrics. They represent typical 

schemes in the fields of traditional heuristic search, 

population intelligence optimization, and speed 

smoothing, respectively, and cover the mainstream 

technological routes of PP. Moreover, the pheromone 

volatility of ACO is 0.5 and the heuristic factor is 2.0.The 

attractiveness of FA is 0.9 and the step size is 0.3.The 

variance factor of DE is 0.6 and the crossover rate is 

0.8.The maximum acceleration of IASCV is 500 cm/s² and 

the acceleration of additive acceleration is 1000 cm/s³. 

Moreover, the parameters are set based on the standard 

literature recommended values to ensure the fairness. In 

this study, two points are firstly selected as the starting 

point (0,0) and the target point (5m, 3m) of the industrial 

robot in the complex environment simulated by the 

simulation. Then, the robot is controlled to start from the 

starting point and finally reach the target point, which is 

repeated 10 times with the confidence interval set to 95%. 

Among these, Figure 6 displays the outcomes of the 

distance inaccuracy between the industrial robot and the 

TP point once it has stopped operating. 

Table 2: System development environment. 

 System development environment 

Hardware environment 

Intel(R) Core(TM) i7-8700 
Installed memory 16.00GB 

NVIDIA RTX2080Ti 

Software environment 

Windows 10 is running on a 64-bit operating system 

Robot Operate System 

Gazebo 

Unified Robot Description Format 
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Figure 6: Difference in target point error. 
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Figure 7: Iterative learning performance experiments. 

In Figure 6(a), when the industrial robot stops 

moving, ACO has the largest change in error from the TP. 

The maximum error magnitude of change is 2.11 cm, 

followed by FA. Among them, the error fluctuates 

between 3.89 cm and 5.92 cm. The errors of DE and 

IASCV varied less, with the maximum change magnitude 

of 1.59 cm for both. The error of A-I-DE varies the least, 

with the error fluctuating between 0.65 cm and 2.24 cm. 

In Figure 6(b), in terms of the average error, A-I-DE has 

the smallest error of 1.15 cm. It is followed by DE with an 

average error of 2.79 cm. IASCV has an average error of 

3.74 cm. ACO and FA have the largest errors, with a mean 

value of 5.10 cm and 5.34 cm, respectively. The outcome 

displays that the accuracy of the A-I-DE's PP is much 

higher than the traditional algorithm. In addition, the study 

selects the operational dataset as the training set and 

conducts iterative experiments on the model. The study 

verifies its learning performance by comparing its PP 

efficiency (path success rate).The results of which are 

shown in Figure 7. 

In Figure 7(a), DE completes convergence at 1500 

iterations and has the fastest convergence rate. ACO 

completes convergence at 2600 iterations. FA and IASCV 

converge the slowest, completing convergence at 3400 

and 3200 iterations, respectively. Whereas, A-I-DE has 

the second fastest convergence rate after DE, completing 

the convergence at 2000 iterations. In Figure 7(b), before 

and after convergence, FA has the lowest average 

efficiency of 0.25 and 0.72, respectively. It is followed by 

ACO, with average efficiencies of 0.32 and 0.78 before 

and after convergence, respectively. The efficiencies 

before and after convergence of DE and IASCV are in the 

ranges of 0.28-0.40 and 0.78-0.92, respectively. Whereas 

A-I-DE has the highest efficiency before and after 

convergence with mean values of 0.39 and 0.94 

respectively. Compared to the fast local convergence of 

DE, A-I-DE prioritizes the strengthening of the global 

search capability and expands the exploration area of the 

solution space through dynamic parameter adjustment. 

This ensures that the local optimum in complex PP is 

avoided, and the moderate iteration cost is traded for high 

accuracy and stability. For the overall PP performance of 

the model, the study conducts receiver operating 

characteristic curve (ROC) and area under curve (AUC) 

analysis. The results are shown in Figure 8. 
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Figure 8: Analysis of ROC for different algorithms. 
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Table 3: Differences in computational complexity. 

Method ACO FA DE IASCV A-I-DE 

Single planning time（ms） 15.2 12.7 9.4 8.1 6.3 

peak memory usage（MB） 48.3 40.6 35.2 30.5 26.8 

CPU utilization（%） 82.5 75.8 68.3 62.4 58.9 

 

Table 4: Comparison of model motion stability. 

Method TTE (cm) SSF (time) ASF (time) PSI (%) TS (°/m) 

ACO 6.32 9 12 68.5 8.2 

FA 6.78 8 11 70.2 7.8 

DE 4.15 6 8 82.7 5.4 

IASCV 3.89 5 7 88.3 4.9 

A-I-DE 1.05 2 3 95.6 2.1 

 
In Figure 8, in the ROC, the false positive rate (FPR) 

grows fastest at 0-0.2 for the true positive rate (TPR). At 

0.2-0.6, the growth of TPR becomes slower and gradually 

stabilizes after 0.6. At the same FPR, ACO had the lowest 

TPR, followed by FA. At this time, the TPRs of DE and 

IASCV are slightly higher than that of FA, but the TPR of 

A-I-DE is the largest. In addition, there is a similar trend 

of difference in the AUC values of the different models. 

IASCV has an AUC value of 0.85, whereas A-I-DE has 

the highest AUC value of 0.87. The AUCs of DE and FA 

are 0.80 and 0.78, respectively, and the AUC of ACO is 

the lowest value of 0.72. The benchmark value of AUC in 

PP tasks is typically 0.8-0.9 [23], and experiments show 

that A-I-DE has high reliability and outperforms most 

traditional algorithms. 

To further explore the computational complexity of 

the proposed algorithm, the study selects the single 

planning elapsed time (ms), peak memory occupancy 

(MB), and CPU utilization (%) metrics for 

experimentation. The results are shown in Table 3. 

In Table 3, the single planning elapsed time of A-I-

DE (6.3ms) is 58.5% lower than that of ACO (15.2ms), 

due to the low computational overhead of the adaptive 

mutation and crossover operators. The peak memory 

usage (26.8MB) is 23.9% lower than that of DE (35.2MB), 

due to the optimization of IDE's population initialization 

to reduce redundant storage. The CPU utilization (58.9%) 

is significantly lower than the comparison methods, 

thanks to IASCV's speed smoothing mechanism, which 

reduces the frequency of real-time replanning. The results 

show that A-I-DE has significant advantages in scenarios 

with limited computational resources. 

In addition, to verify the motion stability of the model 

in the simulated environment, the study selects trajectory 

tracking error (TTE), speed step frequency (SSF), 

acceleration step frequency (ASF), posture stability index 

(PSI) and trajectory smoothness (TS) metrics for 

comparison. The PSI and TS metrics are compared and the 

results are shown in Table 4. 

In Table 4, the TTE of A-I-DE (1.05 cm) is 83.4% 

lower than that of ACO (6.32 cm), due to the closed-loop 

parameter coupling of IDE and IASCV, which suppresses 

the cumulative displacement deviation. Its SSF (2 times) 

is only 33% of that of DE (6 times). ASF (3 times) is 57% 

less than that of IASCV (7 times), attributed to the 

adaptive parameters of IDE suppressing the path 

abruptness. In addition, the PSI of the A-I-DE is 95.6%, 

which is significantly higher than that of the IASCV 

(88.3%) due to the IDE's optimization of path excitation 

parameters to reduce fuselage inclination. Trajectory 

smoothness (TS=2.1°/m) is improved by 61.1% compared 

to DE (5.4°/m) thanks to the segmentation plus 

acceleration constraints of IASCV, confirming the overall 

advantages of A-I-DE in terms of kinematic stability and 

dynamic performance. 

4.2 Real environment motion experiments 

Robot operation in simulation is an important standard for 

measuring the operation of industrial robots. However, 

influenced by many uncontrollable factors, the operation 

status of industrial robots in the actual environment often 

differs from the simulation simulation. Therefore, the 

study uses an industrial production workshop as the 

experimental environment, with workshop equipment as 

static obstacles and workers and other industrial robots as 

dynamic obstacles, to conduct experiments. Each set of 

experiments is repeated 10 times to verify the stability. 

Moreover, the study selects Universal Robots UR5 

collaborative robot (public parameters, 

https://www.universal-robots.com/products/ur5-robot/) as 

the actual test robot. The starting point is located at the 

origin of the workshop coordinates (0,0), the target point 

is set as the material loading and unloading area (12.5m, 

8.2m), and the theoretical shortest path between the two 

points is 15.3 m. The actual running path is recorded in 

real time by the laser tracking instrument (API T3) and the 

accumulated mileage is calculated, and the deviation of 

the path length is quantified by the Euclidean distance 
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integration method. In addition, the study selects DE and 

IASCV, which perform better in simulation and 

simulation running experiments, as the comparison 

method, and A-I-DE is used as the object of the study. The 

study firstly verifies the operational efficiency of the 

model when facing no obstacles (No, N), static obstacles 

(Static, S), and dynamic obstacles (Dynamic, D). The 

static obstacles are set as 8 fixed cylinders, and the 

dynamic obstacles are set as 5 randomly moving spheres 

(with operational constraints consistent with those of the 

robot). Furthermore, the experiments use 10 sets of 

random seeds to generate the initial positions of the 

obstacles to ensure the generalizability of the results. 

Figure 9 displays the outcomes of the experiment. 
In Figure 9, the model has the highest PP efficiency 

in an accessible environment, followed by static barriers, 

and the model has the lowest efficiency in a dynamic 

barrier environment. In Figure 9(a), the efficiency of DE 

is 0.96 in the accessible environment, and 0.83 and 0.86 in 

static and dynamic barriers, respectively. In Figure 9(b), 

IASCV has the lowest efficiency of PP in the real 

environment. Its planning efficiency is 0.93, 0.78, and 

0.74 in the three barrier environments, respectively. In 

Figure 9(c), the planning efficiency of A-I-DE in all three 

obstacle environments is high, and the overall efficiency 

is above 0.91. Among them, the model has the highest PP 

efficiency in the barrier-free environment, reaching 0.98. 

This means that the PP success rate of A-I-DE reaches 

98%, indicating a nearly redundancy-free search, which 

significantly improves the efficiency of continuous 

operation in industrial scenarios. Moreover, the critical 

tilting angle of conventional industrial robots is about 25°, 

and they will fall down if the critical tilting angle is 

exceeded. Therefore, the study selects 10 time points 

during the movement of the industrial robot. Moreover, 

the angle  between the body of the industrial robot and 

the horizontal plane at that time point is used as the basis 

for judgment. The smaller the tipping angle during the 

motion of the industrial robot, the higher the motion 

stability. Table 5 displays the findings. 
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Figure 9: Confusion matrix analysis for operational efficiency. 

Table 5: Athletic stability of different algorithms running. 

Points 
Dump angle (°) Motion stability (%) 

DE IASCV A-I-DE DE IASCV A-I-DE 

1 11.85  5.90  4.82  52.60  76.40  80.72  

2 13.76  7.75  7.75  44.96  69.00  69.00  

3 12.74  8.75  4.50  49.04  65.00  82.00  

4 12.90  8.16  6.17  48.40  67.36  75.32  

5 13.78  7.92  7.42  44.88  68.32  70.32  

6 11.48  8.85  6.73  54.08  64.60  73.08  

7 14.10  5.95  4.63  43.60  76.20  81.48  

8 12.31  6.83  4.52  50.76  72.68  81.92  

9 13.63  6.41  6.45  45.48  74.36  74.20  

10 11.51  6.17  7.73  53.96  75.32  69.08  

Mean 12.81  7.27  6.07  48.78  70.92  75.71  
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Figure 10: Path trajectory and error. 

In Table 5, DE has the largest dumping angle ranging 

from 11.48°-14.1°0 with a mean value of 12.81°. IASCV 

has a range of dumping angle from 5.90° to 8.85° with a 

mean value of 7.27°. The mean dumping angle of A-I-DE 

is 6.07° and the range fluctuates between 4.50°-7.75°. In 

addition, according to the calculated equation 

25
*100%

25
Ms

−
= , the A-I-DE has the highest motion 

stability ranging from 69.00% to 82.00% with a mean 

value of 75.71%. This is followed by IASCV with stability 

ranging from 64.60%-76.40% with a mean stability of 

70.92%. The stability of DE is the lowest, with an overall 

range of 43.60%-54.08% and a mean value of 48.78%. 

The experimental results show that the robot under A-I-

DE control operates more stably with a low probability of 

error in real environment applications. The study also 

examines the discrepancy between the industrial robot's 

real motion path and its preset path in real time to confirm 

the model's correctness and stability in real-world 

operations. Figure 10 displays the outcomes of the 

experiment. 

In Figure 10(a), the IASCV has a large offset relative 

to the preset trajectory in the control motion, and the actual 

motion trajectory is curved. DE has a smaller offset 

relative to the preset trajectory, while the actual trajectory 

of A-I-DE fits the preset path better. In Figure 10(b), the 

errors of the actual paths of DE and IASCV with respect 

to the preset paths are between 2.97cm-5.76cm and 

3.96cm-7.14cm, respectively. Their mean values are 

4.29cm and 6.06cm, respectively. At this time, the errors 

of the paths of A-I-DE are between 1.26-4.25cm, and the 

mean error is 6.62. Moreover, except for some external 

time points, the errors of the other time points are smaller 

than those of DE and IASCV. The experimental results 

show that the industrial robot under A-I-DE control has 

the best operational accuracy and stability in the real 

environment. It can be concluded from the 

aforementioned findings that the study on the 

improvement of the DE algorithm in the operations of 

initializing population, mutation, and crossover, as well as 

combining it with the IASCV algorithm for optimization 

and other improvement measures, is effective. The 

implementation of these measures can lead to enhanced 

performance of industrial robots in terms of efficiency and 

stability of PP. 

Moreover, to validate the comprehensive 

performance advantages of the proposed methods of the 

study in complex environments, the study selects methods 

from the literature [9], [11], [13], [16], [18], and [19] for 

comparison with A-I-DE. These methods are IA-DWA, 

Bi-STP, HGFA, PTSMA, DRL-PER, and MQL-ES and 

the results are shown in Table 6. 

Table 6: Comparison of A-I-DE and recent advances. 

Method IA-DWA Bi-STP HGFA PTSMA DRL-PER MQL-ES A-I-DE 

Convergence iterations 2600 3400 2800 2100 3200 2500 2000 

Path error 
(cm) 

5.1 3.74 5.34 4.29 6.06 4.15 1.15 

Motion stability 

(%) 
48.78 70.92 65.2 72.5 68.3 74.8 75.71 

Computational efficiency (times/s) 38.5 22.1 45.3 50.6 18.9 40.7 65.4 

AUC 0.72 0.85 0.78 0.82 0.87 0.83 0.94 

Table 7: Comparison of model integrated energy efficiency performance. 

Method MOEC （W·h） TTEC （J/m） HRPEC （W） SPTEC （W·s） TSEC （kW·h） 
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IA-DWA 12.5 8.2 95.3 1.9 1.28 

Bi-STP 10.8 7.5 88.7 1.7 1.15 

HGFA 11.2 7.8 92.1 1.8 1.21 

PTSMA 9.6 6.9 84.5 1.5 0.98 

DRL-PER 15.3 9.1 102.4 2.3 1.45 

MQL-ES 8.9 6.3 78.9 1.3 0.85 

A-I-DE 7.2 5.1 72.4 1 0.68 

 

As shown in Table 6, the number of convergence 

iterations (2000) of A-I-DE is significantly lower than that 

of the comparison methods (2100-3400), thanks to the 

dynamic parameter adjustment strategy of the adaptive 

variational and crossover operators. Its path error (1.15 

cm) is 72.3% lower than that of the optimal comparison 

method (4.15 cm for MQL-ES), which is due to the IDE's 

orbit excitation mechanism that optimizes the parameter. 

Motion stability (75.71%) is better than other algorithms 

because IASCV's smooth velocity profile effectively 

suppresses mechanical stress. The computational 

efficiency (65.4 times/sec) and the TPR (AUC=0.94) are 

attributed to the improvement of the population 

initialization and the dynamic replanning mechanism in 

the overspeed range, which avoids the redundant search. 

Finally, the study validates the comprehensive model 

by comparing the research model with the latest work of 

model operation energy consumption (MOEC), trajectory 

tracking energy consumption (TTEC), hardware resource 

peak energy consumption (HRPEC), single planning time 

energy consumption (SPTEC) and total system energy 

consumption (TSEC). Hardware resource peak energy 

consumption (HRPEC), single planning time energy 

consumption (SPTEC), and Total system energy 

consumption (TSEC) are introduced to verify the 

comprehensive energy efficiency performance and 

industrial applicability of the model. The experimental 

results are shown in Table 7. 

In Table 7, the model running energy consumption of 

A-I-DE (7.2W-h) is reduced by 19.1% compared to the 

latest work MQL-ES (8.9W-h) due to the adaptive 

parameters to reduce the redundant computation. The 

trajectory tracking energy consumption (5.1J/m) is 

reduced by 18.9% thanks to the IASCV speed smoothing 

to reduce the frequent motor starts and stops. The peak 

power consumption of hardware resources of A-I-DE 

(72.4W) is 29.3% less than DRL-PER (102.4W) due to 

IDE population optimization to reduce memory and CPU 

load. The energy consumption (1.0 W-s) of a single design 

is only 52.6% of IA-DWA, and the total system energy 

consumption (0.68 kW-h) is optimized by 20.0% 

compared to MQL-ES (0.85 kW-h). The experimental 

results confirm the energy saving advantages of the A-I-

DE. 

5 Discussion and conclusion 
The IDE algorithm and the IASCV algorithm were 

integrated in the study to address the issues of low 

efficiency and poor motion stability of conventional PP 

algorithms for industrial robots. The A-I-DE PP model 

was then created. The model improved the accuracy and 

stability of industrial robot operation by optimizing the 

track excitation mechanism and solving the velocity step 

problem. The experimental results revealed that the 

average absolute error of A-I-DE was 1.15cm in the 

simulation simulation experiments, with an error range 

between 0.65cm-2.24cm. The errors of the other 

algorithms ranged from 2.15cm-5.34cm. When iterating in 

the operational data set, the average efficiency of A-I-DE 

before and after convergence was 0.39 and 0.94, 

respectively. Whereas the efficiencies of other algorithms 

before and after convergence were in the range of 0.20-

0.43 and 0.68-0.92, respectively. Moreover, in the ROC 

analysis, the AUC value of A-I-DE was 0.87, whereas the 

other algorithms' AUC values were in the range of 0.70-

0.85. In addition, in the actual detection, the detection 

efficiency of IRAU-DSC was above 0.91, while the 

efficiency of other algorithms ranged from 0.71-0.85. In 

addition, in the actual environmental motion experiments, 

the efficiency of A-I-DE in different environments ranged 

from 0.91-0.98, while the efficiency of other algorithms 

ranged from 0.74-0.96. However, the average tipping 

angle and average stability of A-I-DE were 6.07°  and 

75.71%, respectively, during the actual motion. For other 

algorithms, the dumping angle and stability were in the 

range of 5.90°-14.10° and 43.60%-76.40%, respectively. 

Moreover, the real-time error of the path of A-I-DE was 

between 1.26cm-4.25cm. The average errors of other 

algorithms were 4.29cm and 6.06cm, respectively. In 

conclusion, the study offers practical applications for 

enhancing the precision and reliability of industrial robot 

PP. However, the PP model proposed in the study focuses 

on single-segment paths, which may lead to cumulative 

errors at trajectory breakpoints due to the temporal 

constraint transfer characteristic of the parameter coupling 

mechanism in the continuous operation of multiple goal 

points. Additionally, the model suffers from the problem 

of nonlinear growth of computational complexity in 

complex topological environments. To address this 

limitation, in future work, the dynamic parameter 

decoupling strategy of trajectory articulation between 

target points, combined with incremental learning to 

optimize the subpath incentive mechanism, will be used to 

construct a hierarchical optimization framework to 

achieve global stability control of multistage continuous 

planning. 
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