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This paper proposes an innovative solution based on deep learning for the anomaly detection challenge 

of big data in the industrial Internet of Things environment. Through in-depth analysis of time series and 

image data characteristics, LSTM and GRU networks are introduced to process time series data, and 

CNN models (such as ResNet and InceptionNet) are introduced to deal with image analysis and effectively 

capture complex patterns in data. Model-building involves not only architectural design, but also 

optimization strategies such as Adam Optimizer and loss function selection. In the preprocessing stage, 

the data are cleaned carefully through standardization, normalization, de-trending and de-noising to 

improve the learning efficiency of the model. The dataset used in the study is from a real - world intelligent 

manufacturing plant, with 1,000,000 records over three years. It contains 12 - dimensional sensor data 

(such as temperature, vibration frequency, current intensity), and outliers account for approximately 5% 

of the total data. Experimental results demonstrate that the distributed autoencoder under the federated 

learning framework outperforms traditional methods. It achieves an accuracy of 0.97, a recall of 0.94, an 

F1 - score of 0.95, and an AUC value of 0.96.However, it has a higher training time of 45 minutes and 

high communication costs during the training process due to the exchange of more data. In the federated 

learning process, each participating node independently trains the model based on local data, and uses 

the FedAvg strategy to aggregate parameters on the central server. Homomorphic encryption technology 

is used to ensure data privacy and prevent the leakage of original data. Compared with baseline methods 

such as IQR and Isolation Forest, the accuracy of this method is improved by 8%, which is statistically 

significant after the t-test (p<0.05). Although the training time is 45 minutes, which is higher than the 

traditional method, it has obvious advantages in complex industrial data processing and privacy 

protection, and achieves a trade-off between computational efficiency and privacy protection and 

detection performance. The 95% confidence interval of the precision rate of 0.97 is [0.962, 0.978], the 

95% confidence interval of the recall rate of 0.94 is [0.931, 0.949], the 95% confidence interval of the F1 

value of 0.95 is [0.943, 0.957], and the 95% confidence interval of the AUC value of 0.96 is [0.952, 0.968]. 

Povzetek: Članek predstavi porazdeljeni samokodirnik z združenim učenjem, ki združuje LSTM, GRU, 

CNN in VAE za zaznavanje anomalij v industrijskih podatkih, dosega dober AUC ob zaščiti zasebnosti. 

 

1 Introduction 
With the advent of the "Industry 4.0" era, smart 

factories and digital production lines are gradually 

becoming a reality, and industrial systems are generating 

and accumulating data at an unprecedented rate. This 

includes but is not limited to multi-dimensional 

information such as the operating status of production 

machines, environmental conditions, raw material quality, 

processing parameters, and finished product test results. 

The widespread adoption of the Industrial Internet of 

Things (IIoT) accelerates this process, enabling every link 

from a single device to the entire production chain to be 

monitored and recorded in real time. The accumulation of 

this data forms the foundation of industrial big data. It 

enables fine-grained management, predictive  

 

maintenance, and quality control. However, this flood of  

data of this size and complexity also presents new 

challenges. Firstly, the diversity and heterogeneity of data 

make it difficult for traditional data processing and 

analysis methods to deal with effectively. Industrial data 

often involves a large number of time series data, images, 

sounds and other types, and there are noise interference, 

missing values and inconsistency problems, which put 

forward higher requirements for data cleaning and 

preprocessing. Secondly, anomaly detection is no longer 

simply looking for outliers, but needs to identify subtle, 

potential abnormal behaviors in complex industrial 

environments, which may be precursors of equipment 

wear, process deviations and even safety risks, which are 

far more difficult to identify than conventional statistical 

anomaly models. 
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In order to overcome these challenges, deep learning 

models such as LSTM, GRU, and CNN architectures 

(including ResNet and InceptionNet) have been widely 

adopted due to their ability to process sequential and 

spatial data, respectively. Moreover, data preprocessing 

techniques—such as standardization, normalization, 

detrending, and denoising—are essential to enhance 

model performance and ensure stability across 

heterogeneous datasets.These preprocessing steps were 

systematically applied in this study to clean the raw sensor 

data before model training, thereby reducing noise 

interference and ensuring consistent feature scaling. 

Therefore, the traditional anomaly detection methods 

based on threshold setting, statistical hypothesis testing or 

expert rules have increasingly obvious limitations when 

dealing with such large-scale, high-speed and high-

dimensional industrial data. These methods often rely on 

manually set standards and thresholds, which are difficult 

to adapt to dynamic changes in data patterns and easily 

lead to false positives and false negatives, thus affecting 

production efficiency and decision-making accuracy. In 

this context, anomaly detection technology based on deep 

learning, with its powerful data processing capabilities, 

self-learning capabilities and pattern recognition 

capabilities, has become a new way to break through the 

bottleneck of traditional technologies and meet the needs 

of the industry 4.0 era. By constructing a deep neural 

network model, high-order features can be automatically 

extracted from industrial big data, and more complex and 

hidden abnormal patterns can be identified, providing 

strong technical support for intelligent monitoring, 

preventive maintenance and efficient decision-making. 

Network traffic data collection and 

preprocessing
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Flow monitoring model

Labeling Amendments

Parameter Updates
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Figure 1: Anomaly detection techniques based on deep learning 

 

Figure 1 illustrates the deep learning-based anomaly 

detection framework, which integrates data preprocessing, 

model training, and federated aggregation. The framework 

begins with data ingestion and transformation, followed 

by sequential and image-based model components 

(LSTM/GRU and CNN, respectively). Each component 

contributes to feature extraction before reconstruction or 

classification modules identify anomalies. This holistic 

architecture enables multi-modal learning and real-time 

fault recognition across distributed environments. 

Anomaly detection based on deep learning has shown 

great potential in the industrial field with its powerful data 

learning and pattern recognition capabilities, and its 

framework is shown in Figure 1. Deep learning models are 

able to automatically learn high-level abstract features 

from raw data without the need for artificial design 

features, a feature that is especially important for 

processing complex, unstructured industrial data. It can 

not only effectively identify hidden abnormal patterns that 

are difficult to capture by traditional methods, but also 

optimize model performance through continuous learning 

to adapt to changes in production environment. Therefore, 

the application of deep learning for anomaly detection can 

not only significantly improve production efficiency, 

reduce downtime caused by equipment failure, reduce 

maintenance costs, but also promote product quality 

improvement and achieve finer production management 

and decision support [1]. 

In recent years, anomaly detection methods based on 

deep learning have received extensive attention in 

academia and industry. Early research focused on 

unsupervised learning using autoencoders to identify 

anomalies by reconstructing errors. Subsequently, 

scholars explored more types of deep learning models, 

such as the application of convolutional neural networks 

(CNN) to time series data analysis, and the advantages of 

recurrent neural networks (RNN) and long short-term 

memory networks (LSTM) in processing industrial data 

with temporal dependence. In addition, some studies have 

attempted to combine generative adversarial networks 

(GANs) to generate normal samples as benchmarks for 

anomaly detection. Despite significant progress, current 

methods still face many challenges, including poor model 

interpretability, sensitivity to noise, and high 
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computational resource requirements for large-scale data 

processing [2]. 

The main objective of this study is to develop an 

efficient anomaly detection algorithm for industrial big 

data in a distributed environment. Specifically, we aim to 

explore how to optimize federated learning for anomaly 

detection in distributed industrial settings. The research 

questions are defined as follows: 1. How can we design a 

distributed autoencoder framework under federated 

learning to effectively capture abnormal patterns in 

industrial big data while ensuring data privacy? 2. What 

are the optimal strategies for integrating various deep - 

learning techniques such as LSTM, GRU, CNN, GANs, 

variational autoencoders, and causal reasoning to improve 

the performance of anomaly detection in industrial 

scenarios? 3. How can reinforcement learning be applied 

to dynamically adjust the parameters of the anomaly 

detection model to adapt to the complex and changing 

industrial environment? 

Additionally, industrial datasets often exhibit class 

imbalance, with abnormal events representing a small 

fraction of the total data. In the dataset used in this study, 

anomalies accounted for approximately 5% of the total 

1,000,000 records collected over three years, posing a 

significant challenge for model generalization and 

minority-class detection. 

2 Literature review 

2.1 Abnormality monitoring 
Anomaly detection (AD) is an important branch of 

data mining and machine learning. Its core task focuses on 

identifying data points that deviate from normal behavior 

patterns or statistical rules from massive data. These 

"anomalies" may result from measurement errors, system 

failures, fraud or other rare events. Traditional methods 

have accumulated a series of technical means in this 

respect, such as statistics-based detection, among which 

the most intuitive is the simple threshold rule constructed 

by using mean and standard deviation: where x is the 

observed value and k is a constant, which is used to adjust 

the severity of anomaly determination. Box plot analysis 

(IQR method) is also a classic method to identify 

anomalies by identifying the Interquartile range (IQR) of 

the data distribution [3]. Clustering algorithms such as 

DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) use density estimation to divide 

data points, which can effectively identify isolated points 

in low density areas [4]; while density-based Local Outlier 

Factor (LOF) quantifies the degree of abnormality by 

comparing the density ratio of a point to its neighborhood 

points [5]. 

Although these methods perform well in certain 

scenarios, most of them are based on certain assumptions, 

such as the normal distribution of the data, the need to 

manually set thresholds or cluster density thresholds, 

which limit their flexibility and effectiveness when 

dealing with complex, high-dimensional, nonlinear, and 

dynamically changing datasets [6]. In contrast, anomaly 

detection methods based on deep learning can 

automatically learn high-level, low-dimensional feature 

spaces with characterization power from raw data by 

constructing multi-layer neural networks, especially 

autoencoders and variational autoencoders (VAE). This 

process not only reduces the dependence on feature 

engineering, but also makes the model more flexible to 

adapt to various data patterns. For example, self-encoders 

learn data representations by minimizing reconstruction 

errors, the basic idea of which can be formalized as a loss 

function, where x is the input data and is the reconstructed 

data after the encoding and decoding process [8]. Because 

it is difficult to reconstruct outliers accurately, higher 

reconstruction errors will be produced in the process, and 

outliers will be identified. 

Furthermore, recurrent neural networks (RNNs) and 

long short-term memory networks (LSTMs) exhibit 

unique advantages in processing anomaly detection in 

time series data, as they are able to capture long-term 

dependencies in time series [9]. Convolutional neural 

networks (CNN), on the other hand, effectively identify 

abnormal regions in images or signals by learning local 

feature patterns in the field of image and signal processing 

[10]. These deep learning models are not only able to 

handle high-dimensional, complex data structures, but 

also to automatically capture nonlinear relationships in the 

data without making strict assumptions about data 

distribution, providing a more robust and widely adaptable 

solution for anomaly detection [11]. 

In summary, anomaly detection technology based on 

deep learning is gradually becoming the preferred tool for 

dealing with anomaly detection problems in complex 

industrial big data through its unique data representation 

learning ability, playing an irreplaceable role in improving 

production efficiency, reducing operating costs, and 

ensuring system security. 

 

2.2 Deep learning in anomaly detection 
In recent years, deep learning has made significant 

progress in the field of anomaly detection, providing 

new perspectives and solutions for dealing with 

complexity and nonlinear problems in industrial big 

data. Much research has focused on improving the 

detection accuracy, generalization ability, and real-time 

performance of models. Here is a summary of some key 

advances. 
Autoencoders (AEs) and their variants, such as 

Denoising Autoencoders (DAEs) and Variational 

Autoencoders (VAEs), have become the focus of anomaly 

detection research because of their powerful feature 

learning and data reconstruction capabilities. By training 

the model to minimize the difference between the input 

data and its reconstructed output, the self-encoder is able 

to learn the normal pattern of the data. Abnormal data 

cannot be reconstructed accurately, resulting in large 

reconstruction errors, so it is identified. For example, 

Georgescu et al. successfully detected anomalies in 

network traffic using stacked sparse autoencoders [12]. 

Recurrent neural networks (RNN), especially long 

short-term memory networks (LSTM) and gated recurrent 

units (GRU), are widely used in anomaly detection for 

time-series data widely existing in industrial fields. These 
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models capture long-term dependencies in time series and 

are suitable for scenarios such as equipment failure 

prediction and sensor data analysis [13]. It demonstrated 

excellent anomaly detection performance on multiple time 

series datasets by combining bidirectional LSTM and 

autoencoder [14]. 

Deep learning-based anomaly detection in images 

and videos has also made significant progress in visual 

surveillance and manufacturing quality control. By 

extracting advanced visual features through CNN and 

more complex models such as ResNet and DenseNet, 

combined with optical flow estimation and spatiotemporal 

convolution, abnormal behaviors or defects in images and 

videos can be effectively identified [15]. Sabokrou et al. 

proposed a framework based on memory network, which 

can efficiently detect abnormal behaviors by learning 

spatiotemporal patterns of normal behaviors [16]. 

Given the potential limitations of a single model, 

researchers are beginning to explore ensemble learning 

and hybrid approaches, combining deep learning models 

with traditional statistical methods or rule systems to 

improve detection performance and model 

interpretability. For example, by integrating the prediction 

results of multiple autoencoder models, or combining the 

reconstruction errors of autoencoders with statistically 

based thresholding methods, the utility and confidence of 

models can be enhanced without sacrificing model 

performance [17]. Due to the scarcity of outlier data in the 

training set, unsupervised and semi-supervised learning 

strategies become the focus of research. These methods 

can still effectively learn normal patterns and detect 

anomalies without relying on or relying on only a small 

amount of labeled data, greatly broadening the application 

range of anomaly detection [18]. For example, by using 

generative model pre-training, or combining clustering 

techniques to guide deep network learning, the anomaly 

detection ability of the model can be improved in the 

absence of sufficient outlier samples [1 9]. More recently, 

researchers have begun incorporating reinforcement 

learning (RL) into anomaly detection frameworks to 

achieve the ability to dynamically adjust detection 

strategies. This approach allows the model to self-

optimize based on real-time data feedback, such as 

dynamically adjusting thresholds or selecting the most 

relevant features for analysis, to maintain high detection 

performance in changing industrial environments [20]. 

For example, Xie et al. proposed an adaptive anomaly 

detection system combined with deep reinforcement 

learning, which can automatically adjust the detection 

sensitivity according to the change of network traffic and 

improve the recognition ability of unknown attacks [21]. 

Due to the distributed nature of the industrial Internet, 

federated learning, as a distributed machine learning 

paradigm for data privacy protection, has begun to emerge 

in the field of anomaly detection. It allows all participating 

nodes to train the model collaboratively without directly 

sharing data, effectively solving the problems of data 

island and privacy protection [22]. The federated 

autoencoder model developedin the literatureenables 

efficient anomaly monitoring of distributed industrial 

equipment data by sharing model parameters across 

organizations rather than raw data [23]. With industry 

focusing on model interpretability, researchers are 

working to develop interpretable deep learning anomaly 

detection frameworks so decision makers can understand 

and trust detection results. This includes introducing 

attention mechanisms to highlight the parts of the data that 

the model focuses on in the decision-making process, as 

well as combining causal reasoning to clarify the 

relationship between anomalies and potential causes. 

 

 

Table 1: Literature summary 
Method 

Category 
Method Accuracy Recall 

Computational Efficiency 

(Training Time / min) 
Data Privacy Protection 

Traditional 
Method 

IQR 0.88 0.76 1.3 
Minimal, no specialized privacy 

protection measures 

Classic 

Machine 
Learning 

Isolation Forest 0.91 0.84 11 
Relies on privacy processing during data 

preprocessing 

Emerging 

Algorithm 
One-Class SVM 0.93 0.87 14 

Provides some privacy protection through 

feature space processing 

Our Approach 
Federated Learning-Based 

Distributed Autoencoder 
0.97 0.94 45 

High level of data privacy protection via 

federated learning protocols and 

encryption technology 

 

As shown in Table 1, in addition to protecting 

privacy, federated learning can also integrate distributed 

data, learn more comprehensive patterns, and improve 

anomaly detection capabilities, which is difficult to 

achieve with traditional methods. 

3 Anomaly detection method based 

on deep learning  
With the popularity of Internet of Things (IoT) 

technology, sensors, devices and systems in industrial 

production processes generate massive amounts of data. 

These data cover every link of the production process, 

from raw material procurement to final product delivery, 

forming TB and PB level data volume. This scale of data 

provides rich material for in-depth analysis, but it also puts 

forward extremely high requirements for data storage, 

management and analysis capabilities. Industrial data is 

not only voluminous but also diverse, including but not 

limited to time-series data, images, video, and structured 

and unstructured machine logs. These data contain 

complex interactions and nonlinear relationships, such as 

collaborative operations among equipment, dynamic 

changes in production environments, etc., which make 



Federated Learning-Based Distributed Autoencoder for Industrial… Informatica 49 (2025) 181–196 185 

data cleaning, integration and understanding extremely 

difficult. Modern industrial production emphasizes 

efficiency and flexibility, requiring immediate response to 

abnormal conditions in the production process. This 

means that anomaly detection systems must have real-time 

or near-real-time data processing capabilities that can 

collect, analyze, and alert in a short time to reduce 

downtime and maintenance costs [24]. 

3.1 Method selection 

LSTM

GRU

Time Series 

Data

CNN Image Data All data

 

Figure 2: Model framework 

In the context of industrial big data, the selection of 

deep learning models needs to closely fit data 

characteristics and task requirements, and its framework is 

shown in Figure 2. For time series data, such as equipment 

monitoring records, considering their time dependence, 

long short term memory networks (LSTM) and gated 

recurrent units (GRU) are the optimal models because 

they can effectively capture long-term dependence. The 

update mechanism of LSTM can be expressed as Equation 

1-5 [25]. 

1( [ , ] )t f t t ff W h x b −=  +  (1) 

1( [ , ] )t i t t ii W h x b −=  +  (2) 

1( [ , ] )t o t t oo W h x b −=  +  (3) 

1 1( [ , ] )t t t t c t t cc f c i tanh W h x b− −= +  +  (4) 

( )t t th o tanh c=  (5) 

where, andtan h are activation functions representing 

matrix multiplication and element-by-element 

multiplication, representing forgetting gate, input gate, 

output gate, cell state, and hidden state, respectively. 

For image data processing, such as product defect 

detection, convolutional neural networks (CNN) can 

efficiently identify complex image features by using their 

powerful spatial feature extraction capabilities, especially 

ResNet, InceptionNet, etc. The convolution operation is 

defined in Equation 6 [26]. 
[ ] [ ] [ 1] [ ]l l l lZ W A b−=  +  (6) 

In the industrial big data environment, the key to deep 

learning model selection for time series data and image 

data lies in accurately matching data characteristics and 

task requirements. Time series data, such as equipment 

monitoring records, prefer LSTM and GRU because of 

their strong time dependence, which efficiently capture 

long-term dependence through fine gating mechanisms 

and adapt to changes in time and conditions of industrial 

equipment behavior. 

Therefore, the selection of STM/GRU and CNN and 

its variants accurately corresponds to the complex 

dependencies, feature extraction and efficiency challenges 

of industrial scenarios, demonstrating the high 

adaptability and efficiency of deep learning models in 

industrial big data applications [27]. 

 

3.2 Model construction 
Building a deep learning model based on LSTM 

(Long Short-Term Memory) is a complex and meticulous 

process that involves careful design of the model 

architecture, careful planning of training strategies, and 

proper selection of loss functions. This process will be 

described in detail below, focusing on the design of the 

LSTM model, the selection of training strategies and loss 

functions. Using mini-batch gradient descent combined 

with Adam optimization, the process of dynamically 

adjusting the learning rate is shown in Equation 7-9.  

1 1 1(1 )t t tm m g −=  + −   (7) 

2

2 1 2(1 ) ( )t t tv v g −=  + −   (8) 

11 ( )

corrected t
t t

m
m


=

−
 

21 ( )

corrected t
t t

v
v


=

−
 (9) 

1  corrected corrected

t t t tw w m v−= −  +ò   (10) 

where is the first and second order momentum 

estimates, is the decay rate, is the gradient, is the learning 

rate, and is the constant that avoids division into zero. In 

the anomaly detection task, the choice of loss function is 

also critical, and mean square error (MSE) and binary 

cross-entropy loss are commonly used. For autoencoders, 

the reconstruction loss is defined as: 

2

1

1
( )

N

recon i i

i

L x x
N =

= − (11). 

Equations (7)–(9) define the update rules for the 

Adam optimizer, where   tm  and   tv  are the first and 

second moment estimates of the gradients, respectively. 

The learning rate  is adaptively adjusted using bias 

correction. 

Equation (10), which calculates the updated model 

parameter t , is the final update step based on the 

corrected moment estimates: 

1

ˆ

ˆ

t
t t

t

m

v
  −= − 

+ò
(12) 

Here, ˆ
tm  and t̂v  are the bias-corrected versions of 

  tm  and   tv , and ò is a small constant to prevent division 

by zero. This step concludes the Adam update cycle, 

integrating adaptive learning rate scaling and gradient 

normalization. 
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3.3 Feature engineering and pretreatment 
We started by unifying data scales. Standard Scaler 

and MinMaxScaler are two powerful tools for 

multidimensional data. Normalization causes the data to 

appear as a standard normal distribution with a mean of 0 

and a standard deviation of 1 by subtracting the mean and 

dividing by the standard deviation, using the formula, for 

models with specific assumptions about the distribution of 

the data. Normalization is scaling the data to the interval 

[0,1], a formula that does not change the shape of the data 

and is suitable for scenarios that do not care about 

distribution but only about the relative size of variables. 

These two methods ensure the consistency of different 

feature scales, which makes the model training more 

efficient. 

Time series data require extra preprocessing because 

of its temporal nature. The first step is detrending to 

eliminate long-term trends in the data that interfere with 

anomaly detection. Moving averages or differences, such 

as first-order differences, are often used to remove linear 

trends. Next, denoising, moving average or median 

filtering can effectively reduce random noise. Periodic 

(seasonal) effects can be removed by seasonal 

decomposition or periodic differentiation. These 

processes ensure that the data reflect instantaneous 

changes rather than inherent patterns, facilitating the 

identification of outliers [29]. 

Pre-processing of image data aims to enhance the 

robustness of the model to variations and reduce the 

computational burden. First, graying is a common step 

that reduces computational complexity by simplifying 

color information to a single channel, equation (Y = 

0.2125R + 0.59G + 0.14B). Then, normalization maps 

pixel values to [0,1] or [-1,1] intervals to adapt to neural 

network inputs. 

For missing data, the K nearest neighbor 

interpolation method is used to fill in the missing data, and 

the filling value is determined based on the similarity of 

the data features.  The outlier removal strategy is as 

follows: for numerical features, if the data point exceeds 

the mean ± 2.5 times the standard deviation, it is 

considered an outlier and replaced by the median of the 

feature.  In terms of image data, data enhancement 

operations such as random cropping (cropping ratio of 

10%), color jitter (brightness, contrast, and saturation jitter 

range are all ± 0.2) are implemented to expand the image 

data set. 

Pre-processing of image data aims to enhance the 

robustness of the model to variations and reduce the 

computational burden. Grayscale conversion is commonly 

applied as the first step, and is calculated by the formula 

Y=0.2125R+0.59G+0.14B, which converts RGB color 

values into a single intensity channel based on human 

visual sensitivity to red, green, and blue components. 

This operation reduces the input image from three 

channels (R, G, B) to one, thus significantly lowering the 

number of parameters and computation required in early 

convolutional layers. For example, in a convolutional 

neural network (CNN), applying a 3x3 kernel to a three-

channel image requires three sets of weights per filter, 

while in a single-channel grayscale image, only one set is 

needed. This reduction not only accelerates convolution 

operations but also decreases memory consumption 

during training, which is particularly important in 

resource-constrained edge devices or large-scale federated 

environments. 

 

3.4 Innovative anomaly detection algorithms 
The model aggregation adopts the FedAvg strategy.  

In each round of training, each node uses local data to 

calculate the model gradient and sends the gradient to the 

central server through an encrypted channel.  The server 

performs weighted averaging based on the proportion of 

each node's data volume to the total data volume.  For 

example, if the data volume of node C accounts for 25%, 

its gradient weight is 0.25.  After calculating the updated 

global model parameters, they are sent back to each node 

for the next round of training. 

In today's highly distributed and increasingly 

complex industrial environments, data fragmentation and 

privacy protection pose significant challenges to 

achieving efficient anomaly detection. In order to face this 

real problem and promote technological innovation, we 

design a novel anomaly detection solution, which 

skillfully combines the powerful reconstruction ability of 

distributed self-encoder model with the privacy protection 

property of federated learning framework. Our goal is to 

maximize the use of valuable data resources distributed 

across geographic locations or organizations while 

ensuring data security to achieve unprecedented detection 

accuracy and response speed. 

The distributed autoencoder model, as the core 

component, is carefully designed to learn efficient low-

dimensional representations of data on local nodes. These 

autoencoders not only capture key features in the data, but 

also identify outliers with large deviations from normal 

patterns through reconstruction errors, maintaining high 

sensitivity even in the face of highly diverse industrial data. 

By performing feature learning independently at each 

node, we significantly reduce data transmission 

requirements across the network, thereby effectively 

controlling communication costs and potential latency 

issues. The introduction of the federated learning 

framework provides us with a platform for secure and 

compliant data collaboration. Under this framework, 

participants do not need to share raw data, only exchange 

model parameters or updates, and can collaboratively 

optimize the global model. This mechanism perfectly 

complies with data privacy regulations and ensures that 

the confidentiality of sensitive industrial data is not 

violated. Through iterative federated training, the model 

can continuously absorb knowledge from multiple parties 

and gradually improve its ability to identify complex 

abnormal behaviors, while the data privacy of individual 

participants is fully guaranteed. Each node independently 

trains local autoencoders to minimize localreconstruction 

errors, shares only updates to model parameters rather 

than original data, and achieves iterative optimization of 
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the model through a global aggregation server. The 

formula can be expressed as Formula 11 [30]. 
2

, ,ˆ( )

1

1 local local i local iN x x

local

ilocal

L
N

−

=

=   (13) 

Where, is the number of local data points, and are the 

input and reconstructed output, respectively. This method 

not only protects data privacy, but also realizes 

collaborative learning for anomaly detection across 

institutions. The federated learning framework adopted in 

this paper is shown in Figure 3.
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Figure 3: Federal learning framework 

 

To solve the problem of scarce abnormal data, we 

innovatively introduce adversarial generative adversarial 

training strategy. Combining generative adversarial 

networks (GANs) with anomaly detection models not only 

generates high-quality normal samples to supplement 

training data, but also improves the robustness of the 

model through adversarial training. Adversarial is 

reflected in the anomaly detection model trying to 

distinguish between real and generated samples, while 

GAN tries to deceive the detection model. The loss 

function can be expressed as: where is the detector loss, is 

the generator loss, and balances the two. In this way, the 

model learns finer normal patterns in adversarial training 

and is more sensitive to anomalies. 

To improve the interpretability and accuracy of 

anomaly detection, we fuse variational autoencoder (VAE) 

with causal inference framework. The model not only 

learns valid representations of data, but also identifies 

causal relationships between features, thereby eliminating 

causal noise in anomaly detection. Using the structural 

causality model, we define the outlier score based not only 

on the reconstruction error but also on the conditional 

probability of violation in the causality plot, as shown in 

Equation 12. 

recon violationscore L P= +   (14) 

Among them, the weight measures the degree of 

violation in the causal structure. This method enhances the 

logic of the model and the understanding of complex data, 

making anomaly detection more accurate and easy to 

interpret. Fusion Variational Autoencoder (VAE) and 

causal inference framework is shown in Figure 4. 

 

X

Input

Encoder
g Z

Abstract Feature

Dncoder
f Y

Output

Optimization goal: f,g = argminf,g(x,f(g(x)))

 

Figure 4: Fusion variational autoencoder (VAE) and causal reasoning framework 
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In a highly dynamic industrial environment, we 

innovatively apply reinforcement learning (RL) policy-

guided deep learning models to dynamically adjust 

anomaly detection parameters. As an agent, the model 

learns the optimal detection strategy through environment 

interaction, such as dynamic threshold adjustment or 

feature selection, to adapt to environmental changes. 

Formulated briefly, the agent's reward function is: where 

is the detection accuracy, is the environmental adaptation 

metric, and is the harmonic coefficient. This method 

makes the model adapt to dynamic changes and 

continuously optimizes detection performance, providing 

a strong adaptive anomaly detection framework for 

dynamic industrial environments. 

In our framework, the training process of the 

distributed autoencoder is coordinated by federated 

learning, which is mathematically expressed as follows: 

here, represents the parameters of the global model after 

the t+1 iteration, K is the number of nodes participating in 

federated learning, is the local data of the kth node, is the 

sum of all node data, and is the local model parameters 

updated by the kth node after the t iteration. Through this 

aggregation process, the model can integrate the 

information of the whole network while protecting data 

privacy, and improve the accuracy of anomaly detection. 

The model aggregation adopts the FedAvg strategy. 

In each round of training, each node uses local data to 

calculate the model gradient and sends the gradient to the 

central server through an encrypted channel. The server 

performs weighted averaging based on the proportion of 

each node's data volume to the total data volume. For 

example, if the data volume of node C accounts for 25%, 

its gradient weight is 0.25. After calculating the updated 

global model parameters, they are sent back to each node 

for the next round of training. 

For the joint training of GANs and anomaly detection 

models, the core lies in balancing the losses of both, and 

the specific expression is shown in Equation 13. 

~ ( )

~ ( ) ~ ( )

[log(1 ( ( )))

[log( ( ))] [log( ( ( )))]

z

data z

gen z p z

det x p x z p z

L D G z

L D x D G z

= −

= +

E

E E
(15) 

Where G is the generator, D is the discriminator (and 

anomaly detector in this framework), is the prior 

distribution (e.g. Gaussian distribution) of the potential 

vector z, and is the true data distribution. Co-optimization 

of the model is ultimately achieved by minimizing to 

maximize the deceptive nature of the generated samples 

while minimizing to enhance the detector's ability to 

distinguish between real and generated samples. 

The anomaly detection score, which combines 

variational autoencoder (VAE) and causal inference, is 

defined as follows: where, is the reconstruction loss of 

VAE, which contains both the data likelihood and KL 

divergence terms, ensuring efficient representation 

learning of the data; and, represents the elements in the 

causality matrix learned by the model and true (or preset), 

respectively, and is the number of edges in the causality 

graph, which is used to normalize the degree of violation. 

Taken together, the anomaly score reflects the degree to 

which data points are anomalous in terms of 

reconstruction error and violation of causal structure. 

In the framework of dynamically adjusting detection 

parameters under the guidance of reinforcement learning, 

the learning goal of the agent (i.e., the model) is to 

maximize the cumulative reward, and its strategy selection 

is based on the Bellman equation: where, is the value 

function under the state s, a is the action taken, s'is the new 

state reached after taking the action, and is the discount 

factor. By interacting with the environment, the model 

learns how to select the best action a (adjust thresholds, 

select features, etc.) based on the current state s (e.g., 

characteristics of the data stream, historical detection 

performance) to maximize the long-term reward R, thus 

achieving the goal of adaptively optimizing anomaly 

detection in a dynamic industrial environment. 

After standardization and normalization, detrending 

is a crucial step for time series data. The main purpose of 

detrending is to eliminate the long - term trends in the data 

that may interfere with anomaly detection. For example, 

linear trends can be removed using methods such as 

moving averages or differencing. If the time series data 

has a linear trend t ta by t= + +ò  , where a and b are 

constants, and tò is the noise term, first - order 

differencing ( 1t t ty y y − = −  ) can be applied to remove 

the linear component. Regarding noise reduction, in 

addition to the common moving average or median 

filtering methods, we also considered Fourier transform 

and wavelet methods. Fourier transform decomposes the 

time series data into different frequency components. By 

analyzing the frequency spectrum, high - frequency noise 

components can be identified and removed. 

Mathematically, the Fourier transform of a time series 

( )y t is defined as 
2)( () i fty t e dtY f 


−

−
=  . Wavelet 

transform, on the other hand, has the advantage of 

analyzing both the time and frequency domains 

simultaneously. It can better capture the local 

characteristics of the data, which is beneficial for detecting 

and removing noise in non - stationary time series. 

Different wavelet bases, such as Haar, Daubechies, etc., 

can be selected according to the characteristics of the data. 

However, after comprehensive consideration of 

computational complexity and the nature of our industrial 

data, we found that for our specific dataset, traditional 

moving average and median filtering methods could 

achieve satisfactory noise reduction effects while 

maintaining relatively low computational costs. 

The federated learning framework adopted in this 

study employs a secure aggregation protocol for parameter 

exchange. In each training round, local models on 

different nodes calculate their gradients based on the local 

data. These gradients are then encrypted before being sent 

to the global aggregation server. We use homomorphic 

encryption techniques, such as Paillier encryption, to 

ensure the security of the transmitted gradients. With 

Paillier encryption, the global server can perform 

arithmetic operations on the encrypted gradients (such as 

addition) without decrypting them, and then send the 

aggregated and encrypted result back to the local nodes for 

further model updates. In terms of the security model, the 
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main potential vulnerability lies in the possibility of 

malicious nodes. Malicious nodes may send false 

gradients to disrupt the global model training. To address 

this issue, we implement a multi - party verification 

mechanism. Each node not only sends its gradients but 

also a proof of the integrity of the calculation process. 

Additionally, we periodically check the consistency of the 

model updates among different nodes. If a node's update 

significantly deviates from the majority, it will be flagged 

for further investigation. Although the use of encryption 

and verification mechanisms increases the computational 

and communication overhead to some extent, they play a 

crucial role in ensuring the security and reliability of the 

federated learning process. 

 

3.5 Distributed autoencoder framework 

pseudo - code 
The following is the pseudo - code for the distributed 

autoencoder framework in the federated learning 

environment: 

 

Input: Local data 
localD on each node 

Output: Trained global model parameters global   

For each node k in the network: 

Initialize local autoencoder model with parameters 
k

local   

While not converged: 

Extract mini - batches 
iB from 

localD   

For each mini - batch 
iB  : 

Encode 
iB using 

k

local to get ( , )k

i i localEncoder Bz =   

Decode 
iz to get ˆ ( , )k

i i localB Decoder z =   

Calculate local reconstruction loss 

| |

1
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| |
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k
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ji

L Loss B B
B =

=    

Update 
k

local using an optimizer (e.g., Adam) based on 
k

localL   

Send updated 
k

local to the global aggregation server 

At the global aggregation server: 

Aggregate received 
k

local from all nodes to get global using a weighted averaging method (e.g., 
1

1

K
k

k local

k
global K

k

k

n

n



 =

=

=



 , where 

kn is the 

size of local data on node k  ) 

Send global back to all nodes 

All experiments were conducted on a computing 

cluster consisting of 10 nodes. Each node was equipped 

with an Intel Xeon E5 - 2620 v4 processor, 64GB of RAM, 

and an NVIDIA Tesla P100 GPU. The operating system 

used was Ubuntu 18.04. The deep learning framework was 

implemented using TensorFlow 2.3.0, and the 

communication between nodes in the federated learning 

process was facilitated by the PyTorch - Lightning - Bolts 

library for distributed training. 

4 Experimental evaluation 
The industrial data set used in this study comes from 

the real production environment of an intelligent 

manufacturing plant, and records the monitoring data of 

equipment operation status in the past three years. The 

dataset contains a variety of sensor data, such as 

temperature, vibration frequency, current intensity, etc., 

with a total of 12 feature dimensions. The data sets are 

labeled as normal operation and abnormal events, which 

include but are not limited to equipment failures, overload, 

and abnormalities caused by irregular operation. The 

dataset size is 1,000,000 records, of which outliers account 

for approximately 5% of the total data, ensuring adequate 

testing of the model's ability to detect anomalies. 

Precision: The proportion of outlier samples correctly 

identified.Recall: The percentage of actual outlier samples 

that are correctly identified. F1-Score: The harmonic 

average of precision and recall, a combined measure of 

model performance. ROC curve (Receiver Operating 

Characteristic Curve) and AUC value (Area Under the 

Curve): Describe the relationship between true rate (TPR) 

and false positive rate (FPR) under different thresholds. 

The larger the AUC value, the better the overall 

performance of the model.  

The hyperparameter tuning process is crucial for 

optimizing the performance of the model. We used a grid 

search method to adjust several key hyperparameters. For 

the LSTM and GRU models, the hyperparameters we 
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tuned included the learning rate, which was searched in 

the range of [0.0001, 0.001, 0.01], the number of hidden 

units in the hidden layer, with values of [64, 128, 256], and 

the number of training rounds, set to [50, 100, 150]. For 

the CNN models, in addition to the learning rate and 

number of training rounds, we also tuned the kernel size 

of the convolutional layers, with options such as [(3, 3), 

(5, 5), (7, 7)]. 

The following are the formulas for the key metrics 

used in the evaluation: - Precision: Precision = 

True Positives

True Positives False Positives+
- Recall: Recall = 

True Positives

True Positives False Negatives+
- F1 - Score: F1 - 

Score = 2
Precision Recall

Precision Recall




+
- AUC (Area Under 

the Curve): In the context of the Receiver Operating 

Characteristic (ROC) curve, AUC is calculated by 

integrating the True Positive Rate (TPR) with respect to 

the False Positive Rate (FPR) over all possible threshold 

values. Mathematically, it can be approximated using 

numerical integration methods for the ROC curve. 

We selected the Receiver Operating Characteristic - 

4Area Under the Curve (ROC - AUC) as one of the key 

evaluation metrics mainly because it provides a 

comprehensive measure of the model's performance 

across all possible classification thresholds. In the context 

of anomaly detection, where the distribution of normal and 

abnormal data may be imbalanced, ROC - AUC can 

effectively evaluate the model's ability to distinguish 

between the two classes without being overly affected by 

the threshold selection. In contrast, simple accuracy may 

be misleading in imbalanced datasets as it can be 

dominated by the majority class (normal data in most 

cases). In addition to the traditional accuracy, recall, and 

F1 - score, we also considered computational efficiency 

metrics. For example, the training time of different models 

under various settings was compared. As shown in Table 

5, the baseline method (IQR) has a relatively short training 

time of 1.5 minutes, while the distributed autoencoder 

under the federated learning framework has a significantly 

longer training time of 45 minutes. This difference in 

training time reflects the complexity of the model and the 

computational resources required. The longer training 

time of the federated learning - based model is due to the 

need for multiple rounds of parameter exchanges and 

aggregations among different nodes, which is a trade - off 

for achieving better performance and data privacy 

protection 

A grid search method is used to adjust 

hyperparameters such as learning rate, hidden layer size, 

training rounds, etc. Cross-validation: implement 5-fold 

cross-validation to ensure model generalization ability. In 

each validation, 80% of the data is used for training and 

20% for testing. Data preprocessing: Standardize the data 

and construct time series data samples by sliding window 

method.  

In order to comprehensively evaluate and compare 

the performance of different anomaly detection models on 

this study dataset, we selected five representative models 

for further discussion and experiment. This includes 

traditional statistical methods, machine learning 

algorithms, deep learning models, and innovative schemes 

that incorporate federated learning, including: (1) IQR 

(interquartile range) rule: a boxplot based on data 

distribution that identifies outliers by calculating upper 

and lower boundaries, which is a simple and fast anomaly 

detection method. Classical machine learning algorithm: 

Isolation Forest: This is an efficient random forest variant 

that measures the outliers of data points by constructing 

"isolated trees", the more easily isolated points are more 

likely to be outliers.  

To further validate the effectiveness of the 

integration of Generative Adversarial Networks (GANs) 

and causal reasoning in our anomaly detection model, we 

conducted ablation studies. 

For the GAN module, we trained the anomaly 

detection model with and without the GAN - generated 

normal samples. When the GAN module was removed, 

the model's performance in terms of recall decreased from 

0.94 to 0.88. This indicates that the GAN - generated 

samples play an important role in enriching the training 

data, especially in improving the model's ability to detect 

rare anomaly patterns. The model without GAN - 

generated samples may lack sufficient exposure to 

different normal data patterns, resulting in a lower recall 

rate. 

Regarding the causal reasoning module, we 

compared the model with and without the causal reasoning 

component in terms of interpretability. We used a 

qualitative measure of interpretability based on the ability 

of domain experts to understand the reasons for anomaly 

detection. With the causal reasoning component, 80% of 

the domain experts reported that they could clearly 

understand the causal relationships underlying the 

anomaly detection results, while this percentage dropped 

to 50% when the causal reasoning component was 

removed. Quantitatively, in terms of the anomaly score 

calculation, the model with causal reasoning showed a 

more stable performance in different subsets of the 

dataset, with a standard deviation of the anomaly scores 

reduced by 30% compared to the model without causal 

reasoning. These results demonstrate the positive impact 

of the causal reasoning module on enhancing the 

interpretability and stability of the anomaly detection 

model. 

Table 2: Accuracy comparison 

model name 
precision 

rate 

Baseline: IQR 0.89 

Traditional Machine Learning: Isolation Forest 0.92 

Emerging algorithms: One-Class SVM 0.94 

distributed autoencoder 0.96 

Distributed self-encoder under federated learning 

framework 
0.97 
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Table 2 shows a comparison of the accuracy of 

different anomaly detection models. Accuracy is the 

proportion of outlier samples that the model correctly 

identifies. Baseline is a simple statistical method based on 

IQR (interquartile range), traditional machine learning 

methods use Isolation Forest algorithm, emerging 

algorithms use One-Class SVM, and distributed self-

encoder and distributed self-encoder under federated 

learning framework belong to deep learning methods. The 

results show that the distributed self-encoder under 

federated learning framework performs best in accuracy, 

reaching 0.97, which indicates that the model has high 

anomaly detection accuracy. 

 
Table 3: Recall comparison 

model name 
recall 

rate 

Baseline: IQR 0.78 

Traditional Machine Learning: Isolation Forest 0.85 

Emerging algorithms: One-Class SVM 0.89 

distributed autoencoder 0.92 

Distributed self-encoder under federated learning 

framework 
0.94 

 

Table 3 shows a comparison of the recall rates of 

different anomaly detection models. Recall is the 

proportion of actual outlier samples that are correctly 

identified. Similarly, baselines, traditional machine 

learning methods, emerging algorithms, and deep learning 

methods are all involved. Distributed autoencoder under 

federated learning framework also performs best in recall 

ratio, reaching 0.94, which indicates that the model can 

effectively capture actual outlier samples. 

 

Table 4: F1 score comparison 

model name 
F1 
score 

Baseline: IQR 0.83 

Traditional Machine Learning: Isolation Forest 0.88 

Emerging algorithms: One-Class SVM 0.91 

distributed autoencoder 0.94 

Distributed self-encoder under federated learning 

framework 
0.95 

 

Table 4 shows a comparison of F1 scores for different 

anomaly detection models. The F1 score is the harmonic 

average of precision and recall, taking into account the 

balanced performance of the model in detecting outliers. 

Distributed autoencoder under federated learning 

framework also performed best in F1 score, reaching 0.95, 

which indicates that the model has good overall 

performance in anomaly detection. 

 

 

 

 

 

Table 5: ROC AUC value comparison 

model name 
AUC 
values 

Baseline: IQR 0.87 

Traditional Machine Learning: Isolation Forest 0.91 

Emerging algorithms: One-Class SVM 0.93 

distributed autoencoder 0.95 

Distributed self-encoder under federated learning 

framework 
0.96 

Table 5 shows a comparison of ROC AUC values for 

different anomaly detection models. ROC AUC is a 

measure of the performance of a binary classification 

model, which is evaluated by plotting a Receiver 

Operating Characteristic Curve to assess the model's 

ability to balance between true rate (TPR) and false 

positive rate (FPR).  

 

Table 6: Comparison of average training time and 

communication costs among different anomaly detection 

models. 

model name 
Average training 
time (minutes) 

communication 

cost 
assessment 

Baseline: IQR 1.5 no 

Traditional Machine 

Learning: Isolation Forest 
12 no 

Emerging algorithms: 
One-Class SVM 

15 no 

distributed autoencoder 30 in 

Distributed self-encoder 

under federated learning 
framework 

45 high 

 

Note: Communication cost is evaluated based on the 

amount of data transmitted during the training process. 

'High' indicates that the model transmits a large volume of 

data (more than 10GB in our experimental setup), and 

'Low' means the data transmission volume is less than 

1GB. 'In' represents an intermediate level, with data 

transmission volume between 1GB and 10GB. 

Table 6 shows a comparison of training time and 

communication costs for different anomaly detection 

models. Average training time is the average time required 

for the model to converge on the training data. 

Communication cost estimation refers to the 

communication cost of exchanging data during the 

training process of the model, which is usually an 

important consideration in federated learning frameworks. 

The training time of the distributed autoencoder under 

federated learning framework is the longest, reaching 45 

minutes, and the communication cost evaluation is also the 

highest, which indicates that the model needs to exchange 

more data during training, which may affect the efficiency 

of its practical application.  

 

Hyperparameter. In addition to grid search, Bayesian 

optimization technology is also used. Taking the 

adjustment of the number of hidden units of the GRU 
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model as an example, the approximate range is first 

determined to be [64, 128, 256] through grid search, and 

then Bayesian optimization is used to build a proxy model 

of the objective function (such as the F1 score on the 

validation set), dynamically adjust the number of hidden 

units, and finally determine that the optimal value is 128. 

All experiments were conducted on a high-

performance computing cluster consisting of 10 nodes. 

Each node was equipped with an Intel Xeon E5-2620 v4 

processor, 64 GB of RAM, and an NVIDIA Tesla P100 

GPU with 16 GB of memory. The operating system used 

was Ubuntu 18.04. The deep learning models were 

implemented using TensorFlow 2.3.0, and federated 

training was facilitated via PyTorch-Lightning-Bolts for 

parameter communication.To support reproducibility, the 

source code and configuration files for the anomaly 

detection framework have been made available upon 

request under a data-sharing agreement. Public access to 

the code will be provided after publication to ensure full 

replicability. 

5 Discussion 
In this section, we present a comprehensive 

discussion by comparing the results in Table 1 to Table 4 

with the current state - of - the - art (SOTA) methods, 

analyzing the impact of federated learning on model 

performance and communication overhead, and 

explaining the superiority of the distributed autoencoder 

over One - Class SVM and Isolation Forest. 

 

5.1 Comparison with SOTA methods 
Our proposed method, the distributed autoencoder 

under the federated learning framework, shows 

remarkable performance improvements compared to 

traditional methods, classical machine learning methods, 

and emerging algorithms. In terms of accuracy, as 

demonstrated in our experiments, the proposed method 

achieves an accuracy of 0.97, while traditional methods 

like IQR only reach 0.89, and classical machine learning 

methods such as Isolation Forest achieve 0.92, and 

emerging algorithms like One - Class SVM reach 0.94. 

For recall, our method attains 0.94, outperforming the 

recall values of traditional and classical methods, which 

are 0.78 and 0.85 respectively, and also higher than the 

0.89 recall of One - Class SVM. 

When compared with existing deep - learning - based 

methods, in addition to the performance advantages in 

accuracy and recall, our method has a significant 

advantage in data privacy protection. In the context of 

industrial data, where data privacy is of utmost 

importance, federated learning enables multiple nodes to 

jointly train a model without directly sharing their raw 

data. This ensures that the data of each participating party 

remains secure, which is a major shortcoming of many 

existing deep - learning - based methods that often require 

centralized data collection for model training. 

Compared to centralized training approaches, 

federated learning is especially advantageous in industrial 

scenarios where data are distributed across geographically 

isolated sites or business units. Centralizing such data may 

not only be logistically challenging but also raise 

significant compliance and privacy issues. Federated 

learning avoids the need to transmit raw data, allowing 

organizations to collaboratively train high-performance 

models without violating internal data protection policies 

or external regulatory constraints. Furthermore, it reduces 

network bandwidth consumption by exchanging only 

model parameters instead of large datasets, making it 

suitable for industrial environments with constrained 

infrastructure. 

 

5.2 Impact of federated learning on model 

performance and communication overhead 
Federated learning plays a crucial role in enhancing 

the performance of the anomaly detection model. By 

aggregating the knowledge from different data sources, 

the model can learn more comprehensive normal patterns 

in industrial data, thereby improving its ability to detect 

anomalies accurately. However, this improvement in 

performance comes at the cost of increased training time 

and communication costs. 

Our experimental results show that the training time 

of the proposed model is 45 minutes, which is 

significantly longer than that of traditional methods. For 

example, the baseline method (IQR) has a training time of 

only 1.5 minutes. The long training time is mainly due to 

the multiple rounds of parameter exchanges and 

aggregations required in the federated learning process. In 

each training round, local models on different nodes 

calculate their gradients based on the local data, and then 

these gradients are encrypted and sent to the global 

aggregation server. The server aggregates the gradients 

and sends the updated parameters back to the local nodes, 

which leads to a substantial increase in training time. 

The server aggregates gradients from all participating 

nodes and updates the global model. This process 

introduces delays due to encryption, transmission, and 

synchronization overheads. Specifically, in each 

communication round, encrypted gradient vectors 

(approximately 12 GB per round in our case) are 

transmitted, followed by secure aggregation (e.g., 

homomorphic addition), and distribution of updated 

parameters back to local nodes. These steps result in high 

round-trip latency, especially with a large number of 

participants and high-dimensional models. 

Furthermore, model convergence in federated 

learning typically requires more rounds than centralized 

training due to the heterogeneity of local data distributions 

(non-IID), increasing the total training time cumulatively. 

In terms of communication costs, the frequent 

exchange of parameters among nodes during the training 

process results in high communication overhead. The 

large amount of data transmitted during parameter 

exchanges, especially when dealing with a large number 

of nodes and complex models, contributes to the high 

communication costs. Although the communication is 

encrypted to ensure security, this further increases the 

complexity and cost of communication. 

Despite the use of homomorphic encryption and 

secure aggregation in our federated learning framework, 
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certain vulnerabilities still exist. One major concern is the 

potential for adversarial attacks, where malicious clients 

inject poisoned gradients or manipulate local updates to 

degrade global model performance. Additionally, gradient 

inversion attacks may attempt to reconstruct sensitive data 

from shared gradients, especially when model updates are 

sparse or over-parameterized. Although encryption 

mitigates this risk, future work should explore 

differentially private aggregation techniques and robust 

anomaly detection against model poisoning. Adopting 

Byzantine-resilient algorithms or implementing secure 

multi-party computation (SMPC) could further enhance 

the system's resilience against hostile participants. 

 

5.3 Superiority of distributed autoencoder 

over one - class SVM and isolation forest 
The distributed autoencoder shows distinct 

advantages over One - Class SVM and Isolation Forest in 

handling complex industrial data. Firstly, in terms of 

learning complex data representations, the distributed 

autoencoder can effectively capture the non - linear 

relationships and hierarchical features in industrial data 

through its encoding - decoding structure. For example, in 

industrial sensor data, which often contains complex time 

- series and multi - dimensional features, the autoencoder 

can learn the underlying patterns by compressing the data 

into a low - dimensional representation and then 

reconstructing it. 

Secondly, the distributed autoencoder, when 

combined with federated learning, can better utilize 

distributed data. In a distributed industrial environment, 

data is often scattered across multiple nodes. The 

distributed autoencoder allows each node to train on its 

local data and then aggregate the local models, enabling 

the model to learn from the collective wisdom of all nodes. 

This distributed training approach is more suitable for 

large - scale industrial data scenarios. 

In contrast, One - Class SVM and Isolation Forest 

have limitations in dealing with complex industrial data 

and distributed data. One - Class SVM is based on the idea 

of finding a hyperplane that separates the normal data 

from the outliers in the feature space. However, in 

complex industrial data, the boundary between normal and 

abnormal data is often not clearly defined by a simple 

hyperplane, and One - Class SVM may have difficulty in 

accurately capturing the complex patterns. Isolation 

Forest, on the other hand, is mainly designed to isolate 

outliers by constructing isolation trees. But in distributed 

data scenarios, it lacks an effective mechanism to integrate 

data from multiple sources, and its performance may be 

affected when dealing with large - scale and complex 

industrial data. 

In conclusion, the proposed method shows 

significant advantages in terms of performance and data 

privacy, although it also faces challenges in training time 

and communication costs. Further research is needed to 

address these challenges and optimize the method for 

better industrial applications. 

With the method in [11], its accuracy is 0.94 and recall 

is 0.91. By integrating LSTM, GRU, CNN and combining 

with federated learning, this paper can better capture the 

spatiotemporal characteristics of industrial data and the 

global pattern of distributed data, so that the accuracy is 

improved to 0.97. After analysis of variance (ANOVA), 

the F value is 0.9. At the level of α=0.05, the accuracy of 

this method is significantly higher than that of the 

competing model. The training time of this method is as 

long as 45 minutes, which is mainly due to the parameter 

exchange and aggregation of multiple rounds of federated 

learning, and the parameter transmission volume per 

round is about 12GB, resulting in high communication 

costs. Although distributed training is adopted, overfitting 

is effectively avoided by introducing regularization terms 

in the model structure (such as setting the L2 

regularization coefficient to 0.01). Experimental results 

show that the model performs stably on different data 

sets." 

The 95% confidence interval of the precision rate of 

0.97 is [0.962, 0.978], the 95% confidence interval of the 

recall rate of 0.94 is [0.931, 0.949], the 95% confidence 

interval of the F1 value of 0.95 is [0.943, 0.957], and the 

95% confidence interval of the AUC value of 0.96 is 

[0.952, 0.968]. 

6 Conclusion 
In this study, an advanced deep learning-driven anomaly 

detection system was successfully constructed, which 

demonstrated excellent detection performance and 

practicality for large-scale and heterogeneous data in the 

industrial Internet of Things environment. By integrating 

multiple deep learning models such as LSTM, GRU, CNN, 

and variational autoencoders, we effectively addressed the 

diverse processing requirements of different data types. 

This integration enabled efficient learning of complex 

patterns and accurate detection of anomalous behaviors. 

Especially, the distributed self-encoder model combined 

with federated learning not only guarantees data privacy, 

but also promotes cross-organizational collaborative 

learning, providing a new collaborative paradigm for 

industry. The adversarial generative adversarial network 

not only alleviates the problem of outlier data scarcity, but 

also significantly improves the robustness of the model. 

By combining causal reasoning and reinforcement 

learning strategies, the model's interpretability and 

adaptability are significantly enhanced. This enables 

autonomous optimization of the detection strategy under 

dynamic industrial conditions. Experimental results 

clearly demonstrate the effectiveness of the proposed 

method. The higher training time and communication cost 

in the distributed autoencoder under the federated learning 

framework are justifiable due to the significant 

performance improvements. The 45 - minute training time 

and high communication cost are the trade - offs for 

achieving an accuracy of 0.97, a recall of 0.94, an F1 - 

score of 0.95, and an AUC value of 0.96. In industrial 

applications, the accurate detection of anomalies is of 

utmost importance. The improved performance of our 

method can effectively reduce the losses caused by 

undetected anomalies, such as equipment failures and 

production line disruptions. Although the computational 
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resources required are higher, the benefits in terms of 

enhanced detection accuracy and the ability to handle 

distributed data with privacy protection far outweigh the 

costs. This makes the proposed method a valuable solution 

for industrial anomaly detection in complex environments. 

Our study has several notable innovations. The 

reinforcement learning component plays a crucial role in 

adapting to industrial dynamics. By continuously 

interacting with the environment, the model can 

dynamically adjust key detection parameters such as 

thresholds and feature weights. This enables the model to 

quickly adapt to changes in the industrial environment, 

such as sudden changes in equipment operating conditions 

or production process adjustments. For example, when 

there is a temporary increase in noise in the sensor data 

due to equipment maintenance, the reinforcement learning 

- enabled model can automatically adjust the detection 

thresholds to avoid false alarms. The variational 

autoencoder, combined with causal reasoning, enriches 

the interpretability of the anomaly detection 
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