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Breast cancer is still a leading cause of cancer death in women worldwide, supporting the requirement 

for accurate and timely diagnosis. Although deep learning models have obtained promising results for 

the automatic classification of mammograms, they are often limited by the need for efficient multi-scale 

feature extraction, spatial attention, and sequential dependency modeling. In this work, we present a 

hybrid ensemble deep learning framework, called BreastEnsemNet, which incorporates three 

complementary deep learning methodologies, including (i) deep hierarchical low-level to multi-scale 

feature extraction using VGG16, ResNet50 and InceptionV3, (ii) attention-based transformer detailed 

with spatial focus on well-relevant areas, and (iii) BiLSTM for capturing the sequential patterns and 

dependencies in the extracted features. There is no existing method that can automatically and efficiently 

combine models to achieve better fusion accuracy. The framework is trained and tested using the CBIS-

DDSM mammogram dataset, where SMOTE is employed for class balancing, and various augmentation 

techniques are applied to facilitate generalization. BreastEnsemNet achieved better results with 98.79% 

accuracy, 97.9% precision, 98.4% recall, 98.1% F1-score, and an AUC-ROC of 99.2, outperforming 

multiple baseline models. The joint modeling of attention and sequences yielded a significant performance 

improvement for malignancy detection, resulting in a reduction in false negatives. These findings 

establish BreastEnsemNet's clinical utility as a practical, AI-based diagnostic aid for reliable and 

explainable breast cancer detection in mammograms. 

Povzetek: Raziskava predstavlja BreastEnsemNet, hibridni model, ki združuje CNN, Transformer in 

BiLSTM. Dosežek omogoča kvalitetno in klinično uporabno AI-podprto odkrivanje raka dojk na 

mamogramih. 

 

1  Introduction  

Breast cancer is the second most common cancer that 

affects women worldwide, and early, accurate detection is 

imperative to increasing the chances of survival. Work 

Done with the Help of AI in Traditional Diagnostic 

Methods: Most current diagnostic methods based on 

mammograms rely on a radiologist's expertise, which is 

not only subjective but also time-consuming and prone to 

error. Deep learning has played a vital role in recent years 

in the automated detection of breast cancer, outperforming 

traditional methods with higher accuracy and efficiency. 

Due to the strong capacity of CNNs in learning spatial 

features [1], [2], they have been employed for feature 

representation in breast cancer detection. Nevertheless, 

many state-of-the-art methods still cannot sufficiently 

extract multiscale spatial evidence, sequential context 

evidence, and activation attentiveness, which are needed 

for accurate classification in complicated mammographic 

patterns [3], [4]. For instance, Ul-Haq et al. [1] and Jadoon 

et al. [7] primarily employed CNN-based ensembles, 

which lack sequential learning and spatial localization, 

making them generally difficult to interpret. Likewise, 

Nagalakshmi [2] and Pattnaik et al. [3] did not include 

attention-guided modules, so they could not emphasize 

diagnostically important areas. These limitations restrict 

these systems from detecting complex patterns that are 

solely possible in mammography, leading to 

misclassifications and false diagnoses [2]. 

Previous research has introduced ensemble learning, 

attention mechanisms, and hybrid deep learning 

approaches to enhance classification accuracy. These 

include transfer learning CNN architectures [2] and 

attention-deep networks [3] for feature enrichment. 

Although these methods achieve some potential results, 

they still fall short in achieving a healthy integration of 

multi-scale feature extraction, spatial awareness, and 

sequential learning mechanisms. Additionally, imbalanced 

datasets tend to bias model predictions towards the 

majority class in practice [4]. The proposed 

BreastEnsemNet constructs a hybrid ensemble deep 

learning framework that integrates CNN-based deep 
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learning for multi-scale feature extraction, Transformer-

based attention, BiLSTM sequential learning, and an 

adaptive fusion strategy to enhance accuracy in breast 

cancer diagnosis, thereby overcoming these limitations. 

This research primarily aims to develop an AI-based 

diagnostic model for classification with a lower false-

negative rate and improved generalization on 

mammographic datasets. It combines spatial feature 

refinement with a Feature Pyramid Network (FPN), 

Transformer-based attention over regions, BiLSTM for 

sequential learning, and an adaptive fusion scheme for 

optimal decisions. We exhibit these innovations in totum 

to provide a robust and scalable diagnostic framework for 

automated breast cancer detection. 

The following research questions drive this study: 

Can a hybrid deep learning framework that integrates 

multi-scale CNNs, Transformer-based attention, and 

BiLSTM sequential learning improve breast cancer 

classification performance from mammograms? 

How does adaptive fusion using performance-driven 

dynamic weighting compare to traditional averaging 

strategies in ensemble models? 

Does incorporating attention and sequential dependencies 

reduce false positives and false negatives significantly in 

imbalanced datasets? 

The current research makes several essential contributions. 

First, it proposes a new ensemble method to combine 

several deep learning architectures to earn better 

classification results. Second, it employs a new adaptive 

fusion strategy that effectively combines CNN, attention, 

and BiLSTM outputs to enhance robustness. Thirdly, it 

utilizes data balancing techniques based on SMOTE to 

mitigate dataset bias and improve the model's 

generalization. Lastly, we extensively experimented with 

and compared state-of-the-art methods to demonstrate the 

capability of the proposed approach. 

VGG16, ResNet50, and InceptionV3 were chosen as the 

CNN backbones due to their complementarity in feature 

extraction capabilities: VGG16 is suitable for extracting 

low-level spatial information, ResNet50 for learning 

hierarchically, and InceptionV3 for multi-scale 

representation. While EfficientNet and Swin Transformers 

are more contemporary models, they incur a greater 

computational cost, and on pilot experiments using the 

CBIS-DDSM dataset, do not result in a noticeable 

performance improvement. We opted for BiLSTM over 

GRU since it preserves a richer sequential structure by 

handling both forward and backward sequences, which 

helps learn sequential patterns between the learned 

features. 

Unlike traditional soft voting or equal-weight averaging, 

the adaptive fusion approach assigns weights to each 

model dynamically, based on validation accuracy and loss. 

This makes models with better validation performance 

more heavily weighted in the final prediction. 

Furthermore, confidence scores are calibrated by applying 

temperature scaling, a feature that traditional ensemble 

methods do not typically handle. This mixture enhances 

the reliability and interpretability of the decision. 

The remainder of this paper is organized as follows: 

Section 2 provides a comprehensive literature review, 

elaborating on current deep learning-driven breast cancer 

classification approaches and identifying research gaps. 

The third section presents the proposed BreastEnsemNet 

framework, comprising its architectural components, data 

preprocessing, and implementation details. The 

Experimental results are presented in Section 4, including 

dataset descriptions, performance evaluation measures, 

and comparisons with baseline models. Fixture 5 consists 

of a discussion on the study results, primarily focusing on 

how the developed model addresses the limitations evident 

in existing methods, as well as a discussion of the study's 

limitations. In Section 6, we conclude the paper by 

summarizing our research contributions and outlining 

future work that will further enhance the clinical relevance 

of the framework. 

 

2  Related work 

Recent advancements in deep learning have significantly 

improved breast cancer diagnosis, yet challenges remain in 

multi-scale feature extraction, spatial awareness, and 

sequential learning. Ul-Haq [1] described a CAD system 

that utilizes ensemble learning, feature fusion, and DCNN 

to diagnose breast cancer in mammograms accurately. 

Nagalakshmi [2] presented Ensemble-Net, a model that 

successfully partitions pectoral muscle borders, increasing 

breast tumor classification accuracy to 96.72%. Pattnaik et 

al. [3] proposed an IWCA-APSO-based EELM model for 

breast cancer diagnosis, which offers high precision but 

presents difficulties with implementation. Deep Deb [4] 

enhanced the Xception network, raising the diagnostic 

accuracy of breast cancer to 84.3% via stacking 

generalization; nevertheless, the performance is still 

limited by the volume of training data. Sharma et al. [5] 

plan to test the NN-ET model on a larger cohort of cancer 

patients in the future. The 99.74% accurate breast cancer 

classification system is presented. 

Chouhan et al. [6] reported that the DFeBCD system 

utilizes dynamic and hybrid features to detect breast cancer 

more effectively than standard approaches. Jadoon et al. 

[7] proposed a heterogeneous ensemble model that 

outperforms traditional methods for multi-modal data-

based breast cancer prediction with 97% accuracy. 

Routray et al. [8], using Gabor filtering, ensemble 

classifiers, and EfficientNet-B0, demonstrate that the 

ELSOSA-BCC approach enhances breast cancer diagnosis 

with improved performance. Hirra et al. [9] note that the 

Pa-DBN-BC model utilizes deep learning to reliably 

identify breast cancer using histopathological images, 

achieving better performance with fewer resources. Zheng 

et al. [10] propose that to achieve high-accuracy breast 

cancer detection, better classification, and early diagnosis, 

the DLA-EABA technique combines deep learning with 

Efficient AdaBoost. 

Murtaza et al. [11] investigated the application of deep 

learning across various imaging modalities for breast 

cancer classification, highlighting existing approaches, 

challenges, and future research objectives. Sreenivasarao 
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et al. [12] proposed a new approach to breast cancer 

diagnosis with better accuracy through ensemble models 

and transfer learning and provided suggestions for future 

developments in dataset diversity and clinical integration. 

Rautela et al. [13] examined several breast cancers 

screening techniques, emphasizing the promise of deep 

learning, its current drawbacks, and the need for further 

research in the future to enhance detection and 

customization. Khamparia et al. [14] proposed using a 

hybrid MVGG model for breast cancer diagnosis, with an 

accuracy of 94.3%. Subsequent initiatives will combine 

tissue density information and carry out classification. 

Eldin et al. [15] used deep learning to diagnose breast 

cancer from biopsy pictures with 92.5% accuracy. Future 

work will focus on improving preprocessing and exploring 

additional models. 

Sharma et al. [16] highlighted the diagnostic capability of 

AI and its potential for advancement by using ensemble 

machine learning models to diagnose breast cancer with 

97.66% accuracy. Bai et al. [17] examined the potential 

benefits and drawbacks of combining deep learning with 

digital breast tomosynthesis (DBT) for better breast cancer 

detection. Abhisekha et al. [18] examined deep learning 

applications for multiple imaging modalities-based breast 

cancer diagnosis, emphasizing the advantages, difficulties, 

and requirements for completely automated diagnostic 

systems. Islam et al. [19] compared the proposed 

Ensemble Deep Convolutional Neural Network (EDCNN) 

model for breast cancer diagnosis to other models; the 

proposed model is superior in accuracy and 

interpretability. Further research is recommended to 

integrate CAD systems and investigate RGB pictures. Patil 

et al. [20] proposed sophisticated segmentation (RG-

AFCM) and classification (AFU-GOA-RNN) techniques; 

the suggested model improves breast cancer diagnosis over 

current approaches, resulting in higher accuracy and 

shorter computation times.  

Savelli et al. [21] suggested that a multi-context CNN 

ensemble offers potential extensions for broader clinical 

usage and improves accuracy in diagnosing small lesions 

by integrating several depth networks. Awotunde et al. 

[22] presented a deep learning model with hybrid feature 

selection for breast cancer diagnosis, achieving high 

accuracy and low false alarms. Subsequent investigations 

will examine actual data and explore additional 

applications. Aslan [23] compared CNN with CNN-

BiLSTM to attain high accuracy for mammography 

classification. Subsequent investigations will focus on 

hyperparameter optimization, three-dimensional images, 

and reduced data dependency. Murtaza et al. [24] proposed 

a tree-based deep learning model for classifying breast 

cancers using histopathology images, aiming to maximize 

accuracy and minimize misclassification. This method will 

be generalized in subsequent research for other types of 

cancer and whole-slide images. Rahman et al. [25] 

developed updated CNN models to detect mammography 

malignancies with improved accuracy. Future work will 

involve applying ensemble methods and cross-validation 

to enhance performance. 

Shovon et al. [26] employed an ensemble of DenseNet201 

and Xception with a threshold-filtered SIE to accurately 

classify HER2 breast cancer. To increase interpretability, 

additional thresholds will be investigated, optimization 

will be performed, and advanced methods will be applied. 

Pramanik et al. [27] developed a VGG16-based model 

with attention and an SSD technique, achieving 96.07% 

accuracy in breast cancer classification. We plan to explore 

segmentation, optimize feature reduction, and increase 

computation efficiency in the future. Loizidou et al. [28] 

evaluated the use of CAD systems in mammography to 

identify and classify breast cancer, emphasizing the need 

for further validation and a wider range of imaging 

modalities. Shen et al. [29] suggested that the GMIC model 

demonstrates excellent accuracy and quicker processing in 

mammography analysis through the effective combination 

of global and local data.

 

Table 1: Comparative analysis of existing deep learning models for breast cancer diagnosis – highlighting performance 

metrics and key limitations 

Method Accuracy (%) Precision (%) Recall (%) 
F1-Score 

(%) 
Key Limitations 

[9] Hirra et al. (2021) 86 84.68 87.9 86.26 
Limited interpretability; lacks 
advanced attention/fusion 

mechanisms. 

[10] Zheng et al. (2020) 97.2 96.56 98.3 97.35 

No BiLSTM; feature 

selection integration is not 

end-to-end 

[12] Rao et al. (2024) 80.77 80.67 80.77 80.61 

Modest improvement using 

ensemble; lacks sequential 
modeling or deep attention 

[16] Sharma et al. (2024) 97.66 92 93.49 92.73 

No deep temporal fusion; 

limited adaptive 

representation learning 

Jadoon et al. (2023) [7] 97.2 98.2 98.2 97.2 
No BiLSTM/attention fusion; 

lacks interpretability 
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BreastEnsemNet (Proposed) 98.79 97.9 98.4 98.1 
Integrates CNN, attention, 

BiLSTM, and adaptive fusion 

 

Table 1 summarizes existing models, their performance 

metrics, and limitations, highlighting the need for the 

proposed hybrid framework. 

 Additional imaging modalities and training complexity 

will be addressed in future studies. Shanbehzadeh et al. 

[30] assessed machine learning models and determined 

that Random Forest and Confidence Weighted Voting 

were the most successful in predicting breast cancer based 

on lifestyle characteristics. Models will be implemented in 

clinical decision support systems in future development. 

Mahesh et al. [31] evaluated various machine-learning 

techniques for diagnosing breast cancer and concluded that 

majority voting is the most reliable. Larger datasets and 

optimization techniques should be tested in further 

research. Himel et al. [32] presented a high-accuracy 

ultrasound-based computer-aided method for diagnosing 

breast cancer using deep learning. The goal of future 

research will be to better segment lesions. Pattnaik et al. 

[33] presented a high-accuracy machine learning model for 

breast cancer diagnosis from mammograms that is based 

on metaheuristics and features sophisticated segmentation. 

Optimizing embedded implementations is a task for the 

future. Azour and Boukerche [34] aimed to introduce a 

two-staged CADx system that merges EfficientNet and 

other CNNs to achieve high accuracy in breast cancer 

diagnosis. Prospective initiatives will concentrate on 

enhancing ensemble methods and dataset comparisons. 

Sharmin et al. [35] suggested a hybrid breast cancer 

detection model that uses ResNet50V2 and machine 

learning approaches to achieve 95% accuracy. Future work 

will be needed to integrate genetic data and enhance 

detection. 

Fatima et al. [36] compared the use of machine learning 

(ML), deep learning (DL), and data mining in predicting 

breast cancer. It identifies the future requirement for 

dataset augmentation and data imbalance correction. 

Mahmood et al. [37] examined deep learning (DL) and 

machine learning (ML) methods for breast cancer 

diagnosis, highlighting the issue of false positives and the 

need for improved image segmentation and data 

augmentation. Zizaan and Idri [38] compared the accuracy 

of single classifiers with ensemble approaches (bagging 

and boosting) to classify breast cancer. Future research 

will investigate the interpretability of the model and its 

application to different modalities. Rautela et al. [39] 

examined various approaches for screening breast cancer, 

highlighting the advantages and drawbacks of each. It 

promotes more advanced imaging techniques and 

individualized methods for early detection. Nakach et al. 

[40] employed a range of deep learning algorithms and 

boosting approaches to assess ensemble learning and 

transfer learning for breast cancer histology image 

classification. It recommends more research into bagging 

ensembles and different datasets.  

Some studies have developed the diagnosis of breast 

cancer in informatics with deep learning and image 

processing. Chen et al. [42] examined emotion regulation 

in patients with breast cancer using EEG-based VR music 

therapy and incorporated a Glowworm Coactive Decision 

Tree for enhanced personalized treatments. Mohammed et 

al. [43] presented a Grad-CAM-based pre-processing 

approach, along with CNNs, for high-fidelity 

mammogram classification, highlighting appropriate study 

regions for diagnosis. Gdeeb [44] combined image 

segmentation algorithms and neural networks for the X-

ray modality in breast cancer detection to achieve more 

accurate localization and classification. These reports 

highlight the increasing implementation of explainable and 

targeted AI models in breast cancer detection. 

Although deep learning methods for breast cancer 

diagnosis have achieved remarkable progress, there still 

exist significant limitations in current approaches. In 

many models, multi-scale feature learning may not be 

sufficiently robust, resulting in suboptimal lesion 

localization and the omission of fine-grained patterns. 

Moreover, the lack of sequential modeling, including 

recurrent architectures, also restricts its potential for 

learning spatial dependencies of mammogram 

formations. Methods without attention-based models do 

not steer models towards diagnostically important regions, 

which decreases the interpretability and the trust in the 

clinical diagnosis. On the one hand, most ensemble 

methods are based on the assumption that a simple static 

average or majority vote is the best, and they are unaware 

of each model's validation performance. In addition, the 

problem of class imbalance is often overlooked, which 

results in prediction bias towards the majority class. These 

limitations also limit generalization, particularly in 

heterogeneous and imbalanced datasets, such as CBIS-

DDSM. 

To alleviate these limitations, we introduce 

BreastEnsemNet—a hybrid ensemble deep learning 

architecture that incorporates CNN-based MSFE, 

Transformer-based attention, BiLSTM-based sequential 

learning, and an adaptive fusion scheme. The joint design 

is intended to achieve improved classification 

performance, interpretation, and generalization for 

mammogram breast cancer detection. 

 

3  Proposed framework 

In this paper, we introduce BreastEnsemNet, a deep 

learning-based framework that combines deep ensemble 

learning approaches for breast cancer diagnosis in 

mammographic images. The proposed BreastEnsemNet 

utilizes several diverse deep learning blocks for extracting 

supplementary features from mammogram images. More 

specifically, the Feature Pyramid Network (FPN) is used 

to manage feature maps of different resolutions by fusing 

low-level fine details and high-level semantics for robust 

multi-scale lesion detection. At the same time, a 
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Transformer-based attention mechanism, which computes 

query-key-value matrices over the spatial embeddings, 

selectively attends to diagnostically important regions in 

dense breast tissue, thereby enhancing interpretability and 

spatial localization. 

 It uses several CNN architectures (VGG16, ResNet50, 

InceptionV3) to extract features and exploit several spatial 

and hierarchical patterns. Improvements included a 

Feature Pyramid Network (FPN) for multi-scale feature 

aggregation and a Transformer-based attention mechanism 

for diagnostic features. The extracted features are further 

processed with the BiLSTM, which captures the sequential 

dependencies. A dynamic weight fusion strategy 

dynamically assigns weights to model outputs, ensuring 

optimal classification performance. The final decision 

utilizes the fully connected layer to classify mammograms 

as benign or malignant with high accuracy. 

 

 



128   Informatica 49 (2025) 123–148                                                                                                                       B. Raghuramaiah 

Figure 1: Overview methodology for breastensemnet framework for breast cancer diagnosis using mammogram 

images 

The proposed BreastEnsemNet-based framework, 

illustrated in Figure 1, outlines the sequential flow of 

processing stages involved in breast cancer diagnosis 

using deep learning. The pipeline begins with data 

preprocessing, where mammogram images are resized to 

224×224×3, normalized, and augmented using 

transformations such as flipping, rotation, and contrast 

adjustment. The preprocessed images are then passed to 

CNN-based feature extractors (VGG16, ResNet50, and 

InceptionV3), where spatial and hierarchical feature 

representations are captured. A Feature Pyramid Network 

(FPN) further processes these extracted features to 

enhance multi-scale feature learning. To focus on 

diagnostic regions, a Transformer-based attention 

mechanism computes query-key-value matrices, refining 

feature representations. The refined feature maps are fed 

into a BiLSTM network, which captures sequential 

dependencies by processing feature embeddings in both 

forward and backward directions. The adaptive fusion 

strategy integrates outputs from CNN, Transformer, and 

BiLSTM models, assigning dynamic weights based on 

validation performance. The final fused feature vector is 

passed through fully connected layers, followed by a 

sigmoid activation function, producing a probability score 

for classification. 

3.2 Dataset and preprocessing 

The dataset used in this research consists of mammogram 

images for the detection of breast cancer, structured into 

two primary categories: benign and malignant. Each image 

is preprocessed and resized to a standardized 224×224 

resolution to ensure compatibility with the deep learning 

models. Let I represent an input image with dimensions 

H×W×C, where H = 224, W = 224, and C = 3 (RGB 

channels). Each pixel value p(i, j) is normalized within the 

range [0,1] using the transformation p′(i,j)=
𝑝(𝑖,𝑗)

255
, ensuring 

a uniform distribution across all images. 

To enhance model generalization, Data augmentation 

included random horizontal flipping, random zoom with a 

scale factor 𝑠 ∼ 𝑈(0.9,1.1), and random rotation 𝜃 ∼
𝑈(− 15∘ , 15∘ ), where 𝜃 represents rotation in degrees. 

These transformations enhance the model’s generalization 

by simulating real-world variances in mammogram 

orientations. The augmentation increases variability, 

ensuring that the model does not overfit to specific patterns 

in the training data. 

The dataset is split into three subsets: training, validation, 

and testing, denoted as 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙 , and 𝐷𝑡𝑒𝑠𝑡, 

respectively. The dataset follows an approximate 70:15:15 

split ratio, such that: 

∣𝐷𝑡𝑟𝑎𝑖𝑛∣=0.7N,           ∣ 𝐷𝑣𝑎𝑙∣=0.15N,              ∣ 𝐷𝑡𝑒𝑠𝑡∣=0.15N  

where N is the total number of images. Each sample is 

assigned a one-hot encoded label Y, represented as Y = [1, 

0] for benign and Y = [0,1] for malignant cases. The image 

data is loaded into batches of size B = 64, where each batch 

contains a set 𝑋𝑏={𝐼1, 𝐼2, … . , 𝐼𝐵  } and corresponding label 

matrix 𝑌𝑏. 

Feature standardization is also performed using Z-score 

normalization to ensure that input features maintain a 

mean of zero and unit variance. For each pixel intensity 

p(i, j), the transformation follows: 

p′′(i,j)= 
p′(i,j)−μ

𝜎
  

where μ and σ are the mean and standard deviation of the 

dataset’s pixel intensities. This step ensures that models 

learn more effectively by reducing the impact of varying 

illumination across different mammograms. The dataset 

preparation pipeline ensures that all images undergo 

consistent preprocessing, enabling the proposed 

BreastEnsemNet model to extract meaningful features 

from mammogram images efficiently. The final dataset is 

structured to optimize model learning and evaluation while 

preserving diagnostic patterns critical for breast cancer 

detection. Table 1 shows notations used in the proposed 

system. 

 

Table 2: Notations used 

Symbol Description 

X Input mammogram image 

H, W, C Height, width, and number of channels in an image (224×224×3) 

p(i, j) Pixel intensity at position (i, j) 

p′(i, j) Normalized pixel intensity p(i, j)/255  

T Data augmentation transformation 

θ Random rotation angle 

𝑃𝑓 Probability of horizontal flip 
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s Random zoom scale factor 

𝐹𝑉(X), 𝐹𝑅(X), 𝐹𝐼(X) Feature maps from VGG16, ResNet50, and InceptionV3 

𝑃𝑙  Multi-scale feature representation at level l 

Q, K, V Query, key, and value matrices for Transformer-based attention 

A Attention-weighted feature representation 

𝑑𝑘 Key vector dimension in attention computation 

ℎ𝑡
𝑓𝑤

, ℎ𝑡
𝑏𝑤 Forward and backward BiLSTM hidden states at time step t 

𝑤𝑖  Adaptive weight for model 𝑀𝑖 

𝑓𝑖(X) Probability output from model 𝑀𝑖 

𝐴𝑖, 𝐿𝑖 Validation accuracy and loss for model 𝑀𝑖 

F(X) Final ensemble probability prediction 

𝑇𝑠 Temperature scaling parameter 

𝐹∗(𝑥) Calibrated ensemble probability 

𝑦̂ Predicted class label (Benign: 0, Malignant: 1) 

 

3.2 Proposed ensemble deep learning 

framework 

BreastEnsemNet is the proposed hybrid deep learning 

framework, shown in Figure 2, designed to enhance breast 

cancer diagnosis using mammogram images by integrating 

multiple feature extraction and learning techniques. Figure 

2 illustrates the structured pipeline, beginning with CNN-

based feature extraction. VGG16 captures fine-grained 

local texture patterns by using small convolutions, 

ResNet50 automatically discovers deep hierarchical 

features by employing residual learning and InceptionV3 

takes the advantage of multi-path convolutions to capture 

local as well as global feature representations. Their 

functions have a large overlap, but by combining them, 

the diversity of the features is enriched and can be well 

adapted to different spatial contexts in mammographic 

perception. 

A Transformer-based attention mechanism applies query-

key-value processing to highlight significant diagnostic 

regions dynamically. The extracted feature maps are then 

passed through BiLSTM sequential learning, which 

captures spatial dependencies in both forward and 

backward directions. Finally, an adaptive fusion strategy 

integrates CNN, Transformer, and BiLSTM outputs using 

soft voting-based weighted summation. The fused feature 

vector is processed by fully connected layers with dropout, 

followed by sigmoid activation, which classifies 

mammograms as benign or malignant. The framework 

ensures high accuracy, improved feature learning, and 

enhanced generalization, making it a robust AI-powered 

solution for breast cancer detection. 
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Figure 2: Architectural overview of breastensemnet – a hybrid deep learning framework 

The proposed BreastEnsemNet framework integrates 

multiple deep learning architectures to enhance breast 

cancer diagnosis through an ensemble learning approach. 

Let 𝑓𝑖(𝑥) represent the output of an individual base model 

𝑀𝑖, where x is the input mammogram image. The 

ensemble model consists of four base networks: VGG16, 

ResNet50, InceptionV3, and a Hybrid CNN-BiLSTM-

Transformer model. The output of each base model is 

denoted as 𝑓𝑖(𝑥) ∈ [0,1], representing the probability of 

malignancy. The final ensemble prediction F(x) is 

obtained through a weighted sum of individual model 

outputs: 

F(x)= ∑ 𝑤𝑖
4
𝑖−1 𝑓𝑖(𝑥),       where ∑ 𝑤𝑖

4
𝑖−1 = 1 

where 𝑤𝑖  are the adaptive ensemble weights assigned to 

each model, dynamically adjusted during training based on 

validation performance. 

The first stage of the framework involves feature 

extraction using CNN-based architectures. Given an input 

image x with dimensions 224×224×3, the convolutional 

layers extract feature maps 𝐹𝑙
𝑖(𝑥) at each layer l, where: 

𝐹𝑙
𝑖(𝑥) = 𝜎(𝑊𝑙

𝑖 ∗ 𝐹𝑙−1
𝑖 + 𝑏𝑙

𝑖) 

where 𝑊𝑙
𝑖 represents the learned convolution filters, ∗ 

denotes convolution, and σ is the activation function 

(ReLU). These feature maps are progressively 

downsampled using max-pooling layers and then passed to 

the next stage. To enhance spatial feature selection, the 

framework integrates a Transformer-based attention 

module applied to the CNN-extracted feature 

representations. Let Q, K, V be the query, key, and value 

matrices obtained from the feature embeddings, the 

attention output A is computed as: 

A=softmax(
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 

where 𝑑𝑘 is the dimension of the key vectors. This 

mechanism selectively enhances regions in the feature 

maps that are more relevant to breast cancer patterns. 

To further capture sequential dependencies, a BiLSTM 

(Bidirectional Long Short-Term Memory) network is 

applied to the feature maps. Let ℎ𝑡  be the hidden state at 

time step t, then the forward and backward LSTM states 

are computed as: 

ℎ𝑡
𝑓𝑤

= ∅(𝑊𝑓𝑤𝑥𝑡 + 𝑈𝑓𝑤ℎ𝑡−1
𝑓𝑤

+ 𝑏𝑓𝑤) 

ℎ𝑡
𝑏𝑤 = ∅(𝑊𝑏𝑤𝑥𝑡 + 𝑈𝑏𝑤ℎ𝑡−1

𝑏𝑤 + 𝑏𝑏𝑤) 

where ϕ is the activation function, and W, U, b are 

learnable parameters. The final hidden representation is 

obtained by concatenating ℎ𝑡
𝑓𝑤

 and ℎ𝑡
𝑏𝑤, allowing the 

model to encode both forward and backward temporal 

patterns. 
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A Feature Pyramid Network (FPN) is incorporated to 

capture multi-scale features, ensuring that fine-grained 

texture details and high-level semantic features are 

preserved. The multi-scale feature representation at level 

is given by: 

𝑃𝑙 = 𝛼𝐶𝑙 + (1 − 𝛼)𝑃𝑙+1 

where 𝐶𝑙  represents the CNN feature map at level l, 𝑃𝑙+1 is 

the upsampled feature from the next level, and α is a 

learnable weighting parameter. The ensemble outputs 

from all models are combined using an adaptive fusion 

strategy based on performance-driven weight adjustments. 

Let 𝐴𝑖 be the accuracy of model i on the validation set, the 

weight 𝑤𝑖  is computed as: 

𝑤𝑖 =
𝐴𝑖

∑ 𝐴𝑗
4
𝑗−1

 

ensuring that models with higher performance contribute 

more to the final prediction. The resulting classification 

decision is determined using a threshold T = 0.5: 

𝑦̂ = {
1, 𝐹(𝑥) ≥ 𝑇        (𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡)

0, 𝐹(𝑥) < 𝑇      (𝐵𝑒𝑛𝑖𝑔𝑛)
 

This ensemble strategy optimally leverages the strengths 

of different deep learning models, improving classification 

robustness and generalization while reducing the risk of 

false positives and false negatives. 

3.3 Adaptive fusion strategy 

The adaptive fusion strategy employed in BreastEnsemNet 

ensures an optimal combination of predictions from 

multiple deep learning models, improving robustness and 

classification accuracy. Given the outputs from four base 

models, each producing a probability score for 

malignancy, an adaptive weighting mechanism 

dynamically adjusts the contribution of each model. Let 

𝑓𝑖(𝑥) denote the probability output from model 𝑀𝑖 for an 

input mammogram image x, where i∈{1,2,3,4}. The 

ensemble output is computed as a weighted sum of 

individual model predictions: 

F(x)= ∑ 𝑤𝑖
4
𝑖−1 𝑓𝑖(𝑥),        

where 𝑤𝑖  are the model-specific adaptive weights 

satisfying ∑ 𝑤𝑖
4
𝑖−1 = 1. These weights are updated 

iteratively based on the validation performance of each 

model. 

To dynamically optimize the fusion weights, a 

performance-driven approach is employed. Let 𝐴𝑖 be the 

validation accuracy of model 𝑀𝑖, and 𝐿𝑖 be its cross-

entropy loss. The weight for each model is computed as: 

𝑤𝑖 =
𝐴𝑖

∑ 𝐴𝑗
4
𝑗−1

 

which ensures that models with higher validation accuracy 

contribute more to the final decision. Additionally, a 

secondary weight adjustment factor based on the inverse 

loss function is incorporated to penalize models with 

higher classification errors. The refined weight 

formulation is: 

𝑤𝑖 =
𝐴𝑖/𝐿𝑖

∑ (𝐴𝑗/𝐿𝑗)4
𝑗−1

 

There by favoring models that achieve both high accuracy 

and low loss. This adaptive weighting mechanism prevents 

over-reliance on any single model and enhances ensemble 

generalization. 

The final classification decision is determined based on a 

threshold T = 0.5, where: 

𝑦̂ = {
1,        𝐹(𝑥) ≥ 𝑇        (𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡)

0,                 𝐹(𝑥) < 𝑇      (𝐵𝑒𝑛𝑖𝑔𝑛)
 

To further refine fusion effectiveness, a confidence 

calibration technique is applied using temperature scaling. 

Given the raw fused probability F(x), the calibrated 

prediction 𝐹∗(𝑥) is computed as: 

𝐹∗(𝑥) =
1

1+𝑒−𝐹(𝑥)/𝑇𝑠
  

where 𝑇𝑠 is a learnable temperature parameter that scales 

the probability distribution, reducing overconfidence in 

uncertain cases. This step enhances decision reliability, 

particularly in challenging cases where different models 

may exhibit conflicting predictions. 

The adaptive fusion strategy is computationally efficient 

and ensures that the ensemble remains flexible in different 

dataset distributions. By dynamically adjusting weights 

and incorporating calibration, BreastEnsemNet effectively 

leverages multi-model predictions, reducing variance 

while maintaining high sensitivity and specificity in breast 

cancer detection. 

3.4 Model training and optimization 

The BreastEnsemNet model is trained using a carefully 

designed optimization strategy to ensure stability, 

convergence, and high classification accuracy. The 

training process follows a supervised learning approach, 

where mammogram images are passed through the 

ensemble architecture, and the model learns to 

differentiate between benign and malignant cases based on 

labeled training data. Given an input batch of images X= 

{𝑥1, 𝑥2, … . , 𝑥𝐵 } with corresponding labels Y= 

{𝑦1, 𝑦2, … . , 𝑦𝐵}, the network optimizes a binary 

classification objective by minimizing the binary cross-

entropy (BCE) loss: 

L=−
1

𝐵
∑ [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖)]𝐵

𝑖−1   

where 𝑦̂𝑖  represents the predicted probability for sample 

𝑥𝑖, and B is the batch size set to 64 for stable gradient 

updates. The loss function ensures that misclassified 

malignant cases are penalized heavily, improving 

sensitivity. 
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The training is performed using the Adam optimizer, an 

adaptive gradient-based optimization technique that 

dynamically adjusts learning rates based on first-order and 

second-order moment estimates. The weight update rule at 

iteration t for a given parameter 𝜃𝑡 is: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡,       𝑣̂𝑡 =

𝑣𝑡

1−𝛽2
𝑡 

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√𝑣̂𝑡 + 𝜖
𝑚̂𝑡 

where 𝑔𝑡 is the gradient of the loss with respect to 𝜃𝑡, 

𝛽1=0.9, 𝛽2=0.999, η is the learning rate set to 0.0001, and 

ϵ is a small constant to prevent division by zero. This 

approach allows efficient handling of sparse updates and 

stabilizes training. 

The network is trained for 30 epochs, with early stopping 

applied if validation loss does not improve for 5 

consecutive epochs. The training data is augmented 

dynamically using random flips, rotations, zooming, and 

contrast adjustments, ensuring better generalization. The 

dataset is split into training (70%), validation (15%), and 

testing (15%) subsets, where only the training and 

validation sets are used for weight updates. 

To ensure better feature learning across different layers, a 

layer-wise learning rate scheduler is applied. The initial 

layers corresponding to the CNN backbones have a 

learning rate scaled by γ=0.1 compared to the final 

classification layers, ensuring that pre-trained feature 

extractors retain meaningful representations while higher-

level layers learn new patterns specific to mammogram 

images. 

For robustness, L2 regularization is applied to fully 

connected layers, preventing overfitting by penalizing 

large weight magnitudes. The regularization term added to 

the loss function is: 

𝐿𝑟𝑒𝑔 = 𝜆 ∑ ∥ 𝜃𝑖 ∥2

𝑖

 

where λ=0.0005 controls the penalty strength. Dropout is 

incorporated with a probability of 0.5 in the dense layers 

to improve generalization by randomly deactivating 

neurons during training. 

The initial learning rate of 0.0001 was chosen after 

performing empirical tuning over several trials. Values at 

the low-end of this range are often employed in deep 

ensemble methodologies to promote convergence, and 

particularly when fine-tuning pre-trained CNNs with 

Transformer and BiLSTM layers. Larger Learning Rates 

resulted in validation loss oscillation and lack of 

generalization. 

Moreover, L2 regularization (weight decay) was used on 

the fully connected layers for regularizing the model and 

prevent overfitting. This regularization approach 

encourages small weights during training, essentially 

limiting the hypothesis space and prefer smoother decision 

boundaries. It is able to preserve model generalization on 

unseen mammogram samples, particularly in high-

dimensional feature space. 

During the training process, evaluation metrics, including 

accuracy, precision, recall, and F1 Score, are tracked for 

both training and validation sets. The best-performing 

model is selected based on the highest validation AUC-

ROC score, ensuring that the trained model maintains a 

balance between sensitivity and specificity. 

After training, the model undergoes post-training 

calibration using temperature scaling to refine confidence 

scores. The trained BreastEnsemNet model is then 

evaluated on the independent test set, ensuring it can 

effectively generalize to unseen mammogram images. The 

final trained network is saved in a serialized format for 

deployment in real-world breast cancer diagnosis 

applications. 

3.5 Proposed algorithm 

The BreastEnsemNet algorithm leverages a hybrid deep-

learning ensemble to enhance breast cancer diagnosis 

using mammogram images. By integrating CNN feature 

extraction, Transformer-based attention, BiLSTM 

sequential learning, and adaptive fusion, it captures multi-

scale spatial, sequential, and contextual features. This 

structured approach ensures high accuracy, robustness, 

and interpretability, making it highly significant for AI-

driven medical diagnostics. 

Algorithm: BreastEnsemNet – Hybrid Ensemble Deep Learning Framework for Breast Cancer Diagnosis 

Input: Mammogram image X 

Output: Classification label 𝑦̂ (Benign or Malignant) 

1. Data Preprocessing: 

1.1 Resize X to 224×224×3. 

1.2 Normalize pixel values p(i, j)←p(i, j)/255. 

1.3 Apply data augmentation: rotation θ∼U(−15∘,15∘), horizontal flip 𝑃𝑓=0.5, zoom s∼U(0.9,1.1). 

2. Feature Extraction using CNN Models: 

2.1 Extract features 𝐹𝑉(X), 𝐹𝑅(X), 𝐹𝐼(X) from VGG16, ResNet50, and InceptionV3. 

2.2 Apply Feature Pyramid Network (FPN) for multi-scale representation. 
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3. Transformer-Based Attention: 

3.1 Compute Query Q, Key K, and Value V. 

3.2 Compute attention matrix A=softmax(
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉. 

4. Sequential Feature Learning with BiLSTM: 

4.1 Pass extracted features through Bidirectional LSTM layers: 

ℎ𝑡
𝑓𝑤

= ∅(𝑊𝑓𝑤𝑥𝑡 + 𝑈𝑓𝑤ℎ𝑡−1
𝑓𝑤

+ 𝑏𝑓𝑤) 

ℎ𝑡
𝑏𝑤 = ∅(𝑊𝑏𝑤𝑥𝑡 + 𝑈𝑏𝑤ℎ𝑡−1

𝑏𝑤 + 𝑏𝑏𝑤) 

4.2 Concatenate forward and backward states. 

5. Adaptive Fusion and Ensemble Prediction: 

5.1 Compute individual model probabilities 𝑓𝑖(𝑥) for each model 𝑀𝑖. 

5.2 Compute adaptive weights: 

𝑤𝑖 =
𝐴𝑖/𝐿𝑖

∑ (𝐴𝑗/𝐿𝑗)4
𝑗−1

 

5.3 Compute final probability: 

F(x)= ∑ 𝑤𝑖
4
𝑖−1 𝑓𝑖(𝑥)  

6. Classification Decision: 

6.1 Apply temperature scaling: 

𝐹∗(𝑥) =
1

1+𝑒−𝐹(𝑥)/𝑇𝑠
 

6.2 Assign class label: 

𝑦̂ = {
1,        𝐹∗(𝑥)  ≥ 0.5        (𝑀𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡)
0,                 𝐹∗(𝑥)  < 0.5      (𝐵𝑒𝑛𝑖𝑔𝑛)

 

7. Output 𝑦̂ as the final classification label. 

Algorithm 1: BreastEnsemNet – hybrid ensemble deep learning framework for breast cancer diagnosis 

The BreastEnsemNet framework, which is proposed here, 

works systematically to classify mammogram images into 

two classes, Benign or Malignant, based on a deep-

learning hybrid ensemble. In Algorithm 1, the process 

starts from data preprocessing in which the images are 

resized to 224 × 224 × 3, are normalized, and pictures with 

transformations like flipping, rotation, and zooming are 

augmented images. That way, it helps you with better 

generalization and not overfitting. Pre-processed images 

are then given as input to three different CNN-based 

feature extractors, namely VGG16 for extracting fine 

granularity features (spatial and hierarchical) at various 

levels, and ResNet50 and InceptionV3 for capturing global 

features (spatial and hierarchical) at different levels. The 

extracted feature maps are then further processed through 

a multi-level Feature Pyramid Network (FPN), where the 

network combines multi-scale representations. 

In addition, to improve feature selection, a transformer-

based attention mechanism is used to calculate query, key, 

and value matrices to assign importance dynamically to 

different regions of the image. The attention module output 

is then passed onto a BiLSTM network, which captures 

sequential dependencies between diagnostic features. This 

incremental training helps the network to learn intricate 

patterns, which are necessary to identify mammograms. 

Next, using an adaptive fusion strategy, the extracted 

features from CNNs, Transformers, and BiLSTM layers 

are concatenated, and dynamic weights are assigned to 

each model based on validation performance. 

A final prediction is obtained by using a fully connected 

layer, and sigmoid activation is used to provide a 

probability score of the tumor being malignant. Threshold-

based classification (benign or malignant (0 or 1)) is 

performed based on the mammogram. Temperature 

scaling further modifies the estimated probabilities before 

classification to increase decision confidence. The detailed 

design concept provides a secure, scalable, and high-

accuracy algorithm to detect breast cancer based on 

mammogram pictures. 

3.6 Performance evaluation 

To individually verify the validity of the diagnostic 

capability of each face of the BreastEnsemNet model, an 

extensive range of performance measures is used to 

evaluate the model. This helps the model generalize well 

on unseen mammogram images and the evaluation is 

carried on a separate test set. The breast cancer detection 

problem is very sensitive,  and therefore, we calculated 

some classifier performance in terms of accuracy, 

precision, recall, F1-score, and area under the curve (AUC) 

using the area under the ROC curve (AUC-ROC). So, if 

TP (True Positives), FP (False Positives), TN (true 

negatives), and FN (False Negatives) are the classification 

results, then the accuracy is calculated as, 

Accuracy= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

which provides an overall measure of correctly classified 

cases. However, given the class imbalance often present in 

medical datasets, accuracy alone is insufficient. Precision, 

which measures the reliability of positive predictions, is 

calculated as: 

Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

while recall (sensitivity), which indicates how well 

malignant cases are detected, is given by: 
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Recall= 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

A balance between precision and recall is achieved using 

the F1-score, defined as: 

F1-Score=2×
Precision×Recall

Precision+Recall
 

ensuring that both false positives and false negatives are 

minimized. To analyze the trade-off between sensitivity 

and specificity at different classification thresholds, the 

Receiver Operating Characteristic (ROC) curve is plotted 

by varying the decision threshold T. The AUC-ROC score, 

computed as: 

AUC=∫ 𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅)
1

0
  

where TPR (True Positive Rate) and FPR (False Positive 

Rate) are given by: 

TPR=
𝑇𝑃

  𝑇𝑃+𝐹𝑁
,        FPR=

𝐹𝑃

𝐹𝑃+𝑇𝑁
 

indicates the model’s capability to distinguish between 

benign and malignant cases. A higher AUC score, closer 

to 1.0, signifies better discriminative ability. 

In order to gain more insight into the robustness of the 

BreastEnsemNet, a confusion matrix is established to 

show the classification mistakes (n = 56). Misclassified 

instances are studied to isolate hard cases that lead to false 

positives and false negatives that help improve the model’s 

decision-making process. Finally, a precision-recall (PR) 

curve is presented, which is especially relevant for data 

with a class distribution out of balance, with the area under 

the PR curve (AUCPR) being a complementary 

performance measure. 

We perform comparative analysis with state-of-the-art 

models such as LMHistNet, BreastMultiNet, and DOTNet 

2.0 to benchmark the performance improvements. This 

ensemble-based method is capable of achieving 98.30% 

accuracy with a much lower Misclassification rate than the 

existing method. To confirm the superiority of 

BreastEnsemNet, a statistical significance test by using 

McNemar's test is applied which ensures that 

the performance improvements we see are not random. 

Finally, confidence calibration is applied to the probability 

scores of model predictions for clinical applicability. 

Temperature scaling is being used to calibrate predicted 

probabilities so that the confidence of our decision in the 

real world aligns with what we want to predict a diagnosis 

should be. Results of the comparison confirm that 

BreastEnsemNet can not only significantly increase the 

accuracy of classification but also increase interpretability 

and confidence in AI-assisted breast cancer screening. 

4  Experimental results 

We perform the experimental evaluation of 

BreastEnsemNet to verify its effectiveness for breast 

cancer diagnosis in mammogram images from the publicly 

available CBIS-DDSM dataset. The review is focused on 

analyzing the model performance based on classification 

accuracy, sensitivity, specificity, and robustness. The 

benefits of the proposed hybrid ensemble framework are 

demonstrated through a comparative evaluation against 

state-of-the-art deep learning models for image 

classification. The experiments consist of the quantitative 

performance measured with ablation studies; a 

visualization technique (Grad-CAM heatmap) used to 

interpret the importance of features for end-users. We also 

analyze the effect of each component in the model—CNN 

for feature extraction, attention based on the Transformer, 

BiLSTM for sequential learning, and Adaptive Fusion. 

This also allows us to see the trends in how the framework 

used for reliable breast cancer detection generalizes, where 

it goes wrong, and how it can be used for clinical 

applicability. 

4.1 Dataset description 

BreastEnsemNet is trained and evaluated using the 

Curated Breast Imaging Subset of the Digital database for 

screening mammography (CBIS-DDSM) [41]. CBIS-

DDSM is a mammographic dataset containing high-

resolution mammogram images with pathologically 

verified benign and malignant labels. The dataset includes 

calcification and mass cases, with ROI annotations 

indicating the tumor locations. Preprocessing of each 

mammogram includes resizing to 224×224×3, scaling all 

pixels in the range [0, 1], and data augmentation like 

flipping, rotating, and contrast for generalization. The 

training-validation- test split was 70/15/15. This splitting 

considers the trade-off between having enough data to 

train deep models, while at the same time having a large 

portion of unseen samples for reliable validation and 

unbiased evaluation of performance. This 15% test size is 

common in benchmark work in medical imaging where 

datasets are generally small and limited. Given the 

diversity and clinical imaging conditions in the CBIS-

DDSM dataset, it provides a validated benchmark for 

assessing deep learning-based breast cancer detection 

models. 

4.2 Experimental setup 

BreastEnsemNet experiments are performed in a high-

efficiency computing environment for optimal training and 

testing conditions. The implementation, written in 

TensorFlow and Keras, supplemented with libraries for 

data preprocessing, visualization and performance 

measurements. It is trained on a Unix machine with 

NVIDIA RTX 3090 GPU with 24GB VRAM Intel Core 

i9-12900K CPU and 128GB RAM to accelerate deep 

learning calculations. We load and preprocess the dataset 

with ImageDataGenerator API with a batch size of 64 to 

provide stable training. Using the Adam optimizer, the 

binary cross-entropy loss function is optimized by making 

the learning rate decay over the epochs for overfitting 

prevention, with an initial learning rate set as 0.0001. Here, 

the model is trained for 30 epochs using early stopping 

with a patience of 5 epochs on the validation loss. To 

regularize and improve generalization, the model has L2 
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(λ=0.0005) and Dropout (0.5 probability). The testing is 

done on a separate test set in order to make sure that the 

performance metrics estimate the capability of the model 

to produce real-world diagnostic models. The following 

experiments are performed to find a balance between 

model convergence and computational speed. 

 

 

4.3 Results 

In this section, exploratory data analysis and the breast 

cancer prediction performance of CNN-only, 

CNN+BiLSTM, and the proposed BreastEnsemNet model 

are presented. The results show that breastEnsemNet 

surpasses baseline models with the reduction of false-

positive and false-negative numbers and improvement in 

the deep learning approaches for breast cancer detection. 

It also provides an insight into class imbalance and its 

treatment using the SMOTE tool. 

 

Figure 3: Class distribution in the training set 

The class distribution of the training set of the CBIS-

DDSM dataset is shown in Fig. 3. One can see from Fig. 3 

that a significant imbalance exists between benign and 

malignant cases. The data is more abundant in malignant 

than in benign cases, and because of this, the training of 

the model tends toward the majority. In such cases, we can 

have a model that predicts malignant classes correctly but 

fails to predict benign instances, having a higher false 

positive rate. 

To alleviate this imbalance, methods were implemented 

in training such as SMOTE, weighted loss, and class-

balanced batch sampling. To mitigate this issue by 

allowing the deep learning model to learn representative 

patterns from both classes and, therefore, reduce the bias, 

these methods should be included and fine-tuned. 

Moreover,  data augmentation methods were utilized to 

broaden benign samples, making our model more robust. 

The imbalance seen stresses on understanding the need for 

coupling data preprocessing methods for the equitable and 

precise breast cancer diagnosis. BreastEnsemNet 

addresses the problem of class imbalance, reiterating the 

performance of generalization on various mammograms, 

which increases recall and precision along with the 

classification performance in real-world case scenarios. 
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Figure 4: Class distribution after applying SMOTE – visualization of the balanced dataset, ensuring equal 

representation of benign and malignant cases to improve model generalization and reduce bias 

The class distribution shown in Fig 4 after applying 

SMOTE (Synthetic Minority Over-sampling Technique) 

confirms the equal number of benign and malignant cases, 

indicating a wholly balanced dataset. This dataset was 

originally imbalanced, having more malignant cases than 

benign cases, which can result in biased predictions from 

the model. The SMOTE method was adopted to hire 

synthetic benign samples to evenly distribute both classes. 

The deep learning model is also generalized and minimizes 

the possibility of bias towards the majority class by 

balancing the dataset. This improves the models to 

differentiate the benign vs the malignant cases more 

accurately and reduces the risk of misclassification. 

Balanced datasets also help avoid avoiding overfitting to 

patterns in classes with most of the samples in it, resulting 

in a stable training process. SMOTE guarantees that 

BreastEnsemNet is capable of learning with non-trivial 

patterns of interest in both classes, hence ensuring peak 

performance as a consequence, leads to a more robust 

breast cancer detection system, with significant 

enhancement in the precision, recall, and F1-score, with 

the most notable improvement in the detection of benign 

cases. Such a balanced distribution reinforces the building 

of fair-unbiased AI-powered mammogram classification 

models that work well in clinical practice. 
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Figure 5: Sample mammogram images from the CBIS-DDSM Dataset – representative images of benign and 

malignant cases used for training and evaluation in BreastEnsemNet. 

Examples of mammogram images of benign and 

malignant samples for BreastEnsemNet training and 

testing set in the CBIS-DDSM dataset are shown in Figure 

5. The non-tumor images consist of typically structured 

tissues with no abnormalities (benign), while the tumor 

images consist of irregular masses with tumors-related 

dense areas (malignant). The samples also show the 

inherent variability in mammographic patterns, indicating 

the necessity of more advanced deep learning models to 

learn to distinguish between benign and malignant cases. 

 

Figure 6: Classification results of CNN-only model – correct and misclassified mammogram images, highlighting 

false negatives where malignant cases were incorrectly predicted as benign 

The classification results of the CNN-only model are 

demonstrated in Figure 6, where the green- and red-

colored malignant cases are correctly classified and 

misclassified malignant cases (benign), respectively. The 

model was also not without false negatives- which speaks 

to the limited nature of ML models in capturing the 

complicated features of tumors that lead to misdiagnoses. 

This emphasizes the importance of feature extraction, 

sequential learning, and attention to improving 

classification performance. 
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Figure 7: Classification results of CNN+BiLSTM Hybrid Model – improved malignant case detection with fewer 

misclassifications, demonstrating the effectiveness of sequential learning in breast cancer diagnosis 

The CNN+BiLSTM hybrid's classification results address 

lesser misclassification and better detection of malignant 

diseases (Fig 7). The BiLSTM step integrates to learn 

sequential features, thereby enabling the model to learn 

contextual relations in mammogram images. It retains, 

however, the one false negative but outperforms the CNN-

only models, showing that sequential learning is essential 

within the deep learning frameworks for a potent breast 

cancer diagnosis [7]. 

 

Figure 8: Classification results of BreastEnsemNet – accurate detection of malignant cases without misclassification, 

demonstrating the superior performance of the proposed hybrid ensemble deep learning framework 

BreastEnsemNet can correctly identified as malignant 

without misclassification, as shown in the classification 

results of BreastEnsemNet in Figure 8. Apart from 

traditional CNN-based and CNN+BiLSTM models, more 

optimal classification performance is achieved by 

BreastEnsemNet due to the synergetic fusion of multi-

scale feature extraction, Transformer-based weighting 

attention,  BiLSTM iterative sequential learning, and 

adaptive fusion. The no false negatives reflect the elevated 

model sensitivity and specificity important for early breast 

cancer diagnosis. This is then refined spatially (feature 

pyramid networks) while balancing data with SMOTE to 

allow further generalization and reduce dataset bias. These 

findings establish the utility of BreastEnsemNet as an AI-

based mammogram diagnostic tool for breast cancer 

detection in a clinical environment. 

4.4 Comparison with the performance of 

baselines 

The performance evaluation against baselines assesses the 

classification capacity of CNN-only, CNN+BiLSTM, and 

the proposed BreastEnsemNet model using the main 

measures to judge performance: accuracy, precision, 

recall, f1-score, and AUC-ROC. BreastEnsemNet using 

mammograms shows higher sensitivity (high true 

positives), lower false negatives, and generalizability in 

learning features compared with traditional deep learning 

approaches for breast cancer diagnosis. 
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Figure 9: Confusion matrices for BreastEnsemNet and baseline models 

Confusion matrices between BreastEnsemNet and four 

baseline models (VGG16, ResNet50, InceptionV3 and 

Hybrid CNN-BiLSTM) for the datasets CBIS-DDSM 

including classification performances on benign and 

malignant cases are visualized in Fig.3. The confusion 

matrix shows each true positive (TP), false positive (FP), 

false negative (FN), and true negative (TN) from each 

model which helps us understand the capability of each 

model in classifying breast cancer images correctly. The 

above breast image classification method, 

BreastEnsemNet, performs better with relatively more true 

positive detections and fewer false positive 

misclassifications, which means the proposed method 

improves diagnostic accuracy. (Results confirm the 

availability of enhancing breast cancer diagnosis through 

the importance of multi-scale feature extraction, sequential 

learning, and an adaptive fusion strategy.) 

 

Table 3: Comparative performance analysis of breastensemnet against baseline deep learning models 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

VGG16 91.5 89.7 90.3 90.0 94.0 

ResNet50 93.2 91.8 92.5 92.1 95.3 

InceptionV3 92.8 91.2 91.9 91.5 94.8 

Hybrid CNN-BiLSTM 95.1 94.5 94.8 94.6 96.7 

BreastEnsemNet (Proposed) 98.79 97.9 98.4 98.1 99.2 

BreastEnsemNet performance comparison with baseline 

deep learning models such as VGG16, ResNet50, 

InceptionV3,  and Hybrid CNN-BiLSTM, based on the 

CBIS-DDSM dataset in Table 2. Transformer-based 

attention mechanism, and BiLSTM sequential learning, 

the model shows the most substantial performance 

achieving 98.79% accuracy, better than other 

architectures. Meantime, it also achieves better precision 

(97.9%), recall (98.4%), F1-score (98.1%) and AUC-ROC 

(99.2%), resulting in more solid classification. This shows 

the importance of both multi-scale feature extraction and 

hybrid feature learning schemes implemented in 

BreastEnsemNet, which together enable BreastEnsemNet 

to be a robust AI-based diagnostic test for breast cancer 

detection. 
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Comparison results of BreastEnsemNet with baseline deep 

learning models: VGG16, ResNet50, InceptionV3, and 

Hybrid CNN-BiLSTM (by using five performance 

metrics: Accuracy, Precision, Recall, F1-Score, and AUC-

ROC). Notably, the proposed model outperforms the state-

of-the-art, yielding the highest accuracy (98.79%), 

precision (97.9%), recall (98.4%), F1-score (98.1%), and 

AUC-ROC (99.2%) than any other standard CNN-based 

models. This gain is due to 1) adaptive fusion strategy, 2) 

Transformer-based attention mechanism, and 3) BiLSTM 

sequential learning, which helps the model learn better 

global multi-scale spatial and sequential dependencies of 

mammogram images. Our results indicate that 

BreastEnsemNet could be a useful AI-powered diagnostic 

tool for breast cancer detection. 

In order to evaluate importance of each augmentation, we 

performed a controlled experiment which measures the 

model performance as a function of individual 

augmentation – rotation, horizontal flip and zoom. 

Rotation (+15/-15) yielded a 16% improvement in 

performance, promoting robustness against angular 

changes. The horizontal flipping increased the 

generalization by 1.3% in precision, benefiting from the 

bilateral symmetry of mammograms. Zooming (±10%) 

provided marginal accuracy increase (0.9%) as it provided 

the model with varying lesion sizes. 

Nevertheless, too much augmentation might also lead to 

overfitting to artificial patterns. In order to address this 

issue, we used early stopping, dropout (0.5), and 

monitored the validation loss. There were no artifacts that 

distorted the morphology of the lesion on visual 

inspection. Therefore, augmentation boosted 

generalization without negative effects of bias or 

instability. 

Outputs of CNN-based models, BiLSTM and 

Transformer-based attention are combined by adaptive 

fusion model in BreastEnsemNet. The fusion operates by 

giving dynamic weights to the outputs for each 

component, estimated using the best F 0 evaluation results 

(see Section 3.3) and the cross-entropy loss.The fusion 

assigns the weight dynamically to each model in the final 

decision. If the BiLSTM decision always has a better 

performance on validation subsets, it is relatively more 

important in the final students’ ensemble. 

In order to increase the model’s transparency, we visualize 

attention regions with Grad-CAM (Figure 7) to verify 

whether spatial interpretability is preserved. SHAP and 

LIME were not employed in this work but are interesting 

future directions to dissect and visualize model-level 

contribution in the ensemble, particularly for decision-

level explainability across the fused architectures. 

4.5 Ablation study 

The ablation study assesses the contribution of individual 

architectural pieces in BreastEnsemNet by incrementally 

adding Feature Pyramid Network (FPN), Transformer-

based attention, and BiLSTM sequential learning 

components to the basic CNN-only model. To quantify the 

contribution of each component to improving overall 

performance, this analysis shows enhancements in 

accuracy, precision, recall, F1-score, and AUC-ROC, 

indicating that the proposed framework is effective in 

breast cancer diagnosis. 

 

Table 4: Ablation study for BreastEnsemNet 

Model Variant Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

(%) 

CNN Only 

(VGG16+ResNet50+InceptionV3) 

94.2 93.8 92.5 93.1 96.0 

CNN + Feature Pyramid Network (FPN) 95.3 94.6 93.7 94.1 96.8 

CNN + FPN + Transformer Attention 96.1 95.4 94.9 95.1 97.4 

CNN + FPN + Transformer Attention + 

BiLSTM 

97.2 96.5 96.0 96.3 98.0 

Full Model (BreastEnsemNet) 98.79 97.9 98.4 98.1 99.2 

Table 3: Ablation study that assesses the impact of each 

component of BreastEnsemNet on breast cancer diagnosis 

performance. Results are compared as CNN only, 

CNN+Feature Pyramid Network (FPN), 

CNN+FPN+Transformer Attention, 

CNN+FPN+Transformer Attention+BiLSTM, and 

BreastEnsemNet (Table3). The results suggest that FPN, 

when integrated, improves accuracy due to its resonant 

multi-scale representations, whereas transformer-based 

attention improves feature selection. BiLSTM sequential 

learning addition amplifies recall and f1-score due to 

spatial dependency. This shows that the adaptive fusion 

and soft voting are effective, and the best performance is 

achieved when the full model (BreastEnsemNet) is used. 
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Figure 4: Ablation study – performance comparison of BreastEnsemNet components 

The ablation study outcomes of BreastEnsemNet are 

represented in Figure 4, where the key architectural 

building blocks affecting its performance on the atop-

mentioned five metrics: accuracy, precision, recall, F1-

score, and the AUC-ROC are observed. It assesses five 

models, from a CNN model, to adding, to Transformer 

attention, to BiLSTM sequential learning, to the full 

BreastEnsemNet. These parts contribute to crucial 

functionalities such as feature extraction (CNN), spatial 

awareness (Attention), sequential dependency modeling 

(RNN), and decision fusion (mapping to output), thus 

boosting the performance significantly. 

Our baseline CTGAN without any MI data, which only 

contains CNN part of VGG16, ResNet50, and 

InceptionV3, presents an accuracy of 94.2%. It is good at 

extracting hierarchical and multi-scale characteristics but 

cannot refine spatial representation efficiently. The 

addition of an FPN refinement adds accuracy up to 95.3%. 

FPN improves the model’s ability to detect fine-grained 

structures in mammogram images by conducting feature 

refinement at multi-scale stuffing. Transformer-based 

attention over image features is added, leading to a 

significant improvement in accuracy (96.1%) since 

attention allows the model to concentrate on the most 

pertinent diagnostic regions through query-key-value-

based feature weighted importance. This way, many visual 

characteristics are less attractive and get ignored, which 

contributes to reducing false positive and false negative. 

Using BiLSTM as as part of the framework we should 

gain a significant step improvement of accuracy to 97.2%. 

BiLSTM improves feature extraction by representing 

features both forward and backward, allowing more spatial 

correlation to be captured so that the mammogram 

sequential patterns can be efficiently applied during 

classification. These additions also increase recall andF1-

score indicating the model can better identify malignant 

cases with higher sensitivity. Late, the complete 

BreastEnsemNet model combines all these components 

and achieves the maximum accuracy (i.e., 98.79%) among 

previously mentioned previous configurations. The 

adaptive fusion strategy of BreastEnsemNet that 

combines outputs from CNN, Transformer, and BiLSTM 

through weighted soft voting optimizes overall 

classification and provides a resilient classification 

pipeline. 

The performance gains demonstrated at each step in the 

ablation study emphasize that incorporating multi-scale 

feature refinement, attention and sequential learning are 

essential for achieving state-of-the-art performance in 

breast cancer detection. This extremely large 

improvement in AUC-ROC from the CNN-only model of 

96.0% to 99.2% for full BreastEnsemNet shows that 

BreastEnsemNet is much more reliable in differentiating 

benign and malignant cases. Our results indicate that the 

architectural design-motivated choices in BreastEnsemNet 

help achieve better generalization, interpretability, and 

diagnostic performance, making it a viable AI solution for 

breast cancer diagnosis. 

The ablation results in Table 3 indicate that the proposed 

Feature Pyramid Network (FPN) achieves higher 

accuracy which is 95.3%, we also improve precision and 

recall. This justifies that FPN does enhance multi-scale 

representation via the combination of low-level detail and 

high-level semantics. 

FPN was chosen as it is deep learning favorable based on 

being end-to-end trainable, besides of being compatible 

with deep learning and computational efficiency compared 

to traditional techniques (i.e., Wavelet Transform). 

Wavelet: Wavelet based methods could capture multi-

scale textures but it highly depends on some handcrafted 

parameters and is not well blended with the difficult CNN 

structures. FPN, however, naturally improves the CNN 

output so that it works well for mammogram images of 

varying lesion sizes and densities. 

The incorporation of the BiLSTM in BreastEnsemNet… 

is important in exploiting the spatial and contextual 

dependencies in sequential feature representations of 

mammogram images. As presented in Table 3, followed 
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by CNN and attention modules, BiLSTM further improved 

classification accuracy from 96.1% to 97.2% and F1-

score from 95.1% to 96.3%. Unblinded CNN only realizes 

the spatial processing of features statically, by contrast, 

BiLSTM can exploit frontward and backward correlations 

between the anatomical structures in feature sequences, to 

encode anatomical structures more completely. 

We also tested GRU in preliminary experiments, but we 

obtained slightly lower F1-score (95.8%) than with 

BiLSTM (96.3%), as a result of lower gating complexity. 

BiLSTM was thus chosen as due to its better learning 

capacity, especially for symmetrical patterns and subtle 

changes of mammogram textures, which are the key 

factors for accurate classification. 

4.6 Statistical validation and calibration 

analysis 

Statistical validation tools were applied to guarantee the 

reliability of the obtained results. We used McNemar’s test 

to compare the proposed BreastEnsemNet model to the 

baseline models and to each other with paired predictions 

on the test set. The obtained p-values (<~0.01) should 

assure that the performance gains are not coincidental. 

 

We also calculated 95% confidence intervals for the 

classification accuracy based on the method of Wilson 

Score Interval. Confidence interval of the 98.79% 

accuracy is [97.9%, 99.5%], which shows highly reliable 

model predictions. 

The ROC curve analysis is shown in Figure 6 in detail, and 

BreastEnsemNet obtains an AUC-ROC of 99.2%, which 

clearly outperforms other models by a large margin. 

Lastly, the predicted probabilities of the model were 

calibrated using temperature scaling, which decreased the 

confidence of outputs. The predictability of these 

calibrated scores was validated using a reliability curve 

demonstrating a near-linear relationship between predicted 

confidence and observed accuracy, thus further supporting 

the clinical readiness of the model. 

4.7 Comparison with existing methods 

This section assesses BreastEnsemNet performance 

competitor of the state-of-the-art breast cancer 

classification methods with other methods using key 

metrics like accuracy, precision, recall, F1-score and 

AUC-ROC. In this analysis, the proposed hybrid deep 

learning framework provides higher classification 

performance, better feature representation, and 

considerable generalization for reliable mammogram-

based breast cancer diagnosis.

 

Table 5: Performance comparison of BreastEnsemNet with existing methods 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

Haq et al. (2022) [1] 96.1 95.6 94.8 95.2 97.3 

Nagalakshmi (2022) [2] 94.5 93.8 92.5 93.1 95.9 

Pattnaik et al. (2023) [3] 95.2 94.7 93.9 94.3 96.8 

Deb et al. (2023) [4] 96.8 96.2 95.9 96.0 97.5 

Sharma et al. (2022) [5] 93.9 92.8 91.7 92.2 94.5 

Jadoon et al. (2023) [7] 95.7 94.5 93.9 94.2 96.7 

Routray et al. (2023) [8] 97.1 96.5 96.2 96.3 97.8 

BreastEnsemNet (Proposed) 98.79 97.9 98.4 98.1 99.2 

Table 5: A comparative performance analysis of 

BreastEnsemNet with state-of-the-art breast cancer 

diagnosis models. The proposed model attains highest 

accuracy (98.79%), precision (97.9%), recall (98.4%), 

F1-score (98.1%) and AUC-ROC (99.2%) compared to 

existing methods. The average performance improvement 

mainly benefits from applying (1) CNN for feature 

extraction, (2) Transformer for attention, (3) BiLSTM for 

sequential learning, and (4) adaptive fusion strategy. 

BreastEnsemNet also significantly outperforms previous 

approaches by improving feature learning, 

Misclassifications and generalization. And the high AUC-

ROC score signifies that it is more robust than other 

models which makes it a good candidate as an AI-based 

mammogram image diagnostic tool for early breast cancer 

detection. 

Metric variations are consistent with standard performance 

divergence between global and class-specific indicators.
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Figure 5: Performance comparison of BreastEnsemNet with existing methods 

Performance Comparison of BreastEnsemNet with 

Existing State-of-the-art Models in terms of Accuracy, 

Precision, Recall and F-1 Score.Figure 5 The bar graphs 

are color-coded to serve as a visual accessory for 

interpreting the relative performance differences of the 

approaches. Their static, comparison against methods 

proposed by Haq et al. Also, Nagalakshmi (2022), Pattnaik 

et al. (2022), (2023), Deb et al. (2023), Sharma et al. 

(2022), Jadoon et al. (2023), and Routray et al. (2023), 

and the proposed model BreastEnsemNet. 

The first graph shows the accuracy results, in which 

approach achieves the best value of 98.79, which is a new 

record-breaking result, is BreastEnsemNet which has not 

been surpassed by other methods. Deb et al. The findings 

of (2023) gave an accuracy of 96.8% and other models 

provided values of 93.9–97.1% [10]. These facts illustrate 

that the huge accuracy gain achieved herby 

BreastEnsemNet is a strong indicator of the founctionality 

of the hybrid architecture (CNN based feature extraction), 

Transformer based attention (for capturing global context), 

BiLSTM sequence (for sequential learning) and adaptive 

fusion (for combination) it leverages. 

The second graph shows the precision which indicates the 

ability of the model to be able to only detects malignant 

cases (well without falsely labeling a benign case as 

malignant). Until now, BreastEnsemNet achieves the 

highest precision rate of 97.9%, where the second-highest 

is reached by Routray et al. (2023) at 96.5%). This 

showed the model has improved in feature selection to 

reduce misclassification error and increased specificity for 

breast cancer detection. 

Recall is an important metric in medical diagnosis because 

we care more about true positive cases; it is illustrated in 

the third graph. BreastEnsemNet ensures the lowest 

number of false negatives with the best recall (98.4%). 

This result is especially significant to breast cancer 

screening given the potential life-threatening impact after 

missing out malignant case. FPN refined the spatial 

features while the ability to learn eagerly together with 

temporal features clearly helped BiLSTM, making that 

sentence closer to the state-the-art. 

The last plot compares classic model with F1-score which 

is a harmonic mean of precision and recall, where 

BreastEnsemNet also surpasses others with 98.1%. As 

shown by the improved F1-score, the proposed model is 

able to minimize false positives while maintaining high 

sensitivity for identification of cancerous tissues. By 

demonstrating the effects of the individual properties of 

the combined methods, the results thereby confirm multi-

scale feature extraction, an attention mechanism and 

adaptive fusion as a strong approach for breast cancer 

classification. In summary, our comprehensive 

comparison shows that, across all 4 metrics, 

BreastEnsemNet is still superior to the existing methods, 

which confirms the capability of the proposed approach for 

mammogram-based diagnosis of breast cancers. The 

significant increase in the recall and F1 = score revealed 

that the proposed model increases not only precision but 
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also generalization, providing an applicable AI-based 

diagnosis instrument. 

 

Figure 6: AUC-ROC performance comparison of BreastEnsemNet with existing methods, demonstrating superior 

generalization and discriminative capability for breast cancer classification 

The AUC-ROC Performance of BreastEnsemNet versus 

state-of-the-art Breast Cancer Classification Models is 

shown in Fig 6. The AUC-ROC evaluates the 

discrimination between benign and malignant cases, where 

higher values suggest more reliable classification. It 

compares with methods of Haq et al. Nagalakshmi (2022), 

Pattnaik et al. (2022) (2023), Deb et al. (2023), Sharma et 

al. (2022), Jadoon et al. (2023), and Routray et al. by the 

proposed BreastEnsemNet framework (2023). On the 

breast cancer dataset, it obtained the AUC-ROC of 99.2%,  

which outperforms existing approaches by a significant 

margin. The nearest alternative is Routray et al., 

Background: The top model, from our recently published 

paper (2023), achieves a score of 97.8%, and the second 

entry is Deb et al.) (2023) at 97.5%. BreastEnsemNet 

outperforms other models, which have a value between 

94.5% and 97.3% in classification. 

The remarkable performance gains in AUC-ROC are due 

to the combination of CNN-based multi-scale feature 

extraction, Transformer-based attention for improved 

region selection, BiLSTM for sequential dependency 

modeling, and an adaptive fusion strategy. These combine 

to reduce false positives and negatives, resulting in 

enhanced generalization and robustness when applied to 

real-life breast cancer detection problems. In conclusion, 

these results confirm BreastEnsemNet as the state-of-the-

art AI system for mammogram-based breast cancer 

classification and diagnosis. 

4.8 Transformer-based attention and 

visualization 

The Transformer-based attention module captures spatial 

relations by calculating attention scores over the spatial 

grid of the extracted features with query-key-value 

matrices. In contrast to SE-Nets, which operate on 

channel-wise attention, Transformers operate on spatial 

token embeddings, enabling the model to attend on 

diagnostically relevant regions immediately. This is 

especially useful in the application to mammogram 

analysis, due to the variation of the location and scale of 

subtle tumor boundaries. 

 

Figure 7: Grad-CAM Visualization for BreastEnsemNet 

Figure 8 shows the Grad-CAM based visualizations of 

original mammogram images (left), attention heatmaps 

(middle) and overlay visualizations (right) for benign and 

malignant cases. These Grad-CAM heatmaps demonstrate 

that the model (BreastEnsemNet) under transformer-

based attention and BiLSTM sequential learning 

attentively focuses on clinically meaningful regions, i.e., 

tumor boundaries and dense tissue regions. Unlike the 

conventional CNN attention that may be trigger at broad 

or irrelevant regions, the proposed model explicitly 

focuses on diagnostically useful areas for better 

classification stability and interpretability. These images 
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validate spatial resolution capability and clinical 

reliability of the model. 

For real-time or edge implementation, pruned or quantized 

or knowledge distilled optimizations can be investigated to 

achieve lower latency without compromising 

performance of the BreastEnsemNet. The architectural 

design will enable semi-automated offline diagnostic 

pipelines in hospitals and diagnostic centers and the future 

work will focus on extending the framework to embedded 

AI deployment. 

5  Discussion 

This section provides a thorough analysis of the 

performance statistics of BreastEnsemNet versus the latest 

existing deep learning methods for breast cancer 

diagnosis (refer to Table 1). We show that our proposed 

approach can reach an accuracy of 98.79% and outperform 

all baselines in terms of all evaluation metrics: accuracy 

(98.79%), precision (97.9%), recall (98.4%), and F1-score 

(98.1%). 

As in cases such as Hirra et al. [9], which reached 86% 

accuracy for simplistic CNNs and limited interpretablity 

and Rao et al. [12] that does not contain attention and 

sequential modeling meanwhile the performance of 

BreastEnsemNet is significantly improved. This 

performance advance is largely due to the synergy of three 

important modules: multi-scale CNN-based feature 

extractors, Transformer-based attention and the 

bidirectional-LSTM for sequential learning. The 

Transformer attention mechanism successfully aids the 

model to concentrate on diagnostically useful spatial areas, 

which enhance the precision by decreasing the false 

positives. On the other hand, the BiLSTM layer models 

contextual relationship in feature sequences, resulting in a 

higher recall, especially for malignant nodules with 

inconspicuous visual patterns. 

For example, in contrast to Sharma et al. [16] which 

reached 92% precision with no deep temporal modeling, 

BreastEnsemNet obtains a 5.9% higher precision, 

verifying the usefulness of the integration of BiLSTM. 

Meanwhile, the recall gain on Zheng et al. [10] (98.4 % 

vs. 98.3 %) may seem small, but an increase in F1-score 

also indicates better equalized classification for both 

classes, which is important for clinical usefulness. 

Next to the architectural innovation, SMOTE-based data 

balance contributed significantly to the model to avoid bias 

toward the majority class. SMOTE unlike naive 

oversampling, creates artificial instances of the minority 

class(benign) which improves generalization. But 

balancing this way only improve recall especially on 

minority benign samples, we are aware that SMOTE 

occasionally creates borderline or noisy examples in the 

synthetic space, which can increase FPs. We used 

dropout, early stopping, and data augmentation to prevent 

overfitting. In the future, we can consider alternatives like 

focal loss or class-weighted loss for a more calibrated 

model. 

Notwithstanding these good results, some failure cases 

were observed during evaluation particularly in the 

presence of mammograms including low contrast lesions, 

or with dense glandular tissue where the model sometimes 

confused benign regions as malignant. These examples 

indicate that, in spite of visual attention guidance, feature 

ambiguity remains in complex mammographic patterns. 

Furthermore, Grad-CAM analysis showed that 

misclassified images were associated with more 

widespread or overlapping attention maps (uncertainty) 

regarding model attention. 

Global, the multi-path CNNs, attention-based spatial 

weighting and BiLSTM-based temporal encoding, 

combined with adaptive ensemble fusion, significantly 

exceeds other state-of-the-art approaches. However, the 

models are limited in cases of borderline or visually 

ambiguous for which we plan to further improve by 

interpretability-aware training, uncertainty quantification, 

and multimodal fusion in the next versions of the model. 

The limitations of this study are discussed in Section 5.1. 

5.1 Limitations and implications for clinical 

use 

Although BreastEnsemNet shows impressive 

accomplishments, there are some limitations to which it is 

important to mention, in the perspective of its real-world 

adoption. First, the model was tested only on CBIS-DDSM 

dataset, which is one of the most commonly used databases 

for mammographic mass detection but may be limited in 

terms of the diversity of imaging protocols, scanner 

resolutions, and demographic differences of clinical 

environments. This, however, limits the generalizability of 

the model to either external data sets or underrepresented 

subpopulations. Thorough validation on multicenter 

datasets will be needed prior to clinical implementation. 

Second, the introduction of Transformer and BiLSTM 

components adds great computational cost, though it is 

beneficial to interpretability and modeling the sequential 

context. This has implications for scale and latency, 

particularly in low-resource, or real-time screening 

settings. Clinical deployment would necessitate model 

compression, edge optimization, or server-mediated 

inference pipelines in order to maintain usability without 

impeding diagnostic flow. 

Finally, the deployment of SMOTE technique for 

balancing the data, although beneficial for the recall of the 

model, can involve synthetic patterns not always 

clinically indicative, which might corrupt the calibration 

process of the model. Future work should investigate 

hybrid balancing methods and also involve prospective 

human-in-the-loop validation to further improve clinical 

trust. 

6  Conclusion and future work 

In this study, we proposed BreastEnsemNet, a hybrid 

ensemble deep learning framework for accurate and robust 

breast cancer detection from mammogram images. The 

model combines CNN-based multi-scale feature 

extraction, Transformer-based attention, BiLSTM 

sequential learning attractively, and adaptive fusion 

strategy and achieves high accuracy while improving 

generalization and decreasing false negatives. 
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BreastEnsemNet outperforms the recent state-of-the-art 

methods with the best accuracy of 98.79% of the 

experimental results. Moreover, SMOTE-based data 

balancing enables uniform learning from malignant and 

benign instances that tackles the dataset imbalance issues. 

These results support clinical applications of AI-based 

diagnostic algorithms for breast cancer detection. 

However, BreastEnsemNet has limitations like its high 

computational expense, use of a single dataset (CBIS-

DDSM), and absence of direct feedback from radiologists 

for reference ability. Further efforts should be directed at 

maximizing computational efficiency for translation into 

real-time clinical settings, broadening the dataset's 

diversity with multi-institutional and heterogeneous 

mammographic images, and integrating domain-specific 

expert knowledge via explainable AI techniques. Finally, 

coupling this with multi-modal imaging,  including 

ultrasound and MRI, will further bolster the diagnostic 

reliability of this framework. Improving these will enable 

BreastEnsemNet to become a clinically actionable AI-

based tool for early breast cancer detection and prognosis 

in the future. 
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