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This paper proposes a novel framework integrating IoT technologies, multimodal sensor networks, and 

the Deep Deterministic Policy Gradient (DDPG) algorithm for intelligent tennis training. We employ the 

DDPG algorithm for adaptive training adjustments, which dynamically optimizes the training policy 

based on real-time feedback. Experimental evaluation on 10 athletes shows that the DDPG algorithm 

improves performance metrics in multiple training scenarios, increasing the average game score from 50 

to 80 points and reducing the error rate in high-pressure scenarios from 13% to 6%. The system’s success 

rate reached 85%, with swing stability enhanced by 27% (0.1 rad deviation). These quantifiable outcomes 

highlight the framework’s effectiveness in optimizing training strategies, with potential applications in 

industrial automation and healthcare monitoring. 

Povzetek: Razvit je sistem za inteligentni teniški trening, ki združuje IoT senzorje, multimodalno fuzijo 

podatkov in DDPG algoritem za prilagodljivo optimizacijo vadbe v realnem času. 

 

1 Introduction 
With rapid advancements in computer science and 

data processing technologies, the integration of IoT 

devices, multimodal data fusion, and deep reinforcement 

learning (DRL) is transforming traditional systems into 

highly adaptive, real-time decision support platforms. 

This study proposes a novel system architecture that 

leverages state-of-the-art algorithms and scalable data 

processing techniques to achieve systemic optimization 

and adaptive control [1, 2]. Specifically, the DDPG (Deep 

Deterministic Policy Gradient) algorithm is utilized to 

enhance tennis training by improving hitting success rates 

(from 50 to 80 points) and reducing error rates in high-

pressure scenarios (e.g., from 13% to 6%) through IoT-

based multimodal data fusion, including accelerometer, 

gyroscope, and force sensors. This framework 

dynamically optimizes training strategies by addressing 

challenges such as sparse rewards and slow convergence, 

while its scalable design extends to applications in 

industrial automation and healthcare. Through integrating 

advanced data processing with practical sports training, 

this work aligns with Informatica’s interdisciplinary focus 

on intelligent systems. 

Modern applications—from industrial automation to 

healthcare monitoring—benefit from these technological 

advances, and sports training is no exception. As sensor 

technologies, the Internet of Things (IoT), and artificial 

intelligence (AI) evolve, sports training [3, 4] is becoming 

increasingly data-driven. These technologies enable the 

real-time collection of heterogeneous training data, 

provide quantitative analyses, and support the intelligent  

 

adjustment of strategies based on individualized 

performance profiles. 

Tennis [5, 6], a sport that demands high precision and 

stability, requires not only optimal physical conditioning 

but also meticulous monitoring of multidimensional 

dynamic parameters such as swing movements, hitting 

force, and pace control. Intelligent training systems that 

combine IoT and multimodal sensor data fusion are thus 

critical for enhancing both the accuracy and efficiency of 

tennis training. 

The advent of advanced IoT technology and 

multimodal data acquisition systems has empowered 

intelligent tennis training systems to deliver accurate, real-

time feedback. These systems integrate a variety of 

sensors—including accelerometers, gyroscopes, pressure 

sensors, and cameras—and employ data fusion techniques 

to aggregate comprehensive training data for coaches and 

athletes. Moreover, AI methodologies, particularly deep 

reinforcement learning [7, 8], enable these systems to 

learn from historical data and continuously optimize 

training strategies. This not only minimizes human error 

but also facilitates the creation of personalized training 

plans that are efficient, precise, and adaptable. As these 

technologies mature, the widespread adoption of 

intelligent training systems is poised to revolutionize 

traditional training models, thereby improving athlete 

performance and competition outcomes. However, 

existing intelligent training systems still face two key 

challenges: first, the limitations of single-modal data (such 

as motion or environmental data) restrict the synergy of 

multimodal fusion; second, the efficiency of 

reinforcement learning in dynamic scenes such as tennis 
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is limited by sparse rewards and slow convergence. To this 

end, this study proposes a new framework that integrates 

IoT multimodal data and the DDPG algorithm, which 

achieves real-time optimization of training strategies by 

synchronizing heterogeneous data streams and dynamic 

reward mechanisms, providing efficient solutions for 

sports training and a wider range of industrial and medical 

applications. 

In our proposed framework, real-time data from 

wearable devices and environmental sensors undergo 

rigorous preprocessing—including noise removal, 

normalization, and time synchronization—to ensure 

robust multimodal fusion. The DDPG algorithm is then 

applied within a systemic decision-making model to 

dynamically adjust training content, intensity, and 

difficulty based on real-time feedback. While our 

demonstration is situated in the context of tennis training, 

the underlying methodology provides a scalable and 

robust model for real-time data integration and adaptive 

control. This cross-disciplinary framework holds promise 

for a variety of applications, including industrial 

automation, healthcare monitoring, and cognitive 

information systems. 

Recent years have witnessed a surge in the use of 

intelligent training systems across multiple sports, 

particularly in tennis [9, 10]. Several studies have 

explored improvements in training effectiveness and 

precision through sensor integration and data analytics. 

Traditional tennis training methods, which often rely 

heavily on coach experience and manual tracking, are 

gradually being supplanted by systems that offer real-time 

performance feedback. In response, recent research has 

integrated sensor technologies, such as inertial 

measurement units (IMUs) like accelerometers and 

gyroscopes [11, 12], to capture detailed movement 

trajectories and assess technique standardization and 

stability. These systems provide valuable quantitative 

insights that enhance both athlete performance and 

coaching strategies. 

Furthermore, multimodal data fusion techniques 

have emerged to provide comprehensive feedback by 

combining visual, mechanical, and physiological data. For 

example, some studies have merged computer vision with 

sensor data to track athletes' body postures in real time 

[13]. The integration of motion capture with pressure 

sensor data in tennis enables real-time detection of racket-

ball interaction forces, facilitating a more accurate 

evaluation of shot effectiveness and guiding athletes in 

adjusting shot strength and angles. Additionally, AI-based 

training systems employing deep learning techniques have 

supported coaches in formulating scientifically sound 

training plans [14, 15]. However, most existing research 

has focused on optimizing single data sources, with 

limited progress in the efficient fusion of multimodal data 

for real-time dynamic adjustments driven by AI. 

Reinforcement learning [16, 17] has emerged as a 

promising approach for training optimization by 

continuously refining strategies through environmental 

interactions. In tennis training, deep reinforcement 

learning has been applied to optimize technical 

movements by adjusting strategies based on real-time 

feedback. Despite these advances, challenges remain, 

including low training efficiency and the difficulty of 

adapting models to dynamic competition environments. 

Moreover, while deep learning methods [18, 19] excel in 

action recognition and data prediction, their high demands 

for labeled data and computing resources may restrict 

practical applications. Therefore, integrating 

reinforcement learning with multimodal data analysis to 

design an efficient, intelligent system capable of real-time 

optimization remains a critical challenge in current 

research. 

In recent years, intelligent sports training systems 

have been widely used in many sports, especially in tennis. 

Many studies have explored the improvement of training 

effect and accuracy through sensor integration and data 

analysis. In order to more clearly show the difference 

between the existing technology and the method proposed 

in this paper, Table 1 summarizes the technical 

characteristics, evaluation indicators, limitations of the 

existing state-of-the-art methods (SOTA), as well as the 

improvements of the method proposed in this paper: 

 

Table 1: Comparison between existing technologies and the proposed method 

Technical 

methods 

Evaluation 

metrics 
limitation 

Improvements to this 

article 

Based on 

sensors (such as 

IMU) [11,12] 

Motion 

trajectory accuracy 

and error rate 

Reliance on a 

single sensor and 

lack of multimodal 

data fusion 

Integrated multi-modal 

sensors (accelerometer, 

gyroscope, force sensor) to 

achieve comprehensive data 

collection and fusion 

Vision-based 

[13] 

Posture 

recognition 

accuracy and real-

time performance 

High 

computational 

complexity, affected 

by lighting 

environment 

Combining computer 

vision and sensor data to 

improve robustness through 

time synchronization and 

weighted fusion 

Traditional 

machine learning 

[14,15] 

Action 

classification 

accuracy and 

training efficiency 

Requires a large 

amount of labeled 

data and cannot 

adapt to dynamic 

Adopt DDPG algorithm to 

dynamically optimize strategy 

through unsupervised learning 

and real-time feedback 



Multimodal Data Fusion and Adaptive Optimization in Tennis Training… Informatica 49 (2025) 59–74 61 

environments in real 

time 

Other 

reinforcement 

learning (such as 

DQN) 

Success rate, 

convergence speed 

Only applicable 

to discrete action 

spaces, difficult to 

handle continuous 

control problems 

Introducing DDPG to 

support continuous action 

space optimization and adapt to 

the dynamic adjustment needs 

in tennis training 

The method proposed in this paper solves the 

problems of poor real-time adaptability and single data in 

the existing technology through multimodal data fusion 

and DDPG algorithm, and significantly improves the 

intelligence level of the training system. 

2 Related works 
In recent years, the integration of multimodal data 

and machine learning algorithms has gained significant 

traction in sports training, particularly in tennis. Tennis, as 

a dynamic and precision-dependent sport, benefits from 

technologies that enhance performance by analyzing 

complex movement data. Various studies have 

demonstrated the potential of integrating multimodal data 

streams—such as accelerometers, gyroscopes, and force 

sensors—to provide real-time insights into players' 

techniques and improve their training efficiency. 

Yang [24] proposed a method for precise recognition 

and feature depth analysis of tennis training actions, 

focusing on multimodal data integration and key action 

classification. The integration of multiple data sources, 

such as motion and environmental sensors, has enabled 

more accurate identification of player movements, 

improving the overall effectiveness of training programs. 

Yang's study highlights how multimodal data fusion can 

enhance performance feedback and optimize tennis 

training by capturing a wide range of athlete actions and 

translating them into actionable insights. 

Similarly, Gao [25] explored sensor fusion and 

stroke learning in robotic table tennis, a system that 

combines multiple sensors to enhance the accuracy of 

stroke learning. This approach, while initially applied in 

robotics, has strong parallels with human athlete training, 

particularly in tennis, where precise stroke mechanics and 

movement control are critical. Gao’s work suggests that 

sensor fusion is essential for developing adaptive systems 

capable of real-time performance feedback, a key feature 

in intelligent sports training systems. 

Li and Song [26] have also contributed to this area 

by enhancing sports trainer behavior monitoring through 

IoT information processing and deep neural networks. 

They demonstrate how IoT-enabled systems can collect 

and process real-time training data, allowing for 

personalized, data-driven adjustments to athlete training 

programs. This is particularly important in sports like 

tennis, where individualized adjustments to technique and 

strategy can dramatically improve performance. Their 

research underscores the importance of advanced data 

processing methods, which enable real-time feedback and 

continuous optimization of training strategies. 

The application of deep reinforcement learning 

(DRL) to human activity recognition has also shown great 

promise in improving training systems. Nikpour et al. [27] 

conducted a comprehensive survey on DRL in activity 

recognition, highlighting the potential of this approach to 

refine training strategies by continuously adjusting them 

based on real-time performance data. DRL enables 

systems to learn from past actions and dynamically 

modify strategies, making it particularly useful for sports 

training, where continuous adaptation to changing 

performance conditions is necessary. This is especially 

relevant for tennis, where rapid decision-making and 

adaptability are essential for success in high-pressure 

situations. 

Morshed et al. [28] and Kulsoom et al. [29] further 

explored machine learning-based human activity 

recognition, reviewing various algorithms used to enhance 

the understanding of athlete movements in sports. They 

emphasized the growing importance of AI in sports, 

noting that systems leveraging machine learning and IoT 

sensors can offer more precise and personalized feedback, 

improving both athletic performance and training 

efficiency. Their research provides valuable insights into 

the broader application of activity recognition systems, 

which can be adapted to tennis training systems for more 

accurate monitoring of players’ movements, swing 

techniques, and reaction times. 

Moreover, Jin et al. [30] discussed the role of multi-

agent cooperative decision-making, particularly in 

dynamic environments. Multi-agent systems, in which 

different entities (such as sensors or components of the 

training system) work together, offer great potential in 

sports training. For tennis, this could mean integrating 

data from various sensors (e.g., accelerometers, 

gyroscopes, pressure sensors) to generate a cohesive view 

of an athlete’s performance. The cooperation between 

these data streams could optimize training strategies, 

particularly in complex, high-speed environments like 

tennis. 

Recent developments in machine learning and data 

fusion techniques have led to further innovations, such as 

Zhang [31]’s work on graph neural networks for user 

preference modeling in social networks, which could 

inspire personalized feedback systems in sports. Similarly, 

Kurniawan et al. [32] have explored swarm intelligence 

optimization, which could be applied to improve decision-

making in training strategies. Zhang and Zhang [33] 

introduced high-precision photogrammetric 3D modeling 

technology based on multi-source data fusion, a concept 

that could be adapted to track and analyze athlete 

movements with greater precision. 

These studies collectively highlight the 

transformative potential of integrating multimodal data 

fusion, IoT sensors, and machine learning algorithms, 
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such as DRL, into sports training systems. The ability to 

provide real-time, personalized feedback and 

continuously adjust training strategies based on dynamic 

performance data is critical for improving athletic 

performance, particularly in sports like tennis, where 

precision, adaptability, and real-time decision-making are 

paramount. The proposed system in this study, which 

integrates these advanced technologies, aims to push the 

boundaries of personalized training and optimize athletic 

performance through continuous, data-driven 

adjustments. 

3 Methods 
3.1 System Hardware Architecture 

The hardware architecture of this intelligent tennis 

training system is designed to efficiently collect and 

transmit athletes' training data through a network of 

interconnected IoT devices. Each athlete is equipped with 

a set of multifunctional sensors that provide real-time 

monitoring of their performance throughout training. The 

system includes wearable sensors, cameras, computer 

vision devices, environmental monitoring tools, and data 

transmission modules. These components work together 

seamlessly to ensure comprehensive data collection, 

delivering precise feedback and optimizing training 

outcomes. 

At the core of the system are the wearable sensors, 

which capture the athlete's motion data in real time. These 

include accelerometers, gyroscopes, and force sensors. 

The accelerometers track displacement, velocity, and 

acceleration, enabling the evaluation of movement 

trajectories and swing stability. Gyroscopes measure angle 

changes, providing precise data on swing angles, ball 

trajectory, and the athlete’s control during play. Force 

sensors assess the impact force and pressure distribution 

during ball contact, helping to analyze strength, accuracy, 

and racket-ball interaction. This data plays a crucial role 

in refining the athlete’s technique, serving as baseline 

information for subsequent training optimization. 

The system is equipped with a three-axis 

accelerometer (range: ±16g, sampling rate: 100Hz), a 

gyroscope (range: ±2000°/s, sampling rate: 50Hz), and a 

force sensor (range: 0-200N, accuracy: ±0.5%). The 

camera system, featuring a high-frame rate industrial 

camera (resolution: 1920×1080, frame rate: 120fps), 

captures detailed athlete movements in real time, 

processed by computer vision algorithms. These cameras 

provide a comprehensive view of the athlete’s batting 

movements, posture, and ball trajectory. Through high-

precision video capture, the system analyzes movements 

frame by frame, extracting critical visual features such as 

swing trajectory, step stability, and shot timing. 

The computer vision algorithms process these 

images to detect interactions between the athlete and the 

ball, providing additional insights into areas for 

improvement in movement and batting strategies. By 

combining visual data with sensor data, the system offers 

more accurate, holistic evaluations of the athlete's 

performance. 

Environmental monitoring equipment ensures the 

accuracy and stability of sensor data by tracking the 

training environment. Factors such as temperature, 

humidity, and wind speed can influence performance; 

therefore, a dedicated environmental monitoring module 

collects real-time venue data, integrating it with the 

athlete's training data. For example, fluctuations in 

temperature and humidity can affect court surface friction, 

influencing ball bounce and trajectory. By monitoring 

these environmental conditions in real time, the system 

adjusts its analysis, ensuring that training feedback 

remains precise and reflective of current conditions. 

The data transmission module handles the real-time 

transmission of all sensor data to a cloud or local server. 

Utilizing advanced IoT protocols like Wi-Fi 6 and 

Bluetooth 5.2, the system ensures low latency (<50ms) 

and high throughput (up to 1.2Gbps), while employing 

AES-256 encryption to secure data. The data is wirelessly 

transferred between sensors and computing devices, 

reducing the need for complex wiring and enhancing 

system flexibility. 

Once the data reaches the cloud or local server, it 

undergoes further processing, analysis, and storage. The 

results are then made available to coaches and athletes for 

review. The system, supported by a cloud platform, 

enables the real-time synchronization of training data 

across devices and locations, allowing coaches to 

remotely monitor athlete progress and performance. 

This integrated hardware architecture creates a 

complete, data-driven intelligent tennis training platform. 

Through precise sensor data collection, real-time 

environmental monitoring, and efficient data 

transmission, the system ensures that athletes train in an 

optimized environment that supports skill improvement. 

The system architecture diagram is shown in Figure 

1.
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Figure 1: System architecture diagram 

 

 

The core of the system’s hardware architecture 

features a high-precision MPU-6050 accelerometer and 

gyroscope with a sampling rate of 100 Hz, an acceleration 

sensitivity of ±2g, and an angular velocity sensitivity of 

±250°/s, ensuring accurate capture of the athlete’s motion 

dynamics. Force sensors, specifically the FS series force 

sensors, with a resolution of 0.01 N, measure the 

interaction force between the racket and the ball, which is 

essential for analyzing the power and accuracy of the shot. 

The computer vision system integrates a 4K resolution 

camera with a frame rate of 60 fps, combined with an 

OpenCV-based algorithm for real-time pose estimation 

and ball trajectory tracking, with a detection accuracy of 

95% under optimal lighting conditions. Environmental 

monitoring is performed by a DHT22 temperature and 

humidity sensor with an accuracy of ±0.5°C and ±2% RH, 

respectively, and an anemometer for wind speed 

measurement, ensuring contextual data integration. On the 

software side, the system utilizes a middleware framework 

based on ROS2 to enable seamless communication 

between IoT devices and the central processor, and runs 

on an NVIDIA Jetson Xavier NX for edge computing. The 

DDPG algorithm is implemented in PyTorch, and its 

neural network architecture contains three hidden layers 

(containing 256, 128, and 64 neurons, respectively) for the 

actuator network and the critic network, optimizing the 

training strategy with a latency of less than 50 

milliseconds to achieve real-time feedback. This 

integrated hardware and software ecosystem ensures 

powerful data collection, processing, and adaptive control, 

thus supporting the scalability of the system in various 

training scenarios. 

 

3.2 Data fusion and storage 
Effective multimodal data fusion relies on strong 

preprocessing to ensure consistency and compatibility 

between heterogeneous sensor data. Preprocessing 

steps—noise removal, normalization, and time 

synchronization—are critical to aligning and integrating 

data from different sources. Specifically, Kalman filtering  

 

 

mitigates sensor-specific noise, normalization 

standardizes data scales, and time synchronization aligns 

temporal differences, which together enable accurate and 

cohesive multimodal fusion. 

Kalman filtering is used to remove high-frequency noise 

and outliers from sensor data to ensure data reliability. The 

operation of the Kalman filter is divided into two steps: 

prediction step and update step. The prediction step 

estimates the current state based on the previous state and 

control input; the update step corrects the estimate using 

real-time measurements to minimize the impact of noise. 

This iterative process is particularly effective for motion 

data (such as accelerometer and gyroscope readings) 

because noise can distort trajectory analysis: 

 

 �̂�𝑘 = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘(1) 

 

𝑃𝑘 = 𝐴𝑃𝑘−1𝐴
𝑇 + 𝑄(2) 

 

In Formula 1-2, �̂�𝑘is the estimated value of the state, 

𝑃𝑘is the error covariance, and Q is the process noise. A 

and B are the system matrices, 𝑢𝑘and is the control input. 

The state variables of the Kalman filter include 

acceleration, angular velocity, and force sensor readings. 

The process noise covariance matrix Q is calibrated as a 

diagonal matrix through experiments, and the 

measurement noise covariance R is provided by the sensor 

manufacturer. MongoDB (version 5.0) is used for data 

storage, using the time series sharding mode, and a 

composite index is established by sensor type and athlete 

ID. A single record contains timestamp, sensor type, 

original value, and fusion result, supporting 100,000 write 

operations per second. 

Sensor data often vary in scale (e.g., acceleration in 

m/s² vs. force in N), which can bias analysis. 

Normalization transforms all data to a common range [0, 

1] using min-max scaling: 

 𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
(3) 
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In a multi-sensor system, data from different sensors 

usually have different sampling frequencies and 

timestamps. In order to ensure the consistency and 

accuracy of the data, these data must be time-aligned and 

fused. 

The sampling rates of the sensors vary (for example, 

the accelerometer has a sampling rate of 100 Hz and the 

gyroscope has a sampling rate of 50 Hz). Linear 

interpolation estimates the value of the missing 

timestamps. For two data points at times t1 and t2, the 

interpolated value at time t is: 

 

 𝑥(𝑡) = 𝑥1 +
(𝑡−𝑡1)

(𝑡2−𝑡1)
(𝑥2 − 𝑥1)(4) 

 

The data from different sensors are fused. The 

weighted average method fuses the output values of 

sensors by assigning different weights to different sensors. 

 

𝑥𝑓𝑢𝑠𝑒𝑑 = 𝑤1𝑥1 + 𝑤2𝑥2(5) 

The processed data needs to be stored efficiently and 

securely for subsequent analysis and learning. Since the 

system involves a large amount of sensor data and training 

records, conventional relational databases are difficult to 

meet the needs. NoSQL databases are used for storage. 

NoSQL databases are suitable for processing large-scale, 

distributed data and support high-concurrency reading and 

writing. The data of each sensor is stored according to the 

timestamp and classified according to the data type. 

To speed up query and data retrieval, the system 

creates an index for each sensor type and sorts them by 

timestamp. By introducing hash index and time range 

index, it ensures that the required data can be obtained 

efficiently and quickly when performing large-scale data 

retrieval. The collected data are shown in Table 2. 

 

 

 

Table 2: Collection data display results 

Timestamp Sensor Type 
Acceleration 

(m/s²) 

 

SD 

Angular 

velocity 

(rad/s) 

 

SD 
Hitting 

force (N) 

 

SD 

2023-2-11 

14:00:01 
Accelerometer 0.35 ±0.02 0.12 ±0.01 8.2 ±0.3 

2023-2-11 

14:00:0 2 
Gyroscope 0.33 ±0.01 0.15 ±0.02 8 ±0.2 

2023-2-11 

14:00:0 3 
Force Sensors 0.3 ±0.03 0.14 ±0.01 8.5 ±0.4 

2023-2-11 
14:00:0 4 

Accelerometer 0.36 ±0.02 0.16 ±0.02 8.7 ±0.3 

2023-2-11 

14:00:0 5 
Gyroscope 0.32 ±0.01 0.18 ±0.03 8.3 ±0.2 

2023-2-11 

14:00:0 6 
Force Sensors 0.31 ±0.02 0.2 ±0.02 8.6 ±0.3 

2023-2-11 
14:00:0 7 

Accelerometer 0.34 ±0.01 0.17 ±0.01 8.1 ±0.2 

2023-2-11 

14:00:0 8 
Gyroscope 0.33 ±0.02 0.19 ±0.02 8.4 ±0.3 

2023-2-11 

14:00:0 9 
Force Sensors 0.32 ±0.01 0.15 ±0.01 8.8 ±0.4 

2023-2-11 
14:00: 10 

Accelerometer 0.37 ±0.03 0.13 ±0.01 9 ±0.5 

To ensure compliance with data protection 

regulations such as the General Data Protection 

Regulation (GDPR), all athlete data collected by the 

system undergo rigorous anonymization and encryption. 

Sensitive personal identifiers are removed during 

preprocessing, and data transmission employs AES-256 

encryption to prevent unauthorized access. Additionally, 

access control mechanisms are implemented to restrict 

data usage to authorized personnel only. These measures 

safeguard athlete privacy while enabling effective 

multimodal data fusion for training optimization. 

 

3.3 DDPG algorithm application 
DDPG algorithm [20,21] is a reinforcement learning 

method specifically designed to handle tasks in continuous 

action spaces. Unlike traditional Q-learning methods, 

DDPG [22,23] combines the advantages of deep learning 

and reinforcement learning, using policy networks and 

value networks to optimize strategies in continuous action 

spaces. This algorithm is used in this intelligent tennis 

training system to automatically optimize training 

strategies, helping athletes improve their training 

efficiency and technical level through continuous training 

and feedback. 

In the DDPG algorithm, the state space represents the 

current state of the environment and the player in the 

intelligent tennis training system. The state space includes 

two main aspects: the player state and the environment 

state. 

The athlete state reflects the athlete's current training 

state, such as hitting accuracy, hitting force, swing angle, 

ball speed, etc. These factors directly affect the effect and 

efficiency of training. The specific state vector can be 

expressed as: 

State𝑡 =
{accuracy𝑡 , speed𝑡 , angle𝑡 , strength𝑡 , … }(6) 

 

The athlete state is defined by the following 

measurable variables, The ratio of successful shots (ball 
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landing within the predefined target zone) to total shots, 

calculated as: 

 

accuracy𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑠ℎ𝑜𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠ℎ𝑜𝑡𝑠
× 100%(7) 

 

speed𝑡  measured by gyroscopes in radians, averaged 

over three consecutive swings to reduce noise. strength𝑡  
peak force (N) recorded by pressure sensors during racket-

ball contact. Environmental states (e.g., court 

temperature) are normalized to [0,1] using Equation 3. 

In the DDPG algorithm, the quantification of the 

player state and the environmental state is collected and 

processed in real time by multimodal sensors. The player's 

hitting accuracy is calculated jointly by the visual sensor 

and the force sensor, and is quantified into a value of 0 or 

1 by recording the overlap ratio between the ball landing 

point and the target area. The swing angle is sampled by 

the wearable gyroscope at a frequency of 100Hz, and the 

average of three consecutive swing angles is taken to 

reduce noise. The hitting force is directly obtained through 

the peak reading of the pressure sensor, while the ball 

speed is tracked by the high-speed camera and calculated 

by displacement difference. In terms of environmental 

status, the field friction is monitored in real time by the 

embedded friction sensor, and the normalized friction 

coefficient is generated by the weighted fusion formula 

combined with the data of the temperature and humidity 

sensors; the wind speed is updated every 200ms by the 

ultrasonic anemometer and used as input after denoising 

by the Kalman filter. All data are transmitted to the edge 

computing node at an interval of 50ms through the Internet 

of Things protocol, and the state vector is formed after 

time alignment and normalization. During training, the 

system updates the state space every 100ms and generates 

real-time adjustment instructions (such as swing angle 

correction) through the DDPG strategy network. These 

instructions are transmitted to the athletes through the 

vibration tactile feedback device to form a closed-loop 

control. 

In addition to the athlete's condition, the conditions of 

the training environment (such as the surface of the field, 

temperature and humidity, etc.) will also affect the 

training effect. When the field is slippery, the training 

strategy may need to be adjusted appropriately. 

In DDPG, the action space represents the decisions 

that the system can make. These decisions will affect the 

adjustment of training content to improve the training 

efficiency and technical level of athletes. In the intelligent 

tennis training system, the action space mainly includes 

the following aspects: 

Hitting Strength: Determines the force applied when 

hitting the ball. By adjusting the hitting strength, the 

system can help athletes gradually improve the stability 

and accuracy of their shots. 

Hitting Angle: Simulate different hitting methods by 

changing the swing angle. 

Position adjustment: By adjusting the athlete's 

position, the system can simulate various training 

scenarios. 

The action space is set to continuous values: batting 

force (0-100N, step size 5N), batting angle (-30° to +30°, 

step size 1°), position adjustment (±2m, step size 0.1m). 

The policy network is a 3-layer fully connected (256-128-

64 nodes, ReLU activation), and the value network adds 

an action input branch (state branch 256-128, action 

branch 64, merged 128-64). Exploration is achieved by 

adding OU noise, and the initial exploration rate decays 

linearly to 0.1 with training. Hyperparameter selection is 

based on grid search: learning rate 0.0001 (Adam 

optimizer), discount factor 0.99, batch size 64, target 

network update rate 0.005, and experience replay pool 

capacity 100,000 to ensure stable update of policy 

gradients. 

The reward function is the core part of reinforcement 

learning for evaluating the quality of the current state and 

action combination. DDPG uses the reward function to 

measure the training effect of each action and then adjust 

the training strategy. In smart tennis training, the reward 

function can feedback the reward value based on the 

athlete's training performance and guide the optimization 

of the training strategy. 

In the DDPG algorithm, the reward function has been 

redesigned to incorporate multiple performance 

dimensions, including hitting accuracy, swing stability, 

and power control, so as to provide a more detailed 

evaluation of the training effect Rt: 

 

𝑅𝑡 = 𝑤1 ⋅ Accuracy𝑡 + 𝑤2 ⋅ Stability𝑡 + 𝑤3 ⋅
Force𝑡 − 𝑤4 ⋅ Error𝑡(8) 

 

Among them, Accuracy_t measures the proportion of 

successful shots into the target area; Stability_t evaluates 

the consistency of the swing angle (derived from 

gyroscope data); Force_t is the optimal hitting force; 

Error_t represents the penalty for deviation from the 

expected performance threshold; weights w1, w2, w3, and 

w4 are adjusted based on experience to balance the 

importance of each factor. This multidimensional 

approach enables the system to dynamically adjust 

training strategies based on real-time feedback to optimize 

technical accuracy and physical performance. 

In DDPG, the experience replay mechanism further 

improves the effect of strategy optimization by storing the 

interaction experience between the agent and the 

environment. During each training process, the athlete's 

state, action, reward, and next state are stored in an 

experience pool. Then, the system randomly extracts 

experience from the experience pool for training to break 

the time correlation and enhance the diversity and stability 

of training. Through experience replay, DDPG can learn 

and improve training strategies more effectively. 

 DDPG optimizes the strategy through the policy 

network and the value network. The policy network is 

responsible for generating continuous action decisions, 

while the value network evaluates the value of the current 

state-action pair. The policy network outputs a continuous 

action based on the current state. The policy network 

optimizes the training strategy by maximizing the 

expected return. The value network evaluates the value of 

the action output by the policy network and calculates the 
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advantage of the action, providing a basis for gradient 

updates for the policy network. 

The optimization of the strategy is based on the 

following loss function: 

 

𝐿(𝜃) = 𝔼𝑡[(𝑅𝑡 + 𝛾𝑄′(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))
2](9) 

 

 In Formula 8, 𝛾 is the discount factor, 𝑅𝑡 is the 

current reward, 𝑄(𝑠𝑡 , 𝑎𝑡)is the value of the current state-

action pair, 𝑄′(𝑠𝑡+1, 𝑎𝑡+1)and is the value of the target 

network. 

DDPG algorithm is trained through multiple rounds 

until the system's performance reaches the expected goal. 

Each round includes multiple time steps. In each step, the 

system generates actions based on the current strategy, 

obtains rewards after executing the actions, and updates 

the strategy. Through continuous training, the system will 

gradually converge and eventually be able to provide 

athletes with personalized training strategies, which can 

significantly improve their hitting accuracy, hitting 

stability, etc. 

Convergence during training is determined by 

monitoring the total reward and training error. If the total 

reward is stable or reaches a certain preset threshold, it 

means that the training has converged. These algorithmic 

characteristics make DDPG particularly suitable for tennis 

training optimization. The continuous action space aligns 

perfectly with the nuanced adjustments required in swing 

techniques, while the actor-critic framework enables real-

time adaptation to dynamic training conditions. As 

demonstrated in Section 3, this results in superior 

performance compared to discrete-action (DQN) or 

stochastic (PPO) approaches, especially in high-pressure 

scenarios where precise, graded responses are crucial for 

maintaining stroke consistency. 

DDPG are shown in Table 3. 

 

Table 3: Model parameters 

parameter value effect 
Convergence 

threshold 

Learning 

Rate 
0.0001 

Controls the speed at which 

model parameters are updated. A 

smaller value helps stabilize the 

training process. 

Total rewards for 5 

consecutive rounds ≥ 80 

Discount 

Factor 
0.99 

Determines the degree of 

influence of future rewards, 0.99 

indicates high importance of future 

rewards 

Strategy error < 0.01 

Experience 

pool size 
100000 

The capacity for storing 

experience replay affects the 

diversity and stability of model 

training 

Experience pool fill rate 

≥ 90% 

Batch size 64 

The number of samples 

randomly sampled from the 

experience pool during each 

training to control the training 

speed 

Loss function 

fluctuations < 0.005 

Target 

network update 

rate 

0.005 

The frequency of updating the 

target network. A smaller value 

helps smooth the training process. 

Strategy update interval 

≤ 100 steps 

Soft 

Update 

Parameters 

0.001 

Used to soft-update the target 

network parameters and control 

the update speed of the target 

network 

Parameter change rate < 

0.1% 

The hyperparameters of the DDPG algorithm were 

carefully selected based on both theoretical considerations 

and empirical validation to ensure optimal performance. 

The learning rate of 0.0001 was chosen to balance the 

trade-off between convergence speed and training 

stability; a smaller value prevents large, destabilizing 

updates to the policy and value networks while still 

allowing for effective learning. The discount factor of 0.99 

reflects the high importance of future rewards in tennis 

training, where long-term strategy optimization is critical 

for sustained performance improvement. A larger batch 

size of 64 was employed to provide sufficient sample 

diversity during training, reducing variance in gradient 

estimates and improving convergence. The experience 

replays buffer size of 100,000 ensures a rich and varied set 

of past experiences for training, mitigating the risk of 

overfitting to recent data. The target network update rate 

of 0.005 and soft update parameters of 0.001 were selected 

to gradually blend the target network weights with the 

online network, maintaining stability during training. 

These values were validated through grid search and 

cross-validation, demonstrating their effectiveness in 

achieving robust convergence and high performance, as 

evidenced by the experimental results. 
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3.4 Real-time feedback and training 

optimization 
This system monitors both the training status and 

environmental conditions of athletes in real time, 

leveraging advanced sensor technology and deep 

reinforcement learning algorithms to provide immediate 

feedback and dynamically adjust training strategies. 

Throughout the training session, the system continuously 

gathers the athlete's motion data—such as hitting 

accuracy, swing angle, ball speed, and position—as well 

as environmental factors. It then evaluates the training 

effectiveness in real time through comprehensive data 

analysis. If the system detects suboptimal performance, 

such as reduced hitting accuracy or irregular movements, 

it automatically performs intelligent analysis and suggests 

adjustments to the training content. For example, if a 

decline in hitting accuracy is observed, the system may 

recommend changes to the swing angle, hitting strength, 

or pace, helping the athlete address the issue promptly. By 

making these dynamic adjustments, the system ensures 

that each training session is tailored to maximize the 

athlete’s progress. 

The system detects unsatisfactory performance by 

calculating the deviation of key indicators in real time: if 

the batting success rate is lower than the threshold 

(70%±3%) for 5 consecutive times, the swing angle 

deviation exceeds the tolerance (±5°), or the batting force 

fluctuation is greater than 15%, the strategy adjustment is 

triggered. The dynamic tolerance mechanism is adaptively 

adjusted according to the athlete's level (the tolerance for 

novices is relaxed by 20%). For example, when it is 

detected that the swing angle continuously deviates from 

45°±7° (±5° for advanced athletes), DDPG will output the 

correction amount (such as +3°) in the next action and 

prompt the athlete in real time through the tactile feedback 

device (vibration frequency 200Hz, lasting 100ms). 

To enhance the athlete’s understanding and 

evaluation of their performance, the system provides rich 

visual feedback. This includes real-time charts, dynamic 

animations, and video playback, allowing athletes to 

intuitively track their progress, identify areas for 

improvement, and compare performance across different 

training stages. This visual feedback not only improves the 

athlete's training experience but also facilitates better 

communication and decision-making between coaches 

and athletes. By analyzing training data comprehensively, 

athletes can gain a clearer understanding of their strengths 

and weaknesses, enabling them to adjust their training 

strategies more effectively. For example, when the system 

detects that a player’s shot accuracy drops below 70% due 

to inconsistent swing angles (e.g., variations of more than 

±5° from the optimal 45° forehand angle), the DDPG 

algorithm dynamically adjusts the training strategy by: (1) 

modifying the target swing angle range to 40°–50° and 

providing incremental feedback cues via the wearable 

haptic device; (2) reducing the ball’s entry velocity by 

15% to increase reaction time; and (3) increasing the force 

sensor threshold by 10% to enforce a steady follow-

through. Conversely, if a player’s accuracy reaches above 

85% but the shot power is too high (e.g., 120N versus the 

recommended range of 80–100N), the system prioritizes 

power control by simulating a low-bounce ball and 

providing real-time visual cues about force distribution. 

These adjustments are iteratively refined every 3–5 shots 

based on Kalman filter sensor data to ensure that the 

adaptive optimization is consistent with the player’s 

immediate performance. 

The system dynamically optimizes training strategies 

by fusing multimodal sensor data in real time. When it is 

detected that the athlete's performance deviates from 

expectations (such as a decrease in the success rate of 

hitting the ball), the DDPG algorithm generates 

adjustment instructions based on the current state space: 

optimize the action parameters (such as correcting the 

range of hitting angles) through the strategy network, and 

use the value network to evaluate the adjustment effect. 

Environmental factors (such as changes in the friction 

coefficient of the field) are integrated into the state vector 

through normalization processing to ensure the 

adaptability of the strategy. After each optimization, the 

system guides the athlete in real time through tactile 

feedback and a visual interface to form a "perception-

decision-execution" closed loop. The average delay of this 

process is controlled within 100 milliseconds, ensuring the 

timeliness of training adjustments. 

Personalized training is a core feature of this system. 

By utilizing the athlete’s training data, the system 

develops customized training plans based on individual 

physical conditions, skill levels, and training goals. The 

DDPG (Deep Deterministic Policy Gradient) algorithm 

dynamically adjusts the intensity, difficulty, and content 

of the training based on the athlete's historical data, 

ensuring that each athlete trains in the conditions best 

suited to them for optimal performance. For example, the 

system evaluates a player's hitting accuracy, swing speed, 

and endurance level (obtained through wearable sensors) 

to construct a multidimensional state vector. This vector is 

then processed by the policy network to generate 

continuous actions, such as adjusting ball speed or target 

difficulty, and optimized through a reward function. For 

athletes with higher technical levels, the algorithm 

increases the intensity of training by reducing the interval 

between balls or expanding the target area, while 

beginners receive simplified training focusing on basic 

techniques. Environmental factors (such as court 

temperature) are also integrated into the state space, 

allowing the system to further adjust strategies based on 

real-time conditions. By iteratively updating the policy 

network through experience replay, the DDPG algorithm 

ensures that the training plan continues to evolve as the 

athlete improves, achieving personalized optimization. 

In real-world training, these personalized strategies 

not only account for physiological and skill differences 

but also adapt to each athlete's real-time performance. By 

analyzing immediate feedback, the system can 

automatically adjust the training plan. It continuously 

refines the strategy based on real-time feedback and 

training progress, ensuring enhanced training efficiency. 

As the training continues, the system accumulates more 

data, allowing for ongoing adjustments to the training 

content and strategy. This guarantees that each training 
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session is optimized for peak effectiveness. Through 

intelligent training optimization, the system supports 

athletes in making consistent progress at every stage, 

offering a long-term and effective pathway for skill 

development. 

The system interface is illustrated in Figure 2. 

 

 
Figure 2: System interface 

 

4 Experiment and result analysis 

4.1 Experimental setup 
The experimental design adheres to ethical guidelines 

for data privacy, with all participants providing informed 

consent for anonymized data usage. To evaluate the 

proposed system, we compared it against traditional 

manual training methods and baseline algorithms (DQN, 

PPO). In the traditional system, coaches adjusted training 

content based on subjective observations, lacking real-

time data integration or automated optimization. In 

contrast, our DDPG-based framework leverages 

multimodal IoT sensors and deep reinforcement learning 

to dynamically optimize training strategies. To ensure 

robustness, the DDPG model was validated using a hold-

out validation set (20% of data), with hyperparameters 

tuned via grid search and results averaged over 10 training 

runs. 

In order to comprehensively evaluate the 

effectiveness of the intelligent tennis training system 

proposed in this paper, this study designed multiple 

experiments to compare the performance of different 

optimization algorithms (DDPG, DQN, PPO) in tennis 

training. The main purpose of the experiment is to evaluate 

the optimization effect of the system from two 

perspectives: hitting success rate and hitting stability. 

In the experiment, 30 athletes (15 male, 15 female) 

of varying skill levels from three academies were divided 

into three groups: Control (N=10) trained via manual 

adjustments by professional coaches (≥5 years 

experience), DDPG (N=10) used the proposed system 

with DDPG optimization, and Extended (N=10) tested 

DQN/PPO algorithms for comparison. All groups 

followed identical training schedules and environmental 

conditions. The performance was assessed through hitting 

success rate and stability across eight game scenarios (e.g., 

baseline attack, net volley). The performance of different 

optimization algorithms was compared with traditional 

tennis training methods to observe their respective effects 

on the player's hitting accuracy. Specifically, in each 

training session, the system will adjust the training 

strategy according to the player's real-time performance. 

The DDPG, DQN and PPO algorithms will optimize the 

training content according to the reward function to 

improve the player's hitting success rate. 

During the experiment, the system records the 

success and failure of each shot, calculating the shot 

success rate after each training session (the ratio of 

successful shots to total shots). By comparing the data 

across multiple sessions, we analyze the effectiveness of 

different optimization algorithms in improving shot 

success rates. 

To evaluate batting stability, the experiment 

simulates a variety of game scenarios to test the impact of 

different optimization algorithms. Eight typical game 

scenarios were selected: baseline attack, net volley, serve 

and receive, high-pressure ball, break point, multi-shot 

round, sideways forehand, and backhand shot. In each 

scenario, the system tracks the athlete’s performance, 

records shot success and failure, and calculates the error 

rate. By comparing the performance of different 

algorithms across these scenarios, we can assess the 

advantages of each optimization algorithm in improving 

batting stability. 

To further validate the benefits of the intelligent 

training system, it was compared with traditional tennis 

training methods. In the traditional system, coaches 

manually adjust the training content based on the athlete's 

characteristics and performance, but without real-time 

feedback or automated optimization. In contrast, the 

intelligent training system uses reinforcement learning 

algorithms such as DDPG, which allow the system to 

automatically adjust training content based on real-time 

performance feedback, enabling personalized and 

dynamic optimization. 

In the experiment, 10 tennis players participated, and 

their game scores were recorded under both the traditional 

and intelligent training systems. Both systems used 

identical game simulations, and the game scores were 

compared to evaluate the impact of each system on 

improving the overall performance and abilities of the 

athletes. 

To further evaluate the system's impact on athletes' 

physical condition, physiological data such as heart rate, 

muscle fatigue levels, and joint stress were collected 

during the training sessions. The data revealed no 

significant negative effects on the athletes' health. For 

instance, the average heart rate during training remained 

within the safe range of 120-150 bpm, and muscle fatigue 

levels, measured via electromyography (EMG), showed 

no abnormal spikes. Additionally, joint stress analysis, 

conducted using motion capture and force sensors, 

indicated that the system's adaptive adjustments 

effectively reduced excessive strain on key joints like the 

elbow and knee. These findings confirm that the proposed 

system not only enhances performance but also prioritizes 

athlete safety by minimizing physical risks. 

3.2 Hitting success rate 

 The comparison results of the batting success 

rates are shown in FIG3. 
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Figure 3: Comparison of hitting success rates among 

DDP G, DQ N, and PPO algorithm sin tennis training 

sessions 

 

To comprehensively evaluate the effectiveness of the 

intelligent tennis training system proposed in this paper, 

multiple experiments were designed to compare the 

performance of different optimization algorithms (DDPG, 

DQN, PPO) in tennis training. The main goal of the 

experiment was to assess the system's optimization effects 

from two perspectives: hitting success rate and hitting 

stability. 

In the hitting success rate experiment, 10 

independent training sessions were conducted, and the 

player's hitting success rate was evaluated by the 

automated system in each session. The performance of 

different optimization algorithms was compared with 

traditional tennis training methods to assess their effects 

on the player's hitting accuracy. Specifically, in each 

session, the system adjusted the training strategy based on 

the player's real-time performance. The DDPG, DQN, and 

PPO algorithms optimized the training content according 

to the reward function to improve the player's hitting 

success rate. 

During the experiment, the system recorded the 

success and failure of each shot and calculated the shot 

success rate after each training session (the ratio of 

successful shots to total shots). By comparing the training 

data over multiple sessions, the advantages of different 

optimization algorithms in improving shot success rates 

were analyzed. The comparative analysis reveals DDPG's 

distinct advantages in handling the continuous, fine-

grained nature of tennis movements. While DQN's 

discrete action space led to suboptimal quantized 

adjustments, and PPO's stochastic updates showed higher 

variance, DDPG's deterministic policy gradient enabled 

smoother, more precise optimization of stroke parameters. 

This fundamental difference in algorithmic approach 

explains the observed 15-20% performance gap in hitting 

success rates across various training scenarios. 

For batting stability, the experimental design 

simulated various game scenarios to assess the impact of 

different optimization algorithms. Eight typical scenarios 

were chosen: baseline attack, net volley, serve and receive, 

high-pressure ball, break point, multi-shot round, 

sideways forehand, and backhand shot. In each scenario, 

the system tracked the athlete’s performance, recorded 

shot success or failure, and calculated the error rate. 

Comparing performance across algorithms allowed for a 

clear evaluation of their respective advantages in 

improving batting stability. 

To further validate the effectiveness of the intelligent 

training system proposed in this study, it was compared 

with the traditional tennis training method. In the 

traditional system, coaches manually adjust the training 

content based on the athlete’s characteristics and 

performance, but lack real-time feedback and automated 

optimization. In contrast, the intelligent system presented 

here, using reinforcement learning algorithms such as 

DDPG, automatically adjusts training content based on 

real-time performance data and feedback, offering 

personalized and dynamic optimization. 

The experimental evaluation quantitatively assessed 

the proposed system’s performance through several 

metrics, including system responsiveness, algorithm 

convergence rate, and error rate reduction across different 

scenarios. While the system was initially applied to tennis 

training, the results demonstrate its broader potential for 

handling real-time data fusion and optimization in 

distributed computing environments. This highlights the 

applicability of our approach to complex decision-support 

systems in fields such as industrial automation and 

cognitive informatics. 

To further distinguish between hitting success rate 

and batting stability, we employed complementary metrics 

that capture different aspects of athlete performance. 

While hitting success rate measures the ratio of successful 

shots to total attempts, batting stability evaluates the 

consistency of performance across high-pressure 

scenarios, quantified by error rates. These metrics are 

inherently linked yet distinct: success rate reflects the 

athlete's immediate technical proficiency, whereas 

stability indicates their ability to maintain performance 

under dynamic conditions. For instance, a high success 

rate may not necessarily translate to low error rates in 

high-pressure scenarios, as the latter requires adaptive 

decision-making and resilience—precisely the areas 

optimized by the DDPG algorithm. By analyzing both 

metrics, we provide a comprehensive assessment of the 

system's impact, demonstrating its ability to enhance not 

only technical accuracy but also situational adaptability. 

This dual-metric approach aligns with real-world training 

demands, where athletes must balance precision with 

consistency under varying game pressures. 

 

4.3 Batting stability 
The eight scenarios are: baseline attack scenario, net 

volley scenario, serve and receive scenario, high pressure 

scenario, break point scenario, multi-shot round scenario, 

sideways forehand scenario, and backhand shot scenario. 

The stability is judged by analyzing the batting error rate 

in each scenario. The batting error rate comparison results 

are shown in Figure 4. 
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Figure 4: Error rates of players in eight high-pressure 

tennis scenarios under different algorithms 

 

In terms of batting error rates across various 

scenarios, the DDPG algorithm consistently outperforms 

both DQN and PPO, demonstrating its significant 

advantage in enhancing player stability and reducing error 

rates during training. For example, in the baseline attack 

scenario, DDPG achieves an error rate of 5%, 

substantially lower than DQN’s 10% and PPO’s 8%. This 

suggests that DDPG effectively optimizes player actions 

and decision-making during high-speed hits and long-

distance attacks, refining the training strategy to reduce 

errors. Similarly, in the net volley and serve-and-receive 

scenarios, DDPG's error rates of 4% and 3%, respectively, 

are again superior to those of DQN and PPO. These results 

show that DDPG can precisely adjust the player's hitting 

actions and positioning in high-pressure situations, 

helping maintain stability when faced with various ball 

trajectories. 

In more demanding scenarios, such as high-pressure 

balls and break points, DDPG maintains an error rate of 

6% and 5%, respectively, further demonstrating its 

effectiveness. In contrast, DQN and PPO show higher 

error rates—13% and 10% in the high-pressure ball 

scenario, and 14% and 11% in the break point scenario. 

This disparity can be attributed to DDPG’s ability to 

continuously optimize and adjust strategies through deep 

reinforcement learning. By iteratively training and fine-

tuning action selections based on scenario-specific 

feedback, DDPG adapts well to high-pressure situations 

that require precise judgment and rapid responses. 

In scenarios involving multi-shot rounds, sideways 

forehands, and backhand shots, DDPG continues to 

outperform DQN and PPO, with error rates of 4%, 3%, 

and 4%, respectively—significantly lower than those of 

DQN and PPO. These complex tactical situations, 

requiring multiple consecutive shots and sustained 

stability, benefit from DDPG’s ability to optimize shot 

strategies. By doing so, the DDPG algorithm reduces error 

rates and ensures shot stability in intricate conditions. 

Mechanically, DDPG excels due to its capacity to 

optimize continuous action spaces. Unlike DQN and PPO, 

which are more effective in discrete action spaces, DDPG 

continuously adjusts the strategy network to improve 

performance in dynamic scenarios. Its experience replay 

mechanism allows athletes to learn from past experiences, 

adjusting actions based on real-time feedback—a feature 

where DQN and PPO are less effective. While DQN works 

well with discrete action spaces, and PPO can optimize 

strategies, it is less accurate in continuous spaces 

compared to DDPG. The comparison highlights DDPG's 

significant advantage in improving batting stability, 

particularly in high-pressure and complex scenarios, 

offering a more personalized and optimized training 

strategy for athletes. 

 

4.4 System training effect 
 As shown in Figure 5, this study compared the 

effects of the intelligent training system based on the 

DDPG algorithm and the traditional manual training 

method on the performance of 10 athletes (DDPG group 

N=10, traditional group N=10). The traditional training 

group had professional coaches (≥5 years of experience) 

manually adjust the training content, while the DDPG 

group collected data in real time through multimodal 

sensors (accelerometers, gyroscopes, force sensors), and 

used the DDPG algorithm to dynamically optimize the 

training strategy (such as hitting intensity, angle 

adjustment, etc.). To quantify performance, a 100-point 

scoring system was employed, where technical metrics—

hitting success rate (40 points), error rate reduction (30 

points), and swing stability (30 points)—were weighted 

and summed. For example, an athlete with 80% success 

rate (32 points), 6% error rate (28.2 points), and 0.1 rad 

swing deviation (27 points) would score 87 points. This 

method directly linked technical improvements to 

measurable competition outcomes: 

 
Figure 5: Comparison of the effects of the DDPG-

based intelligent training system and traditional training 

methods on athletes' performance 

 

In our proposed system, the DDPG algorithm plays a 

crucial role in automatically optimizing decision strategies 

within a continuous action space. Beyond its application 

in sports training, this work advances the theoretical 

framework of deep reinforcement learning by 

demonstrating its efficacy in a complex IoT environment. 

The algorithm not only optimizes real-time training 
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strategies but also provides insights into scalable data 

fusion and adaptive decision-making processes. These 

advancements are directly relevant to broader challenges 

in informatics and cognitive systems. 

For example, Player 1’s score in the traditional 

system is 50, but with the proposed system, the score 

increases to 80, reflecting a 30-point improvement. The 

differences in scores for other players are similarly 

significant. Player 3 and Player 8, who scored 60 and 59, 

respectively, in the traditional system, see their scores rise 

to 90 and 89 with the proposed system. This demonstrates 

that the personalized training strategy based on DDPG 

effectively enhances the competitive level of athletes, 

particularly in critical moments of the game, enabling 

them to perform with greater stability and efficiency. 

The traditional system, with its relatively fixed 

training plan and feedback mechanism, fails to make 

sufficient personalized adjustments based on real-time 

athlete performance, limiting its ability to maximize 

players’ potential. In contrast, our proposed system 

dynamically adjusts training content, fine-tuning 

strategies based on real-time data and athlete feedback. 

This dynamic approach not only optimizes technical skills 

but also improves game performance for each player. 

Furthermore, scores under the traditional system are 

generally lower compared to those under the proposed 

system, highlighting the significant limitations of 

traditional methods in technical training and strategy 

optimization. Traditional systems rely on fixed training 

schedules and standardized routines, which do not account 

for individual player differences. This lack of personalized 

adjustments often results in suboptimal performance and 

lower game scores. Conversely, the system presented in 

this paper continuously optimizes training plans and 

strategies through the reinforcement learning capabilities 

of the DDPG algorithm, ensuring that each player trains 

under the most suitable conditions to maximize their 

potential. 

A striking example of the system’s effectiveness is 

seen in the score differences between Player 6 and Player 

9. In the traditional system, their scores are 57 and 54, 

respectively, while with the proposed system, their scores 

improve to 88 and 84. This underscores the adaptive 

training ability of the proposed system, significantly 

enhancing players’ performance, particularly in the later 

stages of training. Overall, the system offers each player a 

personalized, dynamically optimized training strategy, 

leading to higher scores and improved performance during 

games. 

5 Discussion 

5.1 Comparison with existing methods 
Experimental results show that our proposed DDPG-

based framework outperforms traditional methods (e.g., 

manual guidance) and other reinforcement learning 

algorithms (DQN, PPO) in terms of both shot success rate 

and stability. Compared with DQN, which is limited to a 

discrete action space, DDPG's ability to handle continuous 

actions (e.g., fine-grained adjustments to swing angle or 

power) is crucial for optimizing tennis training. While 

PPO performs well in some cases, its stochastic policy 

updates lead to higher variance in dynamic environments, 

such as an 8% error rate in a high-pressure ball scenario 

(compared to 5% for DDPG). Notably, our system 

improves on traditional methods by 30 percentage points 

(Figure 5), which is consistent with the recent SOTA trend 

in IoT-driven sports analytics. 

 

5.2 Limitations and failure cases 
Despite its many advantages, DDPG performs poorly 

in scenarios that require rapid adaptation to sudden 

environmental changes (e.g., sudden gusts of wind). In our 

experiments, the error rate in such scenarios increased by 

2-3% due to delayed policy updates. In addition, the 

algorithm performs poorly in sparse reward scenarios 

(e.g., low success rate in the initial training phase), which 

is a known challenge in reinforcement learning. Future 

work could integrate hierarchical reinforcement learning 

to address this issue. 

 

5.3 Challenges for practical deployment 
Practical deployment faces many challenges: (1) 

sensor drift in wearable devices (e.g., gyroscope bias) 

requires frequent recalibration; (2) hardware limitations 

(e.g., 100 ms latency in the camera-computer vision 

pipeline) occasionally interrupt real-time feedback; (3) the 

energy consumption of IoT devices limits long-term 

training. These issues highlight the need for edge 

computing solutions and robust sensor fusion algorithms. 

 

5.4 System scalability and latency analysis 
The system achieves scalability through edge 

computing, where real-time preprocessing (e.g., 

denoising, normalization) is performed locally on the IoT 

device, while DDPG optimization runs on the cloud 

server. This reduces latency to 80-120 milliseconds, 

ensuring timely feedback. For high concurrent users, the 

system uses a microservices architecture to maintain 

stable performance even when more than 20 athletes are 

training simultaneously. 

Compared with rule-based methods, DDPG requires 

more computing resources (about 40 

milliseconds/decision vs. 10 milliseconds), but its 

adaptive optimization outperforms rigid rules in dynamic 

scenarios. To reduce the computational load, the system 

uses pre-trained strategies that are fine-tuned during 

training, reducing real-time processing time by 30%. 

These measures ensure scalability without compromising 

responsiveness. 

 

5.5 Robustness and sensitivity analysis 
To address potential challenges in real-world 

deployment, we conducted robustness tests and sensitivity 

analyses to evaluate the system's performance under 

sensor noise and hardware inconsistencies. The results 

indicate that the system maintains stable performance with 

moderate noise levels (e.g., Gaussian noise with σ ≤ 0.1), 

but the error rate increases by 2-3% under severe noise 

conditions (σ > 0.2). Additionally, sensitivity analysis 

reveals that the system is most vulnerable to gyroscope 
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drift, with a 5% performance degradation when bias 

exceeds 0.15 rad/s. These findings highlight the need for 

future improvements in sensor calibration and noise-

resistant algorithms to enhance reliability in dynamic 

environments. 

6 Conclusion 
This study proposes an intelligent training system 

based on a deep reinforcement learning framework and 

multimodal IoT data fusion, which achieves dynamic 

optimisation and personalised adaptation of tennis training 

strategies through the integration of wearable sensors 

(e.g., accelerometers, gyroscopes), vision systems and 

environmental monitoring devices. The experimental 

results show that compared with the traditional training 

methods, the system has made significant breakthroughs 

in the success rate of hitting (from 75% to 85-90%), 

stability (the average error rate decreased from 12% to 5%, 

and the stability increased by 58%), and the ability to score 

in key scenarios (e.g., 15-25% increase in scoring rate in 

the baseline attack and high-pressure ball scenarios). The 

results have made significant breakthroughs. These results 

validate the advantages of the Deep Deterministic Policy 

Gradient (DDPG) algorithm in the continuous action 

space - its ability to dynamically adjust the stroke force (0-

100 N), angle (-30° to +30°), and position (±2 m) with a 

delay of 0.1 ms. (±2 m) with 0.1 ms latency, thus 

accurately adapting to the athlete's real-time physiological 

state and environmental changes. 

The core contribution of this study is to provide three 

innovations for the integration of sport science and 

information technology through an interdisciplinary 

approach: firstly, a hardware architecture based on edge 

computing (NVIDIA Jetson) and IoT protocols (Wi-Fi 

6/Bluetooth 5.2) combined with Kalman filtering and 

noise reduction to achieve efficient synchronisation of 

multimodal data (latency &lt;100 ms); secondly. 

Secondly, a DRL strategy network for tennis 

biomechanics is designed to embed the closed loop of 

training feedback into the perception-decision-execution 

process of the athlete through the co-optimisation of the 

actor-critic framework; thirdly, a scalable system model is 

proposed, whose modular design has been verified to be 

applicable to 30 athletes with different skill levels, which 

can be used for the development of a real-time training 

system for the industrial automation, medical monitoring 

and other fields. Third, a scalable system model is 

proposed, and its modular design has been verified to be 

applicable to 30 athletes of different skill levels, providing 

a reference paradigm for real-time decision support 

systems in industrial automation and medical monitoring. 

Nonetheless, there are still some limitations in this 

study: the experimental samples focus on a specific group 

of athletes, which may limit the generalisability of the 

conclusions to elite athletes or extreme environments 

(e.g., high humidity venues); furthermore, the DDPG 

algorithm's policy convergence in sparse reward scenarios 

(e.g., initial training for novice athletes) is slow, which 

leads to the optimisation effect of some scenarios not 

being up to the expectation.  

Future research will focus on the following 

directions: first, introduce hierarchical reinforcement 

learning (HRL) and hybrid models (e.g., TD3) to enhance 

the robustness of the algorithm to sparse rewards and 

sensor noise; second, expand the experimental scale to 

more than one hundred athletes across regions and 

integrate physiological metrics, such as EMG and HRV, 

to construct an all-dimensional performance analysis 

system; lastly, explore the techniques of lightweight 

neural networks and federated learning that reduce the 

arithmetic power and energy consumption dependence of 

edge devices.  

This study not only pushes the technological 

boundaries of intelligent sports training, but also provides 

a universal framework for the real-time optimisation of 

complex dynamic systems with the synergistic innovation 

of IoT and deep reinforcement learning. By deepening the 

collaboration between domain experts and AI researchers, 

this result lays the theoretical and practical foundation for 

the development of next-generation adaptive technologies 

in competitive sports and industrial scenarios. 
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