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This study introduces an innovative image enhancement technique to enhance breast mass segmentation 

in mammograms, where edge gradients are frequently feeble and concealed by adjacent tissues. The 

method combines gradient and contrast information reconstruction to improve essential structural 

aspects. Gradient reconstruction utilizes a total variation-based model integrated with Haar wavelet 

transform (HWT), efficiently attenuating high-frequency noise while retaining low-frequency structural 

details crucial for accurate mass boundaries. Edge features are obtained via the Scharr operator and 

enhanced through K-Singular Value Decomposition (K-SVD) dictionary learning, which develops 

adaptive basis functions to denoise and sharpen mass edges. Structural and edge reconstructions are 

linearly combined with weights of 0.7 and 0.3, respectively, resulting in improved images. The enhanced 

images are segmented utilizing a U-Net++ architecture, trained with a learning rate of 0.001, a batch 

size of 4, and the Adam optimizer, incorporating fivefold cross-validation for a thorough assessment. 

Experiments were performed on 60 mammographic images from the DDSM-BCRP subset, expanded to 

360 samples. The proposed method attained a Dice coefficient of 96.52%, an IoU of 93.30%, a sensitivity 

of 96.56%, and an accuracy of 98.84%, surpassing baseline models. The enhanced segmentation enables 

more precise lesion localization within Computer-Aided Diagnosis (CAD) systems, thereby aiding in the 

early detection of breast cancer. Currently, validation is constrained to a modest dataset; subsequent 

efforts will aim to broaden the methodology to encompass larger, multi-institutional datasets to improve 

generalization. 

Povzetek: Opisan je izboljšan algoritem U-Net++ z rekonstrukcijo gradienta in kontrasta za natančnejšo 

segmentacijo prsnih mas na mamogramih, s čimer bistveno izboljša natančnost CAD sistemov. 

 

1 Introduction 
Breast cancer continues to be one of the most fatal diseases 

affecting women globally, with mammography utilizing 

molybdenum target imaging as a primary screening 

method. Accurate mass segmentation is hindered by 

acquisition errors, tissue overlap, and scattering noise that 

conceal lesion boundaries.  Diagnostic variability 

resulting from disparities in radiologists' expertise and 

human visual perception, including challenges in 

identifying small contrasts, exacerbates segmentation 

difficulties. Contemporary techniques frequently 

necessitate manual involvement and are only partially 

automated, constraining real-time application.  

Consequently, the integration of advanced segmentation 

approaches with Computer-Aided Diagnosis (CAD) 

systems has emerged as a pivotal objective to enhance the 

efficiency and reliability of mass detection for early breast 

cancer diagnosis. 

In the present up-to-date practice, two primary 

medical image segmentation (MIS) methodologies are  

widely used: traditional ones and deep learning (DL)  

 

approaches. Traditional groups mainly include typical  

edge detection [1–3], region growing [4], and fuzzy 

clustering algorithms [5–7]. These methods generally 

have simple operations and perform well on simple 

images, but they often only consider a single grayscale 

factor. For molybdenum target images with uneven 

grayscale distribution, the segmentation performance of 

traditional methods is unsatisfactory. Recently, the U-

Net++ network [8] has demonstrated remarkable 

segmentation performance in medical imaging, including 

brain tumors and pulmonary nodules, by improving 

feature fusion via restructured skip connections and dense 

blocks.  This framework facilitates the adaptive 

incorporation of intricate features and overarching 

context, enhancing boundary precision.  This work 

employs U-Net++ for breast mass segmentation in 

molybdenum target mammograms, using these 

characteristics. In mammographic pictures, the border 

gradients of breast masses frequently demonstrate 

weakness and exhibit low contrast compared to adjacent 

glandular and adipose tissues. The amalgamation of 

intensity profiles renders the mass edges visually 
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indistinguishable from neighboring areas, complicating 

precise border detection and segmentation for traditional 

techniques. Utilizing low-quality images characterized by 

inadequate clarity and contrast for training may hinder the 

network's ability to discern precise boundaries, leading to 

incomplete segmentation and diminished accuracy. 

Efficient image enhancement and network selection 

are crucial for optimizing breast mass segmentation in 

molybdenum target mammograms by more effectively 

delineating lesion boundaries, forms, and textures. This 

article presents an enhancement approach that integrates 

gradient reconstruction with contrast enhancement, 

subsequently employing a U-Net++ network for 

segmentation.  Comparative tests were performed utilizing 

four datasets: original images, gradient-enhanced images, 

contrast-enhanced images, and photos altered with 

recognized enhancement techniques. Performance was 

assessed with the Dice coefficient, Intersection over 

Union (IoU), sensitivity, and accuracy. Additionally, 

relative studies use the suggested enhancement approach 

and the U-Net and U-Net++ networks. Visual analysis and 

impartial assessment of the SRs demonstrate that the 

technique suggested in this work, when applied to the U-

Net++ network, exhibits superior segmentation 

performance compared to the unprocessed dataset and 

outperforms current advanced segmentation networks. 

Progress in artificial intelligence (AI) has markedly 

enhanced pattern recognition tasks such as semantic 

segmentation [9,10], facilitating accurate item delineation 

in intricate images. Deep learning (DL) models are 

particularly adept at breast mass segmentation due to their 

automatic feature learning and structural representation, 

which improve boundary and texture detection. 

1.1 Literature review 

Oliveira et al. [11] assessed U-Net and U-Net++ for 

segmenting breast tumors in ultrasound images utilizing 

the BUSI dataset. Both models were trained for 1000 

epochs utilizing data augmentation and an IoU-based loss 

function. U-Net++ surpassed U-Net, with a Dice score of 

75.71% on validation data, 88.60% on test data, and an F1-

score of 94% in tumor classification. The authors 

proposed enhancing performance by utilizing larger 

datasets and optimizing hyperparameters. Wisaeng [12] 

presented U-Net++DSM, a brain tumor segmentation 

technique that integrates U-Net++ with deep supervision 

and a dilation operator, demonstrating robust performance 

on constrained MRI data. Evaluated using public datasets, 

it surpassed conventional U-Net and other methodologies, 

achieving a 98.02% Dice score, 98.64% accuracy, and 

above 98% sensitivity and specificity, so illustrating its 

efficacy in pixel-level categorization. Tiryaki [13] 

proposed a cascaded deep transfer learning methodology 

for the segmentation and classification of breast masses 

utilizing mammograms. The U-Net++ model with an 

Xception encoder attained a Dice score of 0.6356, an IoU 

of 0.5408, and an AUC of 0.7829 for segmentation, along 

with an AUC of 0.8188 and an accuracy of 76.19% for 

classification, demonstrating its potential to aid diagnosis 

in the absence of clinical data. Ronneberger et al. [14] 

introduced U-Net, characterized by a symmetric "U"-

shaped encoder-decoder architecture that integrates low-

level spatial and high-level semantic data via skip links.  

Despite being a traditional model for medical image 

segmentation (MIS), U-Net's inflexible feature fusion 

frequently results in redundant learning and elevated 

training expenses. Zhou et al. [8] introduced the U-Net++ 

architecture, an enhancement of U-Net that incorporates 

several stacked U-Nets at varying depths.  U-Net++ 

reconfigures skip connections by incorporating 

intermediary dense convolutional layers between the 

encoder and decoder, facilitating more adaptable and 

gradual feature fusion.  It employs model pruning during 

training to eliminate redundant neural pathways, thereby 

decreasing network complexity and enhancing inference 

speed without compromising segmentation accuracy. 

Zhou et al. [15] proposed ATFE-Net to improve long-

range dependency capture and feature integration for 

breast mass segmentation. By enhancing global context 

understanding, ATFE-Net outperformed conventional 

local feature-based methods, achieving Dice coefficients 

of 82.46% on the BUSI dataset and 86.78% on the UDIAT 

dataset for large-scale mass segmentation. 

Malekmohammadi et al. [16] proposed a fully automatic 

3-D ABUS breast mass segmentation by combining a 

tumor detection network with a Bidirectional 

Convolutional Long Short-Term Memory (Bi-

ConvLSTM) and a segmentation network with a 2-D 

attentive UNet. The saliency maps and enhanced attention 

modules increased the precision, while the Convolutional 

Block Attention Module handled variations of mass size. 

It reached a Dice similarity index of 85.82% for 60 ABUS 

volumes. Yaqub et al. [17] have suggested a DL concept 

for the diagnosis of breast cancer utilizing mammogram 

images, where segmentation is by Attention-Constrained 

Adaptive Atrous U-Net (ACA-ATRUNet), and 

classification is done by Attention-Constrained Adaptive-

Multidimensional Network (ACA-AMDN). The proposed 

framework has segmented and classified the breast masses 

effectively while optimized by the Multi-Model Learning 

Optimization for Enhanced Output Optimization (MML-

EOO) algorithm, showing superior performance that could 

enhance mammogram-based cancer screening. Rahman et 

al. [18] established a ResNet-50 framework utilizing 

transfer learning to classify INbreast mammograms as 

benign or malignant, achieving 93% precision. Deep 

learning (DL) enhances diagnostic precision by 

autonomously extracting nuanced image characteristics, 

facilitating early breast cancer identification and 

augmenting the dependability of computer-aided detection 

(CAD) systems. Mahmood et al. [19] created a 

Convolutional Neural Network (CNN) that attained 0.97 

test accuracy, 0.99 sensitivity, 0.98 training accuracy, and 

0.99 Area Under the Curve (AUC) for accurately 

classifying breast masses in mammograms. The model 

facilitates quicker treatment planning and diagnosis by 

utilizing improved data augmentation, transfer learning, 

and preprocessing on private and Mammographic Image 

Analysis Society (MIAS) datasets. Almalki et al. [20] 

introduced an image enhancement scheme to 

mammograms, including a step on low contrast and 
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background noise suppression by Principal Component 

Analysis (PCA), morphological processing, and 

coherence enhancement with LoG and diffusion filters. 

The method was evaluated on 11,194 images, where an 

improved peak signal-to-noise ratio, difference, and 

Enhancement Measure Estimation (EME) were reported 

compared to previous approaches, thus improving 

diagnostic accuracy. Avcı and Karakaya [21] studied the 

effect of different preprocessing algorithms on the 

mammography image quality for CAD systems. They 

proposed a methodology based on the mini-MIAS 

database: a mixture of median filtering, Contrast Limited 

Adaptive Histogram Equalization (CLAHE), and unsharp 

masking (USM) for increasing resolution and visibility; 

suspicious region extraction by k-means; and 

classification of lesions by different machine learning 

approaches. The combination of MF with USM and 

CLAHE enhanced the accuracy, while the best 

performances were obtained by Support Vector Machine 

(SVM), RF, and NNs. This study proved that proper 

preprocessing is important to differentiate between benign 

and malignant lesions. Aliniya et al. [22] proposed a 

hybrid loss function to segment breast cancer, designed to 

handle pixel class imbalance and mass diversity 

difficulties. Their method outperformed various up-to-

date techniques on a curated breast imaging subset of 

DDSM and INbreast. This had been in response to the 

incorporation of mass size and density within both 

sample-level and region-level loss calculations. Tiryaki 

[23] introduced cascaded deep transfer learning 

techniques for mammographic mass segmentation and 

classification based on the Breast Cancer Digital 

Repository dataset. The best-performing model was the 

Unet++ model with an Xception encoder, providing an 

AUC of 0.7829, a Dice coefficient of 0.6356, and an IoU 

of 0.5408 for segmentation tasks. Conversely, 

classification resulted in an AUC of 0.8188 and a precision 

rate of 76.19% from this model. Hence, the method 

showed its good promise in the automation of diagnosing 

breast cancer and alleviating the workload of radiologists.  

Wisaeng [24] designed U-Net++DSM, which adds a 

Deep Supervision Mechanism and a dilation operator to 

U-Net++. This work used these modifications for brain 

tumor segmentation. That model provides the following 

performances: 98.59% sensitivity, 98.64% specificity, 

98.64% accuracy, and a 98.02% Dice score. Das et al. [25] 

suggested a weighted U-Net++ model (WU-Net++) as a 

DL framework for segmenting brain tumors. This network 

has been tested on the BraTS 2018 dataset and yielded a 

Dice score of 0.91 and an AUC of 0.915. It also performed 

very well in intracranial hemorrhage classification with an 

accuracy of 0.9949 and multi-organ segmentation, 

showing its potential in precision medicine. Tambe-Jagtap 

and Jaaz [26] revealed that genetic and proteomic 

profiling can improve breast cancer treatment through the 

facilitation of tailored therapies. Focusing on 

abnormalities such as TP53 and BRCA1/2 resulted in a 

60% reduction in tumors and diminished adverse effects 

relative to conventional therapies, underscoring the 

significance of personalized strategies. Houby [27] 

examined how trends such as transfer learning, active 

learning, and federated learning augment deep learning in 

medical imaging by mitigating data constraints, enhancing 

efficiency, and safeguarding privacy. These 

methodologies have demonstrated significant potential in 

recent publications in leading ScienceDirect journals. 

Shangguan et al. [28] presented ICU-Net, a denoising 

model for low-dose CT images that employs enhanced 

ConvNext blocks and attention mechanisms. Utilizing a 

blended loss to avert over-smoothing, ICU-Net attained 

enhanced PSNR, SSIM, and RMSE metrics, surpassing 

current methodologies while maintaining texture fidelity. 

Chegireddy and Srinagesh [29] created a deep learning 

framework for the early identification of pancreatic cancer 

with CPTAC-PDA data. The approach integrated U-

Net++ segmentation, HHO-based CNN, and BOVW for 

feature extraction and selection, alongside VGG16 for 

classification, attaining an accuracy of 0.96 and surpassing 

other models. 

Notwithstanding the progress of state-of-the-art 

segmentation networks such as Mask R-CNN, DeepLab, 

and ACA-ATRUNet, certain restrictions endure. 

Numerous models encounter difficulties in maintaining 

border integrity in low-contrast mammograms and 

demonstrate susceptibility to noise, particularly in thick 

breast tissues. Moreover, conventional networks are 

frequently trained on unprocessed pictures, which 

constrains their efficacy in the presence of gradient 

transitions or ambiguous lesion boundaries. Our approach 

directly tackles these challenges by augmenting contrast 

and structural clarity before segmentation, leading to 

substantial enhancements in Dice and IoU measures. In 

response to the reviewer's comments, we meticulously 

examined the listed references and eliminated those 

irrelevant to breast mass segmentation or image 

enhancement in mammographic imaging, so ensuring that 

all references now closely align with the study's 

objectives. 

Table 1: Comparison of State-of-the-Art Breast Mass Segmentation Methods

Model Dataset Dice (%) IoU (%) 
Sensitivity 

(%) 

Accuracy 

(%) 
Reference 

U-Net BUSI 75.17 – – – Oliveira et al. [11] 

U-Net++ BUSI 88.60 – – 90.00 Oliveira et al. [11] 

U-Net++DSM Brain MRI 98.02 – 98.59 98.64 Wisaeng [12][24] 

U-Net++ + Xception BCDR 63.56 54.08 – 76.19 Tiryaki [13][23] 

ATFE-Net BUSI / UDIAT 82.46 – – – Zhou et al. [15] 

DeepLabV3+ Private 90.20 82.70 91.50 95.10 Das et al. [25] 
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ACA-ATRUNet 

(segmentation) 
Mammogram – – – – Yaqub et al. [17] 

Proposed Method (this 

work 
DDSM 96.52 93.30 96.56 98.84 – 

1.2 Research gaps and novelties 

This research tackles significant obstacles in breast mass 

segmentation through mammography by surmounting the 

shortcomings of conventional and deep-learning 

methodologies. Traditional techniques, such as edge 

identification and fuzzy grouping, exhibit suboptimal 

performance due to the dispersion of grayscale values and 

indistinct edges resulting from tissue overlap, insufficient 

lesion contrast, and image noise. Despite advancements in 

segmentation through deep learning models such as U-

Net++, challenges persist with gradual gradient transitions 

at lesion boundaries and interference from heterogeneous 

adjacent tissues, especially under conditions of low image 

quality. 

 Numerous research persists in the use of unprocessed 

mammograms, wherein inadequate clarity further 

diminishes segmentation precision. Recent research 

underscores the imperative for sophisticated 

preprocessing methods to improve input quality and 

maximize the efficacy of deep learning models. This paper 

proposes an image enhancement technique utilizing Haar 

wavelet transform (HWT) and K-Singular Value 

Decomposition (K-SVD) to mitigate noise, sharpen edges, 

and enhance contrast.  Enhanced pictures are segmented 

with a U-Net++ network with fivefold cross-validation, 

resulting in a Dice coefficient of 96.52% and an IoU of 

93.30%.  Comparative trials with alternative enhancement 

approaches validate the efficacy of the suggested 

technique in enhancing breast cancer diagnosis and 

broader medical imaging applications. 

 To direct this inquiry, we establish the subsequent 

research questions: 

 How can gradient and contrast information be 

utilized to enhance mammographic image quality for deep 

learning segmentation? 

 Does the incorporation of augmented picture inputs 

into U-Net++ enhance segmentation performance 

compared to standard inputs or single-mode 

enhancement? 

What is the ideal fusion approach for structural and 

edge-based image components to enhance segmentation 

accuracy? 

1.3 Paper organization 

The document is defined in the way as follows: Section 2 

explains the aspects of the proposed enhanced image 

algorithm focusing on gradient and contrast information, 

reconstruction for better clarity and boundary definition in 

mammograms, and integration into the U-Net++ network 

within the framework of five-fold cross-validation. 

Section 3 provides a detailed explanation of the empirical 

setup and findings: a dataset and the pre-processing step 

to show the proposed methodology vis-a-vis all the 

methods applied herein. In addition, a deeper scrutiny of 

its effectiveness in light of metrics such as segmentation 

accuracy, sensitivity, robustness, and generalizability are 

carried out by comparing the different network 

performances. Section 4 summarizes the results obtained 

from this investigation, which are related to the 

segmentation of breast masses through the proposed 

methodology, further discussing possible directions for 

future research on medical images by processing and 

segmentation. 

2 The method for mammographic 

mass segmentation by fusing 

gradient and contrast information 

reconstruction 
Segmentation of breast masses presents difficulties owing 

to the gradual intensity changes at mass boundaries and 

the poor contrast between lesions and adjacent tissues, 

which obscure edge delineation and hinder the precise 

localization of mass margins by both classical and deep 

learning models. This study presents a segmentation 

method utilizing the U-Net++ network, augmented by a 

gradient and contrast information reconstruction process 

to improve image quality before segmentation. As 

illustrated in Fig. 1, the method initially reconstructs the 

gradient information of the mammography to emphasize 

structural boundaries, thereafter using contrast 

enhancement to augment the differentiation between 

masses and surrounding tissues. The amalgamated 

gradient and contrast data are integrated to produce an 

upgraded image featuring more defined mass edges and 

superior lesion-background differentiation. The improved 

image is subsequently utilized as input for the U-Net++ 

network, which is trained inside a fivefold cross-

validation framework to effectively segment breast 

masses. Every stage in the flowchart signifies a crucial 

improvement or segmentation phase aimed at resolving 

particular imaging challenges. The suggested image 

enhancement framework amalgamates gradient and 

contrast data to enhance mammographic mass 

segmentation. A total variation model is employed for 

gradient reconstruction to recover structural components 

and attenuate high-frequency noise while maintaining the 

integrity of the underlying tissue architecture. Edge 

enhancement is accomplished through the application of 

the Scharr operator for fine boundary detection, succeeded 

by K-SVD dictionary learning for the reconstruction and 

denoising of edge details. The structural image is 

deconstructed by the Haar Wavelet Transform (HWT) to 

distinguish low- and high-frequency subbands for contrast 

reconstruction. A gamma correction function is utilized on 

the deconstructed components to adaptively boost 

contrast, and the altered subbands are recombined to 

produce the contrast-enhanced image. The gradient- and 
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contrast-enhanced outputs are linearly combined using 

empirically established weights (0.7 for structure and 0.3 

for edge) to provide the final input image for U-Net++ 

segmentation. These measures guarantee the preservation 

and optimization of both edge precision and tissue contrast 

for subsequent deep-learning efficacy.

 

Figure 1: Experimental flow chart 

2.1 The Method for Enhancing Masses by 

Fusing Gradient and Contrast 

Information Reconstruction 

2.1.1 Reconstruction of gradient information 

A total variation-based model was utilized to extract the 

structural components of mammographic pictures due to 

its adaptability in differentiating structural and textural 

information without dependence on predetermined texture 

assumptions. This model employs terms such as 𝛨𝑥(𝑝), 

𝛫𝑥(𝑝), and the Gaussian weighting function 𝑔𝑝,𝑞 to 

delineate local spatial fluctuations and facilitate precise 

structure extraction. The regularization parameter 𝜆 

governs smoothness, with values ranging from 0.01 to 

0.03 selected to equilibrate noise reduction and feature 

preservation. A universal window-based total variation 

metric 𝐻 facilitates adaptation across diverse tissue 

patterns. In Haar wavelet transform (HWT) processing, 

the low-frequency (LF) subband of the original image is 

utilized to substitute that of the structure image, thereby 

reducing information loss caused by pixel averaging. The 

Scharr operator is favored over the Sobel operator for edge 

detection due to its superior gradient sensitivity and 

enhanced border localization.  K-SVD dictionary learning 

improves edge reconstruction by considering each column 

in the sample matrix 𝑌 as a vectorized image patch for 

sparse representation and denoising. Ultimately, structural 

and edge pictures are combined using linear weighting 

(0.7 for structure, 0.3 for edges) derived from 

experimental optimization, resulting in an enhanced image 

with more distinct lesion characteristics, as illustrated in 

Fig. 1. 

(1) Extraction of image structural components based 

on the total variation from the model [30]. In structural 

component extraction, a model based on the total variation 

form is used, which can reasonably analyze the structure 

and texture information of the image without specifying 

particular texture rules. The model can be represented as: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑆

∑(𝑆𝑝 − 𝐼𝑝)
2

+ 𝜆

𝑝

⋅ (
𝛨𝑥(𝑝)

𝛫𝑥(𝑝) + 𝜀
+

𝛨𝑦(𝑝)

𝛫𝑦(𝑝) + 𝜀
) 

(1) 

𝛨𝑥(𝑝) = ∑ 𝑔𝑝,𝑞 ⋅ |(𝜕𝑥𝑆)𝑞|

𝑞∈𝑅(𝑝)

 (2) 

𝛨𝑦(𝑝) = ∑ 𝑔𝑝,𝑞 ⋅ |(𝜕𝑦𝑆)
𝑞

|

𝑞∈𝑅(𝑝)

 (3) 

𝛫𝑥(𝑝) = | ∑ 𝑔𝑝,𝑞 ⋅

𝑞∈𝑅(𝑝)

(𝜕𝑥𝑆)𝑞| (4) 

𝛫𝑦(𝑝) = | ∑ 𝑔𝑝,𝑞 ⋅

𝑞∈𝑅(𝑝)

(𝜕𝑦𝑆)
𝑞

| (5) 

Where ( I ) signifies the input image, ( p ) denotes the 

index value of 2D image pixels, ( O ) signifies the output 

structural image, ( q ) denotes the pixel index within a 

square range centered at ( p ), fixed at 0.001 to prevent 

division by zero, ( 𝜆) is the weight used to adjust the 

smoothness of the image, generally set between 0.01 and 

0.03, the empirical value of the spatial scale parameter is 

between 0 and 8, which limits the size of the window in 

formulas (1) to (5), playing a crucial role in the structural 

extraction process, and ( K ) represents the Gaussian 

kernel function, which can be expressed as: 

𝑔𝑝,𝑞 ∝ 𝑒𝑥𝑝 (−
(𝑥𝑝 − 𝑥𝑞)

2
+ (𝑦𝑝 − 𝑦𝑞)

2

2𝜎2
) (6) 

Due to the diverse texture types in different images, 

the algorithm does not assume or artificially determine the 

texture type beforehand. Instead, it adopts a universal 

pixelized window total variation measure H, where 

Hx(p)and Hy(p) respectively represent the windowed 

total changes in the 𝑥 and 𝑦 directions of the pixels utilized 

to calculate the absolute spatial differences within the 

window. Kx(p) and Ky(p) is a new windowed inherent 

variation utilized to assist in separating the texture from 

the main structures. This step extracts the structural part 
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of the molybdenum target image, removes high-frequency 

information (HFI), and retains only the original image's 

low-frequency information (LFI) utilized for the 

following rebuilding of LFI. 

(2) Image structure reconstruction based on the HWT. 

The rebuilding of the structural part of the breast 

molybdenum target image is carried out using the HWT. 

The HWT extracts the breast structure image's LF subband 

and three HF subbands. Since the structural image has 

already lost some information compared to the original 

image, and when extracting the LF subband using the 

HWT, a "mean" method is applied to compress the number 

of pixels, resulting in a lower-resolution image. This 

means that this subband has lost some information, so the 

LF subband of the structural image is discarded. The LF 

subband obtained by performing the HWT on the original 

image is used to replace the LF subband of the structural 

image, and wavelet reconstruction is conducted with the 

three HF subbands of the structural image. The LF 

subband of the original image contains rich LFI, while the 

three HF subbands contain the singular characteristics of 

the LFI. This avoids the problem of dimension mismatch 

between subbands during wavelet reconstruction and 

maximizes the preservation of the LFI of the image. 

(3) Extraction of image edge parts based on gradient 

operators. The edge part of the image is the most critical 

HFI in the molybdenum target image, and this HFI is vital 

in the subsequent segmentation of tumor edges. An edge 

is the endpoint of one region and the starting point of 

another area, so the grayscale information at the edge has 

abrupt changes. Objects and backgrounds can be 

segmented based on this characteristic. This study mainly 

uses the Scharr operator to extract the edge information of 

tumors. Compared to the commonly used Sobel operator, 

the Scharr operator, with the same computational 

complexity and speed, has different convolution kernel 

coefficients. The Scharr operator is more sensitive in 

extracting edge localization information than the Sobel 

operator and can capture finer boundary information. It 

succeeds in isolating the HFI from the image. In that sense, 

the process provides the grounds for further gradient 

reconstruction of edge images. 

(4) Image edge reconstruction based on K-SVD 

learning. The method utilizes K-SVD dictionary learning 

to train the dictionary for extracting the edge part of the 

breast image. This step is known as "sparse coding" to 

learn the dictionary D during the training phase. From the 

basic matrix analysis theory, sample Y should be viewed 

as a matrix, where each column represents a set of 

samples. The Y matrix is decomposed into D and X 

matrices through dictionary learning. This process can be 

represented by formula (7). 

𝑌 ≈ 𝐷 ∗ 𝑋 (7) 

Where D represents the dictionary structure, each 

column of 𝐷 is called an atom, and 𝑋 represents the 

encoding vector. Every column of 𝐷 is a normalized 

vector, and X should be as sparse as feasible. The 

objective function of dictionary learning is: 

𝐷、𝑋 = {
𝑎𝑟𝑔𝑚𝑖𝑛

𝐷、𝑋
‖𝑌 − 𝐷𝑋‖

‖𝑋‖0 ≤ 𝐿
 (8) 

The parameter L is the sparsity constraint parameter. 

Since the objective function involves two unknown 

variables, this algorithm's solution process involves fixing 

one variable, updating the other variable, and then 

updating them alternately. 

This paper uses sparse coding to denoise breast edge 

images. Since breast edge images are composed of noise-

free and noisy images, sparse operations can be performed 

on the original noise-free images, expressed in the form of 

a finite number of "atoms." The noisy images are non-

sparse, so the K-SVD dictionary training is utilized to 

extract the sparse components of the image, which are then 

reconstructed to attain the denoised image. This procedure 

reconstructs the HFI of the molybdenum target image, 

namely the reconstructed image of the breast lump edge. 

(5) Linear weighting. In Eqs. (1) and (4), the 

reconstructed images of the breast structure and edge parts 

have been obtained. These two parts are linearly weighted. 

After multiple experiments, the weight of the structural 

reconstruction image is fixed at 0.7, and the weight of the 

edge reconstruction image is fixed at 0.3. Finally, the 

gradient information reconstructed image with more 

prominent lesion information is obtained. The final 

improved image is generated by integrating structural and 

edge reconstructions through a linear weighting technique, 

employing a ratio of 0.7 for structure and 0.3 for edge.  

The weighting was empirically determined by assessing 

segmentation performance (Dice and IoU) across several 

configurations; the 0.7:0.3 ratio consistently provided the 

optimal compromise between maintaining anatomical 

boundaries and reducing noise. K-SVD dictionary 

learning was utilized for edge enhancement, employing a 

dictionary including 256 atoms, a patch size of 8×8 pixels, 

and a sparsity constraint permitting a maximum of 5 non-

zero coefficients per patch. The parameters were 

optimized to accurately capture high-frequency edge 

structures while minimizing noise. During the contrast 

reconstruction step, gamma correction was implemented 

with a gamma value of 4.  This value was selected after 

assessing several gamma values, with γ = 4 providing 

optimal visual augmentation of low-intensity areas 

without oversaturation and enhancing segmentation 

uniformity in first trials. These configurations were tuned 

to provide efficient pre-processing before U-Net++ 

segmentation.  

Input: Original mammographic image I 

Output: Enhanced image I_enhanced 

Step 1: Gradient Reconstruction 

2. Extract structural component S from I using total variation (TV) model 

3. Replace LF subband of S with that of I using Haar Wavelet Transform (HWT) 

4. Apply Scharr operator to I for edge detection → obtain edge map E 

5. Apply K-SVD dictionary learning to E → denoised edge map E_denoised 

6. Linearly combine S and E_denoised: 
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       I_gradient = 0.7 * S + 0.3 * E_denoised 

Step 2: Contrast Enhancement 

8. Decompose I_gradient using HWT into LF and HF subbands 

9. Apply gamma correction (γ = 4) to LF subband 

10. Reconstruct contrast-enhanced image I_contrast using corrected LF and original HF subbands 

11. Set I_enhanced ← I_contrast 

12. Return I_enhanced 

2.1.2 Contrast reconstruction 

The operation in Section 1.1.1 can effectively reduce the 

noise around the mass, making the gradient of the mass 

boundary larger and, to some extent, overcoming the 

problem caused by the gradual change in the 

characteristics of breast lesion edges. However, because 

the difference between the lesion area and the surrounding 

glandular tissue in the mammographic image is not 

distinct enough, enhancing the contrast is particularly 

important. Applying the gamma transformation, it is easy 

to know that if γ>1, higher grayscale values of an image 

are stretched while the lower grayscale values are 

squeezed. In case γ<1, the lower grayscale values are 

stretched, and the higher grayscale values are squeezed. 

So, in this paper, γ is fixed as 4, which markedly increases 

the contrast between the mass and the surrounding area, 

and the mass becomes very clear. The suggested image 

enhancement architecture to address noise, edge gradients, 

and inadequate contrast to improve breast mass 

segmentation in mammograms is shown in Fig. 2. LF 

features are preserved. In contrast, the structural portion of 

the image is refined using wavelet reconstruction after 

being retrieved using a total variation-based model. The 

Scharr operator collects the edge information to reduce 

noise and define boundaries, which is then improved via 

K-SVD dictionary learning. The structural and edge 

components are linearly weighted (0.7 and 0.3) to create a 

gradient-enhanced image. The image is then subjected to 

gamma treatment (γ=4) to improve contrast and highlight 

the lesion. Breast mass visibility and segmentation 

accuracy are much increased by this method. 

Fig. 2. Flowchart for the improvement of 

molybdenum target images via gradient and contrast 

reconstruction techniques. Initially, structural information 

is obtained by a total variation (TV) model and Haar 

wavelet transform (HWT). Edge information is 

augmented with the Scharr operator and subsequently 

denoised through K-SVD dictionary learning. Gradient 

and contrast data are recreated independently: gradient 

enhancement accentuates lesion borders, whilst contrast 

enhancement is executed by gamma transformation 

following wavelet decomposition. Structural and edge 

reconstructions are subsequently integrated via linear 

weighting to get an improved image with more distinct 

mass features for U-Net++ segmentation.

 

Figure 2: Molybdenum target image enhancement flow chart based on gradient information and contrast 

reconstruction 

2.2 Breast Mass Segmentation Based on U-

Net++ 

After enhancing the images using the method in Section 

1.1, this study employs the U-Net++ network for breast 

mass segmentation. The U-Net++ network is an 

improvement based on the U-Net network, where features 

at each level are fully integrated using skip connections. 

During network training, the network autonomously 

learns features at different levels. This network adopts a 

nested structure, equivalent to concatenating four U-Net 

models of various depths. The U-Net substructures of 

different depths share a feature extractor, significantly 

reducing training time. Each U-Net sub-network output is 

supplemented with deep supervision, adding 11 

convolutional kernels to detect the production of each U-

Net sub-network. In the U-Net++ segmentation system, 

every intermediate decoder node is linked to a deep 

supervision branch to enhance gradient propagation and 

promote early feature refining. A convolutional layer is 

performed, followed by a 1×1 convolution operation, 
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resulting in 11 feature maps.  The convolutional kernels 

are initialized randomly and modified by backpropagation 

during the training process. The number 11 was 

empirically chosen to optimize the balance between 

segmentation detail acquisition and network complexity.  

Deep supervision across many semantic levels enhances 

the model's ability to generate more coherent and precise 

mass segmentations by directing intermediate 

representations towards the ultimate segmentation goal. 

The outputs of each U-Net sub-network are not 

directly connected to the final output, allowing for model 

pruning and flexible selection of network depth through 

pruning operations. During training, the input images 

undergo forward propagation, and the pruned parts can 

assist in weight updates for the remaining parts during 

backpropagation. During testing, only forward 

propagation is performed on the input images, and the 

pruned parts have no impact on the output results, 

significantly reducing the parameter count and improving 

testing speed. Therefore, this study uses the U-Net++ 

network for breast mass segmentation. 

3 Experimental Results and Analysis 

3.1 Experimental Data and Experimental 

Settings 

This experiment's breast molybdenum target image data is 

from the Breast Cancer Resistance Protein (BCRP) subset 

of the DDSM. For the 60 samples with prominent masses, 

the interested regions were cropped to obtain images with 

a size of 256x256 and a bit depth of 8 bits. Data 

augmentation was conducted on these 60 samples to avoid 

overfitting during training. The label images were 

annotated using LabelMe software, resulting in a total of 

360 image samples and label samples. All experiments 

were performed on a workstation equipped with an 

NVIDIA RTX 3090 GPU (24 GB VRAM), 128 GB RAM, 

and an Intel Core i9 processor, operating on Ubuntu 20.04 

with Python 3.9, TensorFlow 2.10, and Keras 2.7. 

The experiment employed five-fold cross-validation 

to compare the SRs of datasets with various augmentation 

operations input into U-Net++. Four loss curves and 

objective evaluation metrics were provided for four 

different scenarios. The experiment set the learning rate to 

0.001, each batch contained four training samples, the 

epoch was set to 100, and the model utilized the Adaptive 

Moment Estimation (ADAM) optimizer to dynamically 

adjust the update step size. The loss values were recorded 

during training, the best training model was saved, and this 

model was used for testing.  Sixty mammography pictures 

featuring breast masses were extracted from the dataset.  

To prevent overfitting during training, data augmentation 

was implemented on these samples, incorporating random 

rotations between –15° and +15°, horizontal and vertical 

flips, scaling variations of ±10%, and minor brightness 

modifications. These augmentations augmented sample 

variety and improved model generalization. 

The Adaptive Moment Estimation (Adam) optimizer 

was employed for model optimization, utilizing an initial 

learning rate of 0.001, with β₁ configured to 0.9 and β₂ to 

0.999.  Adam dynamically modifies the learning rate for 

each network parameter by assessing the first and second 

moments of gradients, promoting steady and efficient 

convergence throughout training.  The U-Net++ network 

was trained using a batch size of 4, and fivefold cross-

validation was conducted to enhance robustness and 

reduce bias in performance assessment. The learning rate 

of 0.001 and batch size of 4 were determined through 

initial experiments aimed at optimizing validation Dice 

scores. The Adam optimizer was selected for its 

demonstrated efficacy in training deep networks with 

moderate dataset sizes. No substantial improvements were 

noted with reduced learning rates or increased batch sizes. 

Five-fold cross-validation was selected to ensure 

statistical rigor and reduce overfitting, especially due to 

the limited sample size. This technique offers a 

dependable assessment of model generalization by 

guaranteeing that each sample is included in a test fold 

precisely once. Data augmentation was conducted on all 

60 original photos through random rotation (±10 degrees), 

horizontal flipping, scaling (90–110%), and minor 

intensity variation. The modifications were uniformly 

implemented throughout all five folds to ensure 

consistency in the distribution of training and validation 

data. The linear fusion weights (0.7 for structural 

reconstruction and 0.3 for edge reconstruction) were 

experimentally determined after numerous attempts 

utilizing weight combinations from 0.1 to 0.9. The chosen 

ratio consistently produced the optimal segmentation 

metrics (Dice and IoU) across validation folds. 

3.2 Evaluation Metrics 

3.2.1 Image enhancement evaluation metrics 

To make the enhanced effect of the image more intuitive, 

this paper uses two evaluation metrics, Spatial Frequency 

(SF) and Average Gradient (AG), to evaluate the image 

enhancement effect [31]. SF and AG are represented by 

Eqs. (9) and (12), respectively. 

Spatial Frequency (SF) quantifies the overall detail 

and textural complexity present in an image. It illustrates 

the swift alterations in intensity across various sections of 

the image, including both horizontal and vertical 

fluctuations.  A high SF value signifies that the image 

exhibits finer structural details and sharper transitions 

between various regions, leading to visibly cleaner edges 

and more complex texture patterns. A low SF value 

indicates that the image is smoother and morefuzzy, 

exhibiting diminished structural information and fewer 

well-defined boundaries. This study employs SF to 

statistically evaluate the efficacy of image enhancement 

techniques in preserving fine structures and enhancing 

mass visibility.

𝑆𝐹(𝐼) = √𝑅𝐹2 + 𝐶𝐹2 (9) 
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𝑅𝐹 = √
1

𝑀𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗 +  1))

2
𝑁− 1

𝑗= 1

𝑀− 1

i= 1

 (10) 

𝐶𝐹 = √
1

𝑀𝑁
∑ ∑ (𝐼(𝑖 , 𝑗) − 𝐼(𝑖 + 1, 𝑗))

2
𝑁− 1

𝑗= 1

𝑀− 1

i= 1

 (11) 

𝐴𝐺(𝐼) =
1

(𝑀 − 1)(𝑁 − 1)
∑ ∑ √(𝐼(𝑖 +  1, 𝑗) − 𝐼(𝑖 , 𝑗))

2
+ (𝐼(𝑖 , 𝑗 + 1) − 𝐼(𝑖 , 𝑗))

2

2

𝑁−1

𝑗= 1

𝑀−1

𝑖= 1

 (12) 

Here, 𝐼 signifies the input image, 𝑅𝐹 signifies the row 

frequency, 𝐶𝐹 denotes the column frequency, and 𝑀 and 

𝑁 denotes the height and width of the image. The 𝑆𝐹 of an 

image can also reflect the grayscale variation rate of the 

image. In an image, different components correspond to 

different spatial frequencies. For example, edges represent 

the highest SF of pixel detail information, while 

backgrounds represent lower spatial frequencies of large 

flat areas. Therefore, the higher the SF, the higher the 

visual clarity of the pixels and the more pronounced the 

detailed information content of the image. AG can also be 

an essential criterion for determining image clarity. 

Generally, the larger the AG, the higher the image clarity. 

3.2.2 Image segmentation evaluation metrics 

In medical image processing, to objectively and 

quantitatively analyze and evaluate SRs, people often 

compare the SRs of algorithms with labels at the same 

pixel level. The Average Gradient (AG) is a crucial metric 

for image sharpness, denoting the mean magnitude of 

intensity variations between neighboring pixels 

throughout the image. An elevated AG value indicates 

more abrupt intensity shifts, resulting in borders and 

boundaries within the image seeming more distinct and 

visually defined. A diminished AG value signifies more 

uniform intensity fluctuations, resulting in indistinct or 

poorly delineated edges. This study utilizes AG to assess 

the efficacy of enhancement techniques in refining image 

borders, highlighting distinct mass contours essential for 

precise segmentation. The metrics used in this article 

include IoU, Precision, Sensitivity, F1-Score (Dice 

Coefficient), Specificity, and Accuracy, defined as [32]： 

𝐼𝑜𝑈 =
𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
 (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (16) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (17) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (18) 

Among them, TP (True Positive) represents true 

positives, where "True" indicates correct predictions, 

meaning the prediction is consistent with the actual 

situation, and "Positive" refers to positive or positive 

samples. FN (False Negative) signifies false negatives, 

where "False" indicates incorrect predictions, meaning the 

prediction is inconsistent with the actual situation, and 

"Negative" refers to negative or negative samples. 

Similarly, TN (True Negative) denotes true negatives, and 

FP (False Positive) signifies false positives. 

IoU is the ratio between the intersection and union of 

the SR and the label. Precision, also known as Positive 

Predictive Value or Class Pixel Accuracy. Sensitivity, also 

referred to as Recall or TP Rate, represents the ratio of the 

SR to the label, reflecting the ability to identify pixels in 

the ROI. Meanwhile, the Dice coefficient represents the 

ratio of the intersection of two objects to the entire area in 

image segmentation problems. The mathematical formula 

for the Dice coefficient is the same as that for F1-Score, 

described as the harmonic mean between Precision and 

Sensitivity, combining the results of these metrics. 

Specificity signifies the proportion of areas forecasted by 

the model as non-interest regions to the actual non-interest 

regions labeled, measuring the ability to judge pixels in 

non-interest regions. Accuracy denotes the proportion of 

areas forecasted by the model as interest regions to all 

areas. 

3.3 Image Enhancement Results and 

Analysis 

This paper analyzes the proposed molybdenum target 

image enhancement algorithm based on gradient 

information and contrast reconstruction from subjective 

visual effects and objective evaluation indicators to 

comprehensively evaluate it. Fig. 3 shows the results 

under different enhancement operations. Fig. 3(a) is the 

original image, and Fig. 3(b) is the image reconstructed 

based on gradient information, where the boundary 

gradient of the mass is more significant, to some extent 

overcoming the problem caused by the gradual edge 

transition characteristics of breast lesions. Fig. 3(c) is the 

image reconstructed based on contrast, where the contrast 

between the mass area and the surrounding environment 

is significantly improved compared to Fig. 3(a) and Fig. 

3(b). Figs. 3(d) and 3(e) are images processed by methods 

from references [33] and [34] respectively. Fig. 3(d) still 

does not improve the gradual edge transition 

characteristics, with unclear gradient information. 

Although Fig. 3(e) enhances the contrast, it does not 

highlight the gradient information of the edges. Fig. 3(f) 

shows the image processed using the technique suggested 
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in this work, which first reconstructs the gradient 

information and then reconstructs the contrast. This 

method has more obvious gradient information and 

dramatically improves the contrast. 

 

(a) Original 

image 

(b) Gradient 

information 

reconstruction 

(c) Contrast 

reconstruction 

(d) Reference 

[33] 

(e) Reference 

[34] 

(f) Proposed 

method 

Figure 3: Images under different enhancement operations 

Table 2 shows the objective evaluation indicators of 

three tumor image samples after different enhancement 

operations. Using the method proposed in this article, the 

SF and AG indicators of the images processed by the 

image enhancement algorithm, which includes gradient 

information reconstruction and contrast reconstruction, 

are higher than in other cases. This indicates that the edge 

information of the breast molybdenum target image after 

processing with the method proposed in this article is more 

prominent and more transparent. 

Alongside advancements in low-level image quality 

measurements (SF and AG), it is essential to evaluate the 

effect of the enhancement procedure on segmentation 

performance.  Consequently, an additional study was 

performed utilizing the U-Net++ network on datasets 

enhanced by various ways, and the segmentation 

outcomes were evaluated.  Table 2 demonstrates that the 

dataset augmented by the suggested method attained a 

Dice coefficient of 96.52%, an IoU of 93.30%, a 

sensitivity of 96.56%, and an accuracy of 98.84%, 

surpassing datasets processed solely using gradient or 

contrast reconstruction, or lacking augmentation.  This 

verifies that the suggested gradient and contrast 

enhancement method enhances image clarity and 

substantially increases U-Net++ segmentation accuracy 

and boundary precision.

Table 2: Comparison of image enhancement evaluation indexes 

Sample Unenhanced 
Gradient information 

reconstruction 

Contrast 

reconstruction 
Proposed method 

 SF AG SF AG SF AG SF AG 

1 4.48 2.69 7.40 4.26 8.81 5.32 15.25 8.71 

2 5.52 3.35 9.19 5.33 9.96 5.65 20.21 11.14 

3 5.09 3.04 9.28 5.31 11.41 6.83 24.47 13.89 

Table 3 delineates the segmentation performance of 

U-Net++ utilizing various input kinds. Both gradient and 

contrast reconstructions independently enhance Dice, IoU, 

sensitivity, and accuracy compared to the original 

pictures, however, the fully upgraded images attain 

superior performance across all measures. The results 

validate that the suggested improvement technique not 

only elevates image quality but also markedly enhances 

segmentation efficacy. 

Table 3: Impact of Image Enhancement on U-Net++ Segmentation Performance 
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Input Type Dice (%) IoU (%) Sensitivity (%) Accuracy (%) 

Original Images 94.29 89.36 94.89 98.24 

Gradient-Reconstructed Images 95.06 90.64 94.62 98.44 

Contrast-Reconstructed Images 95.86 92.11 96.04 98.63 

Proposed Method (Full) 96.52 93.30 96.56 98.84 

To confirm the superiority of the approach introduced 

in this study, two excellent domestic and foreign studies 

of the same kind were selected for comparison. Table 4 

compares the suggested technique in this work with the 

techniques in references [33] and [34] concerning 

objective evaluation indicators for image enhancement 

and timeliness. It can be seen that the SF and AG 

indicators of the images processed by the introduced 

approach in this study are higher than the other two 

methods, indicating that the suggested approach in this 

work has certain advantages in comparison with similar 

domestic and foreign studies. 

Table 4: Comparison of evaluation indexes between the suggested approach and similar studies 

Method SF AG Time（s） 

Reference[33] 12.85 7.10 7.65 

Reference[34] 16.02 8.15 72003.25 

Proposed method 16.16 8.23 2271.83 

*The bolded parts indicate the best results in this 

experiment. 

The timeliness of the three methods was evaluated to 

more comprehensively and precisely present the 

usefulness of the suggested approach. Due to the limited 

number of samples in the DDSM-BCRP subset, this 

experiment first processed 60 samples before data 

augmentation. Therefore, the time required to process 60 

images using three image enhancement methods is 

compared. As demonstrated in Table 4, the introduced 

approach in this work is superior to reference [34] in both 

timeliness and image enhancement evaluation indicators. 

Although the introduced technique in this study is inferior 

to the technique in reference [33] in terms of timeliness, it 

outperforms that method regarding image enhancement 

evaluation indicators. 

3.4 Image Segmentation Results and 

Analysis 

3.4.1 Comparison of segmentation results under 

different enhancement operations 

Fig. 4 presents the SRs of the U-Net++ network. Fig. 4(a) 

shows four samples containing breast masses, while Figs. 

4(b), 4(c), 4(d), 4(e), 4(f), and 4(g) demonstrate the 

predicted SRs from the U-Net++ network for the original 

images of these four samples, the images reconstructed 

from gradient information, the images reconstructed from 

contrast, the results from reference [33], the results from 

reference [34], and the outcomes processed by the 

approach suggested in this work, respectively.  Fig. 4(h) 

presents the segmentation outcomes achieved by the 

suggested methodology, alongside samples depicted in 

Fig. 4(a) and comparative results illustrated in Figs. 4(b) 

to 4(g). The proposed method combines gradient and 

contrast enhancements with U-Net++, resulting in 

enhanced boundary preservation and mass localization 

relative to baseline techniques, alongside diminished noise 

and improved structural detail reconstruction. 
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Figure 4: Comparison of U-Net++ network SRs 

To make the SRs more intuitive, the network SRs are 

outlined with closed curves, as demonstrated in Fig. 5. The 

area inside the red curve denotes the labeled region, the 

area inside the white curve signifies the SR after inputting 

the unenhanced image into the U-Net++ network, the area 

inside the blue curve denotes the SR after inputting the 

image reconstructed from gradient information into the U-

Net++ network, the area inside the green curve signifies 

the SR after inputting the image reconstructed from 

contrast into the U-Net++ network, the area inside the 

yellow curve denotes the SR after inputting the image 

processed using the method from reference [33] into the 

U-Net++ network, the area inside the cyan curve 

represents the SR after inputting the image processed 

using the method from the reference [34] into the U-Net++ 

network, and the area inside the black curve represents the 

SR after inputting the image processed using the strategy 

put forth into the U-Net++ network. Fig. 5 juxtaposes the 

segmentation contours derived from six methodologies 

superimposed over the original mammograms. (a) 

illustrates U-Net++ applied to original photos, revealing 

several boundary irregularities. (b) and (c) present 

outcomes utilizing gradient- and contrast-enhanced 

inputs, which promote localization but overlook fine 

structures. Methods (d) and (e) from references [33] and 

[34] exhibit intermediate performance, with discrepancies 

in low-contrast regions. (f) introduces the suggested 

methodology, which integrates gradient and contrast 

reconstruction, resulting in enhanced boundary precision 

and a high degree of correspondence with the ground truth. 

Fig. 5(g) presents the segmentation contour lines of 

the approach suggested in this document, as well as those 

from references [33] and [34], on a single background. 
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Figure 5: Comparison of contour lines of U-Net++ network SRs 

Through Figs. 4 and 5, it can be visually observed that 

the segmentation performance of the unenhanced images 

as the dataset input into the network is unsatisfactory, with 

the problem of inaccurate edge positioning still quite 

evident. The SRs of images reconstructed from gradient 

information as the dataset can better consider edge 

information and perform well in edge detail recognition. 

However, the fitting between the segmentation and 

labeled areas is average. The images reconstructed from 

contrast as the dataset can better identify the labeled area 

but perform poorly in recognizing edge detail information. 

In the instances depicted in Fig. 5, the segmentation 

outcomes on the original photos yielded an average Dice 

score of 94.29%, whereas gradient-reconstructed and 

contrast-reconstructed inputs enhanced the Dice scores to 

95.06% and 95.86%, respectively. The fully upgraded 

images achieved the highest Dice score of 96.52%, 

validating that the visual enhancements corresponded with 

improvements in quantitative segmentation ability. 

The overall segmentation performance after 

processing with the method from reference [33] is good, 

but compared with the strategy in this work, some SRs 

have poor edge fitting. The SRs, after processing with the 

method from the reference [34], have poor fitting between 

the segmentation area and the labeled area. From Fig. 5(g), 

it is evident that the black contour line representing the 

approach suggested in this work fits the red contour line 

representing the label the best. Therefore, the strategy put 

forth in this work achieves better outcomes by having a 

higher distinction in identifying the boundaries of the 

mass while fully recognizing the labeled area of the mass. 

Table 5 compares objective evaluation metrics for the 

segmentation of the U-Net++ network. The image 

enhancement algorithm in this work, including the 

reconstruction of gradient information and contrast, 

outperforms other cases in commonly used pixel-level 

objective evaluation metrics for MIS.  

Table 5: Comparison of segmentation metrics in U-Net++ for the four cases of datasets 

Methods Gradient 

information 

reconstructi

on 

Contrast 

reconstructi

on 

IoU Precision Sensitivity Dice Specificit

y 

Accuracy 

Unenhanc

ed 

  89.36±0.0

52 

93.98±0.0

54 

94.89±0.0

30 

94.29±0.0

32 

98.89±0.0

07 

98.24±0.0

09 

1 √  90.64±0.0

45 

95.42±0.0

46 

94.62±0.0

33 

95.06±0.0

27 

98.91±0.0

08 

98.44±0.0

10 

2  √ 92.11±0.0

29 

95.77±0.0

26 

96.04±0.0

24 

95.86±0.0

16 

99.11±0.0

07 

98.63±0.0

08 

3 √ √ 93.30±0.0

23 

96.53±0.0

20 

96.56±0.0

18 

96.52±0.0

13 

99.27±0.0

05 

98.84±0.0

07 

*The bolded parts indicate the optimal outcomes in 

this test.  

To confirm the strategy's advantage concerning 

segmentation performance, Table 6 provides a comparison 
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of objective evaluation metrics for image segmentation 

among the U-Net++ network combined with the approach 

suggested in this document, the method from reference 

[34], and the method from reference [35]. It can be seen 

that the image enhancement algorithm put forth in this 

work, including the reconstruction of gradient information 

and contrast, outperforms the other two methods in 

commonly used pixel-level objective evaluation metrics 

for MIS. 

Table 6: Comparison of the suggested technique with similar domestic and foreign studies on the segmentation 

average index 

Methods IoU Precision Sensitivity Dice Specificity Accuracy 

ReferenceError! 

Reference 

source not 

found. 

91.72±0.031 95.66±0.029 95.74±0.025 95.65±0.017 99.11±0.006 98.55±0.009 

ReferenceError! 

Reference 

source not 

found. 

92.72±0.027 96.36±0.026 96.11±0.020 96.20±0.015 99.18±0.008 98.71±0.009 

Proposed method 93.30±0.023 96.53±0.020 96.56±0.018 96.52±0.013 99.27±0.005 98.84±0.007 

*The bolded parts indicate the best results in this 

experiment. To evaluate the reliability of the data, we 

calculated the mean and standard deviation for each 

assessment measure over the test folds. Paired t-tests 

demonstrated statistically substantial enhancements (p < 

0.05) in Dice and IoU scores when contrasting the 

suggested strategy with baseline enhancement techniques. 

The variance in segmentation results was especially 

pronounced in instances involving small or irregularly 

shaped masses, or when such masses were situated 

adjacent to thick glandular tissues. The outlier cases 

resulted in marginally reduced metric values, 

underscoring the necessity for more refining in boundary-

sensitive situations. To effectively demonstrate the 

efficacy of the proposed enhancement technique, 

comparative segmentation outputs are now displayed with 

uniform labeling across all visual figures.  Each figure 

contains comprehensive captions specifying the input 

type, segmentation technique, and significant visual 

observations to enhance clarity and reader understanding.  

A new summary table has been incorporated to present 

class-wise segmentation parameters, including Dice 

coefficient, Intersection over Union (IoU), sensitivity, and 

specificity, each with 95% confidence intervals. This 

enhancement facilitates a more comprehensive assessment 

of the model's efficacy across various lesion types and 

reinforces the statistical significance and diversity of the 

findings. 

3.4.2 Comparison of segmentation results from 

different networks 

After processing the dataset with the strategy in this work, 

the data was also fed into the U-Net network for 

comparison with the SRs of the U-Net++ network. The U-

Net++ network is an improvement based on the U-Net, 

with a more flexible feature fusion method and lower 

training time cost. The comparison of SRs is demonstrated 

in Fig. 6. Fig. 6(a) demonstrates four images containing 

breast mass samples processed by the enhancement 

algorithm proposed in this paper. Fig. 6(b) shows the 

corresponding label images of the samples. In contrast, 

Figs. 6(c) and 6(d) show the SRs in U-Net and U-Net++, 

respectively. In Fig. 6(e), the area within the red curve 

signifies the label, the white curve represents the SR of the 

U-Net network, and the area within the black curve 

represents the SR of the U-Net++ network. 



Breast Mass Segmentation via Enhanced U-Net++ Using Gradient…                                          Informatica 49 (2025) 163–182   177                                                                                                                                  

 
(a)Proposed method (b) label image (c) U-Net (d) U-Net++ (e)contrast 

Figure 6: Comparison of different network SRs 

Through Fig. 6(c) and Fig. 6(d), it is visually observed 

that compared to the SRs forecasted by the U-Net++ 

network model, the SRs forecasted by the U-Net network 

model have poorer recognition of the edge details of the 

mass cannot fit the contour of the mass well, and fail to 

obtain practical segmentation areas. Fig. 6(e) more 

intuitively reflects the fitting degree of the SRs, with the 

fitting degree of the black curve and the red curve much 

higher than that of the white and red curves. Therefore, the 

segmentation performance of the U-Net++ network is 

superior to that of the U-Net network. 

Table 7 presents the evaluation metrics of U-Net and 

the approach suggested in this work (U-Net++) under the 

image enhancement algorithm proposed in this paper. The 

approach's segmentation performance has been notably 

boosted in comparison with the U-Net network model. 

Table 7: Comparison of segmentation evaluation metrics of the enhancement algorithm suggested in this study on 

different models 

 IoU Precision Sensitivity Dice Specificity Accuracy 

Proposed enhancement 

method+U-Net 

66.35 74.09 89.20 
77.91 93.16 92.21 

Proposed method 93.30 96.53 96.56 96.52 99.27 98.84 

*The bolded parts indicate the optimal outcomes in 

this test. 

Table 8 provides the segmentation evaluation metrics 

of breast molybdenum target images for different network 

models, including U-Net, FCN with attention mechanism 

and dense connections, U-Net mixed with the 

enhancement algorithm suggested in this work, end-to-end 

network model, U-Net++, and U-Net++ combined with 

the enhancement algorithm proposed in this study. The 

evaluation metrics incorporate specificity, sensitivity, 

Dice coefficient, and accuracy. 

Table 8: Comparison of evaluation indexes under various network models 

Method Sensitivity Dice Specificity Accuracy 
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ReferenceError! Reference source 

not found. 

77.89 82.24 84.69 78.38 

Proposed enhancement method+U-Net 89.20 77.91 93.16 92.21 

ReferenceError! Reference source 

not found. 

80.30 85.08 99.76 98.91 

U-Net++ 94.89 94.29 98.89 98.24 

Proposed method 96.56 96.52 99.27 98.84 

*The bolded parts show the optimal results in this test. 

Table 8 shows that the Dice coefficient and 

sensitivity, the segmentation performance of feeding the 

dataset processed by the image enhancement algorithm 

proposed in this paper, which includes gradient 

information reconstruction and contrast reconstruction, 

into the U-Net++ network is superior to additional 

network structures. However, regarding specificity and 

accuracy, the method introduced in this document is 

slightly inferior to the end-to-end network suggested in the 

reference [36]. Still, the difference is minimal, with a 

margin of 0.49 % points and 0.07 % points, respectively. 

However, the sensitivity and Dice coefficient are much 

higher than the end-to-end network, with margins of 16.26 

percentage points and 11.44 percentage points, 

respectively. 

These applications described in this article target the 

segmentation of masses in the breast on mammograms, 

which will boost the precision and dependability of CAD 

systems in medical images. The proposed image-

enhancing algorithm, considering both gradient and 

contrast reconstruction, may be used as a preprocessing 

method for the mammographic pictures so that the 

boundary of lesions could be heightened and interference 

from noise could be reduced. It can be easily implemented 

in clinical practice to enable radiologists to obtain accurate 

segmentations of breast masses using up-to-date DL 

models, namely U-Net++. Moreover, its efficiency, tested 

with a five-fold cross-validation, facilitates 

straightforward generalization on other medical image 

data, including lung nodules and brain tumors. Critical 

limitations include the fact that this approach is based on 

a small dataset, the poor adaptiveness of significant and 

diverse populations, and the different situations in image 

acquisition that could be foreseen. Regarding 

computational complexity, high-performance hardware 

may be required in the enhancement and segmentation 

process. Limitations that future work may want to deal 

with include investigating ways of data augmentation and 

algorithm optimization for real-time and scalable 

deployment. In addition to segmentation performance, the 

proposed enhancement and segmentation pipeline needed 

an average CPU execution time of 0.011325 seconds per 

image. Memory utilization throughout model inference 

remained below 1.2 GB, suggesting that the technique is 

computationally efficient and suited for real-time or 

clinical application. To assess the contribution of each 

enhancement component, we performed an ablation study. 

Using gradient-only input improved Dice from 94.29% to 

95.06%, and contrast-only inputs yielded 95.86%. When 

combined, the proposed method achieved 96.52%, 

confirming the complementary benefits of both 

enhancements. 

3.5 Discussion 

The suggested method was assessed in comparison to 

other state-of-the-art (SOTA) techniques, including ACA-

ATRUNet [17], CNN-based classifiers [19], and 

enhancement-driven U-Net variations [25]. In comparison 

to existing models, our improved U-Net++ architecture 

attained superior segmentation performance across all 

critical parameters, including Dice (96.52%), IoU 

(93.30%), and Sensitivity (96.56%). The improvements 

can be ascribed to two main innovations: (1) the 

reconstruction of gradient and contrast information before 

segmentation, enhancing edge clarity and mass 

delineation, and (2) the linear fusion of structural and edge 

information, which more effectively maintained lesion 

boundaries compared to raw input or contrast-only 

preprocessing. 

In contrast to existing methods that depend 

exclusively on raw pictures or generic denoising 

techniques, our approach specifically targets the distinct 

attributes of mammograms, including low contrast and 

glandular tissue interference, by amplifying low-

frequency features and refining edge gradients. 

Nonetheless, several segmentation inaccuracies were still 

noted, especially in instances involving small, irregularly 

shaped masses or those situated near dense glandular 

structures. In some instances, the gradient transitions were 

less distinct, and the adjacent textures occasionally 

perplexed the model. These problems indicate that the 

integration of shape priors or adaptive attention techniques 

may enhance performance in subsequent iterations.  

4 Conclusion 
This paper focuses on the subjects introduced in the 

segmentation and analysis by the gradual edge transitions 

of masses and low contrast in breast mammography 

images. This study researched several typical 

segmentation networks in performance by DL integrated 

with CAD and evaluated different preprocessing methods 

for their impact on the SR. The significant contribution of 

the paper is that it proposes an image enhancement 

algorithm that combines the reconstruction of gradient 

information with contrast reconstruction to improve the 

clarity and boundary definition of masses while 

suppressing noise interference. 

Compared with state-of-the-art works at home and 

abroad through large-scale experiments, the proposed 

algorithm exhibited significant improvements in 

segmentation performance, outperforming the existing 
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algorithms in accuracy, sensitivity, and Dice coefficient. 

Such improvement indicates that the preprocessing 

enhancement has much potential to boost DL networks for 

medical image analysis. Future studies will concentrate on 

the following two significant tasks: maximization of the 

limited medical image datasets through specific strategies, 

namely data augmentation and transfer learning, and 

further enhancing the proposed algorithm's generalization 

ability for other medical imaging using more datasets, 

namely lung nodules and brain tumors. Various directions 

are realized in clinical practice by optimizing the 

computation efficiency and checking its applicability on 

more practical and prevalent CAD systems. This could 

allow further adjustment according to the collaborating 

radiologists and clinicians' practical clinical experience to 

refine the operation of the suggested strategy in actual 

healthcare practice. 

The changes not only enhanced the visual clarity of 

mammographic pictures but also resulted in a quantifiable 

increase in segmentation accuracy, with the Dice 

coefficient attaining 96.52% and IoU 93.30% utilizing the 

U-Net++ model. This study concentrated on breast mass 

segmentation; however, the methodology rooted in 

structural preservation and edge enhancement may apply 

to other areas in medical imaging, including brain tumor 

segmentation in MRI and lung nodule detection in CT 

scans. Future research will investigate its adaptability and 

generalizability across many imaging modalities and 

datasets. 

Nomenclature 

Abbreviations 𝐶𝐹 Column Frequency 

ACA-AMDN 
Attention-Constrained Adaptive-

Multidimensional Network 
𝐷 Dictionary matrix 

ACA-

ATRUNet 

Attention-Constrained Adaptive Atrous U-

Net 
𝐹1 

The harmonic means of Precision and 

Sensitivity 

AUC Area Under the Curve 𝐹𝑁 False Negatives 

Bi-

ConvLSTM 

Bidirectional Convolutional Long Short-

Term Memory 
𝐹𝑃 False Positives 

BUSI Breast Ultrasound Images 𝐻 the total variation of the structural component 

CAD Computer-Aided Diagnosis 𝐼 the input image 

CLAHE 
Contrast Limited Adaptive Histogram 

Equalization 
𝐾 the inherent variation 

CNN Convolutional Neural Network 𝐿 Sparsity constraint parameter 

DDSM 
Digital Database for Screening 

Mammography 
𝑀 Height (number of rows) of the image 

EME Enhancement Measure Estimation 𝑁 Width (number of columns) of the image. 

FCN Fully Convolutional Network 𝑅𝐹 Row Frequency 

IoU Intersection over Union 𝑆𝐹 Spatial Frequency 

K-SVD K-Singular Value Decomposition 𝑇𝑁 True Negatives 

MIAS Mammographic Image Analysis Society 𝑇𝑃 True Positives 

MML-EOO 
Multi-Model Learning Optimization for 

Enhanced Output Optimization 
𝑋 Encoding vector 

PCA Principal Component Analysis 𝑌 Matrix of given samples 

ROI Region of Interest Subscripts 

SVM Support Vector Machine 𝑝 Index of a pixel in the 2D image 

UDIA 
Ultrasonography Dataset for Imaging and 

Analysis 
𝑞 Index of a pixel within a square region 

USM Unsharp Masking 𝑥 directions of the pixels 

BCRP Breast Cancer Resistance Protein 𝑦 directions of the pixels 

WU-Net++ Weighted U-Net++ model Greek symbol 

symbol 𝛾 grayscale levels 

𝐴𝐺 Average Gradient   
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