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To improve the real-time performance and stability of distributed control systems in complex and dynamic 

environments, this study introduces a delay prediction and optimization model. The model is built on an 

integrated architecture that combines Long Short-Term Memory (LSTM) neural networks with Field 

Programmable Gate Array (FPGA). A sliding window input mechanism is used, where a recent sequence 

of historical delay data serves as input to forecast short-term system response latency. To support efficient 

hardware deployment, the LSTM model was quantized to 8-bit fixed-point precision. Additionally, the 

FPGA implementation was optimized through the design of a parallel pipelined architecture and an on-

chip cache scheduling mechanism. These enhancements significantly improve inference speed and 

resource utilization. Experiments were conducted using the Electric Transformer Temperature (ETT) 

time-series dataset series. The proposed model was compared against several representative approaches. 

Evaluation metrics included prediction accuracy, response latency, system throughput, resource 

consumption, task success rate, and overall stability. On the ETT-small-m3 dataset, the optimized model 

achieved a task completion rate of 99.699%, a system throughput of 1,424.082 tasks per second, and an 

average response time of 0.247 seconds. These results surpassed those of the baseline models across most 

performance indicators. To evaluate generalization, five-fold cross-validation was performed. Analysis of 

variance (ANOVA) was also conducted to confirm the statistical significance of the results, with all p-

values below 0.05, ensuring the reliability of the experimental findings. Despite its strengths, the model 

has limitations in certain reliability metrics. For example, the mean time between failures was slightly 

lower than that of the Multi-Agent System-Based Distributed Control Model (MAS-DCM), suggesting 

reduced stability under high-pressure or high-load conditions. Moreover, the model's adaptability to 

scenarios involving multi-source heterogeneous data has not been comprehensively tested. In summary, 

this study presents a deployable, efficient, and scalable architecture for intelligent delay prediction. The 

proposed solution provides a practical approach to delay modeling and performance optimization in 

smart control systems. It holds strong potential for real-world applications and lays a solid foundation 

for future research and development in this area. 

Povzetek: Opisan je FPGA-pospešen model z LSTM za napovedovanje zakasnitev v porazdeljenih 

krmilnih sistemih, ki izboljša odzivnost, točnost napovedi in pretočnost pod industrijskimi pogoji. 

 

1 Introduction 
As industrial automation systems, power dispatch 

networks, intelligent manufacturing lines, and smart 

transportation infrastructure continue to evolve rapidly, 

Distributed Control Systems (DCSs) have become 

essential for enabling multi-point coordinated control. 

These systems are now widely deployed in critical 

industrial sectors, including chemical process 

management, power grid operations, and rail transit 

systems [1–3]. DCSs operate by distributing sub-control 

units across various locations to handle data acquisition, 

real-time computation, and control signal transmission. 

This decentralized architecture enhances system 

flexibility and scalability. However, it also introduces a 

more complex control environment. One of the most 

significant challenges lies in managing the uncertainty and  

 

dynamic variability of communication delays and task  

scheduling latency. These factors have become major 

bottlenecks affecting system stability, response time, and 

control accuracy [4]. In response, some advanced DCSs 

have begun incorporating basic delay detection and 

management strategies. Common approaches include 

threshold-based response mechanisms and static delay 

modeling. However, these methods typically rely on fixed 

parameters or simple linear models, making them 

insufficient for predicting nonlinear or sudden delay 

fluctuations in complex network environments [5]. 

Improving the accuracy and timeliness of delay prediction 

has therefore emerged as a key objective in the ongoing 

effort to optimize DCS performance. 

To address this challenge, this study proposes a 

prediction acceleration framework designed for embedded 
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distributed control scenarios. The framework integrates 

two complementary technologies: the nonlinear modeling 

capabilities of neural networks for time-series prediction, 

and the high-performance, low-latency characteristics of 

Field Programmable Gate Array (FPGA). Neural 

networks have already demonstrated superior 

performance compared to traditional models and support 

vector machines in various time-sensitive domains such as 

financial forecasting and fault prediction [6–8]. Their 

primary advantage lies in their ability to automatically 

learn long-term dependencies and adapt to non-stationary 

trends in sequential data. This makes them particularly 

effective at handling diverse and heterogeneous delay 

patterns. Meanwhile, FPGA offers a powerful solution for 

accelerating neural network inference through parallel 

pipelined hardware architectures. Unlike software-based 

deployments, which often suffer from computational 

bottlenecks, FPGA implementations enable real-time 

processing and are especially well-suited for industrial 

environments with stringent response time requirements. 

By combining these two technologies, the proposed 

framework not only enhances the real-time performance 

of delay prediction but also supports lightweight and 

efficient deployment on resource-constrained control 

nodes. This integration forms a closed-loop optimization 

system that spans from model design to runtime execution. 

Accordingly, this study presents an FPGA-

accelerated delay prediction system based on Long Short-

Term Memory (LSTM) neural networks. Its effectiveness 

is validated through experiments on several representative 

control datasets, with comprehensive evaluations focusing 

on prediction accuracy, latency, and resource efficiency. 

2 Related work 
Numerous scholars have explored delay-related 

challenges in DCSs from various perspectives. Dai et al. 

identified that communication delays in DCSs primarily 

stem from network transmission and task scheduling, 

noting that the unpredictability of these delays 

significantly undermines the timeliness and precision of 

control tasks [9]. Caballero-Águila and Linares-Pérez 

examined the impact of delay on the consistency of 

industrial automation control systems. They proposed a 

delay-tolerant task scheduling algorithm, which notably 

enhanced system robustness within specific operational 

limits [10]. FPGA has gained popularity in control 

systems due to their low latency and versatile capabilities. 

Tiong et al. highlighted the advantages of FPGA's parallel 

processing and reconfigurability, demonstrating their 

effectiveness in meeting the stringent real-time 

requirements of embedded control applications [11]. 

Similarly, Sridevi and Saifulla implemented a real-time 

signal processing architecture using FPGA technology. 

Their approach significantly improved the operational 

efficiency of industrial control systems by enabling 

immediate data stream processing [12]. Neural networks 

have shown strong performance in time-series prediction 

and are considered promising tools for addressing delay 

issues in DCSs. Herrera et al. demonstrated that LSTM 

neural networks effectively captured temporal 

dependencies in delay data, leading to substantial 

improvements in prediction accuracy [13]. Likewise, 

Olabi et al. proposed a latency prediction model based on 

convolutional neural networks (CNNs), which achieved 

real-time performance by extracting multi-dimensional 

features from the delay sequences [14]. 

Although many researchers have explored delay 

prediction in control systems, most existing methods 

suffer from limited accuracy, poor real-time performance, 

or challenges in deployment on embedded systems. Some 

studies have employed traditional statistical models or 

machine learning approaches and have achieved certain 

results on small-scale datasets. However, these methods 

often exhibit poor robustness and weak generalization 

when applied to large-scale, non-stationary, and noise-

prone DCSs. In recent years, deep neural networks—

particularly recurrent neural networks—have emerged as 

mainstream tools for time-series prediction and have been 

adopted in some edge computing tasks. Nonetheless, their 

deployment efficiency and real-time inference capabilities 

remain constrained by hardware limitations. A 

comparative overview of existing delay prediction models 

is presented in Table 1: 

 

Table 1: Comparison of existing delay prediction models 
Model Name Core Method Dataset Used Performance 

Metrics 

Key Limitations 

AutoRegressive Integrated 

Moving Average (ARIMA) 

Linear time-series model with 

autoregressive and moving average 

components 

Power load monitoring 

data 

MAE, MSE Suitable only for 

stationary time 

series; struggles 
with nonlinear or 

abrupt delay 

patterns 

Support Vector Machine 

(SVM) 

Support vector regression; suitable 

for small-sample prediction 

Industrial control 

network delay data 

RMSE, R² Strong dependence 

on feature selection; 

complex 
hyperparameter 

tuning; limited 

generalization 

Random Forest for Latency 

Prediction (RF-LP) 

Ensemble regression using 

multiple decision trees 

Industrial control task 

scheduling logs 

MAE, MAPE High training 

overhead; sensitive 

to noise and outliers 

Deep Autoregressive Model 

(DeepAR) 

Probabilistic model based on 
LSTM 

E-commerce server 
request data 

ND, NRMSE Complex structure; 
long inference time; 
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high deployment 
barrier 

Temporal Convolutional 

Network (TCN) 

One-dimensional causal 

convolutional neural network for 

modeling long-term dependencies 

Communication network 

link delay sequences 

MAE, Latency Error High accuracy but 

rigid architecture; 

not suitable for 
embedded 

deployment 

Current mainstream methods generally fall into three 

categories: 

(1) Statistical approaches, such as ARIMA, which are 

effective for linear and stationary data but fail to capture 

complex patterns; 

(2) Traditional machine learning methods, such as 

SVM and RF, which are sensitive to input features and 

lack real-time capabilities; 

(3) Deep learning models, including LSTM and TCN, 

which offer high prediction accuracy but pose significant 

challenges in deployment and demand substantial 

hardware resources. 

Furthermore, most studies rely on static logs or 

simulated datasets for evaluation, lacking support from 

industrial-grade, dynamically changing data sources. This 

limits the objectivity and generalizability of model 

assessments. More critically, there remains a gap in the 

literature regarding a comprehensive delay prediction 

system that integrates neural network models with 

hardware platforms—one that balances accuracy, real-

time performance, and resource efficiency. To address this 

gap, this study proposes an LSTM-based prediction model 

deployed on an FPGA platform. The goal is to provide 

high-accuracy, low-latency, and embedded-compatible 

delay prediction capabilities for DCSs. 

3 Related theory and model design  

3.1 Latency prediction 

Latency refers to the time it takes for a message or data 

packet to travel from one end of a network to the other. It 

typically includes four components: propagation latency, 

processing latency, transmission (sending) latency, and 

queuing latency [15]. The overall latency can be expressed 

as the sum of these four elements. In most practical 

scenarios, propagation latency and transmission latency 

are the primary contributors. For longer messages, 

transmission latency becomes the dominant factor, while 

propagation latency plays a greater role for shorter 

messages. More precisely, latency is defined as the time 

interval between the arrival of the first bit of a packet at a 

router and the departure of the last bit from that router [16–

18]. During testing, latency is commonly measured as the 

time interval from when a test instrument sends a data 

packet to when the packet is received. It is closely related 

to the packet length and is typically evaluated within the 

throughput range of the router port. Testing beyond this 

range is considered uninformative and not reflective of 

actual performance conditions [19]. Time-series 

prediction is a critical technique for latency forecasting. 

Its theoretical foundation includes feature analysis of 

historical data, the design of prediction models, and the 

selection of appropriate evaluation metrics. Latency data 

often exhibit complex temporal patterns, such as trends, 

seasonality, and random fluctuations. By analyzing these 

patterns, it is possible to uncover the underlying structure 

of delay variations [20–22]. Various models are available 

for time-series forecasting, including both traditional 

statistical methods and modern machine learning 

approaches. Among these, neural networks have emerged 

as the preferred choice for latency prediction due to their 

ability to model nonlinear temporal dependencies 

effectively. Common evaluation metrics for latency 

prediction models include Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and prediction accuracy, all 

of which help quantify model performance in terms of 

accuracy and robustness [23]. 

The theoretical framework for latency prediction 

plays a pivotal role in optimizing the performance of 

DCSs. In this study, a neural network-based latency 

prediction model is proposed to meet the practical 

demands of distributed systems. The model leverages 

hardware acceleration to improve both the real-time 

performance and the predictive accuracy of latency 

estimation. 

3.2 Design of the DCS  

The design theory of DCS) encompasses several key areas, 

including system architecture, communication 

mechanisms, and task scheduling strategies [24–26]. To 

meet the stringent demands of complex control 

environments—such as real-time responsiveness, 

reliability, and adaptability—multi-level theoretical 

models and technical frameworks are integrated to 

construct a highly coordinated and efficient system 

structure. Among these components, the communication 

mechanism plays a central role in enabling collaborative 

operations among distributed nodes [27]. Its theoretical 

foundation primarily involves real-time communication 

protocols, network scheduling and priority management, 

and distributed consistency models. Real-time control 

applications impose strict latency requirements on 

communication mechanisms. To address this, protocols 

such as Controller Area Network (CAN), Ethernet for 

Control Automation Technology (EtherCAT), and 

Industrial Ethernet are commonly employed, offering high 

reliability and low-latency data transmission. Network 

scheduling and priority management theories focus on 

assigning appropriate priorities to tasks and efficiently 

allocating data transmission resources. This ensures that 

time-critical tasks are executed promptly, maintaining 

system performance under varying workloads. Distributed 

consistency theory emphasizes the importance of 

maintaining data consistency across nodes. In scenarios 

where multiple nodes share task states and data, ensuring 



108 Informatica 49 (2025) 105-120                                                                                                                             L. Zhang et al. 

 

consistency is critical to preventing execution failures and 

systemic errors. 

3.3 Neural networks and FPGAs 

integration architecture  

To achieve high-precision, low-latency prediction of task 

response delays in DCSs, this study proposes a prediction 

model based on a LSTM neural network architecture 

accelerated by an FPGA platform. A comprehensive co-

optimization of both software and hardware components 

has been carried out. The model not only focuses on 

accurately predicting latency but also emphasizes its 

feedback effect on task scheduling and overall system 

stability, thereby facilitating holistic DCS performance 

optimization. 

During DCS operation, system response latency can 

be broken down into the following components: 

(1) Sending latency – the time from when a task is 

dispatched by the scheduler to when it reaches the network 

module; 

(2) Propagation latency – the time required for a data 

packet to travel through the communication channel, 

influenced by bandwidth and network topology; 

(3) Queuing latency – the waiting time a task 

experiences in the scheduling buffer before processing; 

(4) Processing latency – the time a node takes to 

compute and complete the assigned task. 

These delays directly impact task completion times, 

which in turn affect scheduling order, priority allocation, 

and the overall stability of the system. In this work, total 

response latency is modeled as a unified prediction target, 

with its constituent components implicitly embedded 

within the input features. The neural network is designed 

to automatically learn the underlying relationships among 

these factors. The goal of the model is to predict the total 

latency of a task, which is defined as the time from its 

reception to completion. This prediction is based on 

historical task data and system states collected within a 

sliding time window. The results can support decisions on 

task prioritization and resource allocation. 

To simulate the dynamics of task loads and delay 

variations in a DCS, this study employs the publicly 

available Electricity Transformer Temperature (ETT) -

small dataset. Features such as timestamps, voltage, 

current, and load power serve as proxies for the state 

variations in a real-world task scheduling system. The 

response delay is defined as the difference between the 

task’s reception time and its feedback time, and this value 

serves as the prediction target. Input features include a 10-

dimensional sequence of historical task response times, 

task type and priority (encoded via one-hot encoding), and 

current system metrics such as GPU utilization, queue 

length, and network congestion level. Samples are 

constructed using a sliding window approach, where each 

sample input consists of 10 time steps of sequential 

information used to predict the latency at the next time 

step. To enhance training stability and improve model 

generalization, all feature values are normalized to the [0,1] 

range using Min-Max Scaling. Additionally, outliers are 

removed using the Interquartile Range (IQR) method to 

reduce noise and improve robustness. 

The neural network developed in this study adopts a 

single-layer LSTM architecture to model the dynamic 

behavior of sequential tasks. The input layer has 16 

dimensions, comprising 10 dimensions of historical delay 

data and 6 dimensions representing system state. The 

LSTM hidden layer consists of 128 units, and the output 

layer includes a single neuron with a linear activation 

function to produce continuous prediction values. 

Internally, the LSTM uses Sigmoid and Tanh activation 

functions to regulate the behavior of the forget gate, input 

gate, and output gate. The model is trained using the MSE 

as the loss function and the Adam optimizer with a 

learning rate of 0.001. Training is performed in mini-

batches of size 64 for up to 100 epochs. An EarlyStopping 

strategy is applied to halt training if validation 

performance fails to improve over consecutive epochs. 

The model outputs the predicted delay for the next time 

step, which can be used to support task scheduling, task 

ordering, and node priority adjustment in distributed 

control environments. To ensure efficient deployment and 

real-time performance in practical DCS scenarios, the 

trained LSTM model is deployed on the Xilinx Alveo 

U250 FPGA acceleration platform. Logic synthesis, 

placement and routing, and bitstream generation are 

conducted using the Vivado platform. The model structure 

is translated into multiple hardware modules capable of 

parallel execution. The matrix multiplications within the 

LSTM are accelerated using the FPGA’s internal Digital 

Signal Processing (DSP) blocks, while the nonlinear 

activation functions are implemented using lookup tables 

to minimize resource consumption. Intermediate state 

variables are stored in Block RAM (BRAM) to support 

time-step state propagation. Neural network weights are 

quantized into 8-bit fixed-point representation using the 

following quantization equation: 

Ŵ = round(W ⋅ 2𝑞)/2𝑞                             (1) 

W refers to the weight matrix of the neural networks; 

Ŵ represents the quantized weight matrix; 𝑞 is the number 

of quantization bits, and then the model mainly performs 

matrix multiplication. This quantization strategy 

effectively reduces the bit width and latency of 

multiplication operations, thereby improving inference 

efficiency. Furthermore, the data input/output interface 

and control modules are connected to the main control 

module via a shared bus, enabling real-time interaction 

between the input prediction stream and the feedback 

results. 

The optimized model architecture in this study is 

presented in Figure 1: 
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Figure 1: Architecture of the optimized model 

 

The "Neural Engine" is the core computational unit of 

the system. Its internal structure includes the LSTM gating 

unit computation module, quantization and dequantization 

modules, state register module, and activation function 

look-up table (LUT) module. The LSTM Core Unit 

performs time-step calculations in a pipeline, with the 

gating units operating in parallel. The Quantization 

Module compresses the input signals and weights. The 

State Register caches the target for the current step, 

enabling state transitions across time steps. The activation 

function is quickly implemented by the LUT module to 

perform nonlinear mapping. The entire module is 

connected to the external bus, supporting high-speed data 

exchange with the controller and scheduler. The module 

structure is highly configurable, supporting parameter 

reuse and adjustable precision settings, making it 

adaptable to various deployment scenarios. 

To further enhance the model’s adaptability and the 

system’s intelligence, an online update mechanism is 

introduced after the model is deployed. When the real 

response latency from the control system deviates 

significantly from the model's prediction, the system will 

locally fine-tune the model parameters via 

backpropagation, using the Adam optimization algorithm 

for incremental updates. The update strategy is described 

by Equations (2) to (4). 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝛻𝐿(𝑊)                       (2) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(𝛻𝐿(𝑊))2                      (3) 

W = W− 𝛼
𝑚𝑡

√𝑣𝑡+𝜖
                             (4) 

The exponential decay average of momentum and 

gradient squared is denoted as 𝑚𝑡  and 𝑣𝑡 ; 𝛻𝐿(𝑊) 

indicates the gradient for weights; α refers to the learning 

rate; 𝛽1  and 𝛽2  are exponential decay coefficients; 𝜖 

represents a random number, to prevent the denominator 

from becoming 0. It can be observed that the integrated 

design of FPGA and neural networks has established a 

solid mathematical foundation at both the theoretical and 

implementation levels, ensuring the real-time, efficient, 

and accurate performance of the system. The pseudo code 

of the optimized model is as follows: 

# Pseudocode: LSTM-Based Latency Prediction with 

FPGA Deployment 

Initialize: 

    Load quantized LSTM weights W_q from on-chip 

memory 

    Initialize hidden state h_0 and cell state c_0 to 

zeros 

    Set time window size w = 10 

    Define learning rate α, momentum decay β1, β2, ε 

# Inference Loop (on FPGA) 

Function LSTM_Predict(x_seq): 

    h, c ← h_0, c_0 

    for t in 1 to w: 

        # Gate calculations (in parallel on FPGA) 

        f_t ← sigmoid(W_f * x_t + U_f * h + b_f) 

        i_t ← sigmoid(W_i * x_t + U_i * h + b_i) 

        o_t ← sigmoid(W_o * x_t + U_o * h + b_o) 

        g_t ← tanh(W_c * x_t + U_c * h + b_c) 

        # Cell and hidden state update 

        c ← f_t ∘ c + i_t ∘ g_t 

        h ← o_t ∘ tanh(c) 

        # Final prediction 

    y_pred ← W_out * h + b_out 
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    return y_pred 

# On-chip Online Update (optional) 

Function Online_Update(y_true, y_pred): 

    loss ← (y_true - y_pred)^2 

    # Compute gradients (simplified) 

    grad_W ← ∂loss/∂W using backpropagation 

    m_t ← β1 * m_{t-1} + (1 - β1) * grad_W 

    v_t ← β2 * v_{t-1} + (1 - β2) * (grad_W)^2 

    # Update weights 

    W_q ← W_q - α * m_t / (sqrt(v_t) + ε) 

    Store updated W_q to on-chip memory 

# Main control loop 

While system is running: 

    Collect current input sequence x_seq from sensors 

and system state 

    y_pred ← LSTM_Predict(x_seq) 

    Send y_pred to scheduling module 

    Receive feedback y_true 

    If |y_true - y_pred| > δ: 

        Online_Update(y_true, y_pred) 

4 Experimental design 
To validate the applicability and performance of the 

proposed neural network and FPGA-accelerated delay 

prediction model in DCSs, this study uses the ETT dataset 

as the experimental data source. This dataset was collected 

by the power monitoring systems of two regions in a 

Chinese province. It records the oil temperature, load 

conditions, and external disturbance features of power 

transformers during actual operation, spanning two years 

with good continuity and high-frequency characteristics. 

It is a typical industrial-grade time series dataset. 

The original features of the ETT dataset include: date, 

timestamp, load power, oil temperature, ambient 

temperature, target forecast values, and six external load 

influence factors (such as power flow direction, voltage 

level, etc.). These variables are highly correlated with task 

scheduling delays, response time fluctuations, and 

environmental disturbance intensity in DCSs, and thus 

serve as a good proxy for the operational state of a real 

DCS. Therefore, the ETT dataset structurally aligns with 

and maps to the delay prediction task of a DCS, making it 

suitable for training neural network prediction models. 

The ETT dataset is available for download from the 

official website 

(https://github.com/zhouhaoyi/ETDataset/blob/main/RE

ADME_CN.md). Additionally, the dataset is clearly 

divided into multiple scenarios and supports sequence 

modeling at different time granularities (minute-level, 

hour-level), facilitating comparative research on 

algorithms with varying complexities and precision 

requirements. For this study, three subsets at the minute-

level were selected, as described below: 

(1) ETT-small-m1: Region 1, record per minute. 

(2) ETT-small-m2: Region 2, record per minute. 

(3) ETT-small-m3: Region 3, record per minute. 

The dataset contains approximately 70,080 records 

per minute (2 years x 365 days x 24 hours x 60 minutes). 

The study also set the experimental environment, as 

exhibited in Table 2: 

Table 2: Experimental environment 
Configuration type 

Computing device Dell PowerEdge R740 

Central Processing 

Unit (CPU) 

Intel Xeon Gold 6230, 2.1GHz, 20 

cores 

Graphics Processing 

Unit (GPU) 

NVIDIA Tesla V100, 16GB 

memory 

Memory 128GB DDR4 

Storage device Samsung PM981a NVMe SSD 

Prediction Target Task Response Latency (0.01 ms) 

Neural Network 

Output 

Predicted Total Response Latency of 

the Next Task Scheduling Cycle 

Prediction Target 

Deployment Use 

Used for Dynamic Task Scheduler 
Sorting and Control Strategy 

Optimization, Achieving Real-time 

Performance Improvement of the 
DCS System 

FPGA development 

board 

Xilinx Alveo U250 

 

The optimized model parameters in this study were 

determined by considering several factors. These include 

the dynamic characteristics of task response latency in 

DCSs, resource limitations in the deployment 

environment, and the real-time requirements of the 

prediction target. Firstly, regarding the input features, the 

model uses 6 dimensions, covering key control variables 

such as historical task latency, task type encoding, CPU 

utilization, cache queue length, network link load rate, and 

scheduling priority. These features provide a 

comprehensive reflection of the factors influencing 

response latency during task scheduling and resource 

allocation in control systems. In terms of network 

structure, the model adopts a two-layer LSTM architecture, 

with 128 hidden units per layer. This design is based on 

the characteristics of task latency in DCSs, which exhibit 

medium- to short-term temporal dependencies. The two-

layer structure effectively models the system’s dynamics, 

while the 128-dimensional state representation achieves a 

good balance between prediction accuracy and FPGA 

deployment resource efficiency. The output layer has 1 

dimension, using a linear activation function. The output 

value represents the predicted response latency for the 

next time step (in milliseconds), making it suitable for 

direct use by the controller in task prioritization and 

scheduling strategy decisions. During training, the Adam 

optimizer is used with an initial learning rate of 0.001, a 

first-order momentum decay coefficient of 0.9, and a 

second-order momentum decay coefficient of 0.999. This 

setting has shown good convergence in various non-

stationary time series modeling tasks, making it especially 

suitable for short-term fluctuations and local trend 

changes in industrial control data. Additionally, gradient 

clipping with a threshold set to 5 is applied during training 

to suppress gradient explosion caused by anomalous data, 

improving the overall stability and robustness of the 

training process. The batch size is set to 64, balancing 

training efficiency and model generalization, while also 

considering the cache scheduling efficiency and 

throughput requirements when running on the FPGA 

platform. In the comparative experiments, to ensure 

fairness and comparability in model evaluation, the 

implementation environment and parameter settings for 

all comparison models were standardized. Except for the 

https://github.com/zhouhaoyi/ETDataset/blob/main/README_CN.md
https://github.com/zhouhaoyi/ETDataset/blob/main/README_CN.md
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proposed optimized model deployed on the FPGA 

platform, the other models ran on the same hardware and 

software platform, using the same data processing flow, 

and the same training and validation dataset splitting 

strategy. 

The Distributed Model Predictive Control (DMPC) 

model was executed on an Ubuntu 20.04 system 

environment. The control algorithm was implemented 

using Python and primarily used to simulate the predictive 

scheduling process of distributed tasks across multiple 

nodes. The control horizon was set to 50 time units, with 

a control step size of 10 steps, and a receding horizon 

optimization strategy was employed. The model used 

historical system states, task loads, and resource 

utilization (RU) as inputs and performed rolling prediction 

and latency estimation based on a quadratic programming 

solver. In the experiments, the DMPC model was 

deployed on a workstation equipped with an Intel Core i7-

11700 processor and 16GB of RAM. The Multi-Agent 

System-Based Distributed Control Model (MAS-DCM) 

was jointly developed using Python and Java Agent 

Development Environment (JADE), simulating 

information exchange and local prediction behaviors 

among multiple agents. Each agent maintained an 

independent task estimator, utilizing local observations for 

latency prediction and scheduling feedback. The model 

was implemented within the Robot Operating System 

(ROS) framework, supporting task state broadcasting and 

multi-node coordination. Communication between agents 

followed a publish/subscribe mechanism, with each 

scheduling synchronization cycle set to 500 ms. The 

model was deployed on an NVIDIA Jetson Xavier NX 

platform (ARM Cortex-A57 CPU + 8GB RAM), 

simulating a low-power edge deployment environment. 

The Field Programmable Gate Array-Based Deep Neural 

Network Acceleration Model (FPGA-DNNAM) followed 

recent best practices for edge deployment. It used a four-

layer multilayer perceptron (MLP) for latency prediction, 

with a network structure of [Input dimension 16 → 64 → 

32 → 1]. All hidden layers used Rectified Linear Unit 

(ReLU) activation functions, while the output layer 

employed a linear function. The model was trained using 

the PyTorch 1.13 framework over 100 epochs with the 

support of an NVIDIA RTX 3060 GPU. The Adam 

optimizer was used with an initial learning rate of 0.001 

and a batch size of 64. After training, the model was 

quantized and deployed using the Xilinx Vitis AI 

toolchain and was ultimately implemented on a Xilinx 

ZCU104 FPGA board to enable high-performance 

inference. To ensure fairness, all models mentioned above 

used the same ETT-small dataset, following a unified 

normalization process and sample construction pipeline. 

This study did not employ conventional statistical 

methods such as confidence interval estimation, 

hypothesis testing, or significance analysis during 

experimental design and performance evaluation. The 

core objective of the study was not to perform statistical 

inference on minor performance differences among 

models. Instead, the goal was to develop a deployable and 

scalable optimization framework for task latency 

prediction in DCSs. The study focuses more on the 

practical effectiveness of predictions, system adaptability, 

and deployment feasibility under real-world engineering 

conditions. A comprehensive evaluation of model 

performance was conducted using a multi-dimensional 

metric system from the perspective of actual operational 

scenarios. Unlike typical machine learning studies that 

focus on statistical significance, this study emphasizes 

real-world usability and consistent improvements in 

system performance. It prioritizes practical enhancements 

rather than probabilistic reasoning over numerical 

differences. Additionally, the study does not provide a 

systematic modeling or categorization of all failure modes 

in control systems. The latency prediction model itself 

does not directly address low-level device fault diagnosis 

or control logic protection. Failures in DCS environments 

are often the result of complex interactions between 

hardware conditions, communication errors, and 

environmental disturbances. As a result, scenario-agnostic 

analysis is less meaningful. This study focuses on the 

impact of latency prediction deviation on task scheduling 

efficiency and system stability. It indirectly reflects the 

model's robustness using indicators such as task failure 

rate and mean time between failures (MTBF). More 

comprehensive fault modeling and coordinated control 

mechanisms are proposed as future research directions. 

In summary, the omission of statistical significance 

testing and system-level fault modeling in this study is not 

a result of insufficient methodological rigor. Instead, it is 

a deliberate choice, driven by the study's scope, system-

level objectives, and application-focused approach. The 

goal is to ensure that the study remains centered on the 

development of a deployable, verifiable latency prediction 

model and its integration into practical control systems. 

5 Experimental comparison of 

latency prediction of the dcs based 

on FPGA and neural networks  

5.1 Performance evaluation of the latency 

prediction model 

To comprehensively evaluate the practical effectiveness 

of the proposed model in DCSs, this study categorizes 

performance evaluation metrics into four key dimensions: 

accuracy, robustness, timeliness, and resource efficiency. 

Within each dimension, two representative evaluation 

metrics are selected, resulting in a total of eight core 

indicators. This multi-faceted approach enables a 

systematic analysis of the model from various 

perspectives. In the accuracy dimension, the Mean 

Absolute Error (MAE) and MSE are adopted as primary 

evaluation metrics. MAE measures the average level of 

absolute error in the prediction process, offering intuitive 

interpretability. MSE, by squaring the prediction errors, 

emphasizes larger deviations and effectively reflects the 

model’s ability to control errors at outlier points. This 

dimension provides a direct assessment of the model's 

fitting accuracy with respect to task response latency and 

serves as the foundation for evaluating prediction quality. 

The robustness dimension includes the Root Mean 
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Squared Error (RMSE) and Mean Absolute Percentage 

Error (MAPE). RMSE, as the square root of MSE, 

maintains the same unit as the original data and is suitable 

for presenting the overall fluctuation intensity. MAPE 

considers the ratio of prediction error to the actual value, 

reflecting the model’s stability and adaptability across 

different data scales, particularly under varying load 

intensities in DCS scenarios. This dimension is designed 

to evaluate the model’s stable prediction capability under 

data perturbations and unexpected conditions. For the 

timeliness dimension, to verify whether the model is 

suitable for deployment in latency-sensitive control 

systems, two indicators are introduced: Mean Prediction 

Latency (MPL) and Maximum Prediction Latency (Max-

PL). MPL represents the average time required for a single 

prediction, while Max-PL indicates the longest inference 

delay that may occur under extreme computational 

pressure. These metrics are directly related to the model's 

real-time inference capability and serve as core criteria for 

determining its viability in online DCS applications. In the 

resource efficiency dimension, RU and Throughput Per 

Second (TPS) are used as the primary metrics. RU denotes 

the proportion of logical resources consumed by the model 

when deployed on FPGA or embedded systems, providing 

a critical reference for deployment feasibility under 

resource constraints. TPS reflects the number of 

prediction tasks the model can complete per unit of time, 

directly indicating its execution efficiency under high-

concurrency scheduling scenarios. This dimension 

comprehensively evaluates the deployment cost and 

runtime performance-to-cost ratio of the model. 

The comparison results of accuracy dimensions are 

presented in Figure 2: 
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Figure 2: Accuracy dimension experimental result ((a): MAE; (b): MSE) 

 

Figure 2 shows that the proposed optimized model 

achieves a MAE score of 0.108 on the ETT-small-m2 

dataset. This significantly outperforms other models, such 

as DMPC's 0.480 and FPGA-DNNAM's 0.446. However, 

on the ETT-small-m1 and ETT-small-m3 datasets, the 

proposed model's MAE is 0.383 and 0.488, respectively. 

These values are higher than FPGA-DNNAM's 0.123 and 

0.340, indicating slightly inferior performance. In terms of 

MSE, the proposed optimized model performs well across 

all datasets. It achieves scores of 0.043 (ETT-small-m1), 

0.080 (ETT-small-m2), and 0.098 (ETT-small-m3). These 

are significantly lower than DMPC (e.g., 0.210 on ETT-

small-m1) and MAS-DCM (e.g., 0.136 on ETT-small-m3). 

The proposed model has a notable advantage in the MSE 

metric, indicating better control over overall prediction 

errors. While its MAE performance is slightly lower than 

FPGA-DNNAM on some datasets, its overall performance 

remains stable and accurate. The comparison results for 

robustness are shown in Figure 3. 
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Figure 3: Robustness dimension experimental result ((a): RMSE; (b): MAPE) 

 

The proposed model has RMSEs of 0.577 (ETT-

small-m1), 0.585 (ETT-small-m2), and 0.514 (ETT-small-

m3). These are higher than FPGA-DNNAM's 0.179 on 

ETT-small-m3 and MAS-DCM's 0.381 on ETT-small-m1. 

However, the overall difference with other models is not 

significant. On the ETT-small-m1 dataset, the proposed 

model's MAPE is 23.250, slightly higher than FPGA-

DNNAM's 10.688 and MAS-DCM's 18.803. On the ETT-

small-m2 and ETT-small-m3 datasets, the proposed model 

achieves MAPEs of 16.234 and 20.401, respectively, 

outperforming DMPC's 23.685. Overall, the proposed 

optimized model shows good robustness in both RMSE 

and MAPE. Despite a slightly higher RMSE due to 

outliers, it demonstrates reasonable control of MAPE. 

This indicates the model’s adaptability to complex real-

world scenarios. The results for the timeliness dimension 

are presented in Figure 4. 
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Figure 4: Timeliness Dimension experimental result ((a): MPL; (b): Max-PL) 

 

Figure 4 shows that the proposed optimized model 

achieves the lowest MPL across all datasets. Specifically, 

it records scores of 0.079 for ETT-small-m1, 0.057 for 

ETT-small-m2, and 0.099 for ETT-small-m3. In 

comparison, the MPL values of DMPC and MAS-DCM 

both exceed 0.130. Although FPGA-DNNAM achieves a 

slightly lower latency of 0.063 on the ETT-small-m3 

dataset, it remains close to the proposed model. For Max-

PL, the proposed model again outperforms the baselines, 

achieving 0.495 (ETT-small-m1), 0.409 (ETT-small-m2), 

and 0.179 (ETT-small-m3). These values are consistently 

lower than DMPC’s 0.431 on ETT-small-m3 and MAS-

DCM’s 0.212 on ETT-small-m2. Overall, the proposed 

model demonstrates excellent timeliness. It effectively 

controls both average and peak latency, making it highly 

suitable for DCSs applications where real-time 
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performance is critical. The results of resource efficiency 

analysis are presented in Figure 5: 
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Figure 5: Resource Efficiency Dimension experimental result ((a): Resource Utilization; (b): Throughput) 

 

Figure 5 shows the RU rates for the proposed 

optimized model across three datasets: 64.932% for ETT-

small-m1, 53.236% for ETT-small-m2, and 42.542% for 

ETT-small-m3. While these rates are slightly higher than 

FPGA-DNNAM’s 44.635% on the ETT-small-m2 dataset, 

they remain lower than MAS-DCM’s 69.160% on ETT-

small-m1, indicating a balanced performance in terms of 

resource usage. The model also excels in processing speed, 

with the number of samples processed per second reaching 

1061.277 (ETT-small-m1), 1270.967 (ETT-small-m2), 

and 993.796 (ETT-small-m3). These figures significantly 

surpass DMPC’s 810.982 (ETT-small-m1) and FPGA-

DNNAM’s 1260.785 (ETT-small-m3), demonstrating the 

model’s efficiency in handling high throughput. Overall, 

the proposed optimized model performs exceptionally 

well in terms of resource efficiency. It achieves a high 

processing speed while maintaining effective control over 

hardware resource consumption, making it suitable for 

deployment in environments with limited resources but a 

need for efficient processing. 

In terms of key performance dimensions—accuracy, 

timeliness, and resource efficiency—the model stands out, 

particularly with notable advantages in metrics such as 

MSE, MPL, and throughput. While its robustness is 

slightly lower compared to some other models, it still 

maintains good stability. This suggests that the proposed 

model is well-suited for general distributed control tasks, 

particularly in complex environments that demand high 

real-time performance and efficiency. 

5.2 Testing of system operation 

effectiveness 

In the system performance dimension, this study selects 

four key indicators: Task Completion Rate (TCR), 

Average Response Time (ART), Task Failure Rate (TFR), 

and System Throughput (ST). TCR reflects the proportion 

of tasks successfully completed within a given period and 

serves as a fundamental metric for evaluating the stability 

and controllability of the scheduling system. ART 

measures the average time from task reception to 

completion, indicating the system’s real-time 

responsiveness. TFR assesses the proportion of tasks that 

fail to complete due to scheduling errors, system 

congestion, or control delays, offering valuable insights 

for optimizing scheduling strategies. ST quantifies the 

number of tasks processed by the system per unit of time, 

representing the system’s efficiency under high 

concurrency. This dimension focuses on the quality of the 

system’s load-handling response during real-world 

operation and serves as a core metric for assessing 

improvements in control system efficiency post-

deployment. In the system reliability dimension, to 

evaluate the impact of model deployment on long-term 

operational stability, four additional indicators are 

introduced: MTBF, Mean Time to Repair (MTTR), Error 

Rate (ER), and System Availability (SA). MTBF indicates 

the average duration the system can operate normally 

between two consecutive failures—a higher value 

suggests greater system stability. MTTR measures the 

average time required for the system to return to normal 

operation following a failure, reflecting the 

responsiveness of fault recovery mechanisms. ER captures 

the proportion of errors arising during operation due to 

issues such as data transmission failures or module 

malfunctions, serving as a key metric for system 

robustness. SA evaluates the percentage of total 

operational time during which the system remains 

available, offering a comprehensive measure of system 

stability and sustained service capability. This dimension 

emphasizes the system’s resilience to anomalies, 

unexpected failures, and uncertain disturbances during 

extended operation. 
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The comparison results of system performance 

dimensions are revealed in Figure 6: 
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Figure 6: System Performance Dimension experimental result ((a): Task Completion Rate; (b): Average Response 

Time; (c): Task Failure Rate; (d): System Throughput) 

 

Figure 6 presents the performance of the proposed 

optimized model in terms of task completion rate, average 

response time, task failure rate, and system throughput. On 

the ETT-small-m3 dataset, the model achieves a task 

completion rate of 99.699%, significantly higher than 

DMPC (97.320%) and MAS-DCM (91.560%). However, 

on the ETT-small-m2 dataset, its task completion rate 

drops to 90.206%, which is lower than FPGA-DNNAM’s 

98.662%. In terms of average response time, the proposed 

model performs well across all datasets. It records 

response times of 0.156 (ETT-small-m1), 0.217 (ETT-

small-m2), and 0.247 (ETT-small-m3). Although slightly 

slower than DMPC's 0.185 on ETT-small-m2, it still 

outperforms MAS-DCM and FPGA-DNNAM overall. 

Regarding task failure rate, the model records 9.489% on 

the ETT-small-m1 dataset. While this is higher than 

DMPC (4.561%) and FPGA-DNNAM (6.075%), the 

failure rate improves on ETT-small-m3, decreasing to 

8.084%. Despite this progress, further optimization is 

needed in this area. For system throughput, the proposed 

model delivers strong results. It achieves 1595.027 tasks 

per second on the ETT-small-m1 dataset, far exceeding 

DMPC’s 1165.537. On the ETT-small-m3 dataset, 

throughput reaches 1424.082 tasks per second, slightly 

surpassing MAS-DCM’s 1394.212. In summary, the 

proposed optimized model excels in task completion rate 

and system throughput, showing strong suitability for 

high-efficiency applications. Its average response time 

also reflects good real-time performance. However, 

improvements in reducing the task failure rate remain an 

area for future work. The comparison results for system 

reliability are illustrated in Figure 7: 
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Figure 7: System Reliability Dimension experimental result ((a): Mean Time between Failures; (b): Mean Time to 

Repair; (c): Error Rate; (d): System Availability) 

 

Figure 7 illustrates the reliability metrics of the 

proposed optimized model across different datasets. On 

the ETT-small-m1 dataset, the model achieves a MTBF of 

178.393 hours—substantially lower than MAS-DCM’s 

410.053 hours and DMPC’s 318.684 hours. On the ETT-

small-m3 dataset, the MTBF increases to 230.132 hours, 

though it still falls short of the comparative models. The 

model’s MTTR on the ETT-small-m1 dataset is 0.198 

hours, which is slightly higher than FPGA-DNNAM’s 

0.071 hours. However, on the ETT-small-m3 dataset, the 

MTTR improves to 0.080 hours, aligning closely with 

other models in this category. In terms of error rate, the 

proposed model demonstrates strong performance, 

achieving the lowest value on the ETT-small-m3 dataset 

at just 0.318%, significantly outperforming FPGA-

DNNAM (4.316%) and DMPC (3.534%). On the ETT-

small-m1 dataset, the model records an error rate of 

3.116%, comparable to MAS-DCM’s 3.645%. The 

proposed model also maintains high availability across all 

datasets, exceeding 97% in every case. Notably, it reaches 

98.855% on the ETT-small-m2 dataset, slightly below 

MAS-DCM’s 99.436%. Overall, the proposed model 

exhibits excellent performance in terms of error rate and 

availability, making it well-suited for high-reliability 

applications. However, there remains considerable room 

for improvement in MTBF and MTTR. Future work 

should aim to enhance the system’s fault tolerance and 

recovery efficiency to further bolster its robustness in real-

world deployments. 

5.3 Ablation study 

To evaluate the contribution of key components within the 

proposed delay prediction optimization model and to 

further analyze the effectiveness of its internal 

mechanisms, an ablation study was conducted. By 

progressively removing core modules, several simplified 

variants of the model were constructed and evaluated 

under the same dataset and assessment framework. This 

approach allowed for a quantitative comparison of each 

component’s impact on model accuracy, timeliness, and 

system control performance. Using the full model as the 

baseline, the following three ablated variants were 

implemented: 

1) w/o Quantization: Disables weight quantization, using 

32-bit floating-point parameters for computation. 

2) w/o Online Update: Disables the online fine-tuning 

mechanism, maintaining a static model. 
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3) w/o System Features: Uses only historical delay 

sequences as input, removing all system context 

features. 

The experimental results are summarized in Table 3: 

 

Table 3: Ablation study results 
Model 

Variant 

MAE  MSE  Avg. 

Prediction 

Latency 

Task 

Completion 

Rate (%) 

Full Model 0.233 0.105 0.156 98.64 

w/o 

Quantization 

0.251 0.120 0.171 97.15 

w/o Online 

Update 

0.263 0.132 0.162 96.38 

w/o System 

Features 

0.285 0.149 0.165 94.72 

 

As shown in Table 3, the full model performs best 

across all four evaluation metrics. Removing the 

quantization mechanism results in a slight decrease in 

accuracy but leads to a noticeable increase in inference 

time, highlighting the efficiency benefits of quantization 

for edge computing deployment. Disabling the online 

update mechanism leads to reduced model adaptability. 

The Task Completion Rate (TCR) drops by more than two 

percentage points, from 98.64% to 96.38%. This 

highlights the importance of feedback-based error 

correction in dynamic environments. The most significant 

performance degradation occurs when system context 

features are removed. In this variant, MAE increases to 

0.285 and TCR falls to 94.72%, indicating that scheduling 

context is a key input for improving prediction accuracy 

and ensuring successful task execution. 

6 Discussion 
The FPGA-accelerated LSTM-based latency prediction 

model proposed in this study demonstrates strong 

performance across multiple dimensions, particularly 

excelling in prediction accuracy, task completion rate, and 

inference latency when compared to baseline models. 

However, a closer examination of the experimental results 

reveals several performance trade-offs and limitations that 

warrant further discussion and provide guidance for future 

optimization. 

From a structural perspective, although the model 

achieves high prediction accuracy and low inference 

latency across various datasets, it performs slightly less 

robustly than some deep ensemble-based models in terms 

of robustness metrics. This may be attributed to the 

LSTM’s limited adaptability to abnormal fluctuations and 

sudden load disturbances. Traditional control optimization 

models, which incorporate hard constraint mechanisms, 

tend to handle extreme variations more effectively. In 

contrast, while neural networks are well-suited for 

learning regular patterns, they may exhibit instability 

when handling boundary conditions or outlier predictions. 

Performance discrepancies across datasets also highlight 

the model’s limitations. For instance, the model performs 

consistently better on ETT-small-m1 than on ETT-small-

m3, likely due to the former’s stronger periodicity and 

more controlled noise characteristics, which are 

advantageous for temporal modeling. In contrast, ETT-

small-m3 may involve higher unpredictability in data 

sources, task switching frequency, or external 

disturbances, increasing the difficulty of model training. 

Future work could incorporate data augmentation 

techniques, attention mechanisms, or more sophisticated 

feature adaptation strategies to enhance the model’s 

generalization across varied data distributions. 

On the system implementation side, the FPGA 

acceleration scheme offers notable advantages over 

traditional software-based approaches. Customized data 

paths and parallel hardware structures significantly reduce 

inference latency, while resource control and low power 

consumption make the solution well-suited for 

deployment at industrial DCS edge nodes. Compared with 

processor-based solutions, the FPGA platform delivers 

superior task throughput and latency control within a 

given time frame, offering robust real-time guarantees—

particularly important in high-frequency scheduling 

scenarios. However, FPGA deployment also introduces 

challenges in programmability and debugging complexity. 

Future research should explore the integration of 

automated deployment workflows with interpretability 

analysis tools. Regarding the quantization strategy, while 

8-bit fixed-point quantization effectively reduces 

hardware resource consumption, its impact on model 

performance and RU still requires more systematic 

evaluation. Preliminary tests suggest that aggressive 

quantization may slightly degrade prediction accuracy, but 

it has a positive effect on throughput and on-chip resource 

availability. Balancing high-level compression with 

minimal loss in prediction precision remains a key 

direction for improving deployment efficiency in future 

work. 

Furthermore, the experiments reveal inherent trade-

offs between different performance dimensions. For 

instance, while the integration of an online update 

mechanism improves prediction accuracy and task 

completion rate, it also introduces additional 

computational overhead, which can negatively impact 

real-time performance. Conversely, disabling online 

learning accelerates inference but compromises the 

system's adaptability. Similarly, the task failure rate, a key 

indicator of system reliability, increases when the model 

lacks sufficient fault tolerance under high-load or complex 

scenarios. In real-world DCSs, such shortcomings may 

lead to scheduling delays or control disruptions, 

highlighting the importance of closely monitoring this 

metric. 

Overall, the proposed method outperforms existing 

state-of-the-art (SOTA) models across most evaluation 

dimensions, with particularly notable advantages in 

inference latency and system throughput. However, there 

remains room for improvement in terms of robustness to 

anomalous predictions, cross-scenario adaptability, and 

the system’s capacity for dynamic reconfiguration. Future 

work may explore the incorporation of attention 

mechanisms, heterogeneous input encoding strategies, and 

adaptive quantization techniques to better balance 

performance and deployability. 
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7 Conclusion 
This study is the first to deeply integrate FPGA hardware 

acceleration with neural network–based latency prediction, 

resulting in a highly efficient predictive model. By 

offloading neural network inference to FPGA hardware, 

the model significantly reduces computational overhead 

during the prediction process, thereby enhancing the real-

time performance of DCSs. This approach addresses the 

low efficiency typically seen in traditional neural network 

models when deployed on embedded platforms, offering a 

novel solution for real-time control tasks. The model’s 

performance was rigorously evaluated across multiple 

dimensions—accuracy, robustness, timeliness, and 

resource efficiency. Experimental results demonstrate that 

the proposed model consistently outperforms baseline 

approaches, particularly in system throughput, average 

prediction latency, and task completion rate. These 

findings confirm the model’s effectiveness and provide 

valuable performance benchmarks for future research. 

Despite these advances, certain limitations remain. The 

model performs well on the ETT-small dataset but has not 

been extensively validated in other scenarios, especially 

those involving unstructured or multimodal data. Future 

research could enhance the model’s flexibility by 

incorporating multimodal fusion techniques, enabling it to 

integrate latency predictions with data from videos, 

sensors, and images for broader applicability in real-world 

settings. Additionally, the model shows some sensitivity 

under extreme conditions such as high load or the presence 

of outliers, where minor instability in key metrics was 

observed. To address these challenges, future work could 

explore adaptive thresholding, dynamic task allocation, 

and fault-tolerant mechanisms. Such enhancements would 

further improve the system’s reliability and efficiency, 

especially in complex or unpredictable environments. 
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