
https://doi.org/10.31449/inf.v49i28.8472 Informatica 49 (2025) 105–120 105

Latency Prediction in Distributed Control Systems Using FPGA-

Accelerated Neural Networks

Lei Zhang1*, Xiaofei, Li1, Baozhong, Huang2, Hao, Wei2
1Fujian Fuqing Nuclear Power Co., LTD., Fujian, China
2Atomhorizon Electric (Jinan) Co., Ltd., Jinan, Shandong, China

E-mail: zhanglei20241219@163.com
*Corresponding author

Keywords: field programmable gate array, neural network, distributed control system, latency prediction, model

optimization

Received: April 28, 2025

To improve the real-time performance and stability of distributed control systems in complex and dynamic

environments, this study introduces a delay prediction and optimization model. The model is built on an

integrated architecture that combines Long Short-Term Memory (LSTM) neural networks with Field

Programmable Gate Array (FPGA). A sliding window input mechanism is used, where a recent sequence

of historical delay data serves as input to forecast short-term system response latency. To support efficient

hardware deployment, the LSTM model was quantized to 8-bit fixed-point precision. Additionally, the

FPGA implementation was optimized through the design of a parallel pipelined architecture and an on-

chip cache scheduling mechanism. These enhancements significantly improve inference speed and

resource utilization. Experiments were conducted using the Electric Transformer Temperature (ETT)

time-series dataset series. The proposed model was compared against several representative approaches.

Evaluation metrics included prediction accuracy, response latency, system throughput, resource

consumption, task success rate, and overall stability. On the ETT-small-m3 dataset, the optimized model

achieved a task completion rate of 99.699%, a system throughput of 1,424.082 tasks per second, and an

average response time of 0.247 seconds. These results surpassed those of the baseline models across most

performance indicators. To evaluate generalization, five-fold cross-validation was performed. Analysis of

variance (ANOVA) was also conducted to confirm the statistical significance of the results, with all p-

values below 0.05, ensuring the reliability of the experimental findings. Despite its strengths, the model

has limitations in certain reliability metrics. For example, the mean time between failures was slightly

lower than that of the Multi-Agent System-Based Distributed Control Model (MAS-DCM), suggesting

reduced stability under high-pressure or high-load conditions. Moreover, the model's adaptability to

scenarios involving multi-source heterogeneous data has not been comprehensively tested. In summary,

this study presents a deployable, efficient, and scalable architecture for intelligent delay prediction. The

proposed solution provides a practical approach to delay modeling and performance optimization in

smart control systems. It holds strong potential for real-world applications and lays a solid foundation

for future research and development in this area.

Povzetek: Opisan je FPGA-pospešen model z LSTM za napovedovanje zakasnitev v porazdeljenih

krmilnih sistemih, ki izboljša odzivnost, točnost napovedi in pretočnost pod industrijskimi pogoji.

1 Introduction
As industrial automation systems, power dispatch

networks, intelligent manufacturing lines, and smart

transportation infrastructure continue to evolve rapidly,

Distributed Control Systems (DCSs) have become

essential for enabling multi-point coordinated control.

These systems are now widely deployed in critical

industrial sectors, including chemical process

management, power grid operations, and rail transit

systems [1–3]. DCSs operate by distributing sub-control

units across various locations to handle data acquisition,

real-time computation, and control signal transmission.

This decentralized architecture enhances system

flexibility and scalability. However, it also introduces a

more complex control environment. One of the most

significant challenges lies in managing the uncertainty and

dynamic variability of communication delays and task

scheduling latency. These factors have become major

bottlenecks affecting system stability, response time, and

control accuracy [4]. In response, some advanced DCSs

have begun incorporating basic delay detection and

management strategies. Common approaches include

threshold-based response mechanisms and static delay

modeling. However, these methods typically rely on fixed

parameters or simple linear models, making them

insufficient for predicting nonlinear or sudden delay

fluctuations in complex network environments [5].

Improving the accuracy and timeliness of delay prediction

has therefore emerged as a key objective in the ongoing

effort to optimize DCS performance.

To address this challenge, this study proposes a

prediction acceleration framework designed for embedded

106 Informatica 49 (2025) 105-120 L. Zhang et al.

distributed control scenarios. The framework integrates

two complementary technologies: the nonlinear modeling

capabilities of neural networks for time-series prediction,

and the high-performance, low-latency characteristics of

Field Programmable Gate Array (FPGA). Neural

networks have already demonstrated superior

performance compared to traditional models and support

vector machines in various time-sensitive domains such as

financial forecasting and fault prediction [6–8]. Their

primary advantage lies in their ability to automatically

learn long-term dependencies and adapt to non-stationary

trends in sequential data. This makes them particularly

effective at handling diverse and heterogeneous delay

patterns. Meanwhile, FPGA offers a powerful solution for

accelerating neural network inference through parallel

pipelined hardware architectures. Unlike software-based

deployments, which often suffer from computational

bottlenecks, FPGA implementations enable real-time

processing and are especially well-suited for industrial

environments with stringent response time requirements.

By combining these two technologies, the proposed

framework not only enhances the real-time performance

of delay prediction but also supports lightweight and

efficient deployment on resource-constrained control

nodes. This integration forms a closed-loop optimization

system that spans from model design to runtime execution.

Accordingly, this study presents an FPGA-

accelerated delay prediction system based on Long Short-

Term Memory (LSTM) neural networks. Its effectiveness

is validated through experiments on several representative

control datasets, with comprehensive evaluations focusing

on prediction accuracy, latency, and resource efficiency.

2 Related work
Numerous scholars have explored delay-related

challenges in DCSs from various perspectives. Dai et al.

identified that communication delays in DCSs primarily

stem from network transmission and task scheduling,

noting that the unpredictability of these delays

significantly undermines the timeliness and precision of

control tasks [9]. Caballero-Águila and Linares-Pérez

examined the impact of delay on the consistency of

industrial automation control systems. They proposed a

delay-tolerant task scheduling algorithm, which notably

enhanced system robustness within specific operational

limits [10]. FPGA has gained popularity in control

systems due to their low latency and versatile capabilities.

Tiong et al. highlighted the advantages of FPGA's parallel

processing and reconfigurability, demonstrating their

effectiveness in meeting the stringent real-time

requirements of embedded control applications [11].

Similarly, Sridevi and Saifulla implemented a real-time

signal processing architecture using FPGA technology.

Their approach significantly improved the operational

efficiency of industrial control systems by enabling

immediate data stream processing [12]. Neural networks

have shown strong performance in time-series prediction

and are considered promising tools for addressing delay

issues in DCSs. Herrera et al. demonstrated that LSTM

neural networks effectively captured temporal

dependencies in delay data, leading to substantial

improvements in prediction accuracy [13]. Likewise,

Olabi et al. proposed a latency prediction model based on

convolutional neural networks (CNNs), which achieved

real-time performance by extracting multi-dimensional

features from the delay sequences [14].

Although many researchers have explored delay

prediction in control systems, most existing methods

suffer from limited accuracy, poor real-time performance,

or challenges in deployment on embedded systems. Some

studies have employed traditional statistical models or

machine learning approaches and have achieved certain

results on small-scale datasets. However, these methods

often exhibit poor robustness and weak generalization

when applied to large-scale, non-stationary, and noise-

prone DCSs. In recent years, deep neural networks—

particularly recurrent neural networks—have emerged as

mainstream tools for time-series prediction and have been

adopted in some edge computing tasks. Nonetheless, their

deployment efficiency and real-time inference capabilities

remain constrained by hardware limitations. A

comparative overview of existing delay prediction models

is presented in Table 1:

Table 1: Comparison of existing delay prediction models
Model Name Core Method Dataset Used Performance

Metrics

Key Limitations

AutoRegressive Integrated

Moving Average (ARIMA)

Linear time-series model with

autoregressive and moving average

components

Power load monitoring

data

MAE, MSE Suitable only for

stationary time

series; struggles
with nonlinear or

abrupt delay

patterns

Support Vector Machine

(SVM)

Support vector regression; suitable

for small-sample prediction

Industrial control

network delay data

RMSE, R² Strong dependence

on feature selection;

complex
hyperparameter

tuning; limited

generalization

Random Forest for Latency

Prediction (RF-LP)

Ensemble regression using

multiple decision trees

Industrial control task

scheduling logs

MAE, MAPE High training

overhead; sensitive

to noise and outliers

Deep Autoregressive Model

(DeepAR)

Probabilistic model based on
LSTM

E-commerce server
request data

ND, NRMSE Complex structure;
long inference time;

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 107

high deployment
barrier

Temporal Convolutional

Network (TCN)

One-dimensional causal

convolutional neural network for

modeling long-term dependencies

Communication network

link delay sequences

MAE, Latency Error High accuracy but

rigid architecture;

not suitable for
embedded

deployment

Current mainstream methods generally fall into three

categories:

(1) Statistical approaches, such as ARIMA, which are

effective for linear and stationary data but fail to capture

complex patterns;

(2) Traditional machine learning methods, such as

SVM and RF, which are sensitive to input features and

lack real-time capabilities;

(3) Deep learning models, including LSTM and TCN,

which offer high prediction accuracy but pose significant

challenges in deployment and demand substantial

hardware resources.

Furthermore, most studies rely on static logs or

simulated datasets for evaluation, lacking support from

industrial-grade, dynamically changing data sources. This

limits the objectivity and generalizability of model

assessments. More critically, there remains a gap in the

literature regarding a comprehensive delay prediction

system that integrates neural network models with

hardware platforms—one that balances accuracy, real-

time performance, and resource efficiency. To address this

gap, this study proposes an LSTM-based prediction model

deployed on an FPGA platform. The goal is to provide

high-accuracy, low-latency, and embedded-compatible

delay prediction capabilities for DCSs.

3 Related theory and model design

3.1 Latency prediction

Latency refers to the time it takes for a message or data

packet to travel from one end of a network to the other. It

typically includes four components: propagation latency,

processing latency, transmission (sending) latency, and

queuing latency [15]. The overall latency can be expressed

as the sum of these four elements. In most practical

scenarios, propagation latency and transmission latency

are the primary contributors. For longer messages,

transmission latency becomes the dominant factor, while

propagation latency plays a greater role for shorter

messages. More precisely, latency is defined as the time

interval between the arrival of the first bit of a packet at a

router and the departure of the last bit from that router [16–

18]. During testing, latency is commonly measured as the

time interval from when a test instrument sends a data

packet to when the packet is received. It is closely related

to the packet length and is typically evaluated within the

throughput range of the router port. Testing beyond this

range is considered uninformative and not reflective of

actual performance conditions [19]. Time-series

prediction is a critical technique for latency forecasting.

Its theoretical foundation includes feature analysis of

historical data, the design of prediction models, and the

selection of appropriate evaluation metrics. Latency data

often exhibit complex temporal patterns, such as trends,

seasonality, and random fluctuations. By analyzing these

patterns, it is possible to uncover the underlying structure

of delay variations [20–22]. Various models are available

for time-series forecasting, including both traditional

statistical methods and modern machine learning

approaches. Among these, neural networks have emerged

as the preferred choice for latency prediction due to their

ability to model nonlinear temporal dependencies

effectively. Common evaluation metrics for latency

prediction models include Mean Squared Error (MSE),

Mean Absolute Error (MAE), and prediction accuracy, all

of which help quantify model performance in terms of

accuracy and robustness [23].

The theoretical framework for latency prediction

plays a pivotal role in optimizing the performance of

DCSs. In this study, a neural network-based latency

prediction model is proposed to meet the practical

demands of distributed systems. The model leverages

hardware acceleration to improve both the real-time

performance and the predictive accuracy of latency

estimation.

3.2 Design of the DCS

The design theory of DCS) encompasses several key areas,

including system architecture, communication

mechanisms, and task scheduling strategies [24–26]. To

meet the stringent demands of complex control

environments—such as real-time responsiveness,

reliability, and adaptability—multi-level theoretical

models and technical frameworks are integrated to

construct a highly coordinated and efficient system

structure. Among these components, the communication

mechanism plays a central role in enabling collaborative

operations among distributed nodes [27]. Its theoretical

foundation primarily involves real-time communication

protocols, network scheduling and priority management,

and distributed consistency models. Real-time control

applications impose strict latency requirements on

communication mechanisms. To address this, protocols

such as Controller Area Network (CAN), Ethernet for

Control Automation Technology (EtherCAT), and

Industrial Ethernet are commonly employed, offering high

reliability and low-latency data transmission. Network

scheduling and priority management theories focus on

assigning appropriate priorities to tasks and efficiently

allocating data transmission resources. This ensures that

time-critical tasks are executed promptly, maintaining

system performance under varying workloads. Distributed

consistency theory emphasizes the importance of

maintaining data consistency across nodes. In scenarios

where multiple nodes share task states and data, ensuring

108 Informatica 49 (2025) 105-120 L. Zhang et al.

consistency is critical to preventing execution failures and

systemic errors.

3.3 Neural networks and FPGAs

integration architecture

To achieve high-precision, low-latency prediction of task

response delays in DCSs, this study proposes a prediction

model based on a LSTM neural network architecture

accelerated by an FPGA platform. A comprehensive co-

optimization of both software and hardware components

has been carried out. The model not only focuses on

accurately predicting latency but also emphasizes its

feedback effect on task scheduling and overall system

stability, thereby facilitating holistic DCS performance

optimization.

During DCS operation, system response latency can

be broken down into the following components:

(1) Sending latency – the time from when a task is

dispatched by the scheduler to when it reaches the network

module;

(2) Propagation latency – the time required for a data

packet to travel through the communication channel,

influenced by bandwidth and network topology;

(3) Queuing latency – the waiting time a task

experiences in the scheduling buffer before processing;

(4) Processing latency – the time a node takes to

compute and complete the assigned task.

These delays directly impact task completion times,

which in turn affect scheduling order, priority allocation,

and the overall stability of the system. In this work, total

response latency is modeled as a unified prediction target,

with its constituent components implicitly embedded

within the input features. The neural network is designed

to automatically learn the underlying relationships among

these factors. The goal of the model is to predict the total

latency of a task, which is defined as the time from its

reception to completion. This prediction is based on

historical task data and system states collected within a

sliding time window. The results can support decisions on

task prioritization and resource allocation.

To simulate the dynamics of task loads and delay

variations in a DCS, this study employs the publicly

available Electricity Transformer Temperature (ETT) -

small dataset. Features such as timestamps, voltage,

current, and load power serve as proxies for the state

variations in a real-world task scheduling system. The

response delay is defined as the difference between the

task’s reception time and its feedback time, and this value

serves as the prediction target. Input features include a 10-

dimensional sequence of historical task response times,

task type and priority (encoded via one-hot encoding), and

current system metrics such as GPU utilization, queue

length, and network congestion level. Samples are

constructed using a sliding window approach, where each

sample input consists of 10 time steps of sequential

information used to predict the latency at the next time

step. To enhance training stability and improve model

generalization, all feature values are normalized to the [0,1]

range using Min-Max Scaling. Additionally, outliers are

removed using the Interquartile Range (IQR) method to

reduce noise and improve robustness.

The neural network developed in this study adopts a

single-layer LSTM architecture to model the dynamic

behavior of sequential tasks. The input layer has 16

dimensions, comprising 10 dimensions of historical delay

data and 6 dimensions representing system state. The

LSTM hidden layer consists of 128 units, and the output

layer includes a single neuron with a linear activation

function to produce continuous prediction values.

Internally, the LSTM uses Sigmoid and Tanh activation

functions to regulate the behavior of the forget gate, input

gate, and output gate. The model is trained using the MSE

as the loss function and the Adam optimizer with a

learning rate of 0.001. Training is performed in mini-

batches of size 64 for up to 100 epochs. An EarlyStopping

strategy is applied to halt training if validation

performance fails to improve over consecutive epochs.

The model outputs the predicted delay for the next time

step, which can be used to support task scheduling, task

ordering, and node priority adjustment in distributed

control environments. To ensure efficient deployment and

real-time performance in practical DCS scenarios, the

trained LSTM model is deployed on the Xilinx Alveo

U250 FPGA acceleration platform. Logic synthesis,

placement and routing, and bitstream generation are

conducted using the Vivado platform. The model structure

is translated into multiple hardware modules capable of

parallel execution. The matrix multiplications within the

LSTM are accelerated using the FPGA’s internal Digital

Signal Processing (DSP) blocks, while the nonlinear

activation functions are implemented using lookup tables

to minimize resource consumption. Intermediate state

variables are stored in Block RAM (BRAM) to support

time-step state propagation. Neural network weights are

quantized into 8-bit fixed-point representation using the

following quantization equation:

Ŵ = round(W ⋅ 2𝑞)/2𝑞 (1)

W refers to the weight matrix of the neural networks;

Ŵ represents the quantized weight matrix; 𝑞 is the number

of quantization bits, and then the model mainly performs

matrix multiplication. This quantization strategy

effectively reduces the bit width and latency of

multiplication operations, thereby improving inference

efficiency. Furthermore, the data input/output interface

and control modules are connected to the main control

module via a shared bus, enabling real-time interaction

between the input prediction stream and the feedback

results.

The optimized model architecture in this study is

presented in Figure 1:

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 109

Normalization

processing

Feature extraction

Cache

management

Input data

interface

Neural Engine

Core module

Quantification and

Compression

Modular assembly

line design

Resource

allocation

Calculation

process

Result output

Feedback

mechanism

Delay

optimization

Figure 1: Architecture of the optimized model

The "Neural Engine" is the core computational unit of

the system. Its internal structure includes the LSTM gating

unit computation module, quantization and dequantization

modules, state register module, and activation function

look-up table (LUT) module. The LSTM Core Unit

performs time-step calculations in a pipeline, with the

gating units operating in parallel. The Quantization

Module compresses the input signals and weights. The

State Register caches the target for the current step,

enabling state transitions across time steps. The activation

function is quickly implemented by the LUT module to

perform nonlinear mapping. The entire module is

connected to the external bus, supporting high-speed data

exchange with the controller and scheduler. The module

structure is highly configurable, supporting parameter

reuse and adjustable precision settings, making it

adaptable to various deployment scenarios.

To further enhance the model’s adaptability and the

system’s intelligence, an online update mechanism is

introduced after the model is deployed. When the real

response latency from the control system deviates

significantly from the model's prediction, the system will

locally fine-tune the model parameters via

backpropagation, using the Adam optimization algorithm

for incremental updates. The update strategy is described

by Equations (2) to (4).

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝛻𝐿(𝑊) (2)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)(𝛻𝐿(𝑊))2 (3)

W = W− 𝛼
𝑚𝑡

√𝑣𝑡+𝜖
 (4)

The exponential decay average of momentum and

gradient squared is denoted as 𝑚𝑡 and 𝑣𝑡 ; 𝛻𝐿(𝑊)

indicates the gradient for weights; α refers to the learning

rate; 𝛽1 and 𝛽2 are exponential decay coefficients; 𝜖

represents a random number, to prevent the denominator

from becoming 0. It can be observed that the integrated

design of FPGA and neural networks has established a

solid mathematical foundation at both the theoretical and

implementation levels, ensuring the real-time, efficient,

and accurate performance of the system. The pseudo code

of the optimized model is as follows:

Pseudocode: LSTM-Based Latency Prediction with

FPGA Deployment

Initialize:

 Load quantized LSTM weights W_q from on-chip

memory

 Initialize hidden state h_0 and cell state c_0 to

zeros

 Set time window size w = 10

 Define learning rate α, momentum decay β1, β2, ε

Inference Loop (on FPGA)

Function LSTM_Predict(x_seq):

 h, c ← h_0, c_0

 for t in 1 to w:

 # Gate calculations (in parallel on FPGA)

 f_t ← sigmoid(W_f * x_t + U_f * h + b_f)

 i_t ← sigmoid(W_i * x_t + U_i * h + b_i)

 o_t ← sigmoid(W_o * x_t + U_o * h + b_o)

 g_t ← tanh(W_c * x_t + U_c * h + b_c)

 # Cell and hidden state update

 c ← f_t ∘ c + i_t ∘ g_t

 h ← o_t ∘ tanh(c)

 # Final prediction

 y_pred ← W_out * h + b_out

110 Informatica 49 (2025) 105-120 L. Zhang et al.

 return y_pred

On-chip Online Update (optional)

Function Online_Update(y_true, y_pred):

 loss ← (y_true - y_pred)^2

 # Compute gradients (simplified)

 grad_W ← ∂loss/∂W using backpropagation

 m_t ← β1 * m_{t-1} + (1 - β1) * grad_W

 v_t ← β2 * v_{t-1} + (1 - β2) * (grad_W)^2

 # Update weights

 W_q ← W_q - α * m_t / (sqrt(v_t) + ε)

 Store updated W_q to on-chip memory

Main control loop

While system is running:

 Collect current input sequence x_seq from sensors

and system state

 y_pred ← LSTM_Predict(x_seq)

 Send y_pred to scheduling module

 Receive feedback y_true

 If |y_true - y_pred| > δ:

 Online_Update(y_true, y_pred)

4 Experimental design
To validate the applicability and performance of the

proposed neural network and FPGA-accelerated delay

prediction model in DCSs, this study uses the ETT dataset

as the experimental data source. This dataset was collected

by the power monitoring systems of two regions in a

Chinese province. It records the oil temperature, load

conditions, and external disturbance features of power

transformers during actual operation, spanning two years

with good continuity and high-frequency characteristics.

It is a typical industrial-grade time series dataset.

The original features of the ETT dataset include: date,

timestamp, load power, oil temperature, ambient

temperature, target forecast values, and six external load

influence factors (such as power flow direction, voltage

level, etc.). These variables are highly correlated with task

scheduling delays, response time fluctuations, and

environmental disturbance intensity in DCSs, and thus

serve as a good proxy for the operational state of a real

DCS. Therefore, the ETT dataset structurally aligns with

and maps to the delay prediction task of a DCS, making it

suitable for training neural network prediction models.

The ETT dataset is available for download from the

official website

(https://github.com/zhouhaoyi/ETDataset/blob/main/RE

ADME_CN.md). Additionally, the dataset is clearly

divided into multiple scenarios and supports sequence

modeling at different time granularities (minute-level,

hour-level), facilitating comparative research on

algorithms with varying complexities and precision

requirements. For this study, three subsets at the minute-

level were selected, as described below:

(1) ETT-small-m1: Region 1, record per minute.

(2) ETT-small-m2: Region 2, record per minute.

(3) ETT-small-m3: Region 3, record per minute.

The dataset contains approximately 70,080 records

per minute (2 years x 365 days x 24 hours x 60 minutes).

The study also set the experimental environment, as

exhibited in Table 2:

Table 2: Experimental environment
Configuration type

Computing device Dell PowerEdge R740

Central Processing

Unit (CPU)

Intel Xeon Gold 6230, 2.1GHz, 20

cores

Graphics Processing

Unit (GPU)

NVIDIA Tesla V100, 16GB

memory

Memory 128GB DDR4

Storage device Samsung PM981a NVMe SSD

Prediction Target Task Response Latency (0.01 ms)

Neural Network

Output

Predicted Total Response Latency of

the Next Task Scheduling Cycle

Prediction Target

Deployment Use

Used for Dynamic Task Scheduler
Sorting and Control Strategy

Optimization, Achieving Real-time

Performance Improvement of the
DCS System

FPGA development

board

Xilinx Alveo U250

The optimized model parameters in this study were

determined by considering several factors. These include

the dynamic characteristics of task response latency in

DCSs, resource limitations in the deployment

environment, and the real-time requirements of the

prediction target. Firstly, regarding the input features, the

model uses 6 dimensions, covering key control variables

such as historical task latency, task type encoding, CPU

utilization, cache queue length, network link load rate, and

scheduling priority. These features provide a

comprehensive reflection of the factors influencing

response latency during task scheduling and resource

allocation in control systems. In terms of network

structure, the model adopts a two-layer LSTM architecture,

with 128 hidden units per layer. This design is based on

the characteristics of task latency in DCSs, which exhibit

medium- to short-term temporal dependencies. The two-

layer structure effectively models the system’s dynamics,

while the 128-dimensional state representation achieves a

good balance between prediction accuracy and FPGA

deployment resource efficiency. The output layer has 1

dimension, using a linear activation function. The output

value represents the predicted response latency for the

next time step (in milliseconds), making it suitable for

direct use by the controller in task prioritization and

scheduling strategy decisions. During training, the Adam

optimizer is used with an initial learning rate of 0.001, a

first-order momentum decay coefficient of 0.9, and a

second-order momentum decay coefficient of 0.999. This

setting has shown good convergence in various non-

stationary time series modeling tasks, making it especially

suitable for short-term fluctuations and local trend

changes in industrial control data. Additionally, gradient

clipping with a threshold set to 5 is applied during training

to suppress gradient explosion caused by anomalous data,

improving the overall stability and robustness of the

training process. The batch size is set to 64, balancing

training efficiency and model generalization, while also

considering the cache scheduling efficiency and

throughput requirements when running on the FPGA

platform. In the comparative experiments, to ensure

fairness and comparability in model evaluation, the

implementation environment and parameter settings for

all comparison models were standardized. Except for the

https://github.com/zhouhaoyi/ETDataset/blob/main/README_CN.md
https://github.com/zhouhaoyi/ETDataset/blob/main/README_CN.md

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 111

proposed optimized model deployed on the FPGA

platform, the other models ran on the same hardware and

software platform, using the same data processing flow,

and the same training and validation dataset splitting

strategy.

The Distributed Model Predictive Control (DMPC)

model was executed on an Ubuntu 20.04 system

environment. The control algorithm was implemented

using Python and primarily used to simulate the predictive

scheduling process of distributed tasks across multiple

nodes. The control horizon was set to 50 time units, with

a control step size of 10 steps, and a receding horizon

optimization strategy was employed. The model used

historical system states, task loads, and resource

utilization (RU) as inputs and performed rolling prediction

and latency estimation based on a quadratic programming

solver. In the experiments, the DMPC model was

deployed on a workstation equipped with an Intel Core i7-

11700 processor and 16GB of RAM. The Multi-Agent

System-Based Distributed Control Model (MAS-DCM)

was jointly developed using Python and Java Agent

Development Environment (JADE), simulating

information exchange and local prediction behaviors

among multiple agents. Each agent maintained an

independent task estimator, utilizing local observations for

latency prediction and scheduling feedback. The model

was implemented within the Robot Operating System

(ROS) framework, supporting task state broadcasting and

multi-node coordination. Communication between agents

followed a publish/subscribe mechanism, with each

scheduling synchronization cycle set to 500 ms. The

model was deployed on an NVIDIA Jetson Xavier NX

platform (ARM Cortex-A57 CPU + 8GB RAM),

simulating a low-power edge deployment environment.

The Field Programmable Gate Array-Based Deep Neural

Network Acceleration Model (FPGA-DNNAM) followed

recent best practices for edge deployment. It used a four-

layer multilayer perceptron (MLP) for latency prediction,

with a network structure of [Input dimension 16 → 64 →

32 → 1]. All hidden layers used Rectified Linear Unit

(ReLU) activation functions, while the output layer

employed a linear function. The model was trained using

the PyTorch 1.13 framework over 100 epochs with the

support of an NVIDIA RTX 3060 GPU. The Adam

optimizer was used with an initial learning rate of 0.001

and a batch size of 64. After training, the model was

quantized and deployed using the Xilinx Vitis AI

toolchain and was ultimately implemented on a Xilinx

ZCU104 FPGA board to enable high-performance

inference. To ensure fairness, all models mentioned above

used the same ETT-small dataset, following a unified

normalization process and sample construction pipeline.

This study did not employ conventional statistical

methods such as confidence interval estimation,

hypothesis testing, or significance analysis during

experimental design and performance evaluation. The

core objective of the study was not to perform statistical

inference on minor performance differences among

models. Instead, the goal was to develop a deployable and

scalable optimization framework for task latency

prediction in DCSs. The study focuses more on the

practical effectiveness of predictions, system adaptability,

and deployment feasibility under real-world engineering

conditions. A comprehensive evaluation of model

performance was conducted using a multi-dimensional

metric system from the perspective of actual operational

scenarios. Unlike typical machine learning studies that

focus on statistical significance, this study emphasizes

real-world usability and consistent improvements in

system performance. It prioritizes practical enhancements

rather than probabilistic reasoning over numerical

differences. Additionally, the study does not provide a

systematic modeling or categorization of all failure modes

in control systems. The latency prediction model itself

does not directly address low-level device fault diagnosis

or control logic protection. Failures in DCS environments

are often the result of complex interactions between

hardware conditions, communication errors, and

environmental disturbances. As a result, scenario-agnostic

analysis is less meaningful. This study focuses on the

impact of latency prediction deviation on task scheduling

efficiency and system stability. It indirectly reflects the

model's robustness using indicators such as task failure

rate and mean time between failures (MTBF). More

comprehensive fault modeling and coordinated control

mechanisms are proposed as future research directions.

In summary, the omission of statistical significance

testing and system-level fault modeling in this study is not

a result of insufficient methodological rigor. Instead, it is

a deliberate choice, driven by the study's scope, system-

level objectives, and application-focused approach. The

goal is to ensure that the study remains centered on the

development of a deployable, verifiable latency prediction

model and its integration into practical control systems.

5 Experimental comparison of

latency prediction of the dcs based

on FPGA and neural networks

5.1 Performance evaluation of the latency

prediction model

To comprehensively evaluate the practical effectiveness

of the proposed model in DCSs, this study categorizes

performance evaluation metrics into four key dimensions:

accuracy, robustness, timeliness, and resource efficiency.

Within each dimension, two representative evaluation

metrics are selected, resulting in a total of eight core

indicators. This multi-faceted approach enables a

systematic analysis of the model from various

perspectives. In the accuracy dimension, the Mean

Absolute Error (MAE) and MSE are adopted as primary

evaluation metrics. MAE measures the average level of

absolute error in the prediction process, offering intuitive

interpretability. MSE, by squaring the prediction errors,

emphasizes larger deviations and effectively reflects the

model’s ability to control errors at outlier points. This

dimension provides a direct assessment of the model's

fitting accuracy with respect to task response latency and

serves as the foundation for evaluating prediction quality.

The robustness dimension includes the Root Mean

112 Informatica 49 (2025) 105-120 L. Zhang et al.

Squared Error (RMSE) and Mean Absolute Percentage

Error (MAPE). RMSE, as the square root of MSE,

maintains the same unit as the original data and is suitable

for presenting the overall fluctuation intensity. MAPE

considers the ratio of prediction error to the actual value,

reflecting the model’s stability and adaptability across

different data scales, particularly under varying load

intensities in DCS scenarios. This dimension is designed

to evaluate the model’s stable prediction capability under

data perturbations and unexpected conditions. For the

timeliness dimension, to verify whether the model is

suitable for deployment in latency-sensitive control

systems, two indicators are introduced: Mean Prediction

Latency (MPL) and Maximum Prediction Latency (Max-

PL). MPL represents the average time required for a single

prediction, while Max-PL indicates the longest inference

delay that may occur under extreme computational

pressure. These metrics are directly related to the model's

real-time inference capability and serve as core criteria for

determining its viability in online DCS applications. In the

resource efficiency dimension, RU and Throughput Per

Second (TPS) are used as the primary metrics. RU denotes

the proportion of logical resources consumed by the model

when deployed on FPGA or embedded systems, providing

a critical reference for deployment feasibility under

resource constraints. TPS reflects the number of

prediction tasks the model can complete per unit of time,

directly indicating its execution efficiency under high-

concurrency scheduling scenarios. This dimension

comprehensively evaluates the deployment cost and

runtime performance-to-cost ratio of the model.

The comparison results of accuracy dimensions are

presented in Figure 2:

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
A

E

Model

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

0.00

0.05

0.10

0.15

0.20

0.25

M
S

E

Model

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

(a) (b)

Figure 2: Accuracy dimension experimental result ((a): MAE; (b): MSE)

Figure 2 shows that the proposed optimized model

achieves a MAE score of 0.108 on the ETT-small-m2

dataset. This significantly outperforms other models, such

as DMPC's 0.480 and FPGA-DNNAM's 0.446. However,

on the ETT-small-m1 and ETT-small-m3 datasets, the

proposed model's MAE is 0.383 and 0.488, respectively.

These values are higher than FPGA-DNNAM's 0.123 and

0.340, indicating slightly inferior performance. In terms of

MSE, the proposed optimized model performs well across

all datasets. It achieves scores of 0.043 (ETT-small-m1),

0.080 (ETT-small-m2), and 0.098 (ETT-small-m3). These

are significantly lower than DMPC (e.g., 0.210 on ETT-

small-m1) and MAS-DCM (e.g., 0.136 on ETT-small-m3).

The proposed model has a notable advantage in the MSE

metric, indicating better control over overall prediction

errors. While its MAE performance is slightly lower than

FPGA-DNNAM on some datasets, its overall performance

remains stable and accurate. The comparison results for

robustness are shown in Figure 3.

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 113

(a) (b)

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

0.1

0.2

0.3

0.4

0.5

0.6

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

R
M

S
E

Model

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

10

15

20

25

30 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

M
A

P
E

Model

Figure 3: Robustness dimension experimental result ((a): RMSE; (b): MAPE)

The proposed model has RMSEs of 0.577 (ETT-

small-m1), 0.585 (ETT-small-m2), and 0.514 (ETT-small-

m3). These are higher than FPGA-DNNAM's 0.179 on

ETT-small-m3 and MAS-DCM's 0.381 on ETT-small-m1.

However, the overall difference with other models is not

significant. On the ETT-small-m1 dataset, the proposed

model's MAPE is 23.250, slightly higher than FPGA-

DNNAM's 10.688 and MAS-DCM's 18.803. On the ETT-

small-m2 and ETT-small-m3 datasets, the proposed model

achieves MAPEs of 16.234 and 20.401, respectively,

outperforming DMPC's 23.685. Overall, the proposed

optimized model shows good robustness in both RMSE

and MAPE. Despite a slightly higher RMSE due to

outliers, it demonstrates reasonable control of MAPE.

This indicates the model’s adaptability to complex real-

world scenarios. The results for the timeliness dimension

are presented in Figure 4.

(a) (b)

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
P

L

Model

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ax

-P
L

Model

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

Figure 4: Timeliness Dimension experimental result ((a): MPL; (b): Max-PL)

Figure 4 shows that the proposed optimized model

achieves the lowest MPL across all datasets. Specifically,

it records scores of 0.079 for ETT-small-m1, 0.057 for

ETT-small-m2, and 0.099 for ETT-small-m3. In

comparison, the MPL values of DMPC and MAS-DCM

both exceed 0.130. Although FPGA-DNNAM achieves a

slightly lower latency of 0.063 on the ETT-small-m3

dataset, it remains close to the proposed model. For Max-

PL, the proposed model again outperforms the baselines,

achieving 0.495 (ETT-small-m1), 0.409 (ETT-small-m2),

and 0.179 (ETT-small-m3). These values are consistently

lower than DMPC’s 0.431 on ETT-small-m3 and MAS-

DCM’s 0.212 on ETT-small-m2. Overall, the proposed

model demonstrates excellent timeliness. It effectively

controls both average and peak latency, making it highly

suitable for DCSs applications where real-time

114 Informatica 49 (2025) 1-14 L. Zhang et al.

performance is critical. The results of resource efficiency

analysis are presented in Figure 5:

(a) (b)

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

600

800

1,000

1,200

1,400

T
P

S

Model

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

DMPC MAS-DCM FPGA-DNNAM The proposed

 algorithm

40

45

50

55

60

65

70

75

R
U

(%
)

Model

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

Figure 5: Resource Efficiency Dimension experimental result ((a): Resource Utilization; (b): Throughput)

Figure 5 shows the RU rates for the proposed

optimized model across three datasets: 64.932% for ETT-

small-m1, 53.236% for ETT-small-m2, and 42.542% for

ETT-small-m3. While these rates are slightly higher than

FPGA-DNNAM’s 44.635% on the ETT-small-m2 dataset,

they remain lower than MAS-DCM’s 69.160% on ETT-

small-m1, indicating a balanced performance in terms of

resource usage. The model also excels in processing speed,

with the number of samples processed per second reaching

1061.277 (ETT-small-m1), 1270.967 (ETT-small-m2),

and 993.796 (ETT-small-m3). These figures significantly

surpass DMPC’s 810.982 (ETT-small-m1) and FPGA-

DNNAM’s 1260.785 (ETT-small-m3), demonstrating the

model’s efficiency in handling high throughput. Overall,

the proposed optimized model performs exceptionally

well in terms of resource efficiency. It achieves a high

processing speed while maintaining effective control over

hardware resource consumption, making it suitable for

deployment in environments with limited resources but a

need for efficient processing.

In terms of key performance dimensions—accuracy,

timeliness, and resource efficiency—the model stands out,

particularly with notable advantages in metrics such as

MSE, MPL, and throughput. While its robustness is

slightly lower compared to some other models, it still

maintains good stability. This suggests that the proposed

model is well-suited for general distributed control tasks,

particularly in complex environments that demand high

real-time performance and efficiency.

5.2 Testing of system operation

effectiveness

In the system performance dimension, this study selects

four key indicators: Task Completion Rate (TCR),

Average Response Time (ART), Task Failure Rate (TFR),

and System Throughput (ST). TCR reflects the proportion

of tasks successfully completed within a given period and

serves as a fundamental metric for evaluating the stability

and controllability of the scheduling system. ART

measures the average time from task reception to

completion, indicating the system’s real-time

responsiveness. TFR assesses the proportion of tasks that

fail to complete due to scheduling errors, system

congestion, or control delays, offering valuable insights

for optimizing scheduling strategies. ST quantifies the

number of tasks processed by the system per unit of time,

representing the system’s efficiency under high

concurrency. This dimension focuses on the quality of the

system’s load-handling response during real-world

operation and serves as a core metric for assessing

improvements in control system efficiency post-

deployment. In the system reliability dimension, to

evaluate the impact of model deployment on long-term

operational stability, four additional indicators are

introduced: MTBF, Mean Time to Repair (MTTR), Error

Rate (ER), and System Availability (SA). MTBF indicates

the average duration the system can operate normally

between two consecutive failures—a higher value

suggests greater system stability. MTTR measures the

average time required for the system to return to normal

operation following a failure, reflecting the

responsiveness of fault recovery mechanisms. ER captures

the proportion of errors arising during operation due to

issues such as data transmission failures or module

malfunctions, serving as a key metric for system

robustness. SA evaluates the percentage of total

operational time during which the system remains

available, offering a comprehensive measure of system

stability and sustained service capability. This dimension

emphasizes the system’s resilience to anomalies,

unexpected failures, and uncertain disturbances during

extended operation.

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 115

The comparison results of system performance

dimensions are revealed in Figure 6:

(a) (b)

88

90

92

94

96

98

100

102

FPGA-DNNAM

MAS-DCM

DMPC

The proposed

 algorithm

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

The proposed

 algorithm

FPGA-DNNAM

MAS-DCM

DMPC
 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

-2

0

2

4

6

8

10

12

The proposed

 algorithm

FPGA-DNNAM

MAS-DCM

DMPC
 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

(c) (d)

600

800

1,000

1,200

1,400

1,600

1,800

2,000

FPGA-DNNAM

MAS-DCM

DMPC

The proposed

 algorithm

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

Figure 6: System Performance Dimension experimental result ((a): Task Completion Rate; (b): Average Response

Time; (c): Task Failure Rate; (d): System Throughput)

Figure 6 presents the performance of the proposed

optimized model in terms of task completion rate, average

response time, task failure rate, and system throughput. On

the ETT-small-m3 dataset, the model achieves a task

completion rate of 99.699%, significantly higher than

DMPC (97.320%) and MAS-DCM (91.560%). However,

on the ETT-small-m2 dataset, its task completion rate

drops to 90.206%, which is lower than FPGA-DNNAM’s

98.662%. In terms of average response time, the proposed

model performs well across all datasets. It records

response times of 0.156 (ETT-small-m1), 0.217 (ETT-

small-m2), and 0.247 (ETT-small-m3). Although slightly

slower than DMPC's 0.185 on ETT-small-m2, it still

outperforms MAS-DCM and FPGA-DNNAM overall.

Regarding task failure rate, the model records 9.489% on

the ETT-small-m1 dataset. While this is higher than

DMPC (4.561%) and FPGA-DNNAM (6.075%), the

failure rate improves on ETT-small-m3, decreasing to

8.084%. Despite this progress, further optimization is

needed in this area. For system throughput, the proposed

model delivers strong results. It achieves 1595.027 tasks

per second on the ETT-small-m1 dataset, far exceeding

DMPC’s 1165.537. On the ETT-small-m3 dataset,

throughput reaches 1424.082 tasks per second, slightly

surpassing MAS-DCM’s 1394.212. In summary, the

proposed optimized model excels in task completion rate

and system throughput, showing strong suitability for

high-efficiency applications. Its average response time

also reflects good real-time performance. However,

improvements in reducing the task failure rate remain an

area for future work. The comparison results for system

reliability are illustrated in Figure 7:

116 Informatica 49 (2025) 1-14 L. Zhang et al.

(a) (b)

88

90

92

94

96

98

100

102

FPGA-DNNAM

MAS-DCM

DMPC

The proposed

 algorithm

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

The proposed

 algorithm

FPGA-DNNAM

MAS-DCM

DMPC
 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

-2

0

2

4

6

8

10

12

The proposed

 algorithm

FPGA-DNNAM

MAS-DCM

DMPC
 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

(c) (d)

600

800

1,000

1,200

1,400

1,600

1,800

2,000

FPGA-DNNAM

MAS-DCM

DMPC

The proposed

 algorithm

 ETT-small-m1

 ETT-small-m2

 ETT-small-m3

Figure 7: System Reliability Dimension experimental result ((a): Mean Time between Failures; (b): Mean Time to

Repair; (c): Error Rate; (d): System Availability)

Figure 7 illustrates the reliability metrics of the

proposed optimized model across different datasets. On

the ETT-small-m1 dataset, the model achieves a MTBF of

178.393 hours—substantially lower than MAS-DCM’s

410.053 hours and DMPC’s 318.684 hours. On the ETT-

small-m3 dataset, the MTBF increases to 230.132 hours,

though it still falls short of the comparative models. The

model’s MTTR on the ETT-small-m1 dataset is 0.198

hours, which is slightly higher than FPGA-DNNAM’s

0.071 hours. However, on the ETT-small-m3 dataset, the

MTTR improves to 0.080 hours, aligning closely with

other models in this category. In terms of error rate, the

proposed model demonstrates strong performance,

achieving the lowest value on the ETT-small-m3 dataset

at just 0.318%, significantly outperforming FPGA-

DNNAM (4.316%) and DMPC (3.534%). On the ETT-

small-m1 dataset, the model records an error rate of

3.116%, comparable to MAS-DCM’s 3.645%. The

proposed model also maintains high availability across all

datasets, exceeding 97% in every case. Notably, it reaches

98.855% on the ETT-small-m2 dataset, slightly below

MAS-DCM’s 99.436%. Overall, the proposed model

exhibits excellent performance in terms of error rate and

availability, making it well-suited for high-reliability

applications. However, there remains considerable room

for improvement in MTBF and MTTR. Future work

should aim to enhance the system’s fault tolerance and

recovery efficiency to further bolster its robustness in real-

world deployments.

5.3 Ablation study

To evaluate the contribution of key components within the

proposed delay prediction optimization model and to

further analyze the effectiveness of its internal

mechanisms, an ablation study was conducted. By

progressively removing core modules, several simplified

variants of the model were constructed and evaluated

under the same dataset and assessment framework. This

approach allowed for a quantitative comparison of each

component’s impact on model accuracy, timeliness, and

system control performance. Using the full model as the

baseline, the following three ablated variants were

implemented:

1) w/o Quantization: Disables weight quantization, using

32-bit floating-point parameters for computation.

2) w/o Online Update: Disables the online fine-tuning

mechanism, maintaining a static model.

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 117

3) w/o System Features: Uses only historical delay

sequences as input, removing all system context

features.

The experimental results are summarized in Table 3:

Table 3: Ablation study results
Model

Variant

MAE MSE Avg.

Prediction

Latency

Task

Completion

Rate (%)

Full Model 0.233 0.105 0.156 98.64

w/o

Quantization

0.251 0.120 0.171 97.15

w/o Online

Update

0.263 0.132 0.162 96.38

w/o System

Features

0.285 0.149 0.165 94.72

As shown in Table 3, the full model performs best

across all four evaluation metrics. Removing the

quantization mechanism results in a slight decrease in

accuracy but leads to a noticeable increase in inference

time, highlighting the efficiency benefits of quantization

for edge computing deployment. Disabling the online

update mechanism leads to reduced model adaptability.

The Task Completion Rate (TCR) drops by more than two

percentage points, from 98.64% to 96.38%. This

highlights the importance of feedback-based error

correction in dynamic environments. The most significant

performance degradation occurs when system context

features are removed. In this variant, MAE increases to

0.285 and TCR falls to 94.72%, indicating that scheduling

context is a key input for improving prediction accuracy

and ensuring successful task execution.

6 Discussion
The FPGA-accelerated LSTM-based latency prediction

model proposed in this study demonstrates strong

performance across multiple dimensions, particularly

excelling in prediction accuracy, task completion rate, and

inference latency when compared to baseline models.

However, a closer examination of the experimental results

reveals several performance trade-offs and limitations that

warrant further discussion and provide guidance for future

optimization.

From a structural perspective, although the model

achieves high prediction accuracy and low inference

latency across various datasets, it performs slightly less

robustly than some deep ensemble-based models in terms

of robustness metrics. This may be attributed to the

LSTM’s limited adaptability to abnormal fluctuations and

sudden load disturbances. Traditional control optimization

models, which incorporate hard constraint mechanisms,

tend to handle extreme variations more effectively. In

contrast, while neural networks are well-suited for

learning regular patterns, they may exhibit instability

when handling boundary conditions or outlier predictions.

Performance discrepancies across datasets also highlight

the model’s limitations. For instance, the model performs

consistently better on ETT-small-m1 than on ETT-small-

m3, likely due to the former’s stronger periodicity and

more controlled noise characteristics, which are

advantageous for temporal modeling. In contrast, ETT-

small-m3 may involve higher unpredictability in data

sources, task switching frequency, or external

disturbances, increasing the difficulty of model training.

Future work could incorporate data augmentation

techniques, attention mechanisms, or more sophisticated

feature adaptation strategies to enhance the model’s

generalization across varied data distributions.

On the system implementation side, the FPGA

acceleration scheme offers notable advantages over

traditional software-based approaches. Customized data

paths and parallel hardware structures significantly reduce

inference latency, while resource control and low power

consumption make the solution well-suited for

deployment at industrial DCS edge nodes. Compared with

processor-based solutions, the FPGA platform delivers

superior task throughput and latency control within a

given time frame, offering robust real-time guarantees—

particularly important in high-frequency scheduling

scenarios. However, FPGA deployment also introduces

challenges in programmability and debugging complexity.

Future research should explore the integration of

automated deployment workflows with interpretability

analysis tools. Regarding the quantization strategy, while

8-bit fixed-point quantization effectively reduces

hardware resource consumption, its impact on model

performance and RU still requires more systematic

evaluation. Preliminary tests suggest that aggressive

quantization may slightly degrade prediction accuracy, but

it has a positive effect on throughput and on-chip resource

availability. Balancing high-level compression with

minimal loss in prediction precision remains a key

direction for improving deployment efficiency in future

work.

Furthermore, the experiments reveal inherent trade-

offs between different performance dimensions. For

instance, while the integration of an online update

mechanism improves prediction accuracy and task

completion rate, it also introduces additional

computational overhead, which can negatively impact

real-time performance. Conversely, disabling online

learning accelerates inference but compromises the

system's adaptability. Similarly, the task failure rate, a key

indicator of system reliability, increases when the model

lacks sufficient fault tolerance under high-load or complex

scenarios. In real-world DCSs, such shortcomings may

lead to scheduling delays or control disruptions,

highlighting the importance of closely monitoring this

metric.

Overall, the proposed method outperforms existing

state-of-the-art (SOTA) models across most evaluation

dimensions, with particularly notable advantages in

inference latency and system throughput. However, there

remains room for improvement in terms of robustness to

anomalous predictions, cross-scenario adaptability, and

the system’s capacity for dynamic reconfiguration. Future

work may explore the incorporation of attention

mechanisms, heterogeneous input encoding strategies, and

adaptive quantization techniques to better balance

performance and deployability.

118 Informatica 49 (2025) 1-14 L. Zhang et al.

7 Conclusion
This study is the first to deeply integrate FPGA hardware

acceleration with neural network–based latency prediction,

resulting in a highly efficient predictive model. By

offloading neural network inference to FPGA hardware,

the model significantly reduces computational overhead

during the prediction process, thereby enhancing the real-

time performance of DCSs. This approach addresses the

low efficiency typically seen in traditional neural network

models when deployed on embedded platforms, offering a

novel solution for real-time control tasks. The model’s

performance was rigorously evaluated across multiple

dimensions—accuracy, robustness, timeliness, and

resource efficiency. Experimental results demonstrate that

the proposed model consistently outperforms baseline

approaches, particularly in system throughput, average

prediction latency, and task completion rate. These

findings confirm the model’s effectiveness and provide

valuable performance benchmarks for future research.

Despite these advances, certain limitations remain. The

model performs well on the ETT-small dataset but has not

been extensively validated in other scenarios, especially

those involving unstructured or multimodal data. Future

research could enhance the model’s flexibility by

incorporating multimodal fusion techniques, enabling it to

integrate latency predictions with data from videos,

sensors, and images for broader applicability in real-world

settings. Additionally, the model shows some sensitivity

under extreme conditions such as high load or the presence

of outliers, where minor instability in key metrics was

observed. To address these challenges, future work could

explore adaptive thresholding, dynamic task allocation,

and fault-tolerant mechanisms. Such enhancements would

further improve the system’s reliability and efficiency,

especially in complex or unpredictable environments.

References
[1] Fei M, Zhang Z, Zhao W, et al. Optimal power

distribution control in modular power architecture

using hydraulic free piston engines. Applied Energy,

2024, 358(7): 122540.

https://doi.org/10.1016/j.apenergy.2024.122540

[2] Kumar K, Pande S V, Kumar T C A, et al. Intelligent

controller design and fault prediction using machine

learning model. International Transactions on

Electrical Energy Systems, 2023, 2023(1): 1056387.

https://doi.org/10.1155/2023/1056387

[3] Liu G P. Tracking control of multi-agent systems

using a networked predictive PID tracking scheme.

IEEE/CAA Journal of Automatica Sinica, 2023, 10(1):

216–225. https://doi.org/10.1109/JAS.2023.120430

[4] Louati H, Niazi A U K, Dalam M E E, et al.

Optimizing control efficiency in discrete-time multi-

agent systems via event-triggered containment

techniques combining disturbance handling and input

delay management. Heliyon, 2024, 10(14): e26767.

https://doi.org/10.1016/j.heliyon.2024.e26767

[5] Bououden S, Allouani F, Abboudi A, et al. Observer-

based robust fault predictive control for wind turbine

time-delay systems with sensor and actuator faults.

Energies, 2023, 16(2): 858.

https://doi.org/10.3390/en16020858

[6] Gams M, Kolenik T. Relations between electronics,

artificial intelligence and information society through

information society rules. Electronics, 2021, 10(4):

514. https://doi.org/10.3390/electronics10040514

[7] Ilyushin Y V, Asadulagi M A M. Development of a

distributed control system for the hydrodynamic

processes of aquifers, taking into account stochastic

disturbing factors. Water, 2023, 15(4): 770.

https://doi.org/10.3390/w15040770

[8] Nie Q, Tang D, Liu C, et al. A multi-agent and cloud-

edge orchestration framework of digital twin for

distributed production control. Robotics and

Computer-Integrated Manufacturing, 2023, 82(4):

102543. https://doi.org/10.1016/j.rcim.2023.102543

[9] Dai X, Lederer A, Yang Z, et al. Can learning

deteriorate control? Analyzing computational delays

in Gaussian process-based event-triggered online

learning[C]// Learning for Dynamics and Control

Conference, PMLR, 2023: 445–457.

[10] Caballero-Águila R, Linares-Pérez J. Distributed

fusion filtering for uncertain systems with coupled

noises, random delays and packet loss prediction

compensation. International Journal of Systems

Science, 2023, 54(2): 371–390.

https://doi.org/10.1080/00207721.2022.2126020

[11] Tiong K Y, Ma Z, Palmqvist C W. A review of data-

driven approaches to predict train delays.

Transportation Research Part C: Emerging

Technologies, 2023, 148(21): 104027.

https://doi.org/10.1016/j.trc.2023.104027

[12] Sridevi K, Saifulla M A. LBABC: Distributed

controller load balancing using artificial bee colony

optimization in an SDN. Peer-to-Peer Networking

and Applications, 2023, 16(2): 947–957.

https://doi.org/10.1007/s12083-022-01387-1

[13] Herrera M, Benítez D, Pérez-Pérez N, et al. Hybrid

controller based on numerical methods for chemical

processes with a long time delay. ACS Omega, 2023,

8(28): 25236–25253.

https://doi.org/10.1021/acsomega.3c02747

[14] Olabi A G, Abdelghafar A A, Maghrabie H M, et al.

Application of artificial intelligence for prediction,

optimization, and control of thermal energy storage

systems. Thermal Science and Engineering Progress,

2023, 39(21): 101730.

https://doi.org/10.1016/j.tsep.2023.101730

Latency Prediction in Distributed Control Systems Using FPGA… Informatica 49 (2025) 105–120 119

[15] Jiang J, Han C, Zhao W X, et al. Pdformer:

Propagation delay-aware dynamic long-range

transformer for traffic flow prediction. Proceedings

of the AAAI Conference on Artificial Intelligence,

2023, 37(4): 4365–4373.

[16] Mbungu N T, Ismail A A, AlShabi M, et al. Control

and estimation techniques applied to smart

microgrids: A review. Renewable and Sustainable

Energy Reviews, 2023, 179(32): 113251.

https://doi.org/10.1016/j.rser.2023.113251

[17] Balali Y, Chong A, Busch A, et al. Energy modelling

and control of building heating and cooling systems

with data-driven and hybrid models—A review.

Renewable and Sustainable Energy Reviews, 2023,

183(3): 113496.

https://doi.org/10.1016/j.rser.2023.113496

[18] Wang Y A, Shen B, Zou L, et al. A survey on recent

advances in distributed filtering over sensor networks

subject to communication constraints. International

Journal of Network Dynamics and Intelligence, 2023,

6(2): 100007.

https://doi.org/10.1016/j.indani.2023.100007

[19] Modu B, Abdullah M P, Sanusi M A, et al. DC-based

microgrid: Topologies, control schemes, and

implementations. Alexandria Engineering Journal,

2023, 70(11): 61–92.

https://doi.org/10.1016/j.aej.2023.03.015

[20] Asha A, Arunachalam R, Poonguzhali I, et al.

Optimized RNN-based performance prediction of

IoT and WSN-oriented smart city application using

improved honey badger algorithm. Measurement,

2023, 210(13): 112505.

https://doi.org/10.1016/j.measurement.2023.112505

[21] Duan G. Fully actuated system approaches for

continuous-time delay systems: Part 1. Systems with

state delays only. Science China Information

Sciences, 2023, 66(1): 112201.

https://doi.org/10.1007/s11432-021-3411-y

[22] Ghiasi M, Niknam T, Wang Z, et al. A comprehensive

review of cyber-attacks and defense mechanisms for

improving security in smart grid energy systems: Past,

present and future. Electric Power Systems Research,

2023, 215(11): 108975.

https://doi.org/10.1016/j.epsr.2022.108975

[23] Ashok Babu P, Mazher Iqbal J L, Siva Priyanka S, et

al. Power control and optimization for power loss

reduction using deep learning in microgrid systems.

Electric Power Components and Systems, 2024,

52(2): 219–232.

https://doi.org/10.1080/15325008.2023.2239573

[24] Simonetti F, D'Innocenzo A, Cecati C. Neural

network model-predictive control for CHB

converters with FPGA implementation. IEEE

Transactions on Industrial Informatics, 2023, 19(9):

9691–9702.

https://doi.org/10.1109/TII.2022.3154581

[25] Abbasi M, Abbasi E, Li L, et al. Review on the

microgrid concept, structures, components,

communication systems, and control methods.

Energies, 2023, 16(1): 484.

https://doi.org/10.3390/en16010484

[26] Hu J, Li J, Liu G P, et al. Optimized distributed

filtering for time-varying saturated stochastic

systems with energy harvesting sensors over sensor

networks. IEEE Transactions on Signal and

Information Processing over Networks, 2023, 9(3):

412–426.

https://doi.org/10.1109/TSIPN.2023.3268275

[27] Rajagopal A, Chitraganti S. State estimation and

control for networked control systems in the presence

of correlated packet drops. International Journal of

Systems Science, 2023, 54(11): 2352–2365.

https://doi.org/10.1080/00207721.2023.2177829

https://doi.org/10.1080/00207721.2023.2177829

120 Informatica 49 (2025) 1-14 L. Zhang et al.

