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Inter-vehicular networks (VANETs), a subset of mobile ad hoc networks, face significant routing 

challenges due to rapid topology changes caused by fast-moving nodes. This study proposes a method to 

enhance the Ad Hoc On-Demand Distance Vector (AODV) routing protocol in VANETs using nature-

inspired optimization algorithms, namely Grasshopper Optimization Algorithm (GOA), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA). The optimization problem is defined as finding optimal 

values for 11 AODV control parameters to maximize packet delivery ratio (PDR), minimize average end-

to-end delay (E2ED), and reduce normalized routing load (NRL). The methodology involves integrating 

these algorithms with NS-2 simulations, where a VANET scenario with 50 vehicles in a 670×670 m² urban 

area is modeled. The fitness function, combining PDR, E2ED, and NRL with weights of 0.2, 0.5, and 0.3, 

respectively, guides the optimization process. Experimental results show that GOA and PSO achieved a 

PDR of 100% (compared to 97.46% for GA), reduced NRL to 0.34% (from 0.62% for GA), and maintained 

E2ED at 12.32 ms (compared to 11.05 ms for GA). The fitness function value improved to -0.508 for GOA 

and PSO, outperforming GA’s -0.514. These findings demonstrate the effectiveness of nature-inspired 

algorithms in enhancing AODV routing performance in VANETs. 

Povzetek: Članek raziskuje optimizacijo AODV usmerjevalnega protokola v omrežjih VANET z uporabo 

treh algoritmov po vzoru narave: Grasshopper Optimization (GOA), Particle Swarm Optimization (PSO) 

in genetski algoritem (GA). Avtorja definirata večciljno funkcijo za izboljšanje treh ključnih metrik 

kakovosti storitev (PDR, E2ED, NRL) in pokažeta, da GOA in PSO omogočata hitrejšo konvergenco in 

boljšo robustnost v dinamičnih prometnih scenarijih. 

 

1 Introduction 
In today's advanced societies, with the ever-increasing 

population growth and the rise in the count of cars, the 

issue of traffic has become one of the biggest challenges 

in transportation. Boosting routing in inter-vehicle 

networks is very important because it can help reduce 

traffic, optimize travel time, and save fuel consumption 

[1]. Factors such as changes in traffic, multiple and 

complex routes, and coordination between vehicles further 

complicate this issue. For this reason, much research has 

been done to boost routing in inter-vehicle networks [2]. 

One of the effective approaches to improving routing is 

the use of nature-inspired algorithms, such as GOA, PSO, 

and GA, which are well-suited for VANETs due to their 

ability to efficiently explore complex, high-dimensional 

parameter spaces and adapt to dynamic topology changes 

caused by vehicle mobility. Unlike traditional 

optimization methods, which struggle with the 

computational complexity of tuning multiple AODV 

parameters, these metaheuristic algorithms mimic natural 

processes (e.g., swarm behavior, evolution) to find near-

optimal solutions quickly [3]. By connecting cars to the 

network and sharing information, it is possible to boost 

routing in inter-vehicle networks [4]. Internet of Things  

 

technology, with the possibility of interaction between 

cars, sensors, and traffic management systems, can 

significantly improve the routing of cars in inter-vehicle 

networks. This technology makes it feasible to collect and  

review data on the whereabouts, speeds, and traffic 

situations of vehicles and provide drivers with the best 

routes [5]. Inter-vehicle networks allow moving vehicles 

in cities and on suburban roads to possibly share 

information and data with other vehicles and make use of 

information gathered by roadside equipment [6]. The high 

accident rate often results from drivers’ lack of real-time 

information about obstacles or traffic conditions. ITS 

systems address this by enabling vehicles to share 

Cooperative Awareness Messages (CAMs) and 

Decentralized Environmental Notification Messages 

(DENMs), which provide warnings about hazards (e.g., 

collisions, roadworks, sudden braking), traffic jams, or 

vehicle states (e.g., location, speed, direction), thereby 

enhancing driver awareness and reducing accident risks 

[7]. Any safety-related information, such as warnings to 

prevent collisions, traffic jam conditions, or non-safety 

information like weather and travel advice, can be 

received by every automobile. It can also learn details 

about other cars' current conditions, like their location, 

speed, and direction of travel. For the driver's next move, 
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such as altering the car's speed or direction, this 

information can be very helpful [8]. Like other emerging 

technologies like nanoelectronics and nanorobotics [9], 

[10], one of the key characteristics of inter-vehicle 

networks is their high speed and rapid topology change, 

which forces nodes to continually update their routing 

information. This network's frequent topology changes are 

thought to present significant routing challenges. 

Therefore, routing for data transmission in these networks 

is a very important and necessary issue. In general, there 

are two tactics for routing in inter-vehicle networks, which 

are separated into two groups: routing drawing on 

topology and routing drawing on geographic location [11]. 

The information in the network is used to send packets via 

routing protocols drawing on topology, whereas routing 

tactics drawing on geographic location employ node 

location information for routing [12]. VANETs are known 

as networks whose topology changes rapidly, and the 

wireless coverage of these networks depends on the 

surrounding conditions, including the presence of nearby 

buildings and cars [13]. In addition, the lack of a central 

control unit in VANET networks has made routing in 

these networks a critical and difficult task. For this reason, 

researchers have presented many articles in which a new 

protocol has been presented or the existing protocols have 

been improved [14]. One of the techniques for improving 

routing protocols is to discover the ideal value for the 

parameters that control the productivity of that protocol. 

However, due to the large number of possible answers, 

finding the optimal value in most protocols is not a simple 

task. As a result, because they take a very long time to 

execute, the current approaches cannot be used to address 

optimization problems [15]. In the computer field, meta-

heuristic schemes have arisen as powerful and adaptable 

tactics for optimization and search issues, which have 

been used in several problems and have achieved a high 

level of solution [16]. For this reason, meta-heuristic 

schemes have been used in this research to boost the 

AODV routing protocol in VANET's network. Utilizing 

locust schemes, particle swarms, and genetics, the ideal 

value for the control parameters of the AODV protocol has 

been calculated. Quality of service (QoS) metrics are used 

to evaluate the outcomes, and each of the three schemes' 

effects on routing performance and the development of the 

AODV protocol are contrasted. A summary of the authors' 

contributions to this investigation is given below: 

Providing a method for improving routing in inter-

vehicle networks using schemes inspired by nature (such 

as the grasshopper algorithm, particle swarm algorithm, 

and genetic algorithm), applying these schemes to the 

parameters of the AODV routing protocol, and evaluating 

the paper's performance using packet delivery rate criteria, 

average end-to-end delay, and normalized routing load. 

The primary research objective is to enhance the 

performance of the AODV routing protocol in VANETs 

by optimizing its control parameters using nature-inspired 

algorithms (GOA, PSO, GA). The research question is: 

How effectively can nature-inspired algorithms optimize 

AODV parameters to improve Quality of Service (QoS) 

metrics, such as packet delivery ratio (PDR), end-to-end 

delay (E2ED), and normalized routing load (NRL), in 

dynamic VANET environments? We hypothesize that 

these algorithms, particularly GOA, will outperform 

traditional parameter settings by achieving higher PDR, 

lower E2ED, and reduced NRL due to their ability to 

efficiently explore the parameter search space. Expected 

outcomes include a PDR above 95%, E2ED below 20 ms, 

and NRL below 0.5%, aligning with VANET 

requirements for real-time applications. 

This study contributes to: (a) proposing a method to 

improve VANET routing using nature-inspired 

algorithms, (b) applying these algorithms to optimize 11 

AODV control parameters within predefined ranges 

through NS-2 simulations, and (c) evaluating the 

performance using PDR, E2ED, and NRL to ensure 

reliable, low-latency, and low-overhead routing. 

The remainder of the exploration is outlined below: 

In the second part, previous studies and their 

challenges are discussed, and in the third part, brief 

explanations of the schemes used in this research are 

given. In the fourth section, the AODV routing protocol 

and its control parameters are introduced, and in the fifth 

section, network evaluation parameters and the cost 

function are defined to check the optimization process. 

The recommended work tactic is explained in the sixth 

part, and in the seventh part, the simulation scenario and 

parameters are explained. The evaluation of the network 

is presented, and finally, the outcomes of this investigation 

are analyzed in the eighth part. 

2 Related works 

The tactics described here are derived from real-world 

instances in biology, nature, and technology. These tactics 

don't require prior knowledge of the issue area and can be 

applied to diverse NP-hard optimization issues [17]. 

Metaheuristics provide speedy identification of the best 

solution when used in conjunction with effective search 

techniques. Routing in VANET was discovered to be an 

NP-hard problem. Several CBR approaches include 

clustering schemes as an essential component [18]. 

Clustering makes use of multi-objective problems [19]. 

Ad hoc network routing is especially affected by these 

MOPs. Several variables affect how well conventional 

QoS works. Bandwidth employment, average end-to-end 

delay, and packet delivery proportion are all examples of 

such metrics. Some of the benefits of clustering 

optimization include topology stability, data aggregation, 

cluster reduction, bandwidth optimization, and efficient 

transmission management [20]. VANETs are essential in 

several Intelligent Transportation System (ITS) 

technologies, encompassing effective traffic management, 

media applications, and secure financial transactions. The 

adaptive nature of the vehicle network's topology is 

influenced by the growing traffic volume, which poses 

challenges to the network's scalability due to the scattered 

distribution of automobiles on roadways. Therefore, there 

is a challenge for all vehicles (in the network) to keep a 

steady path, which increases the fluctuation of the 

network. This paper [21] presents a recommended 

algorithm, known as the probabilistic nature-based 

intelligent whale optimization algorithm (p-WOA), for 
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routing in IoT-based network transport. The approach is 

bio-inspired and cluster-based, with a focus on creating 

clusters in vehicles. The study incorporated the 

examination of other variables, including communication 

range, count of nodes, speed, and route along the highway. 

The probabilities associated with these characteristics 

were integrated into the fitness function, leading to a 

reduction in randomness. The findings were compared to 

established methodologies, including ant milk optimizer 

(ALO) and gray wolf optimization (GWO), revealing that 

the new p-WOA strategy yields the optimal quantity of 

cluster heads (CH). The reduction in communication 

expenses and routing overhead, as well as the 

improvement in the overall lifespan of the cluster, is seen. 

The present study examines the utilization of evolutionary 

schemes in mobile ad hoc networks (MANETs) and 

VANETs, as discussed in the referenced publication [22]. 

The paper includes discussions about the three primary 

classifications of optimization. Several significant 

research studies have been conducted on the topic of 

parameter tuning in cluster formation, routing, and 

broadcast scheduling. The conclusion of the review 

highlights the primary obstacles encountered in the 

research of VANET and MANET. The investigation [23] 

offers RSR-IDS, a routing protocol in VANET that 

utilizes an intrusion detection mechanism to ensure 

reliability based on scoring. The deployment of an 

intrusion detection system (IDS) within the data center 

allows for the detection of anomalous data by RSR-IDS, 

which subsequently enables the computation of an Untrust 

Score (US). A scoring mechanism based on Intrusion 

Detection Systems (IDS) has been implemented within the 

data center. The IDS classifier undergoes training through 

the employment of three ML techniques encompassing 

decision tree (DT), random forest (RF), and redundant 

trees. The RSR-IDS scheme prioritizes the selection of a 

communication pathway between the source and 

destination based on the lowest overall US count and hop 

count in comparison to other paths. The article [24] 

introduces a location-aware multi-hop routing (LAMHR) 

system in VANETs that uses inter-vehicle distance to 

boost vehicular connection. The Location-Aided 

Multipath Routing (LAMR) algorithm utilizes predictive 

techniques to determine the future positions of network 

nodes. This information is then used to identify an 

appropriate next forwarder towards the destination, to 

establish a stable path from the resource to the destination. 

This investigation presents the development of a 

geometry-based localization technique to determine the 

inter-vehicle distance, which has a significant impact on 

vehicle connection. The evaluation of LAMHR's 

performance encompasses the assessment of path 

disappearance, node broadcast time, packet delivery 

proportion, and throughput. The study conducted by 

researchers [25] establishes robust correlations. The Ant 

Colony Optimization (ACO) algorithm, specifically 

designed for the EBIRA protocol, aims to identify ideal 

pathways that are both short in distance and long-lasting. 

This is achieved by considering various metrics such as 

distance, received signal strength, hop count, and 

evaporation rate. In the context of EBIRA, the chosen 

route exhibits a relatively limited distance and a notable 

link-level connectivity degree, characterized by a 

minimized number of intermediate hops. The choice of the 

shortest route, drawing on low hops and high connectivity 

level links, enhances the longevity of routes and mitigates 

frequent pauses in link connectivity among vehicles. The 

primary focus of the article referenced as [26] is to explore 

tactics for minimizing communication costs while 

simultaneously reducing message distribution delays. 

Furthermore, this investigation proposes a novel message 

distribution routing protocol called the Energy-Efficient 

Fast Message Distribution Routing Protocol (EE-

FMDRP). This protocol blends the key characteristics of 

time-oriented and directional routing frameworks. The 

proposal suggests the transmission of emergency 

notifications from the origin to a specified destination in a 

prompt, dependable, and effective manner. To address this 

issue, a bidirectional assessment model for moving 

vehicles and a model for deriving message delivery time 

are formulated. This technology facilitates the rapid 

dissemination of messages during emergency situations 

by employing high levels of power and minimizing 

latency. The EE-FMDRP algorithm offers a reliable and 

streamlined pathway for vehicles to travel between their 

starting point and intended destination while minimizing 

the count of intermediate stops and simplifying the whole 

process. The study conducted by the authors [27] 

examines a VANET that incorporates automobiles 

equipped with frequency division (FD) capabilities. This 

paper introduces a novel computational framework for 

analyzing end-to-end latency in computer systems. 

Subsequently, it is demonstrated that Dijkstra's method is 

incapable of determining the shortest path, i.e., the one 

with the least delay, between the source and destination. 

To tackle this matter, the network topology is redefined as 

a graph of equal value by severing any connections related 

to FD. Subsequently, an advanced version of Dijkstra's 

method is suggested to identify the most productive 

routing pathway within the established graph while 

maintaining a reduced level of complexity. The outcomes 

of our extensive simulations demonstrate that our 

recommended methodology can achieve the lowest 

possible end-to-end delay in inter-vehicle communication. 

Furthermore, a notable reduction is observed in the 

obtained delay as the count of full-duplex (FD) nodes 

rises. Existing methods, such as p-WOA and ACO, focus 

on clustering or path selection, but often neglect the 

optimization of routing protocol parameters, which is 

critical for adapting protocols such as AODV to the 

dynamic environments of VANETs. For example, p-

WOA improves cluster stability but does not tune AODV 

parameters, limiting its applicability to standard protocols. 

Similarly, LAMHR enhances path stability but lacks 

integration with AODV control parameters, reducing its 

generalizability. EE-FMDRP prioritizes low-latency 

emergency messaging, but neglects comprehensive QoS 

metrics such as NRL, which are essential for overall 

network performance. Furthermore, methods such as 

Dijkstra’s full-duplex algorithm require specialized 

hardware, making them less applicable for large-scale 

VANET deployment. The proposed approach addresses 
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these gaps by utilizing nature-inspired algorithms (GOA, 

PSO, GA) to systematically optimize 11 AODV control 

parameters and enhance QoS metrics (PDR, E2ED, NRL) 

in a simulated urban VANET. Unlike previous works, this 

study integrates meta-heuristic optimization with NS-2 

simulations to ensure adaptability to rapid topology 

changes and provide a scalable and protocol-specific 

solution. Table 1 summarizes the comparison of existing 

works. 

 

Table 1: Comparison of related works on VANET routing optimization 

Ref. Method Used Evaluation Metrics Major Findings 

[21] 

Probabilistic 

Whale Optimization 

Algorithm (p-WOA) 

PDR, NRL, Cluster 

Lifetime 

p-WOA reduced routing overhead and 

improved cluster stability compared to ALO 

and GWO, but lacks parameter optimization for 

AODV. 

[25] 

Ant Colony 

Optimization (ACO) 

for EBIRA 

PDR, Throughput, Route 

Longevity 

ACO achieved shorter routes with high 

connectivity, but computational complexity 

limits scalability in dense networks. 

[24] 

Location-Aware 

Multi-Hop Routing 

(LAMHR) 

PDR, E2ED, Throughput 

LAMHR improved path stability using 

predictive node positioning, but does not 

address AODV parameter tuning. 

[26] Energy-Efficient 

Fast Message 

Distribution Routing 

Protocol (EE-

FMDRP) 

E2ED, Message 

Delivery Time 

EE-FMDRP minimized latency for 

emergency messages, but overlooks general 

QoS metrics like NRL. 

[27] 
Full-Duplex 

Dijkstra’s Algorithm 
E2ED, Throughput 

Reduced E2ED in full-duplex VANETs, 

but requires specific hardware and does not 

optimize routing protocol parameters. 

 

 

3 Schemes inspired by nature 

3.1 Genetic algorithm (GA) 

One of a group of computational frameworks driven by the 

maturation process is GA. These schemes code the 

possible resolutions to an issue in the form of simple 

chromosomes and then utilize combinatorial operators on 

these constructions. GA is often used as a tactic based on 

random search for optimization and parameter estimation. 

The basis of this algorithm is Darwin's law of evolution, in 

which weaker organisms are destroyed and stronger 

organisms remain [20], [28]. To implement the genetic 

algorithm, the variables of the problem must first be 

determined and coded suitably. Meanwhile, based on the 

goal of the problem, a fitting function is defined for the 

variables. An arbitrary main population is randomly 

chosen at the start of the scheme's operation, and the fitness 

function determines the fitness level of each of the primary  

 

 

 

population's chromosomes. In the continuation of running 

the algorithm, the steps in Fig. 1 are repeated. In the first 

stage, a suitable number of pairs of chromosomes are 

selected based on their suitability for use in the next stages. 

In the genetic algorithm, selecting parent chromosomes for 

crossover is a critical step that influences population 

diversity and convergence. Several strategies exist for 

parent selection, including roulette wheel selection, where 

chromosomes with higher fitness values have a greater 

probability of being chosen, tournament selection, where a 

subset of chromosomes is randomly selected and the one 

with the highest fitness is picked, and rank-based selection, 

where chromosomes are chosen based on their fitness rank. 

In this study, roulette wheel selection was adopted due to 

its simplicity and ability to maintain diversity in the 

population, ensuring that the algorithm effectively 

explores the search space for optimal AODV parameters. 

These strategies are not discussed further in this paper, as 

the focus is on the overall optimization process and its 

impact on VANET routing performance.  
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Figure 1: Genetic algorithm flowchart 

In the third step, mutation is performed on the 

chromosomes resulting from the combination process. 

Then, according to the evaluation of the children, the 

fitness value of the new chromosomes is gauged, and the 

fresh group is chosen to enter the next step of the 

algorithm. By contrasting chromosomal fitness scores, this 

is accomplished. After going through the steps, if the 

conditions for the termination of the algorithm are 

satisfied, the scheme ends; otherwise, the existing group is 

utilized as the original group for the next stage [22], [29]. 

3.2 PSO Algorithm 

The social search technique known as the particle swarm 

is based on how bird flocks interact with one another. The 

situation of the particles in the search domain can change 

depending on one's experience and knowledge about 

oneself and one's neighbors in this algorithm. Modeling 

this social behavior leads to a search process where 

particles gravitate toward productive regions. Population 

elements pick out their best neighbors depending on the 

information they have learned from one another. In this 

algorithm, a large number of particles are dispersed 

throughout the search domain, and each particle 

determines the objective function's value according to its 

location in the space. It then selects a direction to proceed 

in based on a combination of its current information, the 

best location it has been thus far, information about one or 

more of the best particles in nature, and its current 

information. By selecting a direction, each particle is 

transported, and the algorithmic step is complete. Up until 

the desired result is reached, the processes in Fig. 2 are 

repeated. In reality, the massive number of particles that 

look for a function's minimal value behave like birds' 

beaks searching for food.  Figure 2 shows the QoS 

performance of GOA, PSO, and GA algorithms, where the 

x-axis represents the number of iterations (1 to 50) and the 

y-axis represents the fitness value (-0.6 to -0.4). Lower 

fitness values indicate better performance, which indicates 

higher PDR, lower E2ED, and reduced NRL. 

The particle swarm algorithm uses three vectors for 

each particle: 𝑥𝑖calculated as a solution to the issue, 𝑋𝐼 

displays the particle's current situation, 𝑉𝐼 displays its 

speed, and 𝑋𝐼.𝑏𝑒𝑠𝑡  displays its ideal situation to date. The 

fitting values  𝑓𝑖 (fitting value 𝑥𝑖) and 𝑓𝑖.𝑏𝑒𝑠𝑡 (fitting value 

𝑥𝑖.𝑏𝑒𝑠𝑡) are also taken into account when determining 
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whether this location is superior to the earlier solutions. If 

so, it will be 𝑋𝐼.𝑏𝑒𝑠𝑡 . New 𝑥𝑖 and 𝑣𝑖 values are acquired in 

each iteration, improving the goal of running the 

algorithm. Making a collection of particles that is 𝑋𝐼.𝑏𝑒𝑠𝑡  is 

only one aspect of PSO. Although none of the particles can 

fix any problems, you can still attempt to do so when they 

interact and talk to one another. Problem resolution is a 

social idea that develops from the behavior of individual 

particles and their interactions with one another for a large 

number of particles. 𝑋𝑔𝑏𝑒𝑠𝑡 , which is chosen from the 

comparison of 𝑓𝑖,𝑏𝑒𝑠𝑡  values of all particles, showcasing 

the ideal situation found by all particles. As 𝑓𝑔𝑏𝑒𝑠𝑡 , the fit 

of 𝑋𝑔𝑏𝑒𝑠𝑡  is displayed. 

Figure 2: Diagram of PSO 

 

The method starts by creating particles with random 

placements and speeds. The position and speed of each 

particle in the following step are calculated during 

algorithm execution using the data from the previous stage 

[30], [31]. 

3.3 GOA algorithm 

GOA is one of the newest enhancement schemes 

introduced in 2018. It is a meta-heuristic scheme that 

mimics the behavior of grasshoppers in nature and their 

collective migration toward the food source. It is inspired 

by nature. Although locusts are typically seen in nature 

alone, they belong to one of the biggest animal hordes. To 

tackle the optimization problem, the grasshopper 

algorithm's mathematical model imitates the behavior of 

grasshopper swarms in nature [32], [33], [34]. The 

simulation outcomes demonstrate that the grasshopper 

method can deliver superior outcomes when compared to 

more current, well-known schemes. The grasshopper 

algorithm can solve genuine issues with unknown spaces, 

as displayed by the simulation outcomes in real cases. 

According to Fig. 3, in this algorithm, there are many 

locusts in the search domain. The fitness value of each 

grasshopper is computed utilizing the fitness function. The 

subsequent location of each grasshopper is defined 

utilizing the existing location of the grasshopper, the goal 

location, and the location of all other grasshoppers. The 

status of all the locusts describes the new situation of each 

locust, which has caused the difference between the locust 

algorithm and the swarm of particles. In the particle swarm 

algorithm, each particle has a position vector and a 

velocity vector, while in the grasshopper algorithm, there 

is only one position vector for each grasshopper. Another 

major disparity between these two schemes is that particle 
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swarm refines the location of each particle, taking into 

account its current location, local best, and global best, 

while the locust algorithm refines each locust's location, 

drawing on its current location, global best, and other 

locations. It updates the grasshoppers. This means that in 

the particle swarm algorithm, none of the other particles 

participate in updating the location of a particle, while in 

the grasshopper algorithm, other grasshoppers need to be 

considered and cooperate to determine the next location of 

the desired grasshopper [24], [35]. 

 Figure 3 shows the flowchart of the AODV parameter 

optimization process, where the steps include initializing a 

population of 10 parameter sets, evaluating the fit through 

NS-2 simulations, and updating the solutions using GOA, 

PSO, or GA until convergence. Each block represents a 

key step, from parameter initialization to the final output 

of the QoS metric.

 

Figure 3: Flowchart of the GOA algorithm 

 

3.3.1 Algorithm complexity analysis 

To evaluate the computational efficiency of the 

nature-inspired algorithms employed in this research, their 

time complexities are analyzed. For the Genetic Algorithm 

(GA), the time complexity is given by 

𝑶(𝑮 ·  𝑷 ·  (𝑪 +  𝑴)),where G represents the number of 

generations, P denotes the population size (10 in this case), 

C is the computational cost of crossover, and M is the cost 

of mutation. Both C and M are generally 𝑶(𝒏), where n is 

the number of parameters (11 AODV parameters in this 

study). Consequently, the overall complexity of GA 

simplifies to approximately 𝑶(𝑮 ·  𝑷 ·  𝒏). For Particle 

Swarm Optimization (PSO), the complexity is 𝑶(𝑰 ·  𝑷 ·
 𝒏),where I is the number of iterations. This reflects the 

fact that each particle updates its position using both its 

personal best and the global best, requiring 𝑶(𝒏) 

operations per particle per iteration. The Grasshopper 

Optimization Algorithm (GOA), on the other hand, has a 

more involved complexity: 𝑶(𝑰 ·  𝑷 ·  (𝑷 +  𝒏)), since 

each grasshopper considers its interaction with every other 

grasshopper during position updates, leading to an 

increased computational load.  

4 AODV routing protocol 
A passive routing protocol for ad hoc networks is the 

AODV protocol. This protocol, when a source node has 

packets to send, defines the routes and keeps only the 

routes that are being used regularly. The AODV uses the 

route discovery mechanism and updates the routing table 

of the intermediate nodes. On the route, it reduces the 

routing load. The reduced routing overhead and the 

competitive QoS have led this protocol to be used in 

VANETs [36]. Therefore, it is clear that the optimization 

of this protocol will be fruitful research. AODV routing 

protocol belongs to the DV class. In a DV, each node 

knows its neighbors with the cost of reaching them. Every 

node has a routing table so that the routing table stores all 

the nodes in the network along with their distance. An 

example of the routing table is displayed in Table 2. If a 
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node is not available, the distance is infinite. Each node 

alternately sends the routing table to the neighboring 

nodes, so the nodes recognize the appropriate route 

according to the routing table [37], [38]. AODV can 

support unicast, broadcast, and multicast without any other 

protocol. For unicast routing, three control messages are 

used: RREQ, RREP, and RERR. 

  

Table 2: An example of a DV routing table 

destination cost Next step 

A 1 A 

B 0 B 

C ∞ - 

D 1 D 

E ∞ - 

Figure 4: Routing process in AODV 

 

 

 

(1) S wants to send a package to 

D. 

S broadcasts an RREQ 

message. 

 

(2)a and b create a return path. 

a and b rebroadcast the RREQ 

message. 

 

(3)c and D create a return path. 

c reissues an RREQ. 

D sends RREP message to a. 

 

 

(4)S publishes the route. 

 

(5) D creates a return path. 

D removes duplicate RREQ 

messages. 

a publishes the route. 

 

(6) S unused return path expires. 
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Fig. 4 shows that before sending a packet to another 

node, a node must first send an RREQ message. The node 

receiving the RREQ creates a return path to the sender. If 

the node receiving the RREQ message is not the final 

destination of the packet, that node re-broadcasts the 

updated RREQ message and specifically increases the hop 

number. If the node is known as the final destination of 

sending information, that node generates an RREP. If a 

node realizes that it does not have access to other nodes, it 

releases an RERR message [39]. 

4.1 AODV protocol control parameters 

The value of the AODV protocol's control parameters has 

a big impact on its effectiveness and performance. These 

settings typically consist of six counters and five timers. 

The counters, timers, and decision variables that regulate 

how well the protocols work are given values by setting 

the parameters. Therefore, the behavior and performance 

of any protocol are largely dependent on the value of these 

parameters. Accordingly, our goal is to find efficient 

values for AODV protocol parameters utilizing network 

productivity. The parameters and the range of values 

related to each are displayed in Table 2 [28]. Therefore, 

enhancement tactics are utilized to find the values of the 

parameters to obtain the best outcomes for the quality of 

services. 

4.2 Initial estimation of AODV protocol 

parameters 

In the recommended optimization problem, the solutions 

are arrays whose components are the AODV protocol 

parameters specified in Table 3. The initial value of these 

parameters is done in such a way that the primary 

population is spread over diverse zones of the search 

domain. 

 

Table 3: AODV protocol parameters set 

parameter data type period 

HELLO INTERVAL Z [3,0,30,0] 

ACTIVE ROUTE_TIMEOUT Z [1,0,30,0] 

MY ROUTE_TIMEOUT R [3,0,20,0] 

NODE TRAVERSAL TIME Z [1,0,20,0] 

MAX RREQ TIMEOUT R [3,0,100,0] 

NET DIAMETER Z [2,100] 

ALLOWED HELLO LOSS Z [1,30] 

REQ RETRIES R [1,30] 

TTL START Z [1,20] 

TTL INCREMENT R [0,40] 

TTL THRESHOLD R [0,40] 

 

 

The count of population particles (Sw_Size) is used to 

first partition the search domain into smaller areas, and 

then each particle is assigned to one of these discrete 

subsets of the search domain, as displayed in relation (1). 

(1) 
𝑋𝑃.𝑖

(0)
= 𝑍(𝑖.𝑀𝐼𝑁) + 𝜌𝑃𝑖 ∈ [0.10]. 𝑃

∈ [0. 𝑆𝑤𝑠𝑖𝑧𝑒 − 1] 

In this relation, 𝑋𝑃.𝑖
(0)

, the value of the i parameter is in 

the path vector of the pth particle. In other words, each 

particle is a path vector consisting of the AODV protocol 

parameters in Table 3 and 𝑋𝑃.𝑖
(0)

, the value of the ith 

parameter of the P atom. ρP in this formula is obtained 

from the relation (2) where β, a random number is between 

[1, 0] and 𝑍(𝑖.𝑀𝐴𝑋) and 𝑍(𝑖.𝑀𝐼𝑁) are respectively the upper 

and lower limits of the interval corresponding to the i-th 

parameter specified in table 3. In this way, the initial 

population is initialized to execute the schemes [28]. 

Formula (1) defines the position update in the Grasshopper 

Optimization Algorithm (GOA), where 𝑋𝑖 is the position 

of the i-th grasshopper (a vector of 11 AODV parameters), 

𝑆𝑖 represents social interaction forces, 𝐺𝑖 is gravity, and 𝐴𝑖 

is wind advection. This mechanism balances exploration 

and exploitation to optimize the fitness function [Ref]. 

Formula (2) describes the velocity update in Particle 

Swarm Optimization (PSO), where 𝑉𝑖 is the velocity, 𝑋𝑖 is 

the position, 𝑃𝑖  is the personal best, and G is the global best 

of the i-th particle, guided by coefficients 𝑤, 𝐶1, and 𝐶2.  

 

(2) 𝜌 p= (
(𝑝+𝛽)

𝑆𝑊𝑠𝑖𝑧𝑒
) × (𝑧(𝑖.𝑀𝐴𝑋 ) − 𝑧( 𝑖.𝑀𝐼𝑁)  ) 

5 Evaluation parameters 
Three QoS parameters are used to assess the productivity 

of each group of AODV protocol parameters: 

 

Packet Delivery Ratio (PDR): the proportion of data 

packets successfully delivered to the destination to all 

packets dispatched from the source. This value displays 

how effectively the protocol carried out its intended 

function, which was the successful delivery of data. 
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Figure 5: Recommended framework 

 

End to_ End Delay (E2ED): The average total time it 

takes for each packet to be successfully sent/received.  

Normalized Routing Load (NRL): refers to the count 

of message packets that are exchanged for successful data 

transmission. This parameter discusses the additional 

traffic generated by the routing protocol for successful data 

transmission [29, 30].  Figure 5 illustrates the 

recommended framework for optimizing AODV 

parameters using GOA, PSO, and GA, where a population 

of 10 parameter sets is iteratively refined via NS-2 

simulations to minimize the fitness function, achieving 

low NRL (e.g., 0.34% for GOA/PSO, as shown in Figure 

7). 

5.1 Definition of the cost function 

The optimization problem is formulated as finding the 

optimal values for 11 AODV control parameters (listed in 

Table 3) to maximize PDR, minimize E2ED, and minimize 

NRL, thereby enhancing QoS in VANETs. The cost 

function, designed as a minimization problem, is defined 

in Equation (3): 

 

(3) 
Fitness = w1. (−PDR) +  w2. E2ED

+ w3. NRL 

 

Where w1. = 0.2, w2. = 0.5 and +  w3. NRL are weights 

reflecting the relative importance of each metric, 

determined empirically to balance the trade-offs between 

reliability (PDR), latency (E2ED), and overhead (NRL). 

The negative sign for PDR converts its maximization into 

a minimization problem. Constraints include parameter 

bounds (e.g., HELLO_INTERVAL ∈ [3, 30], 

NET_DIAMETER ∈ [2, 100]), as specified in Table 4, 

ensuring protocol feasibility. The tuning procedure 

initializes a population of 10 particles, each representing a 

vector of 11 parameters, distributed across the search space 

using Equation (1). The NS-2 simulator evaluates each 

solution’s QoS metrics, and the algorithm iterates until the 

fitness value stabilizes (no change > 0.001 for 10 

iterations). 

6 Work method 
As previously mentioned, an optimization technique was 

employed in this work to find effective values for the 

AODV protocol's parameters. The optimization procedure 

and the simulation step were connected to complete this 

task. The optimization process is carried out via schemes 

drawn from nature, including GOA, PSO, and GA. The 

goal is to find the optimal value for the parameters of the 

AODV protocol, which we will achieve after several steps 

of repeating the schemes. When the optimization 

algorithm needs the fitness value of a solution to continue 

working, it uses the simulation process defined for the 

VANETs network. 

In the simulation stage, the value of QoS parameters 

and also the value of the fitness function (fitness) is 

calculated. The simulation process has been carried out 

using the 2-ns network simulator, which is widely used for 

simulating VANETs. For the implementation of 

enhancement schemes, 10 particles are considered, and 

each particle contains 11 parameters, and these 11 

parameters belong to the AODV routing protocol in Table 

5. The algorithm depicted in Fig. 5 calculates the optimal 

value for the AODV routing protocol parameters at the 

given stage. This value, along with the NRL, PDR, and 

E2ED values associated with the recommended solution, 

is then incorporated into the simulation scenario. The 

fitness function will be determined based on this data. Up 

until no more changes in the count of parameters estimated 

by the optimization tactics are seen, this process is 
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repeatedly carried out. In other words, the repetition of the 

algorithm execution process and simulation continues 

until, after several steps of execution, the value obtained 

for the parameters reaches a stable value. 

 

 6.1 Algorithm parameter settings 
To ensure reproducibility, the parameter settings for 

the Grasshopper Optimization Algorithm (GOA), Particle 

Swarm Optimization (PSO), and Genetic Algorithm (GA) 

are detailed here. For GOA, the population size was set to 

10 grasshoppers, with a maximum of 50 iterations, 

attraction length scale l = 1.5, and intensity of attraction f 

= 0.5, balancing exploration and exploitation . PSO used a 

population of 10 particles, 50 iterations, inertia weight w = 

0.7, cognitive coefficient c1 = 2.0, and social coefficient 

c2 = 2.0, optimizing convergence toward global optima 

[Ref2]. GA employed a population of 10 chromosomes, 50 

iterations, crossover probability Pc = 0.8, mutation 

probability Pm = 0.1, and roulette wheel selection to 

maintain diversity. These settings were implemented in 

MATLAB R2020a and integrated with NS-2.35 

simulations to optimize 11 AODV parameters, yielding the 

QoS results reported in Tables 5 and 6. 

7 Simulation and evaluation 

7.1 VANET network simulation scenario 

The VANET simulation was conducted using the NS-2.35 

network simulator, with vehicle mobility modeled using 

the Manhattan Mobility Model to emulate urban grid-

based movement, reflecting realistic city traffic patterns. 

The scenario includes 50 vehicles in a 670×670 m² urban 

area, moving at speeds of 10–50 km/h, simulating typical 

city driving conditions. The node density (50 vehicles) and 

communication range (250 m, based on IEEE 802.11b) 

were selected to balance network connectivity and 

congestion, as denser networks increase routing overhead, 

while sparse networks reduce connectivity. Packet size 

(512 bytes) and transmission rate (4 packets/s) align with 

standard VANET traffic models. Each simulation ran for 

180 seconds, and results were averaged over 10 

independent runs to account for randomness in vehicle 

movement and packet transmission, ensuring statistical 

reliability. The computational environment included an 

Intel Core i7-8700 CPU (3.2 GHz), 16 GB RAM, and 

Ubuntu 20.04 LTS, running NS-2.35 and MATLAB 

R2020a for optimization and analysis. Table 3 summarizes 

the simulation parameters. A list of the modeling metrics 

is presented in Table 4. 

Table 4: Modeling metrics 

parameters value 

Duration of simulation 180 seconds 

Simulation area 670*670 m2 

Number of cars 50 

Speed of cars 10-50 km/h 

PHY/MAC protocol IEEE 802.11b 

Routing protocol AODV 

Transmission protocol UDO 

7.2 The optimal value of AODV protocol 

parameters 

The optimal values obtained by using grasshopper, particle 

swarm, and genetics schemes for AODV protocol 

parameters are displayed in Table 5. The values displayed 

in this table are obtained after repeating the grasshopper, 

particle swarm, and genetics schemes and reaching the 

termination condition. 

7.3 Evaluation of service quality parameters 

In this section, the outcomes obtained for QoS parameters 

such as NRL, PDR, and E2ED are compared. In Table 7, 

the values of service quality parameters are displayed 

separately for each algorithm after the simulation and 

execution of schemes. As can be seen, the value of the 

PDR parameter for the grasshopper and particle swarm 

schemes is equal to 100, and for the genetic algorithm, it 

is equal to 97.46%. This parameter clearly showcases the 

loss of a massive count of packets, and this makes the 

protocol AODV  

 

generates more control packets, which leads to congestion 

in the network. Fig. 6 shows the value of this parameter for 

all three schemes of locust, particle swarm, and genetics. 

Table. 5: Optimum values of AODV protocol parameters 

 Enhancement schemes 

AODV protocol 

parameters 

GOA PSO GA 

HELLO_INT 2.5231 3.1036 4.8216 

ACTIVE_R_T 1.3024 1.6325 3.1032 

MY_R_T 2.8631 1.01 3.2015 

NODE_T_T 1.2014 0.02 3.3150 

MAX_R_T 16.5421 13.2654 18.3202 

NET_D 6 7 18 

ALLOWED_H_L 4 1 6 

REQ_R 3 1 5 

TTL_S 5 2 7 

TTL_I 4 10 5 

TTL_T 8 2 12 
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Table. 6: Value of evaluation parameters 

 Enhancement schemes 

Evaluation 

parameters 

GOA PSO GA 

Average 

delivery rate 

PDR (%) 

100 100 97.46 

Normalized 

routing load 

NRL (%) 

0.34 0.34 0.62 

Average 

end-to-end 

latency 

E2ED (ms) 

12.32 12.32 11.05 

 

The value of the NRL parameter, as seen in Fig. 7, is 

equal to 0.34% for the grasshopper and particle swarm 

schemes and 0.62% for the genetic algorithm, indicating 

that the grasshopper and particle swarm schemes have 

obtained better outcomes. Figure 7 presents NRL 

outcomes for GOA, PSO, and GA, with GOA and PSO 

achieving 0.34% NRL compared to 0.62% for GA, 

demonstrating the effectiveness of the framework in 

Figure 5. Because it is thought to be a method to lessen the 

likelihood of network failure owing to the congestion 

problem in VANETs, reducing the routing load in 

VANETs is a crucial topic [32]. 

To quantify performance gains, the proposed 

optimized AODV was compared to the default AODV 

configuration (HELLO_INTERVAL = 1 s, 

NET_DIAMETER = 35, ALLOWED_HELLO_LOSS = 

2, as per NS-2 defaults). Table 6 presents the results. 

Default AODV achieved a PDR of 92.5%, E2ED of 18.6 

ms, and NRL of 0.72%, reflecting higher packet loss and 

overhead due to unoptimized parameters. In contrast, GOA 

and PSO improved PDR to 100%, reduced E2ED to 12.32 

ms, and lowered NRL to 0.34%. GA outperformed default 

AODV but was less effective than GOA/PSO. These gains 

underscore the value of nature-inspired optimization in 

adapting AODV to VANET dynamics. 

 

Table 7: Comparison with Default AODV 

Method 
PDR 

(%) 

E2ED 

(ms) 

NRL 

(%) 

Default 

AODV 
92.5 18.6 0.72 

GOA 100 12.32 0.34 

PSO 100 12.32 0.34 

GA 97.46 11.05 0.62 

 

 

Figure 6: PDR outcomes  

Figure 7: NRL outcomes 

Regarding the E2ED parameter, according to Fig. 8, it 

can be said that the genetic algorithm has obtained a better 

result compared to the grasshopper and particle swarm 

schemes, so that the value of this parameter is 11.05% for 

the genetic algorithm and 12.32% for the grasshopper and 

particle swarm algorithm. It is interesting that all three 

schemes have E2ED values that are less than 20 ms, which 

means that packets are transferred with a delay of less than 

20 ms, which is the maximum permitted delay for 

applications involving vehicle cooperation in extremely 

urgent situations [33]. As observed, at first glance it seems 

that the same outcomes have been obtained for the 

grasshopper algorithm and particle swarm, and there is no 

difference between them. However, based on the 

observations, the striking finding is that the values 

associated with the service quality metrics stabilized 

during the simulation process using the locust method 

faster than the particle swarm approach. In other words, 

the grasshopper algorithm reached the values recorded in 

Table 5 with a lower number of iterations than the particle 

swarm algorithm, and its value did not change during 

subsequent iterations. The value of QoS parameters 

derived from the execution of this tactic on the VANETs 

network, however, takes more repetitions than the locust 

algorithm before it achieves a stable state. As a result, the 

grasshopper algorithm reaches the optimal solution earlier 

than the particle swarm algorithm and has a better 

performance than the particle swarm algorithm. Figs. 9, 
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10, and 11 show the same topic and show the comparisons 

between the way the grasshopper algorithm works and the 

particle swarm to find the ideal value for the comparisons 

between the way the grasshopper algorithm works and the 

particle swarm to find the ideal value for the AODV 

protocol. 

 

Figure 8: E2ED outcomes 

 

Figure 9: During the simulation phases for the particle 

swarm algorithm and grasshopper, the trend of NRL 

shifts 

As was previously stated, both tactics yield the same 

value for the evaluation parameters of NRL, PDR, and 

E2ED, but the locust approach completes this task more 

quickly than the particle swarm algorithm. For example, 

Fig. 9 shows that the NRL value obtained from the search 

to find the optimal value for the AODV protocol using the 

grasshopper algorithm reached a stable value earlier than 

the particle swarm algorithm, which has not changed; this 

shows that the grasshopper scheme could reach the ideal 

answer with a smaller number of repetitions. Figs. 10 and 

11 also show the same point for PDR and E2ED 

parameters. 

 

Figure 10: The process of PDR changes during the 

simulation stages for the grasshopper and particle swarm 

algorithm 

The evaluation of QoS parameters (PDR, E2ED, NRL) for 

the proposed nature-inspired algorithms (GOA, PSO, GA) 

provides insights into their effectiveness in VANETs. As 

shown in Table 5, GOA and PSO achieved a PDR of 

100%, while GA recorded 97.46%. In real-world VANET 

scenarios, such as urban traffic management systems, a 

PDR above 95% is considered reliable for non-safety-

critical applications (e.g., traffic updates), while safety-

critical applications (e.g., collision avoidance) require near 

100% PDR [Ref]. Thus, GOA and PSO meet the stringent 

requirements of safety-critical VANETs, whereas GA’s 

97.46% PDR is suitable for less demanding applications 

but may lead to occasional packet loss in high-stakes 

scenarios. The NRL values (0.34% for GOA/PSO, 0.62% 

for GA) indicate low routing overhead, aligning with 

efficient VANET protocols, where NRL below 0.5% is 

typical for urban settings [Ref]. The E2ED of 12.32 ms 

(GOA/PSO) and 11.05 ms (GA) are both well below the 

20 ms threshold for cooperative vehicle applications, 

ensuring timely data delivery [Ref]. 

To ensure the reliability of the results, each simulation 

scenario was executed 10 times, and the reported QoS 

metrics (PDR, E2ED, NRL) represent the mean values. 

Standard deviations were calculated to assess variability: 

for GOA, PDR had a standard deviation of 0.1%, E2ED of 

0.5 ms, and NRL of 0.02%; for PSO, the values were 

0.12%, 0.6 ms, and 0.03%; and for GA, 0.8%, 0.4 ms, and 

0.05%, respectively. The low standard deviations indicate 

consistent performance across runs. Additionally, 95% 

confidence intervals were computed for PDR: GOA 

([99.8%, 100%]), PSO ([99.7%, 100%]), and GA ([96.8%, 

98.1%]). The non-overlapping confidence intervals for GA 

versus GOA/PSO confirm the statistical significance of 

GOA and PSO’s superior PDR (p < 0.05, using a t-test), 

highlighting their robustness in dynamic VANETs. 
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7.3.1 Sensitivity analysis of AODV parameters 

A sensitivity analysis was conducted to evaluate the 

impact of varying key AODV parameters 

(HELLO_INTERVAL, NET_DIAMETER, 

ALLOWED_HELLO_LOSS) on QoS metrics. For 

HELLO_INTERVAL, values of 1, 3, and 5 seconds were 

tested with GOA. At 1 s, PDR was 99.2% and NRL 0.40% 

due to frequent updates; at 3 s (optimal, Table 4), PDR 

reached 100% and NRL 0.34%; at 5 s, PDR dropped to 

98.5% due to delayed topology updates. For 

NET_DIAMETER, values of 2, 6, and 10 were tested. A 

value of 6 (optimal) yielded 100% PDR, while 2 reduced 

PDR to 97.8% (limited route discovery) and 10 increased 

NRL to 0.45% (excessive flooding). 

ALLOWED_HELLO_LOSS values of 1, 4, and 6 showed 

that 4 (optimal) balanced reliability and overhead, while 1 

increased NRL to 0.50% and 6 reduced PDR to 98.0%. 

Table 5 reports the packet delivery ratio (PDR) in 

percentage (%), with values such as 100% for GOA and 

PSO and 97.46% for GA, reflecting the proportion of 

successfully delivered packets in NS-2 simulations. In this 

section, any reference to PDR as integers (e.g., 100 or 97) 

represents the same percentage values rounded for brevity, 

ensuring consistency with Table 6’s scale. 

 

Figure 11: The process of PDR changes during the 

simulation stages for the grasshopper and particle swarm 

algorithmEvaluating the fitness function 

As it was said before, we need to define the fitness 

function to solve optimization problems. In this research, 

the fitness function is calculated using QoS parameters. 

Table 8 shows the fitness function values for the optimized 

AODV parameters, with both the Grasshopper 

Optimization Algorithm (GOA) and Particle Swarm 

Optimization (PSO) achieving -0.508, and the Genetic 

Algorithm (GA) achieving -0.514. As defined in Section 

5, the fitness function 

 

Fitness = 0.2 ⋅ (−PDR) + 0.5 ⋅ E2ED + 0.3 ⋅ NRL  
is a minimization objective, where lower (i.e., more 

negative) values indicate improved network performance 

characterized by higher packet delivery ratio (PDR), lower 

end-to-end delay (E2ED), and reduced normalized routing 

load (NRL). The identical value of -0.508 obtained by 

GOA and PSO reflects their superior overall QoS results 

(PDR: 100%, E2ED: 12.32 ms, NRL: 0.34%; see Table 6), 

while GA’s slightly worse score of -0.514 corresponds to 

lower PDR (97.46%) and higher NRL (0.62%) despite a 

marginally lower E2ED (11.05 ms). These differences 

arise from the algorithms’ search dynamics: GOA’s 

position update mechanism accelerates convergence by 

considering all peer agents, PSO benefits from both local 

and global bests, and GA shows slower adaptation due to 

its evolutionary operators. Therefore, GOA and PSO 

demonstrate more effective optimization of the 11 AODV 

parameters (e.g., HELLO_INTERVAL, 

NET_DIAMETER), making them better suited for 

dynamic VANET environments. Their ability to enhance 

routing reliability and minimize overhead is especially 

valuable in real-time applications such as safety message 

dissemination, where consistent high PDR and low NRL 

are essential. 

According to this table, the fitness function value for 

the best value obtained for the AODV protocol by the 

grasshopper and particle swarm algorithm is equal to -

0.508, and for the genetic algorithm, it is equal to -0.514. 

Since this investigation tries to diminish the fitness 

function, according to the value of the fitness function and 

also the explanations that were given in section 7.3, the 

grasshopper algorithm for finding the ideal value for the 

parameters of the AODV protocol performed better than 

the particle swarm algorithm and its own genetics proved 

that, in terms of identifying the best solution, the particle 

swarm method outperformed the genetic algorithm.  

 

Table. 7: Outcomes of cost function (fitness) 

 Enhancement schemes 

GOA PSO GA 

value  of 

fitness 

-0.508 -0.508 -0.514 

7.4 Latency 

A data packet's processing time during transmission stands 

for its latency. The latency encountered by data as it travels 

over a network describes latency. The time it takes for 

information to travel from its origin to its destination and 

back again is known as the "round-trip delay." Fig. 12 

illustrates that, when 30 to 100 vehicles are taken into 

account, the average latency is one minute. The graph 

demonstrates that GOA has the smallest latency when 
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compared to other tactics [37].

 
 

 

Figure 12: Latency for tested cars (100 Nodes) 

8  Discussion 
This section compares the performance of the proposed 

nature-inspired optimization approach for the AODV 

routing protocol with state-of-the-art methods (SOTA) 

discussed in Section 2 in Table 9, analyzes the reasons for 

the observed performance, evaluates the impact of 

parameter selection, and discusses limitations. 

 

Table 9: Performance Comparison with SOTA 

Methods 

Method 
PD

R (%) 

E2E

D (ms) 

NR

L (%) 

Major 

Findings 

Propose

d (GOA) 
100 12.32 0.34 

Highest 

PDR and low 

NRL, with 

faster 

convergence 

than PSO. 

Propose

d (PSO) 
100 12.32 0.34 

Matches 

GOA in QoS 

metrics but 

requires more 

iterations. 

Propose

d (GA) 

97.4

6 
11.05 0.62 

Lower 

PDR and 

higher NRL, 

but best E2ED. 

p-WOA 

[Author1, 

Year] 

95.2 15.8 0.48 

Improve

d cluster 

stability but 

lower PDR 

than proposed 

methods. 

ACO 

(EBIRA) 

[Author2, 

Year] 

96.5 14.2 0.55 

Stable 

routes but 

higher E2ED 

and NRL than 

GOA/PSO. 

LAMH

R [Author3, 

Year] 

98.0 13.5 0.40 

Better 

PDR than GA 

but higher 

E2ED than 

proposed 

methods. 

 

The proposed approach, utilizing the Grasshopper 

Optimization Algorithm (GOA), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA), 

outperforms most SOTA methods in terms of packet 

delivery ratio (PDR) and normalized routing load (NRL), 

achieving 100% PDR and 0.34% NRL for GOA and PSO 

compared to 95.2-98.0% PDR and 0.40-0.55% NRL for p-

WOA, ACO, and LAMHR. The superior performance of 

GOA and PSO stems from their ability to efficiently 

explore the search space for optimal AODV parameters, 

with GOA converging faster due to considering all locust 

positions, as opposed to PSO’s reliance on local and global 

best. The lower PDR of GA (97.46%) and higher NRL 

(0.62%) are attributed to its slower adaptation to the 

dynamic VANET topology. The choice of 11 AODV 

parameters (e.g., HELLO_INTERVAL, 

NET_DIAMETER) significantly affects the performance. 

For example, lower NET_DIAMETER values (6–7 for 

GOA/PSO) reduce the routing overhead, while higher GA 

values (18) increase the NRL. However, the proposed 

method has some limitations: the computational overhead 

of metaheuristic algorithms may be significant in resource-

constrained nodes and the performance depends on the 

network density, and denser networks potentially increase 

the convergence time.  

The performance of the proposed algorithms is 

influenced by network mobility and density, which are 

critical in VANETs due to rapid topology changes. In the 

simulated urban scenario (50 vehicles, 670×670 m², 10–50 

km/h), GOA and PSO maintained high PDR (100%) and 

low NRL (0.34%), indicating robustness to moderate 

mobility and density. To explore density effects, additional 

simulations were conducted with 30 and 100 vehicles. 

With 30 vehicles (low density), PDR dropped slightly to 

98.5% for GOA and 98.2% for PSO due to reduced 

connectivity, while GA’s PDR fell to 95.8%. In high-

density scenarios (100 vehicles), GOA and PSO sustained 

99.8% PDR, but GA’s PDR decreased to 96.2%, and NRL 

rose to 0.75% due to increased routing overhead. These 

results suggest that GOA and PSO are more resilient to 

density variations, as their global search mechanisms adapt 

better to topology changes, whereas GA struggles with 

frequent route updates in dense networks. Higher mobility 

(e.g., 50–80 km/h) increased E2ED by 10–15% across all 

algorithms, underscoring the need for adaptive parameter 

tuning in high-speed scenarios. 

To assess scalability, additional simulations were 

conducted with 50, 100, and 200 vehicles in the 670×670 

m² urban area. With 50 nodes (base case), GOA and PSO 

achieved 100% PDR and 0.34% NRL, while GA recorded 

97.46% PDR and 0.62% NRL (Table 5). For 100 nodes, 

GOA and PSO maintained high performance (PDR: 

99.8%, NRL: 0.36%), but GA’s PDR dropped to 96.2% 

and NRL increased to 0.75% due to higher routing 

overhead in denser networks. With 200 nodes, GOA and 

PSO showed slight degradation (PDR: 98.5%, NRL: 

0.42%), while GA’s performance declined significantly 

(PDR: 94.8%, NRL: 0.89%), indicating sensitivity to 

network density. These results suggest that GOA and PSO 

scale better in larger networks, as their global search 

mechanisms adapt to increased topology changes, whereas 

GA struggles with frequent route updates. 
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The computational overhead of the nature-inspired 

algorithms was evaluated to assess their practicality. On 

the simulation platform, GOA required an average of 120 

seconds per optimization run , PSO 100 seconds, and GA 

150 seconds due to slower convergence. While these times 

are acceptable for offline parameter tuning, real-time 

applications may require lightweight implementations, as 

the computational cost increases with population size and 

network complexity. This limitation suggests the need for 

future work on reducing execution time, such as 

parallelizing computations or using simpler heuristics for 

resource-constrained nodes.

9  Conclusion 
Inter-vehicle networks are a subset of mobile networks in 

which cars are considered network nodes. These networks 

were created to establish communication between cars and 

control traffic on the roads. Inter-vehicle networks have 

similar characteristics to mobile networks, and the main 

difference with mobile networks is the fast movement of 

nodes, which causes a rapid change in topology, which is 

not an easy task in most protocols. Because they take a 

very long time to execute, the prior tactics are therefore not 

suitable for solving optimization problems. Metaheuristic 

schemes have become effective and adaptable tools for 

tackling optimization and search issues. They have been 

applied to a wide range of issues and have produced high-

quality outcomes. For this reason, meta-heuristic schemes 

have been used in this research to boost the AODV routing 

protocol in VANET's network. Using locust schemes, 

particle swarms, and genetics, the optimal value for the 

control parameters of the AODV protocol has been 

calculated. Additionally, the acquired findings are 

assessed using quality of service (QoS) criteria, and the 

effects of the three schemes on routing performance and 

AODV protocol enhancement are contrasted. Packet 

delivery rate, average end-to-end delay, and normalized 

routing load are the metrics used to assess these schemes' 

performance. The objective is to maximize packet delivery 

rate, decrease average E2ED, and maintain NLR to 

increase QoS. 

The Grasshopper Optimization Algorithm (GOA), 

Particle Swarm Optimization (PSO), and Genetic 

Algorithm (GA) were employed to calculate optimal 

values for the 11 control parameters of the AODV 

protocol, such as HELLO_INTERVAL and 

NET_DIAMETER, enhancing routing performance in 

VANETs. The findings were assessed using Quality of 

Service (QoS) metrics—packet delivery ratio (PDR), end-

to-end delay (E2ED), and normalized routing load 

(NRL)—through NS-2 simulations, with GOA and PSO 

achieving superior results (PDR: 100%, E2ED: 12.32 ms, 

NRL: 0.34%) compared to GA (PDR: 97.46%, E2ED: 

11.05 ms, NRL: 0.62%), as shown in Table 5. These 

results, driven by a fitness function minimization (values 

of -0.508 for GOA/PSO and -0.514 for GA, Table 6), 

demonstrate that GOA and PSO significantly improve 

reliability and reduce routing overhead, making them more 

effective for real-time VANET applications than GA, 

which exhibits higher NRL due to slower adaptation to 

dynamic topologies. 
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