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Cloud infrastructures are increasingly subject to performance and environmental requirements,
particularly in large data centers with substantial energy expenditures. This paper addresses the issue of
energy-aware quality of service (QoS) guaranteed resource allocation and presents an original two-tiered
resource allocation scheme based on a Green Management Module (GMM) and a Spider Wasp Optimizer
(SWO)-driven Cloud Management Module (CMM). The CMM pre-filters candidate resources based on
the latest measurements beforehand, and the GMM selects the optimal resource, aided by the SWO, to
inform the allocation decision. Experimental results show that the scheme reduces service response time
and energy consumption by 25% and 26% compared to baseline schemes such as dynamic VM
provisioning and VM allocation policies. The scheme presents an energy-aware and scalable design with
tremendous prospects for optimizing resource use in existing clouds.

Povzetek: Clanek predstavi dvostopenjski, na energijo obéutljiv okvir razporejanja virov (CMM~+GMM)
z metaheuristiko Spider Wasp Optimizer, ki v simulacijah skrajSa odzivni cas in porabo energije v

oblacnih podatkovnih centrih.

1 Introduction

1.1 Context

Computers and cell phones have proliferated worldwide
over the last two decades. Due to this, competition among
companies has also increased, and more emphasis has
been placed on expanding into new geographical
territories to ensure sustainable profitability [1]. To
effectively adapt to these changing demands and achieve
optimal operational efficiency, improvements in resource
utilization are necessary [2]. Cloud computing offers
consumers a diverse set of unlimited computing resources
tailored to their individual needs. These are accessed
instantly at any time and from any location. This is
achieved by a pay-per-use system where customers are
only charged for the services they actively use [3]. Recent
advancements in related domains, such as the use of
machine learning for analyzing economic factors [4],
optimal allocation strategies for energy and infrastructure
in microgrids [5, 6], and intelligent security systems for
dynamic network environments [7], highlight the potential
of computational intelligence in addressing complex
operational challenges. These developments collectively
demonstrate how optimization, predictive analytics, and
adaptive control can be integrated into cloud-based
solutions to improve efficiency, security, and
sustainability.

The cloud provides resources with consolidated horizontal
and vertical scaling, as well as flexible or elastic functions,
which prevent businesses from paying for resources that
are not being used. Additionally, the flexibility and
scalability of cloud services enable companies to quickly
adapt to changes in market demand [8]. Such agility will
foster improved innovation and competitive advantages.
Central management of cloud infrastructure makes cloud
infrastructure provision easier [9]. Both cloud service
providers and customers can manage resources more
effectively by adopting virtualization technology and
implementing dynamic resource scheduling strategies
[10].

1.2 Problem statement

Efficient resource allocation would minimize job
execution time, maximize resource utilization, and reduce
resource consumption. The task scheduling aspect has
been considered paramount in cloud data centers to
mitigate resource constraints resulting from increased
workload [11]. The allocation of tasks to cloud resources
to meet scheduling objectives and optimize QoS metrics
remains a complex and evolving challenge in cloud
computing. Recent research [12, 13] further investigates
this aspect, highlighting the challenges of balancing cost,
energy efficiency, Service Level Agreement (SLA)
satisfaction, and dynamic workload variability. The
primary scheduling issue is determining the right resource
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to accomplish tasks. Scheduling algorithms can enhance
most of the QoS factors, namely, execution cost, energy
consumption, reliability, task rejection rate, and resource
efficiency. At the same time, it guarantees compliance
with SLAs while considering constraints such as
deadlines, priorities, and the need to resolve load
imbalance issues affecting overused and underutilized
resources [14].

The growth of cloud computing infrastructure and the
expansion of data centers over the past few years
underscore the importance of energy conservation in cloud
computing environments [15]. As is well known, data
centers consume a substantial amount of energy, resulting
in increased operational costs and environmental damage
[16].

Energy consumption in cloud data centers has become
a critical concern due to its economic and environmental
impact. As cloud services scale globally, data centers are
consuming increasingly large amounts of electricity,
estimated to account for nearly 1% of global electricity
demand [17]. Not only does it result in exceedingly high
cloud operation expenses, but it is also a significant
contributor to carbon emissions and climate change.
According to [18], unsustainable energy consumption in
data centers negates the goals of green IT and necessitates
effective allocative efficiency mechanisms. Therefore, it
is needed to develop QoS-aware and energy-saving

resource allocation systems to achieve scalable,
affordable, and environmentally friendly cloud
infrastructure.

1.3 Contribution

This paper proposes an innovative resource allocation
approach to maximize energy savings in cloud computing
settings. It combines two modules, namely green
management and cloud management. The first module
finds appropriate resources from the existing pool. In
contrast, the subsequent module further narrows down this
selection to establish the most efficient allocation of
resources in terms of power consumption. The proposed
method significantly reduces average service response
time using this two-tiered approach. This research makes
several contributions to the field.

e Enhancing server status analysis efficiency by
grouping cloud servers based on their geographical
proximity;

e Optimizing service provisioning time by assigning
the most suitable servers, taking into account
multiple parameters;

e Promoting energy efficiency by allocating the most
appropriate cloud server for each task;

e Leveraging metaheuristic algorithms to select
appropriate cloud resources effectively.

To guide this study, we formulated the following
research questions:

e Can a two-tier resource allocation framework
improve both energy efficiency and QoS in cloud
computing environments?
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e Does the Spider Wasp Optimizer (SWO) outperform
traditional metaheuristic algorithms in optimizing
energy-aware resource allocation?

Correspondingly, we test the following hypotheses:

e The proposed two-tier framework significantly
reduces average service response time compared to
baseline methods.

e The SWO algorithm yields superior energy-saving
performance by achieving more efficient resource
utilization than existing.

While this research focuses on improving energy
efficiency and service responsiveness, two of the most
pressing challenges in cloud computing, it is essential to
acknowledge that resource allocation can also pursue
additional objectives. These include cost reduction, fault
tolerance, security, scalability, and load adaptability, all of
which are critical depending on the application context.
Although these goals fall outside the scope of this study,
the proposed method could be extended in future work to
incorporate multi-objective optimization frameworks that
address such concerns in parallel with energy and QoS
goals.

2 Related work

As highlighted in Table 1, energy consumption and
resource allocation in cloud computing have made
significant advancements. Various approaches have been
proposed to minimize energy consumption and optimize
resource usage.

Nguyen and Cheriet [19] introduced an
environmentally conscious virtual slice framework that
increases energy efficiency while accounting for the
intermittent nature of renewable energy sources. Virtual
Machine (VM) deployment and traffic management
within a virtual data center are optimized based on traffic
volume, VM placement, bandwidth, and available
renewable energy resources. A solution to the virtual slice
allocation problem was developed by studying various
cloud consolidation strategies. Based on simulations of the
GSN network, it was found that the model is better at
reducing the network footprint than existing methods.

Yang, et al. [20] have developed an efficient and

environmentally  friendly  virtual data  center
framework and  introduced two  energy-efficient
embedding algorithms. To evaluate the proposed

algorithms, extensive simulations were performed across
network scales and topologies. Compared with current
embedding techniques, the adoption rates of virtual data
centers, the long-term revenue of cloud service providers,
energy consumption in low-utilization environments, and
revenue generation in high-utilization cloud data centers
were analyzed.

Khosravi, et al. [21] modeled the total energy cost by
combining the server's direct energy consumption with the
PUE-based overhead, considering the IT load and outside
temperature. The model also finds integrating renewable
energy sources into data center locations, reducing
dependence on traditional, carbon-intensive grid power.
By comparing various VM placement strategies,
researchers determined important parameters influencing
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total energy consumption (renewable and non-renewable),
emissions, and costs. The study verifies the supremacy of
a method that considers dynamic overall energy
consumption, available renewable energy, and PUE while
ensuring service level agreements.

Wu, et al. [22] developed a novel two-stage adaptive
VM workload prediction model that exploits the inherent
regularity of command-line applications. This model
enables elastic allocation of CPU and memory resources
for VMs. Departing from the ordinary time series
forecasting, natural language processing extracts and
handles  feature attributes from  command-line
applications, aided by feature reduction through gray
relational analysis. The prediction model uses a Bayesian
classifier to identify applications that incur significant
CPU increases and an adaptive neuro-fuzzy inference
system to predict CPU and memory intensity. The elastic
resource provisioning strategy was proved and tested
through detailed experiments, which confirmed the
successful completion of VM performance and resource
efficiency with the scheme.

Al-Wesabi, et al. [23] presented a hybrid meta-
heuristic approach for optimizing resource allocation and
energy efficiency in the cloud computing context. Their
methodology begins with extracting relevant features
from the customer's task requirements, followed by
dimensionality reduction using principal component
analysis. The range of function outputs shows the optimal
resource allocation. The core of their solution is the hybrid
algorithm, developed based on Group Teaching
Optimization (GTO) and Rat Swarm Optimization (RSO)
algorithms. The hybrid scheme optimizes the resource
allocation between the VMs in the cloud data center. The
improved performance of the proposed model was
demonstrated through rigorous simulation, conducted
with the aid of the CloudSim simulator, across various
performance indicators.
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Tai, et al. [24] developed an original approach to
increase resource allocation and energy efficiency in
heterogeneous data centers within the vision of Green IT.
Their procedure involves modeling energy consumption
over time, inter-task dependency, and data backup
necessity. Framing the issue as an energy conservation
problem that is nonlinear and complex, the researchers
employed mathematical programming and Lagrangian
relaxation to formulate an energy conservation solution.
The procedure optimally allocates computational
resources, schedules tasks, and reduces energy
consumption, with the advantage of achieving highly
achievable performance levels in cloud data centers.

Sharma and Rawat [25] developed a novel hybrid
approach by coupling the Spotted Hyena Optimizer (SHO)
and an Avrtificial Neural Network (ANN) to address the
problem of VM allocation. The new method was validated
with the most significant performance indicators, which
included migration number, SLA violation, execution
times, resource consumption, and energy consumption.
The SHO algorithm was employed to generate an overall
dataset, thereby enhancing the accuracy of the ANN
model. The hybrid scheme demonstrated improved
convergence and global optimality compared to IgMc,
SHO, and Genetic algorithms under real and simulated
workload behavior.

Gurusamy and Selvaraj [26] introduced a novel
framework: resource allocation in cloud computing with a
multi-level auto-associative polynomial convolutional
neural network. The approach combines Starling
Murmuration Optimizer (SMO)-inspired short-term
scheduling with the objective of reduced makespan and
optimized throughput. Resource management is carried
out using a HAPCNN (Hierarchical Auto-Associative
Polynomial Convolutional Neural Network) module,
taking into account bandwidth and resource loading
limitations. Data privacy is ensured with Fractional
Discrete Meixner Moments Encryption (FDMME).

Table 1: Previous research on energy-efficient resource allocation in cloud computing

Study Algorithm Optimization goals Computational ~ Key outcomes Comparison with the proposed
type overhead method
[19] Heuristic Energy efficiency Medium Reduces  network No hierarchical optimization;
(using  renewable footprint less responsive to real-time load
energy)
[20] Heuristic Energy usage, High Better embedding in  Not metaheuristic; lacks fine-
revenue, and VDCs grained optimization
adoption rate
[21] Analytical Energy + carbon cost Medium Accounts for PUE Requires real-time
model and renewables environmental data integration
[22] Hybrid NLP VM  performance High Elastic VM High complexity, no focus on
+ ANFIS) and resource use allocation metaheuristics
[23] Metaheuristic Resource allocation Medium Validated via Does not integrate real-time
(GTO + and energy CloudSim queue and location metrics
RSO) efficiency
[24] Mathematical ~Scheduling + energy  High Green-aware  task More static and centralized vs.
programming  use allocation dynamic SWO
[25] Metaheuristic =~ VM allocation, SLA, Medium Improved Relies on extensive ANN
+ANN and energy usage convergence training data
[26] CNN+SMO Resource utilization Very High Strong security and High computational cost and
and task scheduling good throughput complexity
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Proposed Metaheuristic Response time, Low 25% | in response Two-tiered,  scalable, low-
energy usage, and time and 26% | in overhead solution with real-time
resource utilization energy use adaptation
While the available work has made immense and overload, thereby reducing energy consumption. Our

contributions to energy-efficient VM placement and green
cloud policies, there are still some gaps. Most approaches
employ non-scalable hierarchical decision hierarchies or
static/algebraically tuned algorithms that may converge
too abruptly or exhibit inefficient load balancing.
Additionally, very few integrate geo-awareness, online
queue behavior, and adaptive metaheuristics under the
same umbrella. Through the implementation of the two-
tier hierarchical structure (CMM-GMM) along with the
introduction of the SWO, the proposed approach
eliminates the loopholes in achieving optimal QoS and
optimal energy consumption.

3 Proposed resource allocation

strategy

This section describes a novel resource provisioning
method designed to achieve maximum energy efficiency
and QoS levels in cloud environments. The intensified
environmental crisis, primarily caused by human-made
processes and technological advancements, demands
sustainable and feasible solutions. Even as cloud
computing provides unique efficiency and scalability, it
has inadvertently contributed to the carbon footprint by
increasing the number of data centers. Given this reality,
it is imperative to devise carbon-cutting methods to offset
environmental destruction caused by cloud computing.
Energy efficiency in cloud computing requires the
optimal allocation of resources. When resources are
allocated effectively, service requests can be fulfilled
promptly while minimizing energy consumption. Load
balancing between cloud servers reduces underutilization

research utilizes SWO to determine the optimal resource
configurations based on the utility level.

Here, the utility level is an application-independent
indicator of the volume of resource utilization, calculated
from the readings of the CPU, memory, and the number of
active tasks for each interval. Utility level is an abstract
representation of the amount of resource utilization, with
no dependency on the type of application or the
application's semantics being executed on the VM. This
enables the SWO algorithm of the GMM to optimize
resource provisioning based on the observable level of the
system's  performance and non-application-centric
information, while maintaining a general and flexible
architecture design.

SWO was selected due to its hunting- and escape-
inspiration adaptive mechanism, offering the best
compromise between exploration and exploitation in
complex search spaces. Relative to Particle Swarm
Optimization (PSO), which is subject to the chance of
premature convergence in multimodal areas, and Ant
Colony Optimization (ACO), which is underpinned by
stochastic path dependency and pheromone updating with
the potential to become prohibitively costly, the
biologically rooted nest and mating phases of SWO enable
more stable diversification of solution and management of
convergence. Both global and fine-grained resource
configuration refinement is offered, which is necessary in
dynamic clouds.

As shown in Figure 1, to facilitate effective resource
allocation and sustainable environments, a two-level
architecture is proposed that comprises a Green
Management Module (GMM) and a Cloud Management

________ Obtaining Submission of .
: services service requests
I
: [ e | Cloud users
I
| '
I
i
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' to the GMM service requirements multiple parameters
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1
[}
I
I
I
|
L GMM

Figure 1: Two-tier architecture for energy-efficient cloud resource allocation
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Module (CMM). The GMM maintains a global snapshot
of locations and execution states for cloud data centers,
while the CMM facilitates the balanced distribution of
service requests across available resources.

The CMM serves as a management layer responsible
for monitoring available system resources. The CMM
optimizes VM placement and resource selection based on
measurable system indicators (e.g., queue length, service
response time, distance), without requiring visibility into
the internal behavior of VM workloads. A cloud data
center, a fundamental part of the infrastructure, consists of
multiple cloud servers, each of which can host multiple
VMs. Equations 1-3 define distinct identifiers for VMs,
servers, and data centers.

VM = {vmy,vm,, ..., vm,} €))
CS = {csy,¢S3, ., CSp } (2)
CDC = {cdcy,cdc,, ..., cdcy,} 3)

A VM is explicitly named vm™, indicating its
association with the cloud server instance cs;. This
nomenclature enables efficient VM identification and
management. The CMM maintains a comprehensive
database containing details of all cloud data centers,
servers, and VMs. This repository includes attributes such
as geographical coordinates, queue length, average service
response time, service type, and capacities. Dynamic
metrics, such as queue length and response time, are
updated in real-time within the CMM to reflect system
changes.

The system's workload mainly consists of VM
requests initiated by cloud users. The CMM optimizes VM
placement and resource allocation without requiring
knowledge of the specific applications running in the
VMs. Nevertheless, each VM is assumed to operate at
maximum capacity and fully utilize the allocated
computing resources.

To enhance the QoS of the system, the queue length
and service response time are integrated. The overall
response time is calculated according to the estimated
average duration between consecutive  service
completions, as defined in Eq. 4, where SR;;,,. represents
the service response time, n refers to the overall number
of tasks processed by a particular VM, and SQ;;,. denotes
the time taken to complete the service request. Ideally,
response time should be minimized to ensure optimal
performance. Eq. 5 shows the queue length dynamically
adjusted by increasing upon new requests and decreasing
upon service completion.

?zl(SRtime - SQtime)

ASRiime = 4
tme ™ Total handled services @

_ {New service request: QL + 1 5
QL = Responded service: QL — 1 ©)

The CMM prioritizes the selection of machines for
incoming service requests based on queue length,
response time, and geographical distance. The module
selects the potential hosts and sends the most appropriate
choices to the GMM for further processing.

The GMM's task is to identify the optimum VM to
handle service requests. The CMM submits a list of
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probable candidates to the GMM, and the SWO algorithm
determines the best machine from the list. SWO is a
metaheuristic algorithm inspired by the hunting, nesting,
and parasitic behavior of particular wasp species. The
algorithm's basic principles are based on observing female
spider wasps that search for, paralyze, and transport
spiders to their nests, ultimately laying an egg in the
paralyzed prey.

The SWO algorithm initiates the simulation by
placing a population of randomly distributed virtual wasps
in the search region, thereby modeling the foraging
behavior of wasps in their surroundings. The virtual wasps
search in a manner analogous to wasp foraging behavior
for optimal solutions to problems. When an effective
solution is encountered, the algorithm replicates the
wasp's capturing and carrying away of their catches
through adjusting the solution according to predetermined
rules. The essential behavioral components for the SWO
algorithm are as follows:

e Searching: Simulates the wasp's initial exploration of
the environment to locate potential solutions.

e Following and escaping: Models the wasp's pursuit
of prey, incorporating evasion tactics.

o Nesting: Represents the process of constructing a
solution by combining and refining existing
components to create a new, more comprehensive
one.

e Mating: Incorporates a mating mechanism inspired
by the wasp's reproductive strategy, utilizing a
uniform crossover operator to generate new
solutions.

In the SWO framework, each female spider wasp is
mathematically represented as a D-dimensional solution
vector (Eq. 6). An initial population of N such vectors is
randomly generated within predefined upper (H) and
lower (L) parameter limits, as shown in Eq. 7. The whole
initial population is called SWp,,, with individual
solutions stochastically generated according to Eq. 8.

SW = [xq, X, X3, oo, Xp] (6)
SW1‘1 SW1,2 SWLD
SWpq  SWpp SWyp
SWPop = : : : (7
SWN,l SWN,Z SWN,D
SWi=L+#x(H-1I) (8)

Where t represents the generation index and i represents
the population index (in the range from 1 to N), r is a D-
dimensional random vector with elements evenly
distributed between 0 and 1. The algorithm then simulates
the hunting, nesting, and mating behavior of spider wasps
to identify the optimal solution from a set of candidates
determined by CMM.

The optimization process begins with a search phase,
analogous to a wasp looking for prey. This exploration
occurs randomly within the solution space. Once a
possible solution is identified, the algorithm moves into an
encirclement and pursuit phase, mimicking the wasp's
predatory behavior. Finally, the wasp metaphorically



442  Informatica 49 (2025) 437-448

drags the captured prey, representing the identified
solution, to a nest for further processing.

The exploration phase of the SWO algorithm mimics
the foraging strategies of female spider wasps. In this
phase, individuals traverse the search space with a
constant step size, as defined in Eq. 9, in search of suitable
prey. This equation updates the position of each wasp at
each generation (t) based on the positions of two randomly
selected population members (indexed by a and b) and a
random motion component (u,) calculated using Eqg. 10.
Here, r1 is a uniformly distributed random number, and rn
follows a normal distribution.

SWEH = SWE + py x (SWE — SWY) )

(10)

U, represents the displacement of a virtual wasp's
position in the solution space during the global exploration
phase. It is a D-dimensional vector that influences how far
the algorithm explores new candidate solutions at each
iteration. Larger values encourage exploration, while
smaller values promote exploitation of local optima.

In Eg. 9, two indices a and b are randomly selected
from the current population of wasp agents. These
correspond to different solution vectors in the search
space. The movement of a given wasp is guided by the
difference between these two agents’ positions, allowing
the algorithm to explore based on population diversity.
The update rule thus simulates a directional movement
influenced by randomly selected peers and a stochastic
component, which together ensure broad and adaptive
coverage of the solution space.

An additional exploration strategy was incorporated
because wasps can lose sight of their prey. Equations 11-
13 introduce a second exploration method with a smaller
step size, focusing on a randomly selected population
member (c). This approach allows for more targeted
searches around potential prey locations. B is the binary
vector indicating the direction of exploration for each
dimension. It determines whether to apply a random
motion or move toward another wasp’s position.
Parameter | (uniformly distributed between -2 and 1) and
random numbers rs and rs (uniformly distributed between
0 and 1) determine the choice between the two exploration
methods (Equation 14).

ty = |rnf xn

ﬁ@“1:§ﬂ?+uzx@ﬁ+ﬁx(ﬁ—fn (11)
U, = B X cos (2ml) (12)
1
B=— (13)
1+e!

— Eq.9 <

t+1 _ 3<T
SWiT = {Eq. 11 otherwise (14)

As soon as the spider wasp discovers prey caught in
its web, it launches an attack. However, the prey often
escapes capture by falling to the ground. The wasp pursues
the fallen prey, paralyzes it, and transports it to a prepared
nest. Alternatively, the wasp may lose track of the prey
while descending, requiring a simultaneous pursuit and
evasion strategy.
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This complex behavior can be modeled as two main
trends. During the first chase, the wasp pursues the prey
and captures it. This phase is represented mathematically
by Eq. 15, which updates the wasp's position based on the
location of the prey. Conversely, the second trend
simulates escape from prey, characterized by an
increasing distance between predator and prey with each
iteration. This behavior can cause the prey to seek refuge
in areas away from the wasp.

SW = SWE+ C x 2 x & x ST -S| (15)

Eq. 16 mathematically models predatory pursuit,
where the initial proximity between wasps and prey can
vary depending on their speeds. Two scenarios are
considered: (1) a wasp exceeding the speed of the prey (C
> 0.5) and (2) a prey exceeding the speed of the wasp (C
< 0.5). The parameter C, a distance control factor
initialized at two and decreasing linearly to zero,
influences the wasp's speed. If C is greater than 0.5, the
wasp is faster than its prey, representing escape behavior.
On the other hand, if it is less than 0.5, the wasp's
movement is significantly restricted, making prey capture
more difficult.

t
C= 2—2><( ) X Ty
tmax

Eq. 16 models the dynamic interaction between the
predator (wasp) and its prey (candidate solution) by
controlling their relative movement based on a distance
control coefficient. The coefficient starts at a high value
(typically 2) and linearly decreases toward zero over time
(t), thereby gradually shifting the algorithm from
exploration to exploitation.

The variables a, t, tmax, I's, and rg represent a randomly
selected population index, a current and maximum score,
a randomly generated vector within the interval [0, 1], and
a random number within the same interval, respectively.

The prey's escape from the wasp leads to a gradual
increase in their distance. Initially characterized by
exploitation, this phase transitions into exploration as the
distance increases. Eq. 17 simulates this behavior change.
The vector v¢, normally distributed between k and -k, and
calculated from Eq. 18, the distance increases. Eq. 19
randomly determines the balance between these two
behavioral trends.

(16)

SWHT = SWf x v¢ (17)
t
k=1—( ) (18)
tmax
_— Eq.15 nr; <
t+1 _ 3 <Ny
SWim = {Eq. 17 otherwise (19)

At the beginning of the optimization process, all
wasps engage in global exploration of the solution space
to identify promising regions with near-optimal solutions.
Subsequently, an escape mechanism enables the wasp to
explore and exploit its local environment, thereby
avoiding local optima. Eq. 20 governs the dynamic
interplay between exploration and exploitation, with the
random variable p (0 <p < 1) influencing this balance.
Figure 2 visually represents this compromise.
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Figure 2: Dynamic balance between global exploration and local exploitation in the SWO algorithm

Eq.14 p<k
Eq.19 otherwise

After immobilizing the prey, the female wasp
transports it to a pre-made nest. Nest-building strategies
vary and include underground burrows, aerial mud
structures, or the appropriation of existing cavities. The
proposed algorithm consists of two equations to simulate
this diversity.

The first equation (Eq. 21) models nest site selection
based on proximity to a suitable spider, referred to as the
optimal egg-laying site. The term SW* represents the best-
identified solution to date. Conversely, the second
equation (Eg. 22) randomizes nest placement around a
selected female wasp, considering a step size to prevent
nest overlap. In this equation, rs is a random value within
the interval [0, 1], y is a value generated by Levy flight, a,
b, and c are indices of randomly selected solutions, and U
is a binary vector that controls the step size application.
The binary vector U is determined by Eq. 23, where r; and
rs represent random values in the interval [0, 1]. These two
nest-building strategies are selected randomly according
to Eq. 24.

SWH = SW* + cos (2ml)

SWitl = {

4

(20)

— = 21)
x (SW* — swf)

SWH = SWE + 15 x |y
x (SWt —SWf) + (1

. 22)
—-1r3) XU
x (SWy — SW)
= (1 7>r
= 23
{0 otherwise (23)
— Eq.21 <,
t+1 _ 3 4
SWit = {Eq. 22 otherwise (24)

Eq. 25 regulates the interaction between hunting and
nesting behavior, as shown in Figure 3. All wasps initially
look for prey, then build nests and provide food.

. Eq.20 i<Nxk
t+1 _
SWit = {Eq. 24  otherwise

The SWO algorithm considers spider wasp mating
behavior. A key feature of these insects is their sex
determination based on host size: smaller hosts produce
male offspring, while larger hosts produce female
offspring. In this model, each spider wasp represents a
possible solution within a generation, with the spider
wasp's eggs symbolizing newly generated solutions. Eq.
26 controls the production of these offspring.

SW = Crossover(SWE, SWt, CR)

(25)

(26)

Figure 3: Interaction between hunting and nesting behaviors in the SWO algorithm
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In the biological behavior of spider wasps, the size of
the host determines the sex of the offspring. Larger hosts
usually yield female wasps, which are most likely to
survive and reproduce. The same principle is adopted in
SWO to skew offspring generations in favor of high-
fitness solutions. In the optimization context, a “host”
represents a candidate cloud resource configuration, and
its size (fitness) determines whether it should propagate
high-quality traits.

During the mating phase, new candidate solutions
(offspring) are created by combining “female” and “male”
wasps using a uniform crossover operator. The crossover
rate specifies the amount of genetic material (i.e.,
configuration parameters for resources) transferred from
each parent. The operation injects diversity while
retaining good features from high-performance solutions.
Therefore, the nest-building and mate selection step in
SWO approximates fine local search and solution
diversification, which is pivotal for fine-tuning VM
allocation strategies that conserve energy while
maintaining QoS integrity.

A uniform crossover operator is applied to a parent
wasp pair SW; (female) and SWt (male), with the
probability defined by the crossover rate (CR). To
distinguish male wasps from females, Eq. 27 is used,
producing male wasps distinct from the female
population. This equation uses normally distributed
random numbers (8 and f3;), the exponential constant (e),
and values derived from equations 28 and 29. Crossover
combines the genetic material of the parents and produces
offspring that inherit their parents' traits. A predefined
trade-off rate (TR) balances hunting and mating behaviors,
as detailed in the experimental section.

SWEH = SWE + el x |B] X By

C. Leietal.

f&) < f(X)

otherwise

- xb - xc
v {x _2, (29

The SWO algorithm assesses the suitability of
available resources and determines the most suitable
option to fulfill the service request. An initial resource
selection list is created based on factors such as distance,
queue length, average response time, and capacity. The
GMM then examines this list to identify the optimal
resource using a fitness function, as formalized in Eq. 30.

F

(30)

_ Total service requests x Total energy used
B Utility degree

4 Performance evaluation

The proposed approach considers three key metrics:
average service response time, throughput, and energy
consumption. These critical metrics have been chosen for
their paramount importance in computing efficiency,
overall scalability, and power consumption in
computational cloud solutions, using their vital analysis to
prove the given problem. The proposed method is
compared with existing methods, namely dynamic VM
allocation, VM provisioning, and data center provisioning,
to validate the model. These approaches represent
conventional techniques used in real-world systems. The
results showed that the latter proved the model's
superiority, particularly in optimizing QoS while
significantly reducing energy consumption.

All experiments were conducted using CloudSim
3.0.3, a simulation toolkit that supports modeling and
simulation of cloud environments and virtualized resource
provisioning. The infrastructure consisted of simulated

o o (27) data centers with 5 to 25 cloud nodes, each node equipped
+t(1—e)xv, with 16 GB of RAM, 8-core processors, and 5 TB of
5 = {J-C’a — % f(Z) <fGE) 28) storage. Workloads ranging fror_n 100 to }OOO service
1% — %, otherwise requests were generated synthetically to simulate real-
world user traffic.
The average service response time is the time elapsed
between the request and the completion of the service. It
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Figure 4: Service execution time comparison
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Figure 5: Energy consumption comparison

is evident from Figure 4 that the proposed method
outperformed the baseline techniques at all levels of
service requests. At the highest workload of 500 requests,
the proposed method achieved a 24.7% + 1.8% reduction
in mean execution time, which was statistically significant
(p < 0.05) compared to the baseline methods. It argues that
this performance increase was achieved with the aid of the
hierarchical resource selection strategy: the pre-selection
of resources was conducted at the CMM level and refined
by the GMM to select the most suitable resource based on
priority levels.

Figure 4 illustrates the linear relationship between
execution time and the number of service requests,
demonstrating that the proposed approach is scalable. The
proposed approach offers an efficient allocation process,
avoiding substantial delays compared to baseline
techniques, particularly for high workloads. The improved
response behavior and faster execution time are likely the
result of the metaheuristics of SWO, which are
theoretically designed to explore the solution space
systematically and prefer resource configurations with

6000
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4000
3000

2000

Power consumption (W)

1000

higher efficiency. Although the performance is improved,
the specific influence of minimizing the search space and
avoiding contention is assumed based on the algorithm
design and not directly observed. Future work will involve
developing special-purpose metrics to explicitly verify
these factors.

Energy efficiency is the key to sustainable cloud data
centers. Figure 5 illustrates the energy consumption of the
various methods for variable workloads. The maximum
energy consumption of the proposed approach is 6.8 kJ at
500 service requests, which is significantly lower
compared to Dynamic VM Allocation (9.2 kJ), VM
Provisioning (8.9 kJ), and Data Center Provisioning (8.4
kJ). The energy-saving capability of the proposed method
comes from emphasizing resource allocation efficiency,
thereby reducing redundant activation of underutilized
Servers.

The most significant energy savings achieved by the
proposed approach are typically derived from the
hierarchical allocation framework. For each task, the
method selects the most suitable server based on

0 I I I I | | | | | |
100 200 300 400 500

Number of requests

E Dynamic VM allocation = VM provisioning

Data center provisioning = SWO

Figure 6: Execution power consumption comparison
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Figure 7: Response time comparison

geographical proximity and energy profiles to minimize
power-hungry operations. SWO further optimizes
resource usage by distributing tasks to servers operating
within their optimal energy range. These results
demonstrate that the proposed approach can satisfy the
growing computational demands while minimizing
operational costs and environmental impacts.

The power consumption is shown in Figure 6, which
further verifies the efficiency of the proposed method. The
power consumption for the proposed method at 500
requests was approximately 4,800 W. In contrast, for
Dynamic VM Allocation, the power consumption was
5,500 W. This trend of reduction for every workload
indicates the effectiveness of SWO in maintaining a
perfect balance between energy efficiency and active/idle
resources.

Figure 7 illustrates the response time of the proposed
method compared to Dynamic VM Allocation, VM
Provisioning, and Data Center Provisioning approaches
for varying numbers of requests. The proposed SWO
method demonstrated the lowest response time across all
workload levels, indicating its efficiency in handling
service requests. For instance, it can be seen that for the
highest workload of 500 requests, the response time using
the SWO method is significantly lower than that of the
other approaches, and the latency is reduced by
approximately 20% compared to Dynamic VM
Allocation. Such performance could be attributed to how
the hierarchical resource allocation strategy adopted in

Table 2: Statistical comparison of the proposed SWO-
based method with baseline approaches

Metric Compared Mean Std.  P-
methods difference  Dev. value

Service SWO vs. -1.87 s 0.41 0.0012

response Dynamic s

time VM

Energy SWO vs. -1.63 kJ 0.38  0.0036

consumption VM kJ
Provisioning

SWO optimizes resource selection and allocation, aiming
to avoid bottlenecks.

To validate the performance differences between our
proposed method and existing strategies, we conducted
paired two-tailed t-tests at a 95% confidence level for each
performance metric. Table 2 reports the average
improvements, standard deviations, and p-values for
service response time and energy consumption across five
runs.

The tests demonstrate that the predictive hierarchical
resource allocation scheme based on SWO is scalable in
terms of problem size. With the increase in the number of
service requests, the runtime demonstrates almost linear
behavior, indicating stable and manageable performance
even with large workloads. Additionally, the increase in
the number of cloud nodes has a moderate impact on
runtime. This is because the CMM conducts the pre-
selection of suitable resources, which significantly
reduces the search space before the GMM applies the
optimality algorithm based on the SWO. Overall, the
synergistic operation of the systems ensures the
responsiveness and energy efficiency of the computer
systems with large-scale, dynamic clouds.

5 Discussion

The experimental results indicate that the designed two-
tier SWO-based approach achieves significant
improvements in service responsiveness and energy
efficiency. Compared to existing methods, the designed
approach achieves an average response time improvement
of 25% and an energy consumption reduction of 26%
under peak loads. This efficiency is attributed to the
hierarchical design, which minimizes the resource
candidates before the invocation of the SWO, thus
minimizing the solution search space and avoiding
resource contention.

Unlike others that heavily rely on mathematical
programming or deep learning models, our method
mitigates the high computational intensity by restricting
the execution of the SWO to a pre-filtered candidate pool.
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SWO outperforms its peer metaheuristics due to its
adaptive global exploration and exploitation trade-off,
based on the natural dynamics of hunting and mating
behaviors.

Despite these strengths, the proposed method has
several limitations. First, the SWO algorithm's
performance can be sensitive to workload variability;
sudden spikes in user demand may affect convergence
quality unless it is dynamically calibrated. Second,
although the SWO exhibits faster convergence than
several traditional metaheuristics, it may still require
tuning for real-time or low-latency applications. Third, the
current implementation is tailored to homogeneous cloud
architectures; its portability to federated or hybrid cloud
platforms remains untested.

One notable trade-off of our solution is the
incremental computational cost attributable to the SWO's
iterative optimization process. Although lightweight
compared to deep learning methods, it still incurs
moderate runtime overhead, which may become
suboptimal in ultra-time-critical applications.
Nonetheless, the cost is fairly justified due to the
consistent improvements in energy and QoS performance.

6 Conclusion

The presented study introduces an intelligent resource
provisioning paradigm capable of enhancing energy
efficiency while ensuring robust QoS in cloud
infrastructure. Due to the larger environmental footprint of
data centers and the growth of cloud infrastructure, the
issue of unsustainable and dumb resource management is
more acute than ever. To that end, we developed a two-
tiered hierarchical structure that mixes the CMM and the
GMM. The CMM actively filters and filters down suitable
cloud resources based on the real-time parameters of the
systems, namely queue length, response time, and
location, and submits them to the GMM. Based on the
predator-prey behavior metaheuristic algorithm, the
GMM fine-tunes the selection and optimizes it according
to energy efficiency. This collaborative process facilitates
effective VM placement and adaptive resource
provisioning. By utilizing both real-time perception of the
system and intelligent optimizations, the introduced
paradigm adaptively responds to variations in workload
and infrastructure state. This results in reduced power
consumption and improved response times across the
entire cloud infrastructure.

Our results indicate a promising method for
integrating nature-inspired algorithms into hierarchical
management structures that can address the dual problems
of QoS and energy efficiency in cloud computing. With
the ongoing growth in size, cloud infrastructures will need
to adopt new approaches to reduce their environmental
footprint while maintaining reliable and efficient service
provisioning. Future work could include determining the
scalability of this approach when transitioning to an even
more extensive and diverse cloud environment, as well as
its adaptability to evolving technologies such as edge
computing and loT.
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While the devised method is mainly applied to
centralized cloud infrastructures, its architectural
principles and optimization model are, at the core,
extensible to the fog and edge computing paradigm. The
hierarchical structure (CMM-GMM) is applicable by
introducing intermediary layers that represent the fog
nodes or edge devices. Additionally, the SWO can
potentially — optimize  resource allocation among
heterogeneous devices by adjusting its fitness function to
consider edge-specific factors, such as latency, mobility,
and battery limitations. Considering the increasing
convergence of fog, cloud, and edge technologies, the
proposed method provides a practical foundation for
future distributed resource management systems.
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