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Cloud infrastructures are increasingly subject to performance and environmental requirements, 

particularly in large data centers with substantial energy expenditures. This paper addresses the issue of 

energy-aware quality of service (QoS) guaranteed resource allocation and presents an original two-tiered 

resource allocation scheme based on a Green Management Module (GMM) and a Spider Wasp Optimizer 

(SWO)-driven Cloud Management Module (CMM). The CMM pre-filters candidate resources based on 

the latest measurements beforehand, and the GMM selects the optimal resource, aided by the SWO, to 

inform the allocation decision. Experimental results show that the scheme reduces service response time 

and energy consumption by 25% and 26% compared to baseline schemes such as dynamic VM 

provisioning and VM allocation policies. The scheme presents an energy-aware and scalable design with 

tremendous prospects for optimizing resource use in existing clouds. 

Povzetek: Članek predstavi dvostopenjski, na energijo občutljiv okvir razporejanja virov (CMM+GMM) 

z metaheuristiko Spider Wasp Optimizer, ki v simulacijah skrajša odzivni čas in porabo energije v 

oblačnih podatkovnih centrih. 

1 Introduction 

1.1 Context 

Computers and cell phones have proliferated worldwide 

over the last two decades. Due to this, competition among 

companies has also increased, and more emphasis has 

been placed on expanding into new geographical 

territories to ensure sustainable profitability [1]. To 

effectively adapt to these changing demands and achieve 

optimal operational efficiency, improvements in resource 

utilization are necessary [2]. Cloud computing offers 

consumers a diverse set of unlimited computing resources 

tailored to their individual needs. These are accessed 

instantly at any time and from any location. This is 

achieved by a pay-per-use system where customers are 

only charged for the services they actively use [3]. Recent 

advancements in related domains, such as the use of 

machine learning for analyzing economic factors [4], 

optimal allocation strategies for energy and infrastructure 

in microgrids [5, 6], and intelligent security systems for 

dynamic network environments [7], highlight the potential 

of computational intelligence in addressing complex 

operational challenges. These developments collectively 

demonstrate how optimization, predictive analytics, and 

adaptive control can be integrated into cloud-based 

solutions to improve efficiency, security, and 

sustainability. 

 

The cloud provides resources with consolidated horizontal 

and vertical scaling, as well as flexible or elastic functions, 

which prevent businesses from paying for resources that 

are not being used. Additionally, the flexibility and 

scalability of cloud services enable companies to quickly 

adapt to changes in market demand [8]. Such agility will 

foster improved innovation and competitive advantages. 

Central management of cloud infrastructure makes cloud 

infrastructure provision easier [9]. Both cloud service 

providers and customers can manage resources more 

effectively by adopting virtualization technology and 

implementing dynamic resource scheduling strategies 

[10]. 

1.2 Problem statement 

Efficient resource allocation would minimize job 

execution time, maximize resource utilization, and reduce 

resource consumption. The task scheduling aspect has 

been considered paramount in cloud data centers to 

mitigate resource constraints resulting from increased 

workload [11]. The allocation of tasks to cloud resources 

to meet scheduling objectives and optimize QoS metrics 

remains a complex and evolving challenge in cloud 

computing. Recent research [12, 13] further investigates 

this aspect, highlighting the challenges of balancing cost, 

energy efficiency, Service Level Agreement (SLA) 

satisfaction, and dynamic workload variability. The 

primary scheduling issue is determining the right resource 
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to accomplish tasks. Scheduling algorithms can enhance 

most of the QoS factors, namely, execution cost, energy 

consumption, reliability, task rejection rate, and resource 

efficiency. At the same time, it guarantees compliance 

with SLAs while considering constraints such as 

deadlines, priorities, and the need to resolve load 

imbalance issues affecting overused and underutilized 

resources [14]. 

The growth of cloud computing infrastructure and the 

expansion of data centers over the past few years 

underscore the importance of energy conservation in cloud 

computing environments [15]. As is well known, data 

centers consume a substantial amount of energy, resulting 

in increased operational costs and environmental damage 

[16].  

Energy consumption in cloud data centers has become 

a critical concern due to its economic and environmental 

impact. As cloud services scale globally, data centers are 

consuming increasingly large amounts of electricity, 

estimated to account for nearly 1% of global electricity 

demand [17]. Not only does it result in exceedingly high 

cloud operation expenses, but it is also a significant 

contributor to carbon emissions and climate change. 

According to [18], unsustainable energy consumption in 

data centers negates the goals of green IT and necessitates 

effective allocative efficiency mechanisms. Therefore, it 

is needed to develop QoS-aware and energy-saving 

resource allocation systems to achieve scalable, 

affordable, and environmentally friendly cloud 

infrastructure. 

1.3 Contribution 

This paper proposes an innovative resource allocation 

approach to maximize energy savings in cloud computing 

settings. It combines two modules, namely green 

management and cloud management. The first module 

finds appropriate resources from the existing pool. In 

contrast, the subsequent module further narrows down this 

selection to establish the most efficient allocation of 

resources in terms of power consumption. The proposed 

method significantly reduces average service response 

time using this two-tiered approach. This research makes 

several contributions to the field. 

• Enhancing server status analysis efficiency by 

grouping cloud servers based on their geographical 

proximity; 

• Optimizing service provisioning time by assigning 

the most suitable servers, taking into account 

multiple parameters; 

• Promoting energy efficiency by allocating the most 

appropriate cloud server for each task; 

• Leveraging metaheuristic algorithms to select 

appropriate cloud resources effectively. 

To guide this study, we formulated the following 

research questions: 

• Can a two-tier resource allocation framework 

improve both energy efficiency and QoS in cloud 

computing environments?  

• Does the Spider Wasp Optimizer (SWO) outperform 

traditional metaheuristic algorithms in optimizing 

energy-aware resource allocation? 

Correspondingly, we test the following hypotheses: 

• The proposed two-tier framework significantly 

reduces average service response time compared to 

baseline methods.  

• The SWO algorithm yields superior energy-saving 

performance by achieving more efficient resource 

utilization than existing. 

While this research focuses on improving energy 

efficiency and service responsiveness, two of the most 

pressing challenges in cloud computing, it is essential to 

acknowledge that resource allocation can also pursue 

additional objectives. These include cost reduction, fault 

tolerance, security, scalability, and load adaptability, all of 

which are critical depending on the application context. 

Although these goals fall outside the scope of this study, 

the proposed method could be extended in future work to 

incorporate multi-objective optimization frameworks that 

address such concerns in parallel with energy and QoS 

goals. 

2 Related work 
As highlighted in Table 1, energy consumption and 

resource allocation in cloud computing have made 

significant advancements. Various approaches have been 

proposed to minimize energy consumption and optimize 

resource usage. 

Nguyen and Cheriet [19] introduced an 

environmentally conscious virtual slice framework that 

increases energy efficiency while accounting for the 

intermittent nature of renewable energy sources. Virtual 

Machine (VM) deployment and traffic management 

within a virtual data center are optimized based on traffic 

volume, VM placement, bandwidth, and available 

renewable energy resources. A solution to the virtual slice 

allocation problem was developed by studying various 

cloud consolidation strategies. Based on simulations of the 

GSN network, it was found that the model is better at 

reducing the network footprint than existing methods. 

Yang, et al. [20] have developed an efficient and 

environmentally friendly virtual data center 

framework and introduced two energy-efficient 

embedding algorithms. To evaluate the proposed 

algorithms, extensive simulations were performed across 

network scales and topologies. Compared with current 

embedding techniques, the adoption rates of virtual data 

centers, the long-term revenue of cloud service providers, 

energy consumption in low-utilization environments, and 

revenue generation in high-utilization cloud data centers 

were analyzed.  

Khosravi, et al. [21] modeled the total energy cost by 

combining the server's direct energy consumption with the 

PUE-based overhead, considering the IT load and outside 

temperature. The model also finds integrating renewable 

energy sources into data center locations, reducing 

dependence on traditional, carbon-intensive grid power. 

By comparing various VM placement strategies, 

researchers determined important parameters influencing 
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total energy consumption (renewable and non-renewable), 

emissions, and costs. The study verifies the supremacy of 

a method that considers dynamic overall energy 

consumption, available renewable energy, and PUE while 

ensuring service level agreements. 

Wu, et al. [22] developed a novel two-stage adaptive 

VM workload prediction model that exploits the inherent 

regularity of command-line applications. This model 

enables elastic allocation of CPU and memory resources 

for VMs. Departing from the ordinary time series 

forecasting, natural language processing extracts and 

handles feature attributes from command-line 

applications, aided by feature reduction through gray 

relational analysis. The prediction model uses a Bayesian 

classifier to identify applications that incur significant 

CPU increases and an adaptive neuro-fuzzy inference 

system to predict CPU and memory intensity. The elastic 

resource provisioning strategy was proved and tested 

through detailed experiments, which confirmed the 

successful completion of VM performance and resource 

efficiency with the scheme. 

Al-Wesabi, et al. [23] presented a hybrid meta-

heuristic approach for optimizing resource allocation and 

energy efficiency in the cloud computing context. Their 

methodology begins with extracting relevant features 

from the customer's task requirements, followed by 

dimensionality reduction using principal component 

analysis. The range of function outputs shows the optimal 

resource allocation. The core of their solution is the hybrid 

algorithm, developed based on Group Teaching 

Optimization (GTO) and Rat Swarm Optimization (RSO) 

algorithms. The hybrid scheme optimizes the resource 

allocation between the VMs in the cloud data center. The 

improved performance of the proposed model was 

demonstrated through rigorous simulation, conducted 

with the aid of the CloudSim simulator, across various 

performance indicators. 

Tai, et al. [24] developed an original approach to 

increase resource allocation and energy efficiency in 

heterogeneous data centers within the vision of Green IT. 

Their procedure involves modeling energy consumption 

over time, inter-task dependency, and data backup 

necessity. Framing the issue as an energy conservation 

problem that is nonlinear and complex, the researchers 

employed mathematical programming and Lagrangian 

relaxation to formulate an energy conservation solution. 

The procedure optimally allocates computational 

resources, schedules tasks, and reduces energy 

consumption, with the advantage of achieving highly 

achievable performance levels in cloud data centers. 

Sharma and Rawat [25] developed a novel hybrid 

approach by coupling the Spotted Hyena Optimizer (SHO) 

and an Artificial Neural Network (ANN) to address the 

problem of VM allocation. The new method was validated 

with the most significant performance indicators, which 

included migration number, SLA violation, execution 

times, resource consumption, and energy consumption. 

The SHO algorithm was employed to generate an overall 

dataset, thereby enhancing the accuracy of the ANN 

model. The hybrid scheme demonstrated improved 

convergence and global optimality compared to IqMc, 

SHO, and Genetic algorithms under real and simulated 

workload behavior. 

Gurusamy and Selvaraj [26] introduced a novel 

framework: resource allocation in cloud computing with a 

multi-level auto-associative polynomial convolutional 

neural network. The approach combines Starling 

Murmuration Optimizer (SMO)-inspired short-term 

scheduling with the objective of reduced makespan and 

optimized throughput. Resource management is carried 

out using a HAPCNN (Hierarchical Auto-Associative 

Polynomial Convolutional Neural Network) module, 

taking into account bandwidth and resource loading 

limitations. Data privacy is ensured with Fractional 

Discrete Meixner Moments Encryption (FDMME).  

Table 1: Previous research on energy-efficient resource allocation in cloud computing 

Study Algorithm 

type 

Optimization goals Computational 

overhead 

Key outcomes Comparison with the proposed 

method 

[19] Heuristic Energy efficiency 

(using renewable 

energy) 

Medium Reduces network 

footprint 

No hierarchical optimization; 

less responsive to real-time load 

[20] Heuristic Energy usage, 

revenue, and 

adoption rate 

High Better embedding in 

VDCs 

Not metaheuristic; lacks fine-

grained optimization 

[21] Analytical 

model 

Energy + carbon cost Medium Accounts for PUE 

and renewables 

Requires real-time 

environmental data integration 

[22] Hybrid (NLP 

+ ANFIS) 

VM performance 

and resource use 

High Elastic VM 

allocation 

High complexity, no focus on 

metaheuristics 

[23] Metaheuristic 

(GTO + 

RSO) 

Resource allocation 

and energy 

efficiency 

Medium Validated via 

CloudSim 

Does not integrate real-time 

queue and location metrics 

[24] Mathematical 

programming 

Scheduling + energy 

use 

High Green-aware task 

allocation 

More static and centralized vs. 

dynamic SWO 

[25] Metaheuristic 

+ ANN 

VM allocation, SLA, 

and energy usage 

Medium Improved 

convergence 

Relies on extensive ANN 

training data 

[26] CNN + SMO Resource utilization 

and task scheduling 

Very High Strong security and 

good throughput 

High computational cost and 

complexity 
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Proposed Metaheuristic Response time, 

energy usage, and 

resource utilization 

Low 25% ↓ in response 

time and 26% ↓ in 

energy use 

Two-tiered, scalable, low-

overhead solution with real-time 

adaptation 

While the available work has made immense 

contributions to energy-efficient VM placement and green 

cloud policies, there are still some gaps. Most approaches 

employ non-scalable hierarchical decision hierarchies or 

static/algebraically tuned algorithms that may converge 

too abruptly or exhibit inefficient load balancing. 

Additionally, very few integrate geo-awareness, online 

queue behavior, and adaptive metaheuristics under the 

same umbrella. Through the implementation of the two-

tier hierarchical structure (CMM-GMM) along with the 

introduction of the SWO, the proposed approach 

eliminates the loopholes in achieving optimal QoS and 

optimal energy consumption. 

3 Proposed resource allocation 

strategy 
This section describes a novel resource provisioning 

method designed to achieve maximum energy efficiency 

and QoS levels in cloud environments. The intensified 

environmental crisis, primarily caused by human-made 

processes and technological advancements, demands 

sustainable and feasible solutions. Even as cloud 

computing provides unique efficiency and scalability, it 

has inadvertently contributed to the carbon footprint by 

increasing the number of data centers. Given this reality, 

it is imperative to devise carbon-cutting methods to offset 

environmental destruction caused by cloud computing. 

Energy efficiency in cloud computing requires the 

optimal allocation of resources. When resources are 

allocated effectively, service requests can be fulfilled 

promptly while minimizing energy consumption. Load 

balancing between cloud servers reduces underutilization 

and overload, thereby reducing energy consumption. Our 

research utilizes SWO to determine the optimal resource 

configurations based on the utility level. 

Here, the utility level is an application-independent 

indicator of the volume of resource utilization, calculated 

from the readings of the CPU, memory, and the number of 

active tasks for each interval. Utility level is an abstract 

representation of the amount of resource utilization, with 

no dependency on the type of application or the 

application's semantics being executed on the VM. This 

enables the SWO algorithm of the GMM to optimize 

resource provisioning based on the observable level of the 

system's performance and non-application-centric 

information, while maintaining a general and flexible 

architecture design. 

SWO was selected due to its hunting- and escape-

inspiration adaptive mechanism, offering the best 

compromise between exploration and exploitation in 

complex search spaces. Relative to Particle Swarm 

Optimization (PSO), which is subject to the chance of 

premature convergence in multimodal areas, and Ant 

Colony Optimization (ACO), which is underpinned by 

stochastic path dependency and pheromone updating with 

the potential to become prohibitively costly, the 

biologically rooted nest and mating phases of SWO enable 

more stable diversification of solution and management of 

convergence. Both global and fine-grained resource 

configuration refinement is offered, which is necessary in 

dynamic clouds. 

As shown in Figure 1, to facilitate effective resource 

allocation and sustainable environments, a two-level 

architecture is proposed that comprises a Green 

Management Module (GMM) and a Cloud Management 

 

Figure 1: Two-tier architecture for energy-efficient cloud resource allocation 
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Module (CMM). The GMM maintains a global snapshot 

of locations and execution states for cloud data centers, 

while the CMM facilitates the balanced distribution of 

service requests across available resources. 

The CMM serves as a management layer responsible 

for monitoring available system resources. The CMM 

optimizes VM placement and resource selection based on 

measurable system indicators (e.g., queue length, service 

response time, distance), without requiring visibility into 

the internal behavior of VM workloads. A cloud data 

center, a fundamental part of the infrastructure, consists of 

multiple cloud servers, each of which can host multiple 

VMs. Equations 1–3 define distinct identifiers for VMs, 

servers, and data centers. 

𝑉𝑀 = {𝑣𝑚1, 𝑣𝑚2, … , 𝑣𝑚𝑛} (1) 

𝐶𝑆 = {𝑐𝑠1 , 𝑐𝑠2, … , 𝑐𝑠𝑛} (2) 

𝐶𝐷𝐶 = {𝑐𝑑𝑐1, 𝑐𝑑𝑐2, … , 𝑐𝑑𝑐𝑛} (3) 

A VM is explicitly named 𝑣𝑚𝑖
𝑐𝑠𝑖 , indicating its 

association with the cloud server instance 𝑐𝑠𝑖 . This 

nomenclature enables efficient VM identification and 

management. The CMM maintains a comprehensive 

database containing details of all cloud data centers, 

servers, and VMs. This repository includes attributes such 

as geographical coordinates, queue length, average service 

response time, service type, and capacities. Dynamic 

metrics, such as queue length and response time, are 

updated in real-time within the CMM to reflect system 

changes. 

The system's workload mainly consists of VM 

requests initiated by cloud users. The CMM optimizes VM 

placement and resource allocation without requiring 

knowledge of the specific applications running in the 

VMs. Nevertheless, each VM is assumed to operate at 

maximum capacity and fully utilize the allocated 

computing resources. 

To enhance the QoS of the system, the queue length 

and service response time are integrated. The overall 

response time is calculated according to the estimated 

average duration between consecutive service 

completions, as defined in Eq. 4, where 𝑆𝑅𝑡𝑖𝑚𝑒 represents 

the service response time, n refers to the overall number 

of tasks processed by a particular VM, and 𝑆𝑄𝑡𝑖𝑚𝑒 denotes 

the time taken to complete the service request. Ideally, 

response time should be minimized to ensure optimal 

performance. Eq. 5 shows the queue length dynamically 

adjusted by increasing upon new requests and decreasing 

upon service completion. 

𝐴𝑆𝑅𝑡𝑖𝑚𝑒 =
∑ (𝑆𝑅𝑡𝑖𝑚𝑒 − 𝑆𝑄𝑡𝑖𝑚𝑒)

𝑛
𝑖=1

𝑇𝑜𝑡𝑎𝑙 ℎ𝑎𝑛𝑑𝑙𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
 (4) 

𝑄𝐿 = {
𝑁𝑒𝑤 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡: 𝑄𝐿 + 1
𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒: 𝑄𝐿 − 1   

 (5) 

The CMM prioritizes the selection of machines for 

incoming service requests based on queue length, 

response time, and geographical distance. The module 

selects the potential hosts and sends the most appropriate 

choices to the GMM for further processing. 

The GMM's task is to identify the optimum VM to 

handle service requests. The CMM submits a list of 

probable candidates to the GMM, and the SWO algorithm 

determines the best machine from the list. SWO is a 

metaheuristic algorithm inspired by the hunting, nesting, 

and parasitic behavior of particular wasp species. The 

algorithm's basic principles are based on observing female 

spider wasps that search for, paralyze, and transport 

spiders to their nests, ultimately laying an egg in the 

paralyzed prey. 

The SWO algorithm initiates the simulation by 

placing a population of randomly distributed virtual wasps 

in the search region, thereby modeling the foraging 

behavior of wasps in their surroundings. The virtual wasps 

search in a manner analogous to wasp foraging behavior 

for optimal solutions to problems. When an effective 

solution is encountered, the algorithm replicates the 

wasp's capturing and carrying away of their catches 

through adjusting the solution according to predetermined 

rules. The essential behavioral components for the SWO 

algorithm are as follows: 

• Searching: Simulates the wasp's initial exploration of 

the environment to locate potential solutions.  

• Following and escaping: Models the wasp's pursuit 

of prey, incorporating evasion tactics.  

• Nesting: Represents the process of constructing a 

solution by combining and refining existing 

components to create a new, more comprehensive 

one.  

• Mating: Incorporates a mating mechanism inspired 

by the wasp's reproductive strategy, utilizing a 

uniform crossover operator to generate new 

solutions. 

In the SWO framework, each female spider wasp is 

mathematically represented as a D-dimensional solution 

vector (Eq. 6). An initial population of N such vectors is 

randomly generated within predefined upper (H) and 

lower (L) parameter limits, as shown in Eq. 7. The whole 

initial population is called 𝑆𝑊𝑃𝑜𝑝, with individual 

solutions stochastically generated according to Eq. 8.  

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐷] (6) 

𝑆𝑊𝑃𝑜𝑝 = [

𝑠𝑤1,1 𝑠𝑤1,2 … 𝑠𝑤1,𝐷

𝑠𝑤2,1 𝑠𝑤2,2 … 𝑠𝑤2,𝐷

⋮ ⋮ ⋮ ⋮
𝑠𝑤𝑁,1 𝑠𝑤𝑁,2 … 𝑠𝑤𝑁,𝐷

] (7) 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡 = 𝐿⃗ + 𝑟 × (𝐻⃗⃗ − 𝐿⃗ ) (8) 

Where t represents the generation index and i represents 

the population index (in the range from 1 to N), r is a D-

dimensional random vector with elements evenly 

distributed between 0 and 1. The algorithm then simulates 

the hunting, nesting, and mating behavior of spider wasps 

to identify the optimal solution from a set of candidates 

determined by CMM. 

The optimization process begins with a search phase, 

analogous to a wasp looking for prey. This exploration 

occurs randomly within the solution space. Once a 

possible solution is identified, the algorithm moves into an 

encirclement and pursuit phase, mimicking the wasp's 

predatory behavior. Finally, the wasp metaphorically 
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drags the captured prey, representing the identified 

solution, to a nest for further processing. 

The exploration phase of the SWO algorithm mimics 

the foraging strategies of female spider wasps. In this 

phase, individuals traverse the search space with a 

constant step size, as defined in Eq. 9, in search of suitable 

prey. This equation updates the position of each wasp at 

each generation (t) based on the positions of two randomly 

selected population members (indexed by a and b) and a 

random motion component (𝜇1) calculated using Eq. 10. 

Here, r1 is a uniformly distributed random number, and rn 

follows a normal distribution. 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖

𝑡 + 𝜇1 × (𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑎
𝑡 − 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑏

𝑡) (9) 

𝜇1 = |𝑟𝑛| × 𝑟1 (10) 

𝜇1 represents the displacement of a virtual wasp's 

position in the solution space during the global exploration 

phase. It is a D-dimensional vector that influences how far 

the algorithm explores new candidate solutions at each 

iteration. Larger values encourage exploration, while 

smaller values promote exploitation of local optima. 

In Eq. 9, two indices a and b are randomly selected 

from the current population of wasp agents. These 

correspond to different solution vectors in the search 

space. The movement of a given wasp is guided by the 

difference between these two agents’ positions, allowing 

the algorithm to explore based on population diversity. 

The update rule thus simulates a directional movement 

influenced by randomly selected peers and a stochastic 

component, which together ensure broad and adaptive 

coverage of the solution space. 

An additional exploration strategy was incorporated 

because wasps can lose sight of their prey. Equations 11-

13 introduce a second exploration method with a smaller 

step size, focusing on a randomly selected population 

member (c). This approach allows for more targeted 

searches around potential prey locations. 𝐵 is the binary 

vector indicating the direction of exploration for each 

dimension. It determines whether to apply a random 

motion or move toward another wasp’s position. 

Parameter l (uniformly distributed between -2 and 1) and 

random numbers r3 and r4 (uniformly distributed between 

0 and 1) determine the choice between the two exploration 

methods (Equation 14). 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑐

𝑡 + 𝜇2 × (𝐿⃗ + 𝑟2⃗⃗  ⃗ × (𝐻⃗⃗ − 𝐿⃗ )) (11) 

𝜇2 = 𝐵 × cos (2𝜋𝑙) (12) 

𝐵 =
1

1 + 𝑒𝑙
 (13) 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = {

𝐸𝑞.  9    𝑟3 < 𝑟4       
𝐸𝑞. 11   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14) 

As soon as the spider wasp discovers prey caught in 

its web, it launches an attack. However, the prey often 

escapes capture by falling to the ground. The wasp pursues 

the fallen prey, paralyzes it, and transports it to a prepared 

nest. Alternatively, the wasp may lose track of the prey 

while descending, requiring a simultaneous pursuit and 

evasion strategy. 

This complex behavior can be modeled as two main 

trends. During the first chase, the wasp pursues the prey 

and captures it. This phase is represented mathematically 

by Eq. 15, which updates the wasp's position based on the 

location of the prey. Conversely, the second trend 

simulates escape from prey, characterized by an 

increasing distance between predator and prey with each 

iteration. This behavior can cause the prey to seek refuge 

in areas away from the wasp. 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖

𝑡 + 𝐶 × |2 × 𝑟5⃗⃗  ⃗ × 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑎
𝑡 − 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖

𝑡| (15) 

Eq. 16 mathematically models predatory pursuit, 

where the initial proximity between wasps and prey can 

vary depending on their speeds. Two scenarios are 

considered: (1) a wasp exceeding the speed of the prey (C 

> 0.5) and (2) a prey exceeding the speed of the wasp (C 

< 0.5). The parameter C, a distance control factor 

initialized at two and decreasing linearly to zero, 

influences the wasp's speed. If C is greater than 0.5, the 

wasp is faster than its prey, representing escape behavior. 

On the other hand, if it is less than 0.5, the wasp's 

movement is significantly restricted, making prey capture 

more difficult.  

𝐶 = (2 − 2 × (
𝑡

𝑡𝑚𝑎𝑥

)) × 𝑟6 (16) 

Eq. 16 models the dynamic interaction between the 

predator (wasp) and its prey (candidate solution) by 

controlling their relative movement based on a distance 

control coefficient. The coefficient starts at a high value 

(typically 2) and linearly decreases toward zero over time 

(t), thereby gradually shifting the algorithm from 

exploration to exploitation. 

The variables a, t, tmax, r5, and r6 represent a randomly 

selected population index, a current and maximum score, 

a randomly generated vector within the interval [0, 1], and 

a random number within the same interval, respectively. 

The prey's escape from the wasp leads to a gradual 

increase in their distance. Initially characterized by 

exploitation, this phase transitions into exploration as the 

distance increases. Eq. 17 simulates this behavior change. 

The vector 𝑣𝑐⃗⃗⃗⃗ , normally distributed between k and -k, and 

calculated from Eq. 18, the distance increases. Eq. 19 

randomly determines the balance between these two 

behavioral trends.  

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖

𝑡 × 𝑣𝑐⃗⃗⃗⃗  (17) 

𝑘 = 1 − (
𝑡

𝑡𝑚𝑎𝑥

) (18) 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = {

𝐸𝑞. 15     𝑟3 < 𝑟4       
𝐸𝑞. 17     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

At the beginning of the optimization process, all 

wasps engage in global exploration of the solution space 

to identify promising regions with near-optimal solutions. 

Subsequently, an escape mechanism enables the wasp to 

explore and exploit its local environment, thereby 

avoiding local optima. Eq. 20 governs the dynamic 

interplay between exploration and exploitation, with the 

random variable p (0 ≤ p ≤ 1) influencing this balance. 

Figure 2 visually represents this compromise. 
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𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = {

𝐸𝑞. 14     𝑝 < 𝑘         
𝐸𝑞. 19     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20) 

After immobilizing the prey, the female wasp 

transports it to a pre-made nest. Nest-building strategies 

vary and include underground burrows, aerial mud 

structures, or the appropriation of existing cavities. The 

proposed algorithm consists of two equations to simulate 

this diversity. 

The first equation (Eq. 21) models nest site selection 

based on proximity to a suitable spider, referred to as the 

optimal egg-laying site. The term SW* represents the best-

identified solution to date. Conversely, the second 

equation (Eq. 22) randomizes nest placement around a 

selected female wasp, considering a step size to prevent 

nest overlap. In this equation, r3 is a random value within 

the interval [0, 1], y is a value generated by Levy flight, a, 

b, and c are indices of randomly selected solutions, and U 

is a binary vector that controls the step size application. 

The binary vector U is determined by Eq. 23, where r4 and 

r5 represent random values in the interval [0, 1]. These two 

nest-building strategies are selected randomly according 

to Eq. 24. 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  ∗ + cos (2𝜋𝑙)

× (𝑆𝑊⃗⃗⃗⃗ ⃗⃗  ∗ − 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡) 

(21) 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑎

𝑡 + 𝑟3 × |𝛾|

× (𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑎
𝑡 − 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖

𝑡) + (1

− 𝑟3) × 𝑈⃗⃗ 

× (𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑏
𝑡 − 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑐

𝑡) 

(22) 

𝑈⃗⃗ = {
1       𝑟4⃗⃗⃗  > 𝑟5⃗⃗  ⃗        
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (23) 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = {

𝐸𝑞. 21    𝑟3 < 𝑟4       
𝐸𝑞. 22    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (24) 

Eq. 25 regulates the interaction between hunting and 

nesting behavior, as shown in Figure 3. All wasps initially 

look for prey, then build nests and provide food.  

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = {

𝐸𝑞. 20       𝑖 < 𝑁 × 𝑘       
𝐸𝑞. 24       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (25) 

The SWO algorithm considers spider wasp mating 

behavior. A key feature of these insects is their sex 

determination based on host size: smaller hosts produce 

male offspring, while larger hosts produce female 

offspring. In this model, each spider wasp represents a 

possible solution within a generation, with the spider 

wasp's eggs symbolizing newly generated solutions. Eq. 

26 controls the production of these offspring. 

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖
𝑡+1 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑆𝑊𝑖

𝑡 , 𝑆𝑊𝑚
𝑡 , 𝐶𝑅) (26) 

 

Figure 2: Dynamic balance between global exploration and local exploitation in the SWO algorithm 

 

 

Figure 3: Interaction between hunting and nesting behaviors in the SWO algorithm 
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In the biological behavior of spider wasps, the size of 

the host determines the sex of the offspring. Larger hosts 

usually yield female wasps, which are most likely to 

survive and reproduce. The same principle is adopted in 

SWO to skew offspring generations in favor of high-

fitness solutions. In the optimization context, a “host” 

represents a candidate cloud resource configuration, and 

its size (fitness) determines whether it should propagate 

high-quality traits. 

During the mating phase, new candidate solutions 

(offspring) are created by combining “female” and “male” 

wasps using a uniform crossover operator. The crossover 

rate specifies the amount of genetic material (i.e., 

configuration parameters for resources) transferred from 

each parent. The operation injects diversity while 

retaining good features from high-performance solutions. 

Therefore, the nest-building and mate selection step in 

SWO approximates fine local search and solution 

diversification, which is pivotal for fine-tuning VM 

allocation strategies that conserve energy while 

maintaining QoS integrity. 

A uniform crossover operator is applied to a parent 

wasp pair 𝑆𝑊𝑖
𝑡 (female) and 𝑆𝑊𝑚

𝑡  (male), with the 

probability defined by the crossover rate (CR). To 

distinguish male wasps from females, Eq. 27 is used, 

producing male wasps distinct from the female 

population. This equation uses normally distributed 

random numbers (𝛽 and 𝛽1), the exponential constant (e), 

and values derived from equations 28 and 29. Crossover 

combines the genetic material of the parents and produces 

offspring that inherit their parents' traits. A predefined 

trade-off rate (TR) balances hunting and mating behaviors, 

as detailed in the experimental section.  

𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑚
𝑡+1 = 𝑆𝑊⃗⃗⃗⃗ ⃗⃗  𝑖

𝑡 + 𝑒𝑙 × |𝛽| × 𝑣 1

+ (1 − 𝑒𝑙) × 𝑣 2 
(27) 

𝑣 1 = {
𝑥 𝑎 − 𝑥 𝑖      𝑓(𝑥 𝑎) < 𝑓(𝑥 𝑖)

𝑥 𝑖 − 𝑥 𝑎     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (28) 

𝑣 2 = {
𝑥 𝑏 − 𝑥 𝑐      𝑓(𝑥 𝑏) < 𝑓(𝑥 𝑐)

𝑥 𝑐 − 𝑥 𝑏    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (29) 

The SWO algorithm assesses the suitability of 

available resources and determines the most suitable 

option to fulfill the service request. An initial resource 

selection list is created based on factors such as distance, 

queue length, average response time, and capacity. The 

GMM then examines this list to identify the optimal 

resource using a fitness function, as formalized in Eq. 30. 
𝐹

=
𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 × 𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒𝑑

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝑑𝑒𝑔𝑟𝑒𝑒
 

(30) 

4 Performance evaluation  
The proposed approach considers three key metrics: 

average service response time, throughput, and energy 

consumption. These critical metrics have been chosen for 

their paramount importance in computing efficiency, 

overall scalability, and power consumption in 

computational cloud solutions, using their vital analysis to 

prove the given problem. The proposed method is 

compared with existing methods, namely dynamic VM 

allocation, VM provisioning, and data center provisioning, 

to validate the model. These approaches represent 

conventional techniques used in real-world systems. The 

results showed that the latter proved the model's 

superiority, particularly in optimizing QoS while 

significantly reducing energy consumption. 

All experiments were conducted using CloudSim 

3.0.3, a simulation toolkit that supports modeling and 

simulation of cloud environments and virtualized resource 

provisioning. The infrastructure consisted of simulated 

data centers with 5 to 25 cloud nodes, each node equipped 

with 16 GB of RAM, 8-core processors, and 5 TB of 

storage. Workloads ranging from 100 to 1000 service 

requests were generated synthetically to simulate real-

world user traffic. 

The average service response time is the time elapsed 

between the request and the completion of the service. It 

 

Figure 4: Service execution time comparison 

 



A Two-Tier Energy-Aware Resource Allocation Framework in Cloud… Informatica 49 (2025) 437–448 445 

is evident from Figure 4 that the proposed method 

outperformed the baseline techniques at all levels of 

service requests. At the highest workload of 500 requests, 

the proposed method achieved a 24.7% ± 1.8% reduction 

in mean execution time, which was statistically significant 

(p < 0.05) compared to the baseline methods. It argues that 

this performance increase was achieved with the aid of the 

hierarchical resource selection strategy: the pre-selection 

of resources was conducted at the CMM level and refined 

by the GMM to select the most suitable resource based on 

priority levels. 

Figure 4 illustrates the linear relationship between 

execution time and the number of service requests, 

demonstrating that the proposed approach is scalable. The 

proposed approach offers an efficient allocation process, 

avoiding substantial delays compared to baseline 

techniques, particularly for high workloads. The improved 

response behavior and faster execution time are likely the 

result of the metaheuristics of SWO, which are 

theoretically designed to explore the solution space 

systematically and prefer resource configurations with 

higher efficiency. Although the performance is improved, 

the specific influence of minimizing the search space and 

avoiding contention is assumed based on the algorithm 

design and not directly observed. Future work will involve 

developing special-purpose metrics to explicitly verify 

these factors. 

Energy efficiency is the key to sustainable cloud data 

centers. Figure 5 illustrates the energy consumption of the 

various methods for variable workloads. The maximum 

energy consumption of the proposed approach is 6.8 kJ at 

500 service requests, which is significantly lower 

compared to Dynamic VM Allocation (9.2 kJ), VM 

Provisioning (8.9 kJ), and Data Center Provisioning (8.4 

kJ). The energy-saving capability of the proposed method 

comes from emphasizing resource allocation efficiency, 

thereby reducing redundant activation of underutilized 

servers. 

The most significant energy savings achieved by the 

proposed approach are typically derived from the 

hierarchical allocation framework. For each task, the 

method selects the most suitable server based on 

 

Figure 5: Energy consumption comparison 

 

 

Figure 6: Execution power consumption comparison 
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geographical proximity and energy profiles to minimize 

power-hungry operations. SWO further optimizes 

resource usage by distributing tasks to servers operating 

within their optimal energy range. These results 

demonstrate that the proposed approach can satisfy the 

growing computational demands while minimizing 

operational costs and environmental impacts. 

The power consumption is shown in Figure 6, which 

further verifies the efficiency of the proposed method. The 

power consumption for the proposed method at 500 

requests was approximately 4,800 W. In contrast, for 

Dynamic VM Allocation, the power consumption was 

5,500 W. This trend of reduction for every workload 

indicates the effectiveness of SWO in maintaining a 

perfect balance between energy efficiency and active/idle 

resources. 

Figure 7 illustrates the response time of the proposed 

method compared to Dynamic VM Allocation, VM 

Provisioning, and Data Center Provisioning approaches 

for varying numbers of requests. The proposed SWO 

method demonstrated the lowest response time across all 

workload levels, indicating its efficiency in handling 

service requests. For instance, it can be seen that for the 

highest workload of 500 requests, the response time using 

the SWO method is significantly lower than that of the 

other approaches, and the latency is reduced by 

approximately 20% compared to Dynamic VM 

Allocation. Such performance could be attributed to how 

the hierarchical resource allocation strategy adopted in 

SWO optimizes resource selection and allocation, aiming 

to avoid bottlenecks. 

To validate the performance differences between our 

proposed method and existing strategies, we conducted 

paired two-tailed t-tests at a 95% confidence level for each 

performance metric. Table 2 reports the average 

improvements, standard deviations, and p-values for 

service response time and energy consumption across five 

runs. 

The tests demonstrate that the predictive hierarchical 

resource allocation scheme based on SWO is scalable in 

terms of problem size. With the increase in the number of 

service requests, the runtime demonstrates almost linear 

behavior, indicating stable and manageable performance 

even with large workloads. Additionally, the increase in 

the number of cloud nodes has a moderate impact on 

runtime. This is because the CMM conducts the pre-

selection of suitable resources, which significantly 

reduces the search space before the GMM applies the 

optimality algorithm based on the SWO. Overall, the 

synergistic operation of the systems ensures the 

responsiveness and energy efficiency of the computer 

systems with large-scale, dynamic clouds. 

5 Discussion 
The experimental results indicate that the designed two-

tier SWO-based approach achieves significant 

improvements in service responsiveness and energy 

efficiency. Compared to existing methods, the designed 

approach achieves an average response time improvement 

of 25% and an energy consumption reduction of 26% 

under peak loads. This efficiency is attributed to the 

hierarchical design, which minimizes the resource 

candidates before the invocation of the SWO, thus 

minimizing the solution search space and avoiding 

resource contention. 

Unlike others that heavily rely on mathematical 

programming or deep learning models, our method 

mitigates the high computational intensity by restricting 

the execution of the SWO to a pre-filtered candidate pool. 

 

Figure 7: Response time comparison 

 

Table 2: Statistical comparison of the proposed SWO-

based method with baseline approaches 

Metric Compared 

methods 

Mean 

difference 

Std. 

Dev. 

P-

value 

Significance 

Service 

response 

time 

SWO vs. 

Dynamic 

VM 

-1.87 s 0.41 

s 

0.0012 Significant 

Energy 

consumption 

SWO vs. 

VM 

Provisioning 

-1.63 kJ 0.38 

kJ 

0.0036 Significant 
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SWO outperforms its peer metaheuristics due to its 

adaptive global exploration and exploitation trade-off, 

based on the natural dynamics of hunting and mating 

behaviors. 

Despite these strengths, the proposed method has 

several limitations. First, the SWO algorithm's 

performance can be sensitive to workload variability; 

sudden spikes in user demand may affect convergence 

quality unless it is dynamically calibrated. Second, 

although the SWO exhibits faster convergence than 

several traditional metaheuristics, it may still require 

tuning for real-time or low-latency applications. Third, the 

current implementation is tailored to homogeneous cloud 

architectures; its portability to federated or hybrid cloud 

platforms remains untested. 

One notable trade-off of our solution is the 

incremental computational cost attributable to the SWO's 

iterative optimization process. Although lightweight 

compared to deep learning methods, it still incurs 

moderate runtime overhead, which may become 

suboptimal in ultra-time-critical applications. 

Nonetheless, the cost is fairly justified due to the 

consistent improvements in energy and QoS performance. 

6 Conclusion  
The presented study introduces an intelligent resource 

provisioning paradigm capable of enhancing energy 

efficiency while ensuring robust QoS in cloud 

infrastructure. Due to the larger environmental footprint of 

data centers and the growth of cloud infrastructure, the 

issue of unsustainable and dumb resource management is 

more acute than ever. To that end, we developed a two-

tiered hierarchical structure that mixes the CMM and the 

GMM. The CMM actively filters and filters down suitable 

cloud resources based on the real-time parameters of the 

systems, namely queue length, response time, and 

location, and submits them to the GMM. Based on the 

predator-prey behavior metaheuristic algorithm, the 

GMM fine-tunes the selection and optimizes it according 

to energy efficiency. This collaborative process facilitates 

effective VM placement and adaptive resource 

provisioning. By utilizing both real-time perception of the 

system and intelligent optimizations, the introduced 

paradigm adaptively responds to variations in workload 

and infrastructure state. This results in reduced power 

consumption and improved response times across the 

entire cloud infrastructure. 

Our results indicate a promising method for 

integrating nature-inspired algorithms into hierarchical 

management structures that can address the dual problems 

of QoS and energy efficiency in cloud computing. With 

the ongoing growth in size, cloud infrastructures will need 

to adopt new approaches to reduce their environmental 

footprint while maintaining reliable and efficient service 

provisioning. Future work could include determining the 

scalability of this approach when transitioning to an even 

more extensive and diverse cloud environment, as well as 

its adaptability to evolving technologies such as edge 

computing and IoT. 

While the devised method is mainly applied to 

centralized cloud infrastructures, its architectural 

principles and optimization model are, at the core, 

extensible to the fog and edge computing paradigm. The 

hierarchical structure (CMM-GMM) is applicable by 

introducing intermediary layers that represent the fog 

nodes or edge devices. Additionally, the SWO can 

potentially optimize resource allocation among 

heterogeneous devices by adjusting its fitness function to 

consider edge-specific factors, such as latency, mobility, 

and battery limitations. Considering the increasing 

convergence of fog, cloud, and edge technologies, the 

proposed method provides a practical foundation for 

future distributed resource management systems. 
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