
https://doi.org/10.31449/inf.v49i11.8454 Informatica 49 (2025) 333–346 333

English Text Classification Model Based on Graph Neural Network

Algorithm and Contrastive Learning

Chen Sian, Pan Guoqiang

Zhejiang Institute of Communications, Hangzhou, Zhejiang, 311112, China

E-mail: chen_sian82@outlook.com

Keywords: graph neural network, contrastive learning, english text classification, semantic representation, model

construction

Recieved: March 1, 2025

Current English text classification methods mostly rely on bag-of-words models or CNN (Convolutional

Neural Network), but there are limitations in processing text structure and semantics. Especially in long

texts and complex contexts, it is difficult to capture the long-distance dependency and structured semantics

between words. To this end, this article combines GNN (Graph Neural Network) with contrastive learning

to build an English text classification model. First, a text graph is constructed through word co-

occurrence to capture the long-distance dependency of words. Then, a multi-layer graph convolutional

network is designed, and residual connections and normalization are applied to improve model

performance. A contrast learning module is added after each layer of graph convolution to improve node

features and semantic representation. Triplet Loss is a loss function, and Hard Negative Mining chooses

negative samples to improve efficiency.

Povzetek: Predlagan je model za klasifikacijo angleškega besedila, ki združuje grafične nevronske mreže

(GNN) in kontrastno učenje (CL). GNN-ji s pomočjo ko-pojavitvene matrike ustvarijo graf za zajemanje

medsebojnih odvisnosti besed. CL (z izgubo Triplet Loss) izboljša semantično reprezentacijo vozlišč GNN,

kar model (CS-K-prototipi) pri klasifikaciji besedil bistveno izboljša natančnost in robustnost.

1 Introduction
English text classification is critical for natural

language processing, affecting many aspects such as

information retrieval, sentiment analysis, and question-

answering systems. The importance of text classification

is increasing with the proliferation of networks and

information content. Although traditional methods such as

bag-of-words models and TF-IDF (term frequency-

inverse document frequency) have some effects, they

cannot cope with deep semantics, long texts, or complex

contexts. Although deep learning methods such as CNN

and RNN (Recurrent Neural Network) have progressed,

they still cannot perfectly handle long-distance

dependencies. Graph Neural Networks (GNN) and

contrastive learning are two deep learning-based pattern

recognition algorithms that improve accuracy,

adaptability, and efficiency over rule-based approaches in

software testing. Complex data linkages are captured,

unstructured data is handled, manual feature engineering

is decreased, and generalization is improved. To enhance

text classification, new methods and technologies have

emerged. GNN can capture structured information,

simulate complex relationships between words, and

deepen text understanding. Contrastive learning is a

strategy for improving model performance by comparing

data samples and moving similar ones closer together

while pushing dissimilar ones apart. In this study,

semantic embeddings are optimized using Triplet Loss,

which improves text categorization accuracy. Contrastive

learning, a self-supervised strategy, can strengthen the

feature representation of the model and reduce the

dependence on labeled data. This study combines GNN

and contrastive learning to create a new English text

classification model. Graph Neural Networks have

improved at dealing with extensive texts and intricate

interactions than models such as CNNs and RNNs because

they can represent text as a graph, with words as nodes and

relationships as edges. This enables GNNs to capture

long-distance dependencies and intricate semantic

linkages between words, which CNNs struggle with due

to their reliance on fixed-size filters, while RNNs suffer

with long sequences due to concerns such as vanishing

gradients. GNNs improve their understanding of a text's

global structure and deep semantics by pooling input from

surrounding nodes. Combining GNNs with contrastive

learning improves feature representation, allowing for

accurate and robust handling of complicated and lengthy

texts. This model can not only effectively grasp the

grammatical and semantic relationships of the text but also

improve semantic embedding through contrastive

learning, thereby improving classification accuracy. This

study has injected new vitality into the field of text

classification and promoted the advancement of related

technologies. Semantic embedding transforms text into a

vector space in which comparable words are closer

together, allowing the model to better grasp word

associations. By integrating Graph Neural Networks

(GNN) and contrastive learning, the study improves

semantic embeddings, allowing the model to capture

334 Informatica 49 (2025) 333–346 C. Sian et al.

complex relationships and long-distance dependencies for

better text classification.

Text semantic extraction helps precisely identify the

text's relationship and structure and provides intelligent

support for information retrieval, sentiment analysis, etc.

Improving semantic understanding can improve the

accuracy of natural language processing tasks and meet

personalized information needs [1-2]. To solve the

problem of text semantic information extraction, many

scholars have proposed different methods. Martinez-

Rodriguez J. L proposed a strategy for extracting

information from sentences and representing it using

semantic network standards. The strategy involved

information extraction tasks and hybrid semantic

similarity metrics. Experiments proved the proposed

method's feasibility and accuracy [3]. Current Chinese

short text entity linking techniques ignore the interaction

between label information and the original short text and

fail to effectively utilize semantic information. Gao L

proposed a normalization method to fully extract semantic

information from short text sentence vectors. The results

showed that the proposed model outperformed popular

deep-learning techniques and previous research results in

entity linking [4]. The process of automatically

determining the connection between two or more elements

is called semantic relation extraction, which is crucial for

creating original writing. In addition to describing

established and new evaluation metrics for supervised,

semi-supervised, and unsupervised methods, Gharagozlou

H also studied several relation extraction techniques and

types in English and the most popular techniques in

Persian [5]. Accurate identification and analysis of

semantics are conducive to effectively processing English

text. Yu S introduced Word2vec (word to vector) for

extracting semantic feature vectors from English text and

the long short-term memory (LSTM) algorithm for

semantic identification of English text. The results showed

that the identification results of the LSTM algorithm for

the part of speech and sentiment tendency of English text

were consistent with the label results [6]. Scholars

emphasize semantic information and use different

techniques to improve model performance. However, the

research has not fully utilized the graph structure to

capture the complex relationship of text. Sequential

models, which concentrate mostly on local aspects and

may have trouble with long-distance dependencies,

frequently miss deep semantic linkages that graph

structures capture. A graph structure preserves both local

and global dependencies by representing words as nodes

and their interactions as edges, in contrast to CNNs and

RNNs that analyze text sequentially. This makes it

possible to comprehend text semantics more precisely,

especially in intricate circumstances. This representation

is further improved by combining contrastive learning

with Graph Neural Networks (GNNs), which increases the

model's capacity to differentiate between text categories

and boosts performance on tasks with intricate semantics

and long-distance dependencies. It has limitations in the

processing of inter-lexical dependencies and deep

semantic structures.

GNN can better capture the relationship and meaning

between words by turning text into a graph, enhance the

model's understanding of text structure, and improve

classification accuracy, especially in processing long

articles and tasks that require an understanding of context

[7-8]. In recent years, some researchers have used GNN in

text classification research. To solve the problem of cross-

lingual text classification, Vo T proposed a new topic-

driven multi-type text graph attention representation

learning technology, which combined neural topic

modelling technology with a heterogeneous text graph

attention network to enhance the semantic information of

text representation learned in various language

environments. GAT and GraphSAGE are two models with

distinct advantages in text classification problems. GAT

incorporates an attention mechanism into graph

convolutional layers, allowing the model to focus on

meaningful words or relationships, hence enhancing

accuracy. GraphSAGE minimizes computational

complexity by sampling neighbors during training and

enhances scalability, particularly for large-scale graphs.

Its aggregation approaches, such as mean, pooling, and

LSTM-based aggregators, enable the model to capture

broad semantic patterns while avoiding overfitting. When

coupled, these models could offer a more robust method

for dealing with complicated semantics and long-distance

interdependence.

 The proposed model was compared with the current

state-of-the-art baseline and experimentally demonstrated

its effectiveness [9]. Deng Z proposed a new graph-based

model and designed an attention-gated graph neural

network to propagate and update the semantic information

of each word node to solve the problem that existing

methods are not enough to capture the semantic

relationship between words. Experimental results showed

that the proposed model outperformed previous text

classification methods [10]. Parthasarathy (2023)

examines combining neural networks with the Harmony

Search Algorithm (HSA) to improve fraud detection in

banking. Traditional methods often fail against complex

fraud techniques, but this combination enhances accuracy

and reliability. The findings suggest that models like

Decision Tree Classifier and Sequential models, with

near-perfect accuracy, could transform fraud prevention.

However, this study supports the idea that combining

neural networks with the Harmony Search Algorithm

(HSA) to improve fraud detection parallels the approach

in our work to enhance accuracy and reliability in text

classification [11]. The above scholars have cleverly used

English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 335

graph structures and attention mechanisms to grasp the

semantic relationship of text, significantly improving the

model's ability to handle complex semantics and

performing well in cross-language text classification.

However, the graph neural network's capture of deep

semantics and long-distance dependencies needs to be

strengthened, and it has not fully utilized contrastive

learning to enhance feature representation.

This study combines GNN with contrastive learning

to deeply capture word relationships by constructing a text

graph and optimizing semantic embedding using

contrastive learning. GNN converts text into a graph with

words as nodes and edges showing semantic connections.

The results show that this method can deeply capture text

semantics and long-distance dependencies, significantly

improve performance in multiple text classification tasks,

and demonstrate its excellent generalization ability and

robustness. Compared with CNN, this method is more

precise and stable when dealing with complex text

classification. The innovation of this study is to combine

GNN with contrastive learning for English text

classification, which makes up for the shortcomings of

traditional methods and reduces the dependence on

labeled data. The new graph contrast loss function

captures text semantics more precisely. The graph contrast

loss function has numerous significant advantages over

ordinary contrastive loss functions, especially in the

context of graph neural networks (GNN) and contrastive

learning for text categorization. It takes advantage of the

network structure of text to improve the model's capacity

to capture semantic linkages between words, addressing

the complex, long-distance dependencies that typical

contrastive loss functions frequently overlook. By taking

into account both pairwise similarities and contextual

relationships within the network, the graph contrast loss

function improves semantic embedding quality, resulting

in more accurate and informative text representations. The

function also includes Hard Negative Mining, which

concentrates on difficult-to-detect negative samples,

allowing the model to acquire more discriminatory

features and enhance generalization. At the same time,

through strategy optimization and parameter adjustment,

the classification accuracy and training efficiency are

improved. These innovations have promoted the

development of text classification technology and

provided new ideas for natural language processing. The

organizational structure of this study is shown in Figure 1:

Introduction

Research background,

current situation, and

significance

Related work

Research summary and

innovation points

Model construction and

optimization

Data preprocessing and

graph construction

Design of GNN Model

Introduction of

comparative learning

module

Preprocessing data

Diagram structure

construction

Graph convolution

network

Model architecture design

Normalization

Network training and

optimization

Compare learning goals

and methods

The combination of

comparative learning and

graph neural networks

Optimization of

comparative learning in

semantic embedding

Model Evaluation and

Experimentation

Experimental design

实验设计

Accuracy

Recall

F1 score

Experimental result

Figure 1: Organizational structure of this study

2 Construction and optimization of

the english text classification model

2.1 Data Preprocessing and graph construction

2.1.1 Preprocessing data

Data preprocessing is critical for English text

classification. It can clean text, remove noise, and convert

it into a format suitable for GNN. The proposed approach

combines contrastive learning with Graph Neural

Networks (GNN) to handle noisy or redundant test

instances efficiently. GNN focuses on pertinent semantic

connections while capturing long-distance dependencies

and deep semantic interconnections between words. By

differentiating between comparable and dissimilar

samples, contrastive learning improves the resilience of

the model. By focusing on hard-to-classify negative

samples, hard negative mining improves classification

accuracy and lessens the influence of redundant data.

336 Informatica 49 (2025) 333–346 C. Sian et al.

This article cleans, segments, removes stop words,

and stems the data to extract valuable semantic

information, laying the foundation for subsequent graph

construction and graph neural network training. Text

cleaning is the first step in data preprocessing. The original

text contains many irrelevant information, such as

punctuation, numbers, etc., which may interfere with the

analysis. This article uses regular expressions to clean up

these noises, retaining only letters and spaces to ensure the

text's purity. The next step is segmenting the text into

independent words or phrases. Using the word tokenize

method of NLTK (Natural Language Toolkit), word

segmentation is performed by space and punctuation, and

the text is converted into a vocabulary list. Afterword

segmentation, stop words are filtered out. Removing stop

words can reduce the amount of calculation and prevent

the model from being interfered with by irrelevant

information. NLTK stop word library is utilized for

filtering. After that, stemming is done to normalize

different forms of words to the basic form, such as

"running" becomes "run". This can reduce the number of

words and vocabulary dimensions and improve training

efficiency. Then, the Porter stemming algorithm and the

Porter Stemmer class of NLTK are processed. After this

preprocessing, the original text becomes a preprocessed

standardized vocabulary list.

Word segmentation, stop word elimination, and

stemming are critical processes that ensure efficient

processing of data in order to prepare it for text

classification model operation. Since the text is

represented as a graph with words as nodes in models like

Graph Neural Networks (GNNs), word segmentation is

crucial since it separates the text into discrete words or

tokens. By getting rid of popular but useless words, stop

word removal lowers computing costs and directs the

model's attention to more important data. Stemming

minimizes vocabulary quantity and increases training

efficiency by breaking words down to their most basic

forms.

2.1.2 Graph structure construction

Each document is treated as a graph. Among them,

words correspond to nodes; edges between nodes

represent semantic relationships between words; edge

weights represent the strength of the relationship. After

data preparation, a text graph structure is constructed for

GNN. In this study, edges are built based on word co-

occurrence information, and the co-occurrence matrix is

used to quantify the word association. Semantic

granularity and computational performance must be

balanced when choosing the window size for co-

occurrence computation in the word co-occurrence

network. For tasks like text categorization, a larger

window size aids in capturing broader, long-distance

semantic dependencies, whereas a smaller window size

captures local, syntactic interactions between close words.

Depending on the needs of the text, the window size is

selected; larger windows make it easier to record intricate

relationships in lengthy texts. The sliding window size v

is first set to construct the co-occurrence matrix,

determining which words are closely related semantically.

Words that co-occur within a window are considered

related. If two words appear in the same window, they are

semantically related. The co-occurrence matrix D is

symmetric, and the element 𝑑𝑖𝑗 represents the number of

times words v𝑖 and v𝑗 co-occur in the window. Each

document window is traversed, and the number of co-

occurrences of each pair of words is calculated to

construct a matrix. The formula (1) is:

𝑑𝑖𝑗 = ∑ 𝜗𝑀−𝑣+1
𝑙=1 (v𝑖 , 𝑙) ∙ 𝜗(v𝑗 , 𝑙 + 1) (1)

Among them: 𝜗(v𝑖 , 𝑙) and 𝜗(v𝑗 , 𝑙 + 1)-the indicator

functions;

The total number of words in the document;

𝑣-the set sliding window size.

If the words v𝑖 and v𝑗 appear adjacent in the text (v𝑖

is at position l, and v𝑗 is at position l+1), the function value

is marked as 1. Otherwise, it is marked as 0. Based on this

method, a symmetric matrix can be constructed, whose

element 𝑑𝑖𝑗 represents the co-occurrence frequency of v𝑖

and v𝑗 in a given window, reflecting the closeness of their

semantic connection.

When generating the graph structure, the words in

the document are represented as nodes, and the co-

occurrence matrix determines the edge weights to capture

the long-distance dependencies between words. Unlike the

traditional bag-of-words model, the graph structure retains

the order of words and effectively displays complex

semantic connections, providing rich information for

graph neural networks. PMI (Pointwise Mutual

Information) is used to measure the similarity of word

pairs to enhance the graph structure [12-13]. The formula

(2) for PMI is:

PMI(v𝑖 , v𝑗) = log
𝑄(v𝑖,v𝑗)

𝑄(v𝑖)𝑄(v𝑗)
 (2)

Among them: 𝑄(v𝑖 , v𝑗)-the joint probability of

words v𝑖 and v𝑗 appearing in the document at the same

time;

𝑄(v𝑖) and 𝑄(v𝑗)-the marginal probabilities of words

v𝑖 and v𝑗.

The joint probability 𝑄(v𝑖 , v𝑗) is derived from the

elements of the co-occurrence matrix, and the marginal

English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 337

probabilities 𝑄(v𝑖) and 𝑄(v𝑗) are estimated based on the

occurrence frequency of the words in the document.

Semantically related word pairs can be identified by

calculating PMI, and corresponding edges can be

established in the graph. The two words can be connected

only when the PMI value exceeds the set threshold. A text

graph is created using words as nodes and edges signifying

semantic associations in order to weight word correlations

and perform edge pruning. Pointwise Mutual Information

(PMI), which gauges how similar word pairings are to one

another, and a co-occurrence matrix are used to assess how

strong these links are. Stronger semantic connections are

captured when words with a PMI value above a threshold

are joined by edges. By eliminating shoddy or irrelevant

connections, edge pruning improves the graph's

performance and the quality of the semantic embedding.

In this way, the text graph structure can precisely model

the deep relationship between words and provide accurate

and rich data to the graph neural network, thereby

improving the performance of classification tasks. The

formation of text preprocessing to graph structure is

shown in Figure 2:

Text cleaning

Word segmentation

Stop using words

Stemming

Data preprocessing

Set the sliding window

size

Traverse the document and

calculate the co-occurrence

of each pair of words within

the window

Constructing a symmetric

co-occurrence matrix

Construct co-occurrence

matrix

Calculate the PMI value

of word pairs

Set PMI threshold, only

connect words when PMI

value exceeds threshold

Establish nodes (words)

and edges (semantic

relationships) in the graph

Calculate PMI and

construct graph structure

The edge weight is determined

by the PMI value, representing

the strength of the relationship

Obtain a graphical

representation of the text

structure

The graph structure includes

nodes (words), edges

(semantic relationships), and

weights

Output graph structure

Figure 2: The process of forming a graph structure

from text preprocessing

2.2 Graph neural network model design

2.2.1 Graph convolutional network

When designing a GNN model, first, a graph structure

is built based on the text, and then, GCN is used to

propagate information and learn features, aiming to deeply

capture the semantics and long-distance dependencies of

the text. A multi-layer GCN architecture is adopted to

enhance the model's performance, and residual

connections and normalization strategies are added to

ensure information flow and prevent gradient

disappearance. GCN is an effective method for processing

graph-structured data and performs well in graph-related

tasks [14-15]. Graph neural networks (GNNs) benefit

significantly from residual connections, especially when it

comes to solving the problem of gradient vanishing in

deep designs. The gradients don't decrease during

backpropagation, which is a common problem in deep

networks, because to these links, which allow information

to travel directly between layers. In the absence of residual

connections, deeper models have trouble with gradient

propagation, which can lead to poor convergence or

unsuccessful training. Residual connections provide more

effective feature learning and preserve stable training by

letting gradients avoid layers. They play a crucial role in

GCN-based models by maintaining pertinent data across

layers, which enhances the network's capacity to represent

intricate and distant connections in text. In the English text

classification task, GCN effectively captures the text's

deep semantics and long-distance dependencies through

the graph structure. Words are regarded as nodes, and

edges represent the relationship between words. The graph

convolution operation of GCN enables the model to

propagate and learn node information and then deeply

understand the semantics of words in context.

If the features of the nodes in the graph are

represented by 𝑔𝑖
(𝑘)

, representing the features at the k-th

layer, GCN updates them according to Formula (3).

𝑔𝑖
(𝑘+1)

= 𝛿 (∑
1

|𝑁(𝑖)|
∙

1

|𝑁(𝑗)|
𝑈(𝑘)

𝑗∈𝑁(𝑖) 𝑔𝑗
(𝑘)

+

𝑈0
(𝑘)

𝑔𝑖
(𝑘)

) (3)

Among them: 𝑁(𝑖)-the set of neighbor nodes of the

node;

𝑈(𝑘) and 𝑈0
(𝑘)

-the learnable parameters of the k-th

layer;

𝛿-the nonlinear activation function is ReLU

(Rectified Linear Unit).

 𝑔𝑖
(𝑘)

-represents the features of node i at layer k.

1

|𝑁(𝑖)|
- normalizes the aggregation of neighbor

features.

2.2.2 Model architecture design

When designing the GCN model, multiple layers of

GCN are stacked to enhance the expression ability and

feature depth. Each layer updates the node features by

aggregating neighbor information, capturing complex

relationships more deeply than a single layer. The multi-

layer Graph Convolutional Network (GCN) is designed

with the primary goal of efficiently capturing long-

distance connections and semantic linkages in text. To

capture both local and global semantic patterns, the model

employs a multi-layer GCN architecture, in which each

338 Informatica 49 (2025) 333–346 C. Sian et al.

layer collects data from nearby words (nodes). In order to

ensure efficient information transfer between the layers

and prevent gradient vanishing, residual connections are

included. By preserving constant feature scales,

normalization approaches are used to stabilize training and

enhance convergence. The graph-based structure

improves feature representation by enabling information

to spread through semantic relationships between words.

At each layer, contrastive learning is also used to further

improve semantic understanding by differentiating

between similar and dissimilar text categories using a

Triplet Loss function.

The performance of the Graph Convolutional

Network (GCN) model in text categorization is greatly

improved by its depth, which includes many layers,

residual connections, and normalization. The model's

several layers enable it to capture intricate, far-reaching

semantic relationships between words. However, residual

connections ensure that the gradient flow is maintained

during backpropagation, which helps to avoid the

vanishing gradients that might affect deeper networks. By

guaranteeing uniform feature distributions among layers,

normalization enhances convergence stability and speed,

further stabilizing training.

To solve the problem of gradient disappearance

caused by multiple layers, residual connections are

applied to ensure effective information transmission. The

graph convolution update formula (4) is:

𝑔𝑖
(𝑘+1)

= 𝑔𝑖
(𝑘)

+ 𝛿 (∑
1

|𝑁(𝑖)|
∙

1

|𝑁(𝑗)|
𝑈(𝑘)

𝑗∈𝑁(𝑖) 𝑔𝑗
(𝑘)

+

𝑈0
(𝑘)

𝑔𝑖
(𝑘)

) (4)

By stacking multiple layers of GCN, the model can

learn richer node representations and integrate local and

global information. After GCN processing, word feature

representations can more precisely capture the complex

semantics of the text and help text classification. This

architecture improves model performance, effectively

copes with complex semantics in large-scale text data, and

achieves efficient processing. The model structure of this

article is shown in Figure 3.

ResNet is a deep residual network architecture that

enhances automated test case generation by improving

accuracy and efficiency. It overcomes challenges like

vanishing gradients, allowing deeper networks to train

without losing important information. ResNet captures

hierarchical features and retains essential data through

residual connections, making it useful for complex data

structures. It generates diverse test cases, including edge

cases, and ensures each network layer contributes to better

feature extraction, resulting in more accurate, reliable, and

efficient test case generation for robust software

validation.

Input text data

Word embedding

layer

Convert each word in the text into a vector

representation in a high-dimensional space

Multi-layer GCN

Multiple stacked GCN

layers

Aggregate information from

neighboring nodes to update the

feature representation of the

current node

Add residual

connection

Add dropout layer

One or more fully connected hidden

layers

Feature fusion layer
Characteristics of

different GCN layers

Output layerSoftmax Cross-entropy loss

Minimize cross

entropy loss

Figure 3: Model structure diagram

The proposed approach addresses the vanishing

gradient issue, increases training stability, and speeds up

convergence by utilizing ResNet layers to enhance pattern

recognition. While deeper layers concentrate on intricate

patterns like object pieces or semantic structures, early

layers capture basic aspects like edges and textures. Even

in deep networks, residual connections allow for the

effective learning of both low-level and high-level

information, leading to more reliable and accurate text

classification.

2.2.3 Normalization in graph convolutional networks

Normalization operations are added to the model to

improve the training stability and convergence speed of

GCN. The heterogeneity between nodes in graph structure

data leads to large differences in node feature distribution,

affecting training efficiency and performance. Therefore,

layer normalization technology ensures that the scale of

input features of each convolution layer is similar. Layer

normalization independently normalizes the features of

each layer of nodes to ensure that the input features are

evenly distributed and have consistent scales. Contrastive

learning refines Graph Convolutional Networks (GCNs)

to improve text categorization performance by optimizing

the text's semantic representations.

English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 339

GCNs capture semantic relationships by converting text to

a graph structure while retaining long-distance

interdependence. Contrastive learning, using Triplet Loss,

refines these embeddings by bringing comparable text

samples closer together and pushing dissimilar ones apart,

hence boosting classification accuracy. Furthermore, Hard

Negative Mining concentrates on difficult-to-distinguish

negative data, speeding up the learning process and

improving the model's capacity to detect minor semantic

differences. The temperature parameter helps to stabilize

training by regulating gradient updates, resulting in

smoother learning and preventing abrupt changes early

on.

 Unlike batch normalization, layer normalization

does not rely on batch statistical information and is more

suitable for graph data. Neural network training is

stabilized and accelerated by the use of Layer

Normalization (LN) and Batch Normalization (BN).

Because LN normalizes inputs across properties of each

individual data point, it can be used with graph-based

models. It guarantees that the feature representation of

every node is stable and performs well with tiny or

irregular batches. BN uses batch statistics to normalize the

entire batch, which may not be as successful because of

differences in node properties and graph sizes. In graph-

based models, LN is favored because it individually

normalizes the properties of each node, resulting in more

stable and efficient training, particularly in graph data that

is sparse and volatile.

The layer normalization formula (5) is:

𝑔̂𝑖
(𝑘)

=
𝑔𝑖

(𝑘)
−𝜑(𝑘)

𝛿(𝑘) ∙ 𝛼(𝑘) + 𝛽(𝑘) (5)

Among them: 𝜑(𝑘) and 𝛿(𝑘)-the mean and standard

deviation of the features of the k-th layer;

𝛼(𝑘) and 𝛽(𝑘)-the learnable scaling and offset

parameters;

𝑔̂𝑖
(𝑘)

-the normalized features.

Dropout is added after each layer to improve the

generalization ability by randomly discarding some

connections to prevent GCN from overfitting. With the

normalization operation, GCN is more robust when

processing high-dimensional data and complex tasks,

improving the generalization performance and training

efficiency of English text classification and ensuring that

the model is stable and has strong generalization ability.

2.2.4 Training and optimization of graph

convolutional networks

During the training process of GCN, supervised

learning is used, and the classification effect is optimized

by minimizing the cross-entropy loss. This loss function

can measure the gap between the predicted result and the

true label. In the English text classification task, word

features are regarded as graph nodes and information

propagation and update are realized through GCN. The

loss function formula (6) is expressed as:

K = − ∑ ∑ bi,d log(b̂i,d)D
d=1

M
i=1 (6)

Among them: M-the number of samples;

The number of categories;

bi,d-the true label of the i-th sample in category d;

b̂i, the prediction probability of the model in category

d.

To improve the training speed and optimization

effect, the Adam (Adaptive Moment Estimation)

optimizer is selected, which can dynamically adjust the

learning rate according to the mean and variance of the

gradient, thereby achieving faster convergence and

preventing gradient problems. The updated rules are

shown in Formulas (7) to (10):

𝑛𝑟 = 𝛾1𝑛𝑟−1 + (1 − 𝛾1)ℎ𝑟 (7)

𝑤𝑟 = 𝛾2𝑤𝑟−1 + (1 − 𝛾2)ℎ𝑟
2 (8)

𝑛̂𝑟 =
𝑛𝑟

1−𝛾1
𝑟 , 𝑤̂𝑟 =

𝑤𝑟

1−𝛾2
𝑟 (9)

𝜂𝑟 = 𝜂𝑟−1 − 𝜇
𝑛̂𝑟

√𝑤̂𝑟+𝜖
 (10)

Among them: 𝑛𝑟 and 𝑤𝑟-the mean and variance of

gradient;

ℎ𝑟-the gradient at the current moment;

𝛾1 and 𝛾2-the hyperparameters, used to control the

decay rate of the first-order moment estimate and the

second-order moment estimate;

𝜇-the learning rate;

𝜖-the small constant to prevent zero division errors.

Using the Adam optimizer, GCN can adaptively

adjust the parameter update step to avoid the limitations of

traditional gradient descent, such as learning rate

sensitivity and gradient explosion, thereby improving

convergence speed and model stability.

2.3 Application of contrastive learning

module

2.3.1 Objectives and methods of contrastive learning

To improve the performance of GNN in text

classification, this study applies a contrastive learning

mechanism. This mechanism optimizes semantic

representation by maximizing the distance between texts

of different categories, making texts of the same category

closer and texts of different categories more distant, which

helps GNN capture long-distance dependencies and

340 Informatica 49 (2025) 333–346 C. Sian et al.

complex semantics. The proposed discusses how Graph

Neural Networks (GNNs) form node representations by

using semantic relationships between words, transforming

text into a graph where words are nodes and edges

represent their semantic connections. GNNs capture long-

distance dependencies and complex relationships through

graph convolution operations. Additionally, contrastive

learning enhances these representations by refining the

similarity between words of the same category and

distinguishing those from different categories.

Contrastive learning performs an important role in

decreasing noise and improving the quality of semantic

embeddings in text classification because it optimises

semantic representations by enhancing the distance

between different samples and minimizing the distance

between comparable ones. This strategy enhances the

model's capacity to identify between categories,

particularly when dealing with noisy or ambiguous input.

In this study, contrastive learning, in conjunction with

Graph Neural Networks (GNN), refines semantic features

and aids in the capturing of deep word associations. Hard

Negative Mining prioritizes difficult negative samples,

enhancing the model's learning efficiency, and

temperature parameters stabilize training by managing

gradient updates. Contrastive learning does not rely on

traditional annotations and provides greater flexibility and

adaptability. This study uses Triplet Loss as the loss

function, which aims to reduce the distance between the

anchor point and the positive sample and increase the

distance between the anchor point and the negative

sample, significantly improving the accuracy and

efficiency of GNN in text classification. The formula (11)

is:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝑚𝑎𝑥(𝑒(𝑥, 𝑝) − 𝑒(𝑥, 𝑛) + 𝜆, 0) (11)

Among them: 𝜆-the feature representation of anchor

samples;

𝑝 and the feature representations of positive samples

and negative samples.

By minimizing Triplet Loss, the model can make

similar samples closer and heterogeneous samples more

distant in the embedding space, thereby improving the

accuracy of text classification. Samples with similar or the

same labels are selected as positive samples, and samples

with different or low similarity are selected as negative

samples. The Comparing loss functions like Triplet Loss

and NT-Xent is essential for evaluating classification

performance. The model's capacity to differentiate

between classes is improved by both loss functions, which

modify the separation between sample representations.

Because of its ease of use and function in keeping anchor

samples far from negative ones and closer to positive ones,

triplet loss is prized. However, NT-Xent Loss is more

successful at identifying minute variations across classes

because it adds a temperature parameter that gives it more

accurate control over the embedding space. Although

Triplet Loss was chosen for this study because of its

efficacy, a comparison with NT-Xent may provide more

information on how each model contributes to

performance, especially in cases with complicated

semantics and long-distance dependencies. Optimizing

this loss function helps the model learn more precise text

representation.

2.3.2 Combination of contrastive learning and graph

neural network

In GNN, text is converted into a graph structure, with

vocabulary represented by nodes and relationships

represented by edges. GCN learns node features, and

contrastive learning optimizes semantic dependencies.

Node characteristics are improved for text classification

using contrastive learning in a GNN by transforming text

into a graph with nodes representing words. A multi-layer

GCN captures semantic dependencies, but contrastive

learning using Triplet Loss reduces the distance between

similar phrases while increasing it for different ones in the

embedding space. Hard Negative Mining concentrates on

tough negative data, and a temperature parameter

smoothes the loss function for more stable training. This

combination enables the model to capture the

comprehensive semantics of the text. Contrastive learning

is added after each layer of graph convolution to improve

the discriminability of text representation. Node features

are regarded as global feature training, and similarity is

calculated based on node embedding so that GNN can

extract local and overall semantics at the same time.

During training, the model optimizes the graph structure

and node features through contrastive learning to capture

semantics more precisely.

Furthermore, combining contrastive learning and

GNN, a new graph contrast loss function is designed to

consider node similarity and category information to

improve the accuracy of semantic understanding. The

model extracts feature with GCN and then optimizes with

this function to enhance text classification performance.

The optimization formula (12) of the graph contrast loss

function is:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = ∑ ∑ [𝑒(𝑓𝑖, 𝑓𝑗) − 𝜆 ∙ 𝐼 (𝑏𝑖 ≠ 𝑏𝑗)]𝑀
𝑗=1

𝑀
𝑖=1

(12)

Among them: 𝑓𝑖 and 𝑓𝑗-the node feature

representation;

𝑏𝑖 and 𝑏𝑗-the node category labels;

𝑒(𝑓𝑖,) the distance measurement between nodes.

English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 341

2.3.3 Optimization of contrastive learning in

semantic embedding

This study integrates category information into

contrastive learning to improve the quality of semantic

embedding, making similar texts closer and different

categories more separated. Contrastive learning refines

Graph Convolutional Networks (GCNs) to improve text

categorization performance by optimizing the text's

semantic representations. GCNs capture semantic

relationships by converting text to a graph structure while

retaining long-distance interdependence. Contrastive

learning, using Triplet Loss, refines these embeddings by

bringing comparable text samples closer together and

pushing dissimilar ones apart, hence boosting

classification accuracy. Furthermore, Hard Negative

Mining concentrates on difficult-to-distinguish negative

data, speeding up the learning process and improving the

model's capacity to detect minor semantic differences. The

temperature parameter helps to stabilize training by

regulating gradient updates, resulting in smoother learning

and preventing abrupt changes early on. The Hard

Negative Mining strategy is adopted to focus on negative

samples that are difficult to distinguish. Unlike traditional

methods, this strategy selects negative samples based on

model performance to improve learning efficiency. The

dynamic selection of 'hard' negative samples in contrastive

learning concentrates on the most difficult cases that are

closest to the anchor sample. This method, known as Hard

Negative Mining, increases model discriminative power,

speeds up training convergence, and improves

generalization. It helps the model better discern

insignificant distinctions, especially in complex or

imbalanced datasets, resulting in more efficient and robust

performance in tasks like as text categorization. Hard

Negative Mining, which concentrates on choosing

negative examples that are challenging to distinguish,

improves the negative sample selection procedure in this

research. By pushing the model to learn from difficult

examples rather than simple negatives, this technique

increases the discriminability of the model and produces

more robust and instructive representations. By lowering

the possibility of overfitting to readily classifiable

negative samples, it also helps to maintain the stability of

the model. Furthermore, the contrastive loss function's

incorporation of a temperature parameter regulates the

gradient updates' smoothness, avoiding drastic changes

early in the training process and encouraging steadier

optimization. By focusing on such samples, the model can

better capture the subtle differences in text features and

enhance classification capabilities.

Hard Negative Mining (HMN) is a technique used to

enhance model learning by choosing the most difficult

negative samples—those that are hard to differentiate

from positive ones. HMN highlights the most instructive

negative examples, in contrast to random negative mining,

which chooses negative samples independent of their

proximity to the decision boundary, or semi-hard negative

mining, which targets samples near but not on the

boundary. By making the model pick up on minute

differences, this method speeds up model convergence

and decreases overfitting. HMN improves the contrastive

learning framework and Graph Neural Network (GNN)

semantic embedding in the study, increasing classification

robustness and accuracy, especially for challenging tasks

like text categorization.

 In each round of training, Hard Negative Mining

optimizes the negative samples closest to the anchor point.

Hard Negative Mining focuses on negative samples that

are hard to separate from positive samples by choosing

those that are closest to the anchor point in feature space.

Metrics like cosine similarity or Euclidean distance are

frequently used to measure the distance or similarity

between the feature vectors of the samples. By choosing

these difficult negative samples, the model improves its

generalization skills by learning to distinguish between

classes more precisely. This strategy encourages the

model to focus on those difficult-to-distinguish samples in

the feature space, thereby performing more precise feature

identification and improving the accuracy of text

classification. In addition, it prevents the model from

paying too much attention to samples that are easy to

classify, thereby reducing the risk of overfitting.

Therefore, the application of difficult negative samples

not only does it improve the model's classification ability

and accelerate training convergence, but its advantages

become more evident when processing complex texts.

This article applies a temperature parameter to optimize

the contrastive learning process. The intensity of gradient

updates is controlled by smoothing the loss function to

maintain training stability. The temperature parameter

adjusts the influence of the distance between samples,

enhances the robustness of the loss function, and avoids

extreme gradient updates in the early stage of learning.

The temperature loss function formula (13) is:

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
1

𝑇
log (1 + 𝑒𝑥𝑝 (

𝑒(𝑥,𝑛)

𝑇
)) (13)

Among them is T- the temperature parameter, which

controls the smoothness of the loss function.

By changing the temperature parameters, the model

can optimize the contrastive learning effect, prevent it

from entering local optima, and adjust the learning speed

and gradient changes according to the training stage and

sample difficulty. The model's optimal temperature

parameter was demonstrated to improve contrastive

learning's semantic embedding quality and training

stability. It ensures smoother convergence by preventing

problems like excessive gradients in the early phases of

training by regulating the degree of gradient updates. By

342 Informatica 49 (2025) 333–346 C. Sian et al.

controlling the distance between samples, the temperature

balances the impact of both simple and complex examples.

The robustness of the methodology is further

demonstrated by a sensitivity study that shows how

changing the temperature impacts model performance. By

combining Hard Negative Mining and temperature

parameters, the contrastive learning mechanism in this

study optimizes semantic embedding, making the text

classification model more precise and efficient in

processing complex semantics. Hard Negative Mining

(HNM) improves feature representation in contrastive

learning by emphasizing the most difficult negative

samples, which are similar to positive samples but belong

to distinct classes. This method drives the model to

improve its feature space and learn smaller distinctions

between comparable cases, hence increasing the

discriminative strength of the learned representations. In

the study, HNM is integrated into the contrastive learning

framework to improve semantic embeddings and

generalization capacity. HNM accelerates model

convergence and reduces overfitting by prioritizing tough

negative samples over easy ones, resulting in better

accuracy and robustness, particularly for complex tasks

such as text classification. These strategies have improved

classification and generalization ability, especially on

diverse text datasets.

3 Evaluation and experiment of the

english text classification model

3.1 Experimental design

This experiment aims to explore the performance of

the English text classification model that integrates graph

neural networks and contrastive learning. The public "20

Newsgroups" dataset is selected for testing. This dataset

contains various news articles and can fully demonstrate

the model's performance after preprocessing. To evaluate

the model, indicators such as accuracy, recall, and F1

value are used to comprehensively measure the

classification effect. At the same time, compared with the

CNN-based classification model, the advantages of the

new method are highlighted, verifying the effectiveness of

the combination of graph neural networks and contrastive

learning. Through this comparative experiment, the

performance improvement of the proposed model and its

potential in practical applications can be demonstrated.

The experimental environment of this article is shown in

Table 1:

Table 1: Experimental environment

Serial

Number

Experimental

Environment

Specific

Configuration

1 Experimental

System

Windows 11

2 Programming

Language

Python

3 Central

Processing Unit

Intel i7, 8 cores

4 Operating

Medium

Pycharm

5 Memory 32GB

6 Video Memory 12GB

7 CUDA

(Compute

unified device

architecture)

version

11.4

8 GPU Floating

Point

Computing

Power

Single

precision

15.7, TFLOPS

9 GPU (Graphics

Processing Unit)

NVIDIA GTX

10 Deep Learning

Framework

PyTorch

11 database MySQL

3.2 Experimental results

3.2.1 Accuracy

Accuracy is the key to evaluating model

performance. This article compares the accuracy of 15

model tests using these two methods. Figure 4 shows the

findings:

Figure 4: Comparison of model accuracy results

under the two methods

English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 343

According to the 15 test results in Figure 4, the

accuracy of this article's method is stable and high,

ranging from 91.41% to 97.60%, with an average of

94.46%. The accuracy of the CNN method ranges from

81.63% to 87.94%, with an average of 84.45%. For

example, in the first test, this article's method is 12.39%

higher than CNN. Even in the eighth test, this method is

still ahead. These data prove the advantages of this

article's method in dealing with complex semantics and

long-distance dependencies. They can distinguish texts

more precisely, showing their good generalization ability

and robustness. This again proves the effectiveness and

superiority of combining graph neural networks with

contrastive learning.

3.2.2 Recall rate

The recall rate is the core indicator for evaluating the

model's ability to identify positive samples. It reflects the

model's ability to find actual positive examples, which is

crucial to preventing the omission of key information. A

high recall rate means the model can more

comprehensively identify relevant text categories, which

is particularly important for information retrieval and

sentiment analysis tasks because it can reduce

underreporting. Based on this, the recall rate of the model

is further tested, and the results are shown in Figure 5.

Figure 5: Comparison of recall results under two

methods

According to Figure 5, compared with CNN, the

recall rate of this article's method is significantly higher,

ranging from 86.89% to 91.20%, with an average of

89.27%, while that of CNN is 76.80% to 81.43%, with an

average of 79.02%. In the third test, the recall rate of this

article's method is 13.61% higher than that of CNN. Even

in the 13th test, this method is still ahead. This indicates

that the method proposed in this article can more

comprehensively recognize text and reduce false

negatives. When dealing with imbalanced data, stronger

detection of minority categories enhances system

reliability. This proves that combining GNNs and

contrastive learning can effectively improve recall rates,

enhance classification performance, and provide

application guarantees.

3.2.3 F1 Value

F1 score is a key indicator for evaluating model

performance, which comprehensively reflects the

classification performance of the model by combining

precision and recall. Optimizing the F1 value can ensure

that the model is more accurate and reliable when dealing

with imbalanced datasets, reducing misjudgments and

omissions. This article calculates the F1 value, as

displayed in Table 2.

Table 2: Comparison of F1 value results

Number

of tests

This article

(%)
CNN (%)

1 91.65 81.00

2 92.69 80.76

3 93.21 79.98

4 91.59 80.53

5 90.44 82.08

6 91.81 83.81

7 91.37 83.34

8 90.82 83.87

9 90.92 81.65

10 92.04 81.97

11 93.08 80.04

12 89.92 82.09

13 92.18 80.71

14 92.42 82.18

15 92.68 80.94

According to Table 2, the F1 value range of this

method is 89.92%-93.21%, with an average of 91.79%.

The F1 score of CNN ranges from 79.98% to 83.87%,

averaging 81.66%. In the third test, the F1 value of this

article's method is 13.23% higher than that of CNN. The

12th test also shows that this method is better than CNN.

This shows that this method is accurate and reliable, can

effectively identify positive examples, and is suitable for

information retrieval and sentiment analysis tasks. When

dealing with unbalanced data, this article's method reduces

misjudgments and positive example omissions greatly

improves the robustness and practicality of the system,

and once again proves the advantages of combining graph

neural networks with contrastive learning.

344 Informatica 49 (2025) 333–346 C. Sian et al.

4 Conclusions
This study combines GNN with contrastive learning

to innovate the English text classification model. GNN

precisely captures the deep relationship between words in

the text, while contrastive learning strengthens semantic

embedding and improves the model's ability to identify

different texts. The experimental results show that the

accuracy, recall rate, and F1 value of the new model on

the public dataset are better than the traditional CNN

model, showing excellent classification performance. This

model is more accurate and stable when dealing with

complex semantics and long-distance dependencies,

opening up new avenues for English text classification. By

displaying text through graph structures, the model reveals

the associations between words more deeply, while

contrastive learning enhances feature representation,

making the model better at identifying text categories.

This improves classification accuracy and enhances the

model's generalization ability and robustness, making it

suitable for various application scenarios. However, there

are still limitations to this study. The model needs to adjust

parameters for specific text classification and is sensitive

to hyperparameters, requiring careful tuning. Meanwhile,

the unsupervised learning performance also needs to be

improved. The combination of GNN and contrastive

learning has brought breakthroughs in natural language

processing, with broad application prospects in

information retrieval, sentiment analysis, and other areas.

Funding
This research is supported by the China Vocational

Education Association of Zhejiang Province (Grant No.

ZJCV2024C01).

Data availability
All data generated or analyzed during this study are

included in the manuscript.

Author contributions
Chen Sia, Pan Guoqiang is contributed to the design and

methodology of this study, the assessment of the

outcomes, and the writing of the manuscript.

References
[1] Martinez-Rodriguez, J. L., Hogan, A., & Lopez-

Arevalo, I. (2020). Information extraction meets the

semantic web: A survey. Semantic Web, 11(2), 255–

335. https://doi.org/10.3233/SW-180333

[2] Tamine, L., & Goeuriot, L. (2021). Semantic

information retrieval on medical texts: Research

challenges, survey, and open issues. ACM

Computing Surveys, 54(7), 1–38.

https://doi.org/10.1145/3462476

[3] Martinez-Rodriguez, J. L., Lopez-Arevalo, I., &

Rios-Alvarado, A. B. (2022). Mining information

from sentences through Semantic Web data and

Information Extraction tasks. Journal of Information

Science, 48(1), 3–20.

https://doi.org/10.1177/0165551520934387

[4] Gao, L., Zhang, L., Zhang, L., & Huang, J. (2022).

RSVN: A RoBERTa sentence vector normalization

scheme for short texts to extract semantic

information. Applied Sciences, 12(21), 11278.

https://doi.org/10.3390/app122111278

[5] Gharagozlou, H., Mohammadzadeh, J., Bastanfard,

A., & Ghidary, S. S. (2023). Semantic relation

extraction: A review of approaches, datasets, and

evaluation methods with looking at the methods and

datasets in the Persian language. ACM Transactions

on Asian and Low-Resource Language Information

Processing, 22(7), 1–29.

https://doi.org/10.1145/3588940

[6] Yu, S. (2024). Extraction and analysis of semantic

features of English texts under intelligent algorithms.

Automatic Control and Computer Sciences, 58(1),

109–115.

https://doi.org/10.3103/S0146411624010123

[7] Wang, K., Ding, Y., & Han, S. C. (2024). Graph

neural networks for text classification: A survey.

Artificial Intelligence Review, 57(8), 190.

https://doi.org/10.1007/s10462-023-10290-1

[8] Zong, D., & Sun, S. (2022). Bgnn-xml: Bilateral

graph neural networks for extreme multi-label text

classification. IEEE Transactions on Knowledge and

Data Engineering, 35(7), 6698–6709.

https://doi.org/10.1109/TKDE.2022.3140011

[9] Vo, T. (2022). An integrated topic modelling and

graph neural network for improving cross-lingual

text classification. ACM Transactions on Asian and

Low-Resource Language Information Processing,

22(1), 1–18. https://doi.org/10.1145/3530800

[10] Deng, Z., Sun, C., Zhong, G., & Mao, Y. (2022). Text

classification with attention gated graph neural

network. Cognitive Computation, 14(4), 1464–1473.

https://doi.org/10.1007/s12559-021-09960-1

[11] Parthasarathy, K. (2023). ENHANCING BANKING

FRAUD DETECTION WITH NEURAL

NETWORKS USING THE HARMONY SEARCH

ALGORITHM. International Journal of

Management Research and Business Strategy, 13(2),

34-47.

[12] Salle, A., & Villavicencio, A. (2023). Understanding

the effects of negative (and positive) pointwise

mutual information on word vectors. Journal of

https://doi.org/10.1007/s12559-021-09960-1

English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 345

Experimental & Theoretical Artificial Intelligence,

35(8), 1161–1199.

https://doi.org/10.1080/0952813X.2023.2172065

[13] Yao, M., Zhuang, L., Wang, S., & Li, H. (2022).

PMIVec: A word embedding model guided by

pointwise mutual information criterion. Multimedia

Systems, 28(6), 2275–2283.

https://doi.org/10.1007/s00530-022-00912-3

[14] Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A., &

Chanussot, J. (2020). Graph convolutional networks

for hyperspectral image classification. IEEE

Transactions on Geoscience and Remote Sensing,

59(7), 5966–5978.

https://doi.org/10.1109/TGRS.2020.3026211

[15] Kazi, A., Cosmo, L., Ahmadi, S. A., Navab, N., &

Bronstein, M. M. (2022). Differentiable graph

module (DGM) for graph convolutional networks.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 45(2), 1606–1617.

https://doi.org/10.1109/TPAMI.2022.3140011

https://doi.org/10.1109/TPAMI.2022.3140011

346 Informatica 49 (2025) 333–346 C. Sian et al.

