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Current English text classification methods mostly rely on bag-of-words models or CNN (Convolutional 

Neural Network), but there are limitations in processing text structure and semantics. Especially in long 

texts and complex contexts, it is difficult to capture the long-distance dependency and structured semantics 

between words. To this end, this article combines GNN (Graph Neural Network) with contrastive learning 

to build an English text classification model. First, a text graph is constructed through word co-

occurrence to capture the long-distance dependency of words. Then, a multi-layer graph convolutional 

network is designed, and residual connections and normalization are applied to improve model 

performance. A contrast learning module is added after each layer of graph convolution to improve node 

features and semantic representation. Triplet Loss is a loss function, and Hard Negative Mining chooses 

negative samples to improve efficiency. 

Povzetek: Predlagan je model za klasifikacijo angleškega besedila, ki združuje grafične nevronske mreže 

(GNN) in kontrastno učenje (CL). GNN-ji s pomočjo ko-pojavitvene matrike ustvarijo graf za zajemanje 

medsebojnih odvisnosti besed. CL (z izgubo Triplet Loss) izboljša semantično reprezentacijo vozlišč GNN, 

kar model (CS-K-prototipi) pri klasifikaciji besedil bistveno izboljša natančnost in robustnost. 

 

1 Introduction 
English text classification is critical for natural 

language processing, affecting many aspects such as 

information retrieval, sentiment analysis, and question-

answering systems. The importance of text classification 

is increasing with the proliferation of networks and 

information content. Although traditional methods such as 

bag-of-words models and TF-IDF (term frequency-

inverse document frequency) have some effects, they 

cannot cope with deep semantics, long texts, or complex 

contexts. Although deep learning methods such as CNN 

and RNN (Recurrent Neural Network) have progressed, 

they still cannot perfectly handle long-distance 

dependencies. Graph Neural Networks (GNN) and 

contrastive learning are two deep learning-based pattern 

recognition algorithms that improve accuracy, 

adaptability, and efficiency over rule-based approaches in 

software testing. Complex data linkages are captured, 

unstructured data is handled, manual feature engineering 

is decreased, and generalization is improved. To enhance 

text classification, new methods and technologies have 

emerged. GNN can capture structured information, 

simulate complex relationships between words, and 

deepen text understanding. Contrastive learning is a 

strategy for improving model performance by comparing 

data samples and moving similar ones closer together 

while pushing dissimilar ones apart. In this study, 

semantic embeddings are optimized using Triplet Loss, 

which improves text categorization accuracy.  Contrastive  

 

learning, a self-supervised strategy, can strengthen the 

feature representation of the model and reduce the 

dependence on labeled data. This study combines GNN  

and contrastive learning to create a new English text 

classification model. Graph Neural Networks have 

improved at dealing with extensive texts and intricate 

interactions than models such as CNNs and RNNs because 

they can represent text as a graph, with words as nodes and 

relationships as edges. This enables GNNs to capture 

long-distance dependencies and intricate semantic 

linkages between words, which CNNs struggle with due 

to their reliance on fixed-size filters, while RNNs suffer 

with long sequences due to concerns such as vanishing 

gradients. GNNs improve their understanding of a text's 

global structure and deep semantics by pooling input from 

surrounding nodes. Combining GNNs with contrastive 

learning improves feature representation, allowing for 

accurate and robust handling of complicated and lengthy 

texts. This model can not only effectively grasp the 

grammatical and semantic relationships of the text but also 

improve semantic embedding through contrastive 

learning, thereby improving classification accuracy. This 

study has injected new vitality into the field of text 

classification and promoted the advancement of related 

technologies. Semantic embedding transforms text into a 

vector space in which comparable words are closer 

together, allowing the model to better grasp word 

associations. By integrating Graph Neural Networks 

(GNN) and contrastive learning, the study improves 

semantic embeddings, allowing the model to capture 
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complex relationships and long-distance dependencies for 

better text classification. 

Text semantic extraction helps precisely identify the 

text's relationship and structure and provides intelligent 

support for information retrieval, sentiment analysis, etc. 

Improving semantic understanding can improve the 

accuracy of natural language processing tasks and meet 

personalized information needs [1-2]. To solve the 

problem of text semantic information extraction, many 

scholars have proposed different methods. Martinez-

Rodriguez J. L proposed a strategy for extracting 

information from sentences and representing it using 

semantic network standards. The strategy involved 

information extraction tasks and hybrid semantic 

similarity metrics. Experiments proved the proposed 

method's feasibility and accuracy [3]. Current Chinese 

short text entity linking techniques ignore the interaction 

between label information and the original short text and 

fail to effectively utilize semantic information. Gao L 

proposed a normalization method to fully extract semantic 

information from short text sentence vectors. The results 

showed that the proposed model outperformed popular 

deep-learning techniques and previous research results in 

entity linking [4]. The process of automatically 

determining the connection between two or more elements 

is called semantic relation extraction, which is crucial for 

creating original writing. In addition to describing 

established and new evaluation metrics for supervised, 

semi-supervised, and unsupervised methods, Gharagozlou 

H also studied several relation extraction techniques and 

types in English and the most popular techniques in 

Persian [5]. Accurate identification and analysis of 

semantics are conducive to effectively processing English 

text. Yu S introduced Word2vec (word to vector) for 

extracting semantic feature vectors from English text and 

the long short-term memory (LSTM) algorithm for 

semantic identification of English text. The results showed 

that the identification results of the LSTM algorithm for 

the part of speech and sentiment tendency of English text 

were consistent with the label results [6]. Scholars 

emphasize semantic information and use different 

techniques to improve model performance. However, the 

research has not fully utilized the graph structure to 

capture the complex relationship of text. Sequential 

models, which concentrate mostly on local aspects and 

may have trouble with long-distance dependencies, 

frequently miss deep semantic linkages that graph 

structures capture. A graph structure preserves both local 

and global dependencies by representing words as nodes 

and their interactions as edges, in contrast to CNNs and 

RNNs that analyze text sequentially. This makes it 

possible to comprehend text semantics more precisely, 

especially in intricate circumstances. This representation 

is further improved by combining contrastive learning 

with Graph Neural Networks (GNNs), which increases the 

model's capacity to differentiate between text categories 

and boosts performance on tasks with intricate semantics 

and long-distance dependencies. It has limitations in the 

processing of inter-lexical dependencies and deep 

semantic structures. 

GNN can better capture the relationship and meaning 

between words by turning text into a graph, enhance the 

model's understanding of text structure, and improve 

classification accuracy, especially in processing long 

articles and tasks that require an understanding of context 

[7-8]. In recent years, some researchers have used GNN in 

text classification research. To solve the problem of cross-

lingual text classification, Vo T proposed a new topic-

driven multi-type text graph attention representation 

learning technology, which combined neural topic 

modelling technology with a heterogeneous text graph 

attention network to enhance the semantic information of 

text representation learned in various language 

environments. GAT and GraphSAGE are two models with 

distinct advantages in text classification problems. GAT 

incorporates an attention mechanism into graph 

convolutional layers, allowing the model to focus on 

meaningful words or relationships, hence enhancing 

accuracy. GraphSAGE minimizes computational 

complexity by sampling neighbors during training and 

enhances scalability, particularly for large-scale graphs. 

Its aggregation approaches, such as mean, pooling, and 

LSTM-based aggregators, enable the model to capture 

broad semantic patterns while avoiding overfitting. When 

coupled, these models could offer a more robust method 

for dealing with complicated semantics and long-distance 

interdependence. 

 The proposed model was compared with the current 

state-of-the-art baseline and experimentally demonstrated 

its effectiveness [9]. Deng Z proposed a new graph-based 

model and designed an attention-gated graph neural 

network to propagate and update the semantic information 

of each word node to solve the problem that existing 

methods are not enough to capture the semantic 

relationship between words. Experimental results showed 

that the proposed model outperformed previous text 

classification methods [10]. Parthasarathy (2023) 

examines combining neural networks with the Harmony 

Search Algorithm (HSA) to improve fraud detection in 

banking. Traditional methods often fail against complex 

fraud techniques, but this combination enhances accuracy 

and reliability. The findings suggest that models like 

Decision Tree Classifier and Sequential models, with 

near-perfect accuracy, could transform fraud prevention. 

However, this study supports the idea that combining 

neural networks with the Harmony Search Algorithm 

(HSA) to improve fraud detection parallels the approach 

in our work to enhance accuracy and reliability in text 

classification [11]. The above scholars have cleverly used 
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graph structures and attention mechanisms to grasp the 

semantic relationship of text, significantly improving the 

model's ability to handle complex semantics and 

performing well in cross-language text classification. 

However, the graph neural network's capture of deep 

semantics and long-distance dependencies needs to be 

strengthened, and it has not fully utilized contrastive 

learning to enhance feature representation. 

This study combines GNN with contrastive learning 

to deeply capture word relationships by constructing a text 

graph and optimizing semantic embedding using 

contrastive learning. GNN converts text into a graph with 

words as nodes and edges showing semantic connections. 

The results show that this method can deeply capture text 

semantics and long-distance dependencies, significantly 

improve performance in multiple text classification tasks, 

and demonstrate its excellent generalization ability and 

robustness. Compared with CNN, this method is more 

precise and stable when dealing with complex text 

classification. The innovation of this study is to combine 

GNN with contrastive learning for English text 

classification, which makes up for the shortcomings of 

traditional methods and reduces the dependence on 

labeled data. The new graph contrast loss function 

captures text semantics more precisely. The graph contrast 

loss function has numerous significant advantages over 

ordinary contrastive loss functions, especially in the 

context of graph neural networks (GNN) and contrastive 

learning for text categorization. It takes advantage of the 

network structure of text to improve the model's capacity 

to capture semantic linkages between words, addressing 

the complex, long-distance dependencies that typical 

contrastive loss functions frequently overlook. By taking 

into account both pairwise similarities and contextual 

relationships within the network, the graph contrast loss 

function improves semantic embedding quality, resulting 

in more accurate and informative text representations. The 

function also includes Hard Negative Mining, which 

concentrates on difficult-to-detect negative samples, 

allowing the model to acquire more discriminatory 

features and enhance generalization.  At the same time, 

through strategy optimization and parameter adjustment, 

the classification accuracy and training efficiency are 

improved. These innovations have promoted the 

development of text classification technology and 

provided new ideas for natural language processing. The 

organizational structure of this study is shown in Figure 1: 
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Figure 1: Organizational structure of this study 

 

2 Construction and optimization of 

the english text classification model 

2.1 Data Preprocessing and graph construction 

2.1.1 Preprocessing data 

Data preprocessing is critical for English text 

classification. It can clean text, remove noise, and convert 

it into a format suitable for GNN. The proposed approach 

combines contrastive learning with Graph Neural 

Networks (GNN) to handle noisy or redundant test 

instances efficiently. GNN focuses on pertinent semantic 

connections while capturing long-distance dependencies 

and deep semantic interconnections between words. By 

differentiating between comparable and dissimilar 

samples, contrastive learning improves the resilience of 

the model. By focusing on hard-to-classify negative 

samples, hard negative mining improves classification 

accuracy and lessens the influence of redundant data. 
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This article cleans, segments, removes stop words, 

and stems the data to extract valuable semantic 

information, laying the foundation for subsequent graph 

construction and graph neural network training. Text 

cleaning is the first step in data preprocessing. The original 

text contains many irrelevant information, such as 

punctuation, numbers, etc., which may interfere with the 

analysis. This article uses regular expressions to clean up 

these noises, retaining only letters and spaces to ensure the 

text's purity. The next step is segmenting the text into 

independent words or phrases. Using the word tokenize 

method of NLTK (Natural Language Toolkit), word 

segmentation is performed by space and punctuation, and 

the text is converted into a vocabulary list. Afterword 

segmentation, stop words are filtered out. Removing stop 

words can reduce the amount of calculation and prevent 

the model from being interfered with by irrelevant 

information. NLTK stop word library is utilized for 

filtering. After that, stemming is done to normalize 

different forms of words to the basic form, such as 

"running" becomes "run". This can reduce the number of 

words and vocabulary dimensions and improve training 

efficiency. Then, the Porter stemming algorithm and the 

Porter Stemmer class of NLTK are processed. After this 

preprocessing, the original text becomes a preprocessed 

standardized vocabulary list. 

Word segmentation, stop word elimination, and 

stemming are critical processes that ensure efficient 

processing of data in order to prepare it for text 

classification model operation. Since the text is 

represented as a graph with words as nodes in models like 

Graph Neural Networks (GNNs), word segmentation is 

crucial since it separates the text into discrete words or 

tokens. By getting rid of popular but useless words, stop 

word removal lowers computing costs and directs the 

model's attention to more important data. Stemming 

minimizes vocabulary quantity and increases training 

efficiency by breaking words down to their most basic 

forms. 

 

2.1.2 Graph structure construction 

Each document is treated as a graph. Among them, 

words correspond to nodes; edges between nodes 

represent semantic relationships between words; edge 

weights represent the strength of the relationship. After 

data preparation, a text graph structure is constructed for 

GNN. In this study, edges are built based on word co-

occurrence information, and the co-occurrence matrix is 

used to quantify the word association. Semantic 

granularity and computational performance must be 

balanced when choosing the window size for co-

occurrence computation in the word co-occurrence 

network. For tasks like text categorization, a larger 

window size aids in capturing broader, long-distance 

semantic dependencies, whereas a smaller window size 

captures local, syntactic interactions between close words. 

Depending on the needs of the text, the window size is 

selected; larger windows make it easier to record intricate 

relationships in lengthy texts. The sliding window size v 

is first set to construct the co-occurrence matrix, 

determining which words are closely related semantically. 

Words that co-occur within a window are considered 

related. If two words appear in the same window, they are 

semantically related. The co-occurrence matrix D is 

symmetric, and the element 𝑑𝑖𝑗  represents the number of 

times words v𝑖 and v𝑗 co-occur in the window. Each 

document window is traversed, and the number of co-

occurrences of each pair of words is calculated to 

construct a matrix. The formula (1) is: 

 

𝑑𝑖𝑗 = ∑ 𝜗𝑀−𝑣+1
𝑙=1 (v𝑖 , 𝑙) ∙ 𝜗(v𝑗 , 𝑙 + 1)   (1) 

 

Among them: 𝜗(v𝑖 , 𝑙) and 𝜗(v𝑗 , 𝑙 + 1)-the indicator 

functions; 

The total number of words in the document; 

𝑣-the set sliding window size. 

If the words v𝑖 and v𝑗 appear adjacent in the text (v𝑖 

is at position l, and v𝑗 is at position l+1), the function value 

is marked as 1. Otherwise, it is marked as 0. Based on this 

method, a symmetric matrix can be constructed, whose 

element 𝑑𝑖𝑗  represents the co-occurrence frequency of v𝑖 

and v𝑗 in a given window, reflecting the closeness of their 

semantic connection. 

When generating the graph structure, the words in 

the document are represented as nodes, and the co-

occurrence matrix determines the edge weights to capture 

the long-distance dependencies between words. Unlike the 

traditional bag-of-words model, the graph structure retains 

the order of words and effectively displays complex 

semantic connections, providing rich information for 

graph neural networks. PMI (Pointwise Mutual 

Information) is used to measure the similarity of word 

pairs to enhance the graph structure [12-13]. The formula 

(2) for PMI is: 

 

PMI(v𝑖 , v𝑗) = log
𝑄(v𝑖,v𝑗)

𝑄(v𝑖)𝑄(v𝑗)
   (2) 

 

Among them: 𝑄(v𝑖 , v𝑗)-the joint probability of 

words v𝑖 and v𝑗 appearing in the document at the same 

time; 

𝑄(v𝑖) and 𝑄(v𝑗)-the marginal probabilities of words 

v𝑖 and v𝑗. 

The joint probability 𝑄(v𝑖 , v𝑗) is derived from the 

elements of the co-occurrence matrix, and the marginal 
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probabilities 𝑄(v𝑖) and 𝑄(v𝑗) are estimated based on the 

occurrence frequency of the words in the document. 

Semantically related word pairs can be identified by 

calculating PMI, and corresponding edges can be 

established in the graph. The two words can be connected 

only when the PMI value exceeds the set threshold. A text 

graph is created using words as nodes and edges signifying 

semantic associations in order to weight word correlations 

and perform edge pruning. Pointwise Mutual Information 

(PMI), which gauges how similar word pairings are to one 

another, and a co-occurrence matrix are used to assess how 

strong these links are. Stronger semantic connections are 

captured when words with a PMI value above a threshold 

are joined by edges. By eliminating shoddy or irrelevant 

connections, edge pruning improves the graph's 

performance and the quality of the semantic embedding. 

In this way, the text graph structure can precisely model 

the deep relationship between words and provide accurate 

and rich data to the graph neural network, thereby 

improving the performance of classification tasks. The 

formation of text preprocessing to graph structure is 

shown in Figure 2: 

 

 

Text cleaning

Word  segmentation

Stop using words

Stemming 

Data preprocessing

Set the sliding window 

size

Traverse the document and 

calculate the co-occurrence 

of each pair of words within 

the window

Constructing a symmetric 

co-occurrence matrix

Construct co-occurrence 

matrix

Calculate the PMI value 

of word pairs

Set PMI threshold, only 

connect words when PMI 

value exceeds threshold

Establish nodes (words) 

and edges (semantic 

relationships) in the graph

Calculate PMI and 

construct graph structure

The edge weight is determined 

by the PMI value, representing 

the strength of the relationship

Obtain a graphical 

representation of the text 

structure

The graph structure includes 

nodes (words), edges 

(semantic relationships), and 

weights

Output graph structure

 
 

Figure 2: The process of forming a graph structure 

from text preprocessing 

 

2.2 Graph neural network model design 

2.2.1 Graph convolutional network 

When designing a GNN model, first, a graph structure 

is built based on the text, and then, GCN is used to 

propagate information and learn features, aiming to deeply 

capture the semantics and long-distance dependencies of 

the text. A multi-layer GCN architecture is adopted to 

enhance the model's performance, and residual 

connections and normalization strategies are added to 

ensure information flow and prevent gradient 

disappearance. GCN is an effective method for processing 

graph-structured data and performs well in graph-related 

tasks [14-15]. Graph neural networks (GNNs) benefit 

significantly from residual connections, especially when it 

comes to solving the problem of gradient vanishing in 

deep designs. The gradients don't decrease during 

backpropagation, which is a common problem in deep 

networks, because to these links, which allow information 

to travel directly between layers. In the absence of residual 

connections, deeper models have trouble with gradient 

propagation, which can lead to poor convergence or 

unsuccessful training. Residual connections provide more 

effective feature learning and preserve stable training by 

letting gradients avoid layers. They play a crucial role in 

GCN-based models by maintaining pertinent data across 

layers, which enhances the network's capacity to represent 

intricate and distant connections in text. In the English text 

classification task, GCN effectively captures the text's 

deep semantics and long-distance dependencies through 

the graph structure. Words are regarded as nodes, and 

edges represent the relationship between words. The graph 

convolution operation of GCN enables the model to 

propagate and learn node information and then deeply 

understand the semantics of words in context. 

If the features of the nodes in the graph are 

represented by 𝑔𝑖
(𝑘)

, representing the features at the k-th 

layer, GCN updates them according to Formula (3). 

 

𝑔𝑖
(𝑘+1)

= 𝛿 (∑
1

|𝑁(𝑖)|
∙

1

|𝑁(𝑗)|
𝑈(𝑘)

𝑗∈𝑁(𝑖) 𝑔𝑗
(𝑘)

+

𝑈0
(𝑘)

𝑔𝑖
(𝑘)

)    (3) 

 

Among them: 𝑁(𝑖)-the set of neighbor nodes of the 

node; 

𝑈(𝑘) and 𝑈0
(𝑘)

-the learnable parameters of the k-th 

layer; 

𝛿-the nonlinear activation function is ReLU 

(Rectified Linear Unit). 

  𝑔𝑖
(𝑘)

-represents the features of node i at layer k. 

   
1

|𝑁(𝑖)|
- normalizes the aggregation of neighbor 

features. 

 

 

2.2.2 Model architecture design 

When designing the GCN model, multiple layers of 

GCN are stacked to enhance the expression ability and 

feature depth. Each layer updates the node features by 

aggregating neighbor information, capturing complex 

relationships more deeply than a single layer. The multi-

layer Graph Convolutional Network (GCN) is designed 

with the primary goal of efficiently capturing long-

distance connections and semantic linkages in text. To 

capture both local and global semantic patterns, the model 

employs a multi-layer GCN architecture, in which each 
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layer collects data from nearby words (nodes). In order to 

ensure efficient information transfer between the layers 

and prevent gradient vanishing, residual connections are 

included. By preserving constant feature scales, 

normalization approaches are used to stabilize training and 

enhance convergence. The graph-based structure 

improves feature representation by enabling information 

to spread through semantic relationships between words. 

At each layer, contrastive learning is also used to further 

improve semantic understanding by differentiating 

between similar and dissimilar text categories using a 

Triplet Loss function. 

The performance of the Graph Convolutional 

Network (GCN) model in text categorization is greatly 

improved by its depth, which includes many layers, 

residual connections, and normalization. The model's 

several layers enable it to capture intricate, far-reaching 

semantic relationships between words. However, residual 

connections ensure that the gradient flow is maintained 

during backpropagation, which helps to avoid the 

vanishing gradients that might affect deeper networks. By 

guaranteeing uniform feature distributions among layers, 

normalization enhances convergence stability and speed, 

further stabilizing training. 

To solve the problem of gradient disappearance 

caused by multiple layers, residual connections are 

applied to ensure effective information transmission. The 

graph convolution update formula (4) is: 

 

𝑔𝑖
(𝑘+1)

= 𝑔𝑖
(𝑘)

+ 𝛿 (∑
1

|𝑁(𝑖)|
∙

1

|𝑁(𝑗)|
𝑈(𝑘)

𝑗∈𝑁(𝑖) 𝑔𝑗
(𝑘)

+

𝑈0
(𝑘)

𝑔𝑖
(𝑘)

)    (4) 

By stacking multiple layers of GCN, the model can 

learn richer node representations and integrate local and 

global information. After GCN processing, word feature 

representations can more precisely capture the complex 

semantics of the text and help text classification. This 

architecture improves model performance, effectively 

copes with complex semantics in large-scale text data, and 

achieves efficient processing. The model structure of this 

article is shown in Figure 3. 

ResNet is a deep residual network architecture that 

enhances automated test case generation by improving 

accuracy and efficiency. It overcomes challenges like 

vanishing gradients, allowing deeper networks to train 

without losing important information. ResNet captures 

hierarchical features and retains essential data through 

residual connections, making it useful for complex data 

structures. It generates diverse test cases, including edge 

cases, and ensures each network layer contributes to better 

feature extraction, resulting in more accurate, reliable, and 

efficient test case generation for robust software 

validation. 
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Figure 3: Model structure diagram 

 

The proposed approach addresses the vanishing 

gradient issue, increases training stability, and speeds up 

convergence by utilizing ResNet layers to enhance pattern 

recognition. While deeper layers concentrate on intricate 

patterns like object pieces or semantic structures, early 

layers capture basic aspects like edges and textures. Even 

in deep networks, residual connections allow for the 

effective learning of both low-level and high-level 

information, leading to more reliable and accurate text 

classification. 

 

2.2.3 Normalization in graph convolutional networks 

Normalization operations are added to the model to 

improve the training stability and convergence speed of 

GCN. The heterogeneity between nodes in graph structure 

data leads to large differences in node feature distribution, 

affecting training efficiency and performance. Therefore, 

layer normalization technology ensures that the scale of 

input features of each convolution layer is similar. Layer 

normalization independently normalizes the features of 

each layer of nodes to ensure that the input features are 

evenly distributed and have consistent scales. Contrastive 

learning refines Graph Convolutional Networks (GCNs) 

to improve text categorization performance by optimizing 

the text's semantic representations.  
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GCNs capture semantic relationships by converting text to 

a graph structure while retaining long-distance 

interdependence. Contrastive learning, using Triplet Loss, 

refines these embeddings by bringing comparable text 

samples closer together and pushing dissimilar ones apart, 

hence boosting classification accuracy. Furthermore, Hard 

Negative Mining concentrates on difficult-to-distinguish 

negative data, speeding up the learning process and 

improving the model's capacity to detect minor semantic 

differences. The temperature parameter helps to stabilize 

training by regulating gradient updates, resulting in 

smoother learning and preventing abrupt changes early 

on.  

 Unlike batch normalization, layer normalization 

does not rely on batch statistical information and is more 

suitable for graph data. Neural network training is 

stabilized and accelerated by the use of Layer 

Normalization (LN) and Batch Normalization (BN). 

Because LN normalizes inputs across properties of each 

individual data point, it can be used with graph-based 

models. It guarantees that the feature representation of 

every node is stable and performs well with tiny or 

irregular batches. BN uses batch statistics to normalize the 

entire batch, which may not be as successful because of 

differences in node properties and graph sizes. In graph-

based models, LN is favored because it individually 

normalizes the properties of each node, resulting in more 

stable and efficient training, particularly in graph data that 

is sparse and volatile. 

The layer normalization formula (5) is: 

 

𝑔̂𝑖
(𝑘)

=
𝑔𝑖

(𝑘)
−𝜑(𝑘)

𝛿(𝑘) ∙ 𝛼(𝑘) + 𝛽(𝑘)    (5) 

 

Among them: 𝜑(𝑘) and 𝛿(𝑘)-the mean and standard 

deviation of the features of the k-th layer; 

𝛼(𝑘) and 𝛽(𝑘)-the learnable scaling and offset 

parameters; 

𝑔̂𝑖
(𝑘)

-the normalized features. 

Dropout is added after each layer to improve the 

generalization ability by randomly discarding some 

connections to prevent GCN from overfitting. With the 

normalization operation, GCN is more robust when 

processing high-dimensional data and complex tasks, 

improving the generalization performance and training 

efficiency of English text classification and ensuring that 

the model is stable and has strong generalization ability. 

 

2.2.4 Training and optimization of graph 

convolutional networks 

During the training process of GCN, supervised 

learning is used, and the classification effect is optimized 

by minimizing the cross-entropy loss. This loss function 

can measure the gap between the predicted result and the 

true label. In the English text classification task, word 

features are regarded as graph nodes and information 

propagation and update are realized through GCN. The 

loss function formula (6) is expressed as: 

 

K = − ∑ ∑ bi,d log(b̂i,d)D
d=1

M
i=1     (6) 

 

Among them: M-the number of samples; 

The number of categories; 

bi,d-the true label of the i-th sample in category d; 

b̂i, the prediction probability of the model in category 

d. 

To improve the training speed and optimization 

effect, the Adam (Adaptive Moment Estimation) 

optimizer is selected, which can dynamically adjust the 

learning rate according to the mean and variance of the 

gradient, thereby achieving faster convergence and 

preventing gradient problems. The updated rules are 

shown in Formulas (7) to (10): 

 

𝑛𝑟 = 𝛾1𝑛𝑟−1 + (1 − 𝛾1)ℎ𝑟    (7) 

 

𝑤𝑟 = 𝛾2𝑤𝑟−1 + (1 − 𝛾2)ℎ𝑟
2  (8) 

 

𝑛̂𝑟 =
𝑛𝑟

1−𝛾1
𝑟 , 𝑤̂𝑟 =

𝑤𝑟

1−𝛾2
𝑟       (9) 

𝜂𝑟 = 𝜂𝑟−1 − 𝜇
𝑛̂𝑟

√𝑤̂𝑟+𝜖
      (10) 

 

Among them: 𝑛𝑟 and 𝑤𝑟-the mean and variance of 

gradient; 

ℎ𝑟-the gradient at the current moment; 

𝛾1 and 𝛾2-the hyperparameters, used to control the 

decay rate of the first-order moment estimate and the 

second-order moment estimate; 

𝜇-the learning rate; 

𝜖-the small constant to prevent zero division errors. 

Using the Adam optimizer, GCN can adaptively 

adjust the parameter update step to avoid the limitations of 

traditional gradient descent, such as learning rate 

sensitivity and gradient explosion, thereby improving 

convergence speed and model stability. 

 

2.3 Application of contrastive learning 

module 

2.3.1 Objectives and methods of contrastive learning 

To improve the performance of GNN in text 

classification, this study applies a contrastive learning 

mechanism. This mechanism optimizes semantic 

representation by maximizing the distance between texts 

of different categories, making texts of the same category 

closer and texts of different categories more distant, which 

helps GNN capture long-distance dependencies and 
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complex semantics. The proposed discusses how Graph 

Neural Networks (GNNs) form node representations by 

using semantic relationships between words, transforming 

text into a graph where words are nodes and edges 

represent their semantic connections. GNNs capture long-

distance dependencies and complex relationships through 

graph convolution operations. Additionally, contrastive 

learning enhances these representations by refining the 

similarity between words of the same category and 

distinguishing those from different categories. 

Contrastive learning performs an important role in 

decreasing noise and improving the quality of semantic 

embeddings in text classification because it optimises 

semantic representations by enhancing the distance 

between different samples and minimizing the distance 

between comparable ones. This strategy enhances the 

model's capacity to identify between categories, 

particularly when dealing with noisy or ambiguous input. 

In this study, contrastive learning, in conjunction with 

Graph Neural Networks (GNN), refines semantic features 

and aids in the capturing of deep word associations. Hard 

Negative Mining prioritizes difficult negative samples, 

enhancing the model's learning efficiency, and 

temperature parameters stabilize training by managing 

gradient updates. Contrastive learning does not rely on 

traditional annotations and provides greater flexibility and 

adaptability. This study uses Triplet Loss as the loss 

function, which aims to reduce the distance between the 

anchor point and the positive sample and increase the 

distance between the anchor point and the negative 

sample, significantly improving the accuracy and 

efficiency of GNN in text classification. The formula (11) 

is: 

 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝑚𝑎𝑥(𝑒(𝑥, 𝑝) − 𝑒(𝑥, 𝑛) + 𝜆, 0)    (11) 

 

Among them: 𝜆-the feature representation of anchor 

samples; 

𝑝 and the feature representations of positive samples 

and negative samples. 

By minimizing Triplet Loss, the model can make 

similar samples closer and heterogeneous samples more 

distant in the embedding space, thereby improving the 

accuracy of text classification. Samples with similar or the 

same labels are selected as positive samples, and samples 

with different or low similarity are selected as negative 

samples. The Comparing loss functions like Triplet Loss 

and NT-Xent is essential for evaluating classification 

performance. The model's capacity to differentiate 

between classes is improved by both loss functions, which 

modify the separation between sample representations. 

Because of its ease of use and function in keeping anchor 

samples far from negative ones and closer to positive ones, 

triplet loss is prized. However, NT-Xent Loss is more 

successful at identifying minute variations across classes 

because it adds a temperature parameter that gives it more 

accurate control over the embedding space. Although 

Triplet Loss was chosen for this study because of its 

efficacy, a comparison with NT-Xent may provide more 

information on how each model contributes to 

performance, especially in cases with complicated 

semantics and long-distance dependencies. Optimizing 

this loss function helps the model learn more precise text 

representation. 

 

2.3.2 Combination of contrastive learning and graph 

neural network 

In GNN, text is converted into a graph structure, with 

vocabulary represented by nodes and relationships 

represented by edges. GCN learns node features, and 

contrastive learning optimizes semantic dependencies. 

Node characteristics are improved for text classification 

using contrastive learning in a GNN by transforming text 

into a graph with nodes representing words. A multi-layer 

GCN captures semantic dependencies, but contrastive 

learning using Triplet Loss reduces the distance between 

similar phrases while increasing it for different ones in the 

embedding space. Hard Negative Mining concentrates on 

tough negative data, and a temperature parameter 

smoothes the loss function for more stable training. This 

combination enables the model to capture the 

comprehensive semantics of the text. Contrastive learning 

is added after each layer of graph convolution to improve 

the discriminability of text representation. Node features 

are regarded as global feature training, and similarity is 

calculated based on node embedding so that GNN can 

extract local and overall semantics at the same time. 

During training, the model optimizes the graph structure 

and node features through contrastive learning to capture 

semantics more precisely. 

Furthermore, combining contrastive learning and 

GNN, a new graph contrast loss function is designed to 

consider node similarity and category information to 

improve the accuracy of semantic understanding. The 

model extracts feature with GCN and then optimizes with 

this function to enhance text classification performance. 

The optimization formula (12) of the graph contrast loss 

function is: 

 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = ∑ ∑ [𝑒(𝑓𝑖, 𝑓𝑗) − 𝜆 ∙ 𝐼 (𝑏𝑖 ≠ 𝑏𝑗)]𝑀
𝑗=1

𝑀
𝑖=1     

(12) 

 

Among them: 𝑓𝑖 and 𝑓𝑗-the node feature 

representation; 

𝑏𝑖 and 𝑏𝑗-the node category labels; 

𝑒(𝑓𝑖, ) the distance measurement between nodes. 
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2.3.3 Optimization of contrastive learning in 

semantic embedding 

This study integrates category information into 

contrastive learning to improve the quality of semantic 

embedding, making similar texts closer and different 

categories more separated. Contrastive learning refines 

Graph Convolutional Networks (GCNs) to improve text 

categorization performance by optimizing the text's 

semantic representations. GCNs capture semantic 

relationships by converting text to a graph structure while 

retaining long-distance interdependence. Contrastive 

learning, using Triplet Loss, refines these embeddings by 

bringing comparable text samples closer together and 

pushing dissimilar ones apart, hence boosting 

classification accuracy. Furthermore, Hard Negative 

Mining concentrates on difficult-to-distinguish negative 

data, speeding up the learning process and improving the 

model's capacity to detect minor semantic differences. The 

temperature parameter helps to stabilize training by 

regulating gradient updates, resulting in smoother learning 

and preventing abrupt changes early on.  The Hard 

Negative Mining strategy is adopted to focus on negative 

samples that are difficult to distinguish. Unlike traditional 

methods, this strategy selects negative samples based on 

model performance to improve learning efficiency. The 

dynamic selection of 'hard' negative samples in contrastive 

learning concentrates on the most difficult cases that are 

closest to the anchor sample. This method, known as Hard 

Negative Mining, increases model discriminative power, 

speeds up training convergence, and improves 

generalization. It helps the model better discern 

insignificant distinctions, especially in complex or 

imbalanced datasets, resulting in more efficient and robust 

performance in tasks like as text categorization. Hard 

Negative Mining, which concentrates on choosing 

negative examples that are challenging to distinguish, 

improves the negative sample selection procedure in this 

research. By pushing the model to learn from difficult 

examples rather than simple negatives, this technique 

increases the discriminability of the model and produces 

more robust and instructive representations. By lowering 

the possibility of overfitting to readily classifiable 

negative samples, it also helps to maintain the stability of 

the model. Furthermore, the contrastive loss function's 

incorporation of a temperature parameter regulates the 

gradient updates' smoothness, avoiding drastic changes 

early in the training process and encouraging steadier 

optimization. By focusing on such samples, the model can 

better capture the subtle differences in text features and 

enhance classification capabilities. 

Hard Negative Mining (HMN) is a technique used to 

enhance model learning by choosing the most difficult 

negative samples—those that are hard to differentiate 

from positive ones. HMN highlights the most instructive 

negative examples, in contrast to random negative mining, 

which chooses negative samples independent of their 

proximity to the decision boundary, or semi-hard negative 

mining, which targets samples near but not on the 

boundary. By making the model pick up on minute 

differences, this method speeds up model convergence 

and decreases overfitting. HMN improves the contrastive 

learning framework and Graph Neural Network (GNN) 

semantic embedding in the study, increasing classification 

robustness and accuracy, especially for challenging tasks 

like text categorization. 

 In each round of training, Hard Negative Mining 

optimizes the negative samples closest to the anchor point. 

Hard Negative Mining focuses on negative samples that 

are hard to separate from positive samples by choosing 

those that are closest to the anchor point in feature space. 

Metrics like cosine similarity or Euclidean distance are 

frequently used to measure the distance or similarity 

between the feature vectors of the samples. By choosing 

these difficult negative samples, the model improves its 

generalization skills by learning to distinguish between 

classes more precisely. This strategy encourages the 

model to focus on those difficult-to-distinguish samples in 

the feature space, thereby performing more precise feature 

identification and improving the accuracy of text 

classification. In addition, it prevents the model from 

paying too much attention to samples that are easy to 

classify, thereby reducing the risk of overfitting. 

Therefore, the application of difficult negative samples 

not only does it improve the model's classification ability 

and accelerate training convergence, but its advantages 

become more evident when processing complex texts. 

This article applies a temperature parameter to optimize 

the contrastive learning process. The intensity of gradient 

updates is controlled by smoothing the loss function to 

maintain training stability. The temperature parameter 

adjusts the influence of the distance between samples, 

enhances the robustness of the loss function, and avoids 

extreme gradient updates in the early stage of learning. 

The temperature loss function formula (13) is: 

 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
1

𝑇
log (1 + 𝑒𝑥𝑝 (

𝑒(𝑥,𝑛)

𝑇
))    (13) 

 

Among them is T- the temperature parameter, which 

controls the smoothness of the loss function. 

By changing the temperature parameters, the model 

can optimize the contrastive learning effect, prevent it 

from entering local optima, and adjust the learning speed 

and gradient changes according to the training stage and 

sample difficulty. The model's optimal temperature 

parameter was demonstrated to improve contrastive 

learning's semantic embedding quality and training 

stability. It ensures smoother convergence by preventing 

problems like excessive gradients in the early phases of 

training by regulating the degree of gradient updates. By 
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controlling the distance between samples, the temperature 

balances the impact of both simple and complex examples. 

The robustness of the methodology is further 

demonstrated by a sensitivity study that shows how 

changing the temperature impacts model performance. By 

combining Hard Negative Mining and temperature 

parameters, the contrastive learning mechanism in this 

study optimizes semantic embedding, making the text 

classification model more precise and efficient in 

processing complex semantics. Hard Negative Mining 

(HNM) improves feature representation in contrastive 

learning by emphasizing the most difficult negative 

samples, which are similar to positive samples but belong 

to distinct classes. This method drives the model to 

improve its feature space and learn smaller distinctions 

between comparable cases, hence increasing the 

discriminative strength of the learned representations. In 

the study, HNM is integrated into the contrastive learning 

framework to improve semantic embeddings and 

generalization capacity. HNM accelerates model 

convergence and reduces overfitting by prioritizing tough 

negative samples over easy ones, resulting in better 

accuracy and robustness, particularly for complex tasks 

such as text classification. These strategies have improved 

classification and generalization ability, especially on 

diverse text datasets. 

 

3 Evaluation and experiment of the 

english text classification model 

3.1 Experimental design 

This experiment aims to explore the performance of 

the English text classification model that integrates graph 

neural networks and contrastive learning. The public "20 

Newsgroups" dataset is selected for testing. This dataset 

contains various news articles and can fully demonstrate 

the model's performance after preprocessing. To evaluate 

the model, indicators such as accuracy, recall, and F1 

value are used to comprehensively measure the 

classification effect. At the same time, compared with the 

CNN-based classification model, the advantages of the 

new method are highlighted, verifying the effectiveness of 

the combination of graph neural networks and contrastive 

learning. Through this comparative experiment, the 

performance improvement of the proposed model and its 

potential in practical applications can be demonstrated. 

The experimental environment of this article is shown in 

Table 1: 

 

 

 

 

 

Table 1: Experimental environment 

Serial 

Number 

Experimental 

Environment 

Specific 

Configuration 

1 Experimental 

System 

Windows 11 

2 Programming 

Language 

Python 

3 Central 

Processing Unit 

Intel i7, 8 cores 

4 Operating 

Medium 

Pycharm 

5 Memory 32GB 

6 Video Memory 12GB 

7 CUDA 

(Compute 

unified device 

architecture) 

version 

11.4 

8 GPU Floating 

Point 

Computing 

Power 

Single  

precision  

15.7, TFLOPS 

9 GPU (Graphics 

Processing Unit) 

NVIDIA GTX 

10 Deep Learning 

Framework 

PyTorch 

11 database MySQL 

 

3.2 Experimental results 

3.2.1 Accuracy 

Accuracy is the key to evaluating model 

performance. This article compares the accuracy of 15 

model tests using these two methods. Figure 4 shows the 

findings: 

 

 
 

Figure 4: Comparison of model accuracy results 

under the two methods 
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According to the 15 test results in Figure 4, the 

accuracy of this article's method is stable and high, 

ranging from 91.41% to 97.60%, with an average of 

94.46%. The accuracy of the CNN method ranges from 

81.63% to 87.94%, with an average of 84.45%. For 

example, in the first test, this article's method is 12.39% 

higher than CNN. Even in the eighth test, this method is 

still ahead. These data prove the advantages of this 

article's method in dealing with complex semantics and 

long-distance dependencies. They can distinguish texts 

more precisely, showing their good generalization ability 

and robustness. This again proves the effectiveness and 

superiority of combining graph neural networks with 

contrastive learning. 

 

3.2.2 Recall rate 

The recall rate is the core indicator for evaluating the 

model's ability to identify positive samples. It reflects the 

model's ability to find actual positive examples, which is 

crucial to preventing the omission of key information. A 

high recall rate means the model can more 

comprehensively identify relevant text categories, which 

is particularly important for information retrieval and 

sentiment analysis tasks because it can reduce 

underreporting. Based on this, the recall rate of the model 

is further tested, and the results are shown in Figure 5. 

 

 
 

Figure 5: Comparison of recall results under two 

methods 

 

According to Figure 5, compared with CNN, the 

recall rate of this article's method is significantly higher, 

ranging from 86.89% to 91.20%, with an average of 

89.27%, while that of CNN is 76.80% to 81.43%, with an 

average of 79.02%. In the third test, the recall rate of this 

article's method is 13.61% higher than that of CNN. Even 

in the 13th test, this method is still ahead. This indicates 

that the method proposed in this article can more 

comprehensively recognize text and reduce false 

negatives. When dealing with imbalanced data, stronger 

detection of minority categories enhances system 

reliability. This proves that combining GNNs and 

contrastive learning can effectively improve recall rates, 

enhance classification performance, and provide 

application guarantees. 

 

3.2.3 F1 Value 

F1 score is a key indicator for evaluating model 

performance, which comprehensively reflects the 

classification performance of the model by combining 

precision and recall. Optimizing the F1 value can ensure 

that the model is more accurate and reliable when dealing 

with imbalanced datasets, reducing misjudgments and 

omissions. This article calculates the F1 value, as 

displayed in Table 2. 

 

Table 2: Comparison of F1 value results 

 

Number 

of tests 

This article 

(%) 
CNN (%) 

1 91.65 81.00 

2 92.69 80.76 

3 93.21 79.98 

4 91.59 80.53 

5 90.44 82.08 

6 91.81 83.81 

7 91.37 83.34 

8 90.82 83.87 

9 90.92 81.65 

10 92.04 81.97 

11 93.08 80.04 

12 89.92 82.09 

13 92.18 80.71 

14 92.42 82.18 

15 92.68 80.94 

 

According to Table 2, the F1 value range of this 

method is 89.92%-93.21%, with an average of 91.79%. 

The F1 score of CNN ranges from 79.98% to 83.87%, 

averaging 81.66%. In the third test, the F1 value of this 

article's method is 13.23% higher than that of CNN. The 

12th test also shows that this method is better than CNN. 

This shows that this method is accurate and reliable, can 

effectively identify positive examples, and is suitable for 

information retrieval and sentiment analysis tasks. When 

dealing with unbalanced data, this article's method reduces 

misjudgments and positive example omissions greatly 

improves the robustness and practicality of the system, 

and once again proves the advantages of combining graph 

neural networks with contrastive learning. 
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4 Conclusions 
This study combines GNN with contrastive learning 

to innovate the English text classification model. GNN 

precisely captures the deep relationship between words in 

the text, while contrastive learning strengthens semantic 

embedding and improves the model's ability to identify 

different texts. The experimental results show that the 

accuracy, recall rate, and F1 value of the new model on 

the public dataset are better than the traditional CNN 

model, showing excellent classification performance. This 

model is more accurate and stable when dealing with 

complex semantics and long-distance dependencies, 

opening up new avenues for English text classification. By 

displaying text through graph structures, the model reveals 

the associations between words more deeply, while 

contrastive learning enhances feature representation, 

making the model better at identifying text categories. 

This improves classification accuracy and enhances the 

model's generalization ability and robustness, making it 

suitable for various application scenarios. However, there 

are still limitations to this study. The model needs to adjust 

parameters for specific text classification and is sensitive 

to hyperparameters, requiring careful tuning. Meanwhile, 

the unsupervised learning performance also needs to be 

improved. The combination of GNN and contrastive 

learning has brought breakthroughs in natural language 

processing, with broad application prospects in 

information retrieval, sentiment analysis, and other areas. 

 

Funding 
This research is supported by the China Vocational 

Education Association of Zhejiang Province (Grant No. 

ZJCV2024C01). 

 

Data availability 
All data generated or analyzed during this study are 

included in the manuscript. 

 

Author contributions 
Chen Sia, Pan Guoqiang is contributed to the design and 

methodology of this study, the assessment of the 

outcomes, and the writing of the manuscript. 

 

References  
[1] Martinez-Rodriguez, J. L., Hogan, A., & Lopez-

Arevalo, I. (2020). Information extraction meets the 

semantic web: A survey. Semantic Web, 11(2), 255–

335. https://doi.org/10.3233/SW-180333 

[2] Tamine, L., & Goeuriot, L. (2021). Semantic 

information retrieval on medical texts: Research 

challenges, survey, and open issues. ACM 

Computing Surveys, 54(7), 1–38. 

https://doi.org/10.1145/3462476 

[3] Martinez-Rodriguez, J. L., Lopez-Arevalo, I., & 

Rios-Alvarado, A. B. (2022). Mining information 

from sentences through Semantic Web data and 

Information Extraction tasks. Journal of Information 

Science, 48(1), 3–20. 

https://doi.org/10.1177/0165551520934387 

[4] Gao, L., Zhang, L., Zhang, L., & Huang, J. (2022). 

RSVN: A RoBERTa sentence vector normalization 

scheme for short texts to extract semantic 

information. Applied Sciences, 12(21), 11278. 

https://doi.org/10.3390/app122111278 

[5] Gharagozlou, H., Mohammadzadeh, J., Bastanfard, 

A., & Ghidary, S. S. (2023). Semantic relation 

extraction: A review of approaches, datasets, and 

evaluation methods with looking at the methods and 

datasets in the Persian language. ACM Transactions 

on Asian and Low-Resource Language Information 

Processing, 22(7), 1–29. 

https://doi.org/10.1145/3588940 

[6] Yu, S. (2024). Extraction and analysis of semantic 

features of English texts under intelligent algorithms. 

Automatic Control and Computer Sciences, 58(1), 

109–115. 

https://doi.org/10.3103/S0146411624010123 

[7] Wang, K., Ding, Y., & Han, S. C. (2024). Graph 

neural networks for text classification: A survey. 

Artificial Intelligence Review, 57(8), 190. 

https://doi.org/10.1007/s10462-023-10290-1 

[8] Zong, D., & Sun, S. (2022). Bgnn-xml: Bilateral 

graph neural networks for extreme multi-label text 

classification. IEEE Transactions on Knowledge and 

Data Engineering, 35(7), 6698–6709. 

https://doi.org/10.1109/TKDE.2022.3140011 

[9] Vo, T. (2022). An integrated topic modelling and 

graph neural network for improving cross-lingual 

text classification. ACM Transactions on Asian and 

Low-Resource Language Information Processing, 

22(1), 1–18. https://doi.org/10.1145/3530800 

[10] Deng, Z., Sun, C., Zhong, G., & Mao, Y. (2022). Text 

classification with attention gated graph neural 

network. Cognitive Computation, 14(4), 1464–1473. 

https://doi.org/10.1007/s12559-021-09960-1 

[11] Parthasarathy, K. (2023). ENHANCING BANKING 

FRAUD DETECTION WITH NEURAL 

NETWORKS USING THE HARMONY SEARCH 

ALGORITHM. International Journal of 

Management Research and Business Strategy, 13(2), 

34-47. 

[12] Salle, A., & Villavicencio, A. (2023). Understanding 

the effects of negative (and positive) pointwise 

mutual information on word vectors. Journal of 

https://doi.org/10.1007/s12559-021-09960-1


English Text Classification Model Based on Graph Neural Network… Informatica 49 (2025) 333–346 345 

Experimental & Theoretical Artificial Intelligence, 

35(8), 1161–1199. 

https://doi.org/10.1080/0952813X.2023.2172065 

[13] Yao, M., Zhuang, L., Wang, S., & Li, H. (2022). 

PMIVec: A word embedding model guided by 

pointwise mutual information criterion. Multimedia 

Systems, 28(6), 2275–2283. 

https://doi.org/10.1007/s00530-022-00912-3 

[14] Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A., & 

Chanussot, J. (2020). Graph convolutional networks 

for hyperspectral image classification. IEEE 

Transactions on Geoscience and Remote Sensing, 

59(7), 5966–5978. 

https://doi.org/10.1109/TGRS.2020.3026211 

[15] Kazi, A., Cosmo, L., Ahmadi, S. A., Navab, N., & 

Bronstein, M. M. (2022). Differentiable graph 

module (DGM) for graph convolutional networks. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 45(2), 1606–1617. 

https://doi.org/10.1109/TPAMI.2022.3140011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/TPAMI.2022.3140011


346 Informatica 49 (2025) 333–346 C. Sian et al. 

 

 

 

 


