https://doi.org/10.31449/inf.v49i11.8454

Informatica 49 (2025) 333-346 333

English Text Classification Model Based on Graph Neural Network
Algorithm and Contrastive Learning

Chen Sian, Pan Guogiang

Zhejiang Institute of Communications, Hangzhou, Zhejiang, 311112, China

E-mail: chen_sian82@outlook.com

Keywords: graph neural network, contrastive learning, english text classification, semantic representation, model

construction

Recieved: March 1, 2025

Current English text classification methods mostly rely on bag-of-words models or CNN (Convolutional
Neural Network), but there are limitations in processing text structure and semantics. Especially in long
texts and complex contexts, it is difficult to capture the long-distance dependency and structured semantics
between words. To this end, this article combines GNN (Graph Neural Network) with contrastive learning
to build an English text classification model. First, a text graph is constructed through word co-
occurrence to capture the long-distance dependency of words. Then, a multi-layer graph convolutional
network is designed, and residual connections and normalization are applied to improve model
performance. A contrast learning module is added after each layer of graph convolution to improve node
features and semantic representation. Triplet Loss is a loss function, and Hard Negative Mining chooses
negative samples to improve efficiency.

Povzetek: Predlagan je model za klasifikacijo angleskega besedila, ki zdruzZuje graficne nevronske mreze
(GNN) in kontrastno ucenje (CL). GNN-ji s pomocjo ko-pojavitvene matrike ustvarijo graf za zajemanje
medsebojnih odvisnosti besed. CL (z izgubo Triplet Loss) izboljsa semanticno reprezentacijo vozlis¢ GNN,

kar model (CS-K-prototipi) pri klasifikaciji besedil bistveno izboljSa natancnost in robustnost.

1 Introduction

English text classification is critical for natural
language processing, affecting many aspects such as
information retrieval, sentiment analysis, and question-
answering systems. The importance of text classification
is increasing with the proliferation of networks and
information content. Although traditional methods such as
bag-of-words models and TF-IDF (term frequency-
inverse document frequency) have some effects, they
cannot cope with deep semantics, long texts, or complex
contexts. Although deep learning methods such as CNN
and RNN (Recurrent Neural Network) have progressed,
they still cannot perfectly handle long-distance
dependencies. Graph Neural Networks (GNN) and
contrastive learning are two deep learning-based pattern
recognition algorithms that improve accuracy,
adaptability, and efficiency over rule-based approaches in
software testing. Complex data linkages are captured,
unstructured data is handled, manual feature engineering
is decreased, and generalization is improved. To enhance
text classification, new methods and technologies have
emerged. GNN can capture structured information,
simulate complex relationships between words, and
deepen text understanding. Contrastive learning is a
strategy for improving model performance by comparing
data samples and moving similar ones closer together
while pushing dissimilar ones apart. In this study,
semantic embeddings are optimized using Triplet Loss,
which improves text categorization accuracy. Contrastive

learning, a self-supervised strategy, can strengthen the
feature representation of the model and reduce the
dependence on labeled data. This study combines GNN
and contrastive learning to create a new English text
classification model. Graph Neural Networks have
improved at dealing with extensive texts and intricate
interactions than models such as CNNs and RNNs because
they can represent text as a graph, with words as nodes and
relationships as edges. This enables GNNs to capture
long-distance dependencies and intricate semantic
linkages between words, which CNNs struggle with due
to their reliance on fixed-size filters, while RNNs suffer
with long sequences due to concerns such as vanishing
gradients. GNNs improve their understanding of a text's
global structure and deep semantics by pooling input from
surrounding nodes. Combining GNNs with contrastive
learning improves feature representation, allowing for
accurate and robust handling of complicated and lengthy
texts. This model can not only effectively grasp the
grammatical and semantic relationships of the text but also
improve semantic embedding through contrastive
learning, thereby improving classification accuracy. This
study has injected new vitality into the field of text
classification and promoted the advancement of related
technologies. Semantic embedding transforms text into a
vector space in which comparable words are closer
together, allowing the model to better grasp word
associations. By integrating Graph Neural Networks
(GNN) and contrastive learning, the study improves
semantic embeddings, allowing the model to capture

334 Informatica 49 (2025) 333-346

complex relationships and long-distance dependencies for
better text classification.
Text semantic extraction helps precisely identify the

text's relationship and structure and provides intelligent
support for information retrieval, sentiment analysis, etc.
Improving semantic understanding can improve the
accuracy of natural language processing tasks and meet
personalized information needs [1-2]. To solve the
problem of text semantic information extraction, many
scholars have proposed different methods. Martinez-
Rodriguez J. L proposed a strategy for extracting
information from sentences and representing it using
semantic network standards. The strategy involved
information extraction tasks and hybrid semantic
similarity metrics. Experiments proved the proposed
method's feasibility and accuracy [3]. Current Chinese
short text entity linking techniques ignore the interaction
between label information and the original short text and
fail to effectively utilize semantic information. Gao L
proposed a normalization method to fully extract semantic
information from short text sentence vectors. The results
showed that the proposed model outperformed popular
deep-learning techniques and previous research results in
entity linking [4]. The process of automatically
determining the connection between two or more elements
is called semantic relation extraction, which is crucial for
creating original writing. In addition to describing
established and new evaluation metrics for supervised,
semi-supervised, and unsupervised methods, Gharagozlou
H also studied several relation extraction techniques and
types in English and the most popular techniques in
Persian [5]. Accurate identification and analysis of
semantics are conducive to effectively processing English
text. Yu S introduced Word2vec (word to vector) for
extracting semantic feature vectors from English text and
the long short-term memory (LSTM) algorithm for
semantic identification of English text. The results showed
that the identification results of the LSTM algorithm for
the part of speech and sentiment tendency of English text
were consistent with the label results [6]. Scholars
emphasize semantic information and use different
techniques to improve model performance. However, the
research has not fully utilized the graph structure to
capture the complex relationship of text. Sequential
models, which concentrate mostly on local aspects and
may have trouble with long-distance dependencies,
frequently miss deep semantic linkages that graph
structures capture. A graph structure preserves both local
and global dependencies by representing words as nodes
and their interactions as edges, in contrast to CNNs and
RNNs that analyze text sequentially. This makes it
possible to comprehend text semantics more precisely,
especially in intricate circumstances. This representation

C. Sianetal.

is further improved by combining contrastive learning
with Graph Neural Networks (GNNSs), which increases the
model's capacity to differentiate between text categories
and boosts performance on tasks with intricate semantics
and long-distance dependencies. It has limitations in the
processing of inter-lexical dependencies and deep
semantic structures.

GNN can better capture the relationship and meaning
between words by turning text into a graph, enhance the
model's understanding of text structure, and improve
classification accuracy, especially in processing long
articles and tasks that require an understanding of context
[7-8]. In recent years, some researchers have used GNN in
text classification research. To solve the problem of cross-
lingual text classification, Vo T proposed a new topic-
driven multi-type text graph attention representation
learning technology, which combined neural topic
modelling technology with a heterogeneous text graph
attention network to enhance the semantic information of
text representation learned in various language
environments. GAT and GraphSAGE are two models with
distinct advantages in text classification problems. GAT
incorporates an attention mechanism into graph
convolutional layers, allowing the model to focus on
meaningful words or relationships, hence enhancing
accuracy. GraphSAGE minimizes computational
complexity by sampling neighbors during training and
enhances scalability, particularly for large-scale graphs.
Its aggregation approaches, such as mean, pooling, and
LSTM-based aggregators, enable the model to capture
broad semantic patterns while avoiding overfitting. When
coupled, these models could offer a more robust method
for dealing with complicated semantics and long-distance
interdependence.

The proposed model was compared with the current
state-of-the-art baseline and experimentally demonstrated
its effectiveness [9]. Deng Z proposed a new graph-based
model and designed an attention-gated graph neural
network to propagate and update the semantic information
of each word node to solve the problem that existing
methods are not enough to capture the semantic
relationship between words. Experimental results showed
that the proposed model outperformed previous text
classification methods [10]. Parthasarathy (2023)
examines combining neural networks with the Harmony
Search Algorithm (HSA) to improve fraud detection in
banking. Traditional methods often fail against complex
fraud techniques, but this combination enhances accuracy
and reliability. The findings suggest that models like
Decision Tree Classifier and Sequential models, with
near-perfect accuracy, could transform fraud prevention.
However, this study supports the idea that combining
neural networks with the Harmony Search Algorithm
(HSA) to improve fraud detection parallels the approach
in our work to enhance accuracy and reliability in text
classification [11]. The above scholars have cleverly used

English Text Classification Model Based on Graph Neural Network...

graph structures and attention mechanisms to grasp the
semantic relationship of text, significantly improving the
model's ability to handle complex semantics and
performing well in cross-language text classification.
However, the graph neural network's capture of deep
semantics and long-distance dependencies needs to be
strengthened, and it has not fully utilized contrastive
learning to enhance feature representation.

This study combines GNN with contrastive learning
to deeply capture word relationships by constructing a text
graph and optimizing semantic embedding using
contrastive learning. GNN converts text into a graph with
words as nodes and edges showing semantic connections.
The results show that this method can deeply capture text
semantics and long-distance dependencies, significantly
improve performance in multiple text classification tasks,
and demonstrate its excellent generalization ability and
robustness. Compared with CNN, this method is more
precise and stable when dealing with complex text
classification. The innovation of this study is to combine
GNN with contrastive learning for English text
classification, which makes up for the shortcomings of
traditional methods and reduces the dependence on
labeled data. The new graph contrast loss function
captures text semantics more precisely. The graph contrast
loss function has numerous significant advantages over
ordinary contrastive loss functions, especially in the
context of graph neural networks (GNN) and contrastive
learning for text categorization. It takes advantage of the
network structure of text to improve the model's capacity
to capture semantic linkages between words, addressing
the complex, long-distance dependencies that typical
contrastive loss functions frequently overlook. By taking
into account both pairwise similarities and contextual
relationships within the network, the graph contrast loss
function improves semantic embedding quality, resulting
in more accurate and informative text representations. The
function also includes Hard Negative Mining, which
concentrates on difficult-to-detect negative samples,
allowing the model to acquire more discriminatory
features and enhance generalization. At the same time,
through strategy optimization and parameter adjustment,
the classification accuracy and training efficiency are
improved. These innovations have promoted the
development of text classification technology and
provided new ideas for natural language processing. The
organizational structure of this study is shown in Figure 1:

Informatica 49 (2025) 333-346 335

Research background,
current situation, and
significance

{ Related work }

Research summary and
innovation POIH(S

Preprocessing data
Data preprocessing and
graph construction

Diagram structure
construction

Graph convolution
networl

Model architecture design
Model ion and
optimization

{ Design of GNN Model]—

Normalization

Network training and
optimization

Compare learning goals
and methods

Introduction of The combination of
comparative learning comparative learning and
module graph neural networks

Optimization of
comparative learing in
semantic embedding

Experimental design
Experimental result

Figure 1: Organizational structure of this study

Model Evaluation and
Experimentation

Accuracy

—> Recall

F1 score

2 Construction and optimization of

the english text classification model

2.1 Data Preprocessing and graph construction

2.1.1 Preprocessing data

Data preprocessing is critical for English text
classification. It can clean text, remove noise, and convert
it into a format suitable for GNN. The proposed approach
combines contrastive learning with Graph Neural
Networks (GNN) to handle noisy or redundant test
instances efficiently. GNN focuses on pertinent semantic
connections while capturing long-distance dependencies
and deep semantic interconnections between words. By
differentiating between comparable and dissimilar
samples, contrastive learning improves the resilience of
the model. By focusing on hard-to-classify negative
samples, hard negative mining improves classification
accuracy and lessens the influence of redundant data.

336 Informatica 49 (2025) 333-346

This article cleans, segments, removes stop words,
and stems the data to extract valuable semantic
information, laying the foundation for subsequent graph
construction and graph neural network training. Text
cleaning is the first step in data preprocessing. The original
text contains many irrelevant information, such as
punctuation, numbers, etc., which may interfere with the
analysis. This article uses regular expressions to clean up
these noises, retaining only letters and spaces to ensure the
text's purity. The next step is segmenting the text into
independent words or phrases. Using the word tokenize
method of NLTK (Natural Language Toolkit), word
segmentation is performed by space and punctuation, and
the text is converted into a vocabulary list. Afterword
segmentation, stop words are filtered out. Removing stop
words can reduce the amount of calculation and prevent
the model from being interfered with by irrelevant
information. NLTK stop word library is utilized for
filtering. After that, stemming is done to normalize
different forms of words to the basic form, such as
"running™ becomes "run". This can reduce the number of
words and vocabulary dimensions and improve training
efficiency. Then, the Porter stemming algorithm and the
Porter Stemmer class of NLTK are processed. After this
preprocessing, the original text becomes a preprocessed
standardized vocabulary list.

Word segmentation, stop word elimination, and
stemming are critical processes that ensure efficient
processing of data in order to prepare it for text
classification model operation. Since the text is
represented as a graph with words as nodes in models like
Graph Neural Networks (GNNs), word segmentation is
crucial since it separates the text into discrete words or
tokens. By getting rid of popular but useless words, stop
word removal lowers computing costs and directs the
model's attention to more important data. Stemming
minimizes vocabulary quantity and increases training
efficiency by breaking words down to their most basic
forms.

2.1.2 Graph structure construction

Each document is treated as a graph. Among them,
words correspond to nodes; edges between nodes
represent semantic relationships between words; edge
weights represent the strength of the relationship. After
data preparation, a text graph structure is constructed for
GNN. In this study, edges are built based on word co-
occurrence information, and the co-occurrence matrix is
used to quantify the word association. Semantic
granularity and computational performance must be
balanced when choosing the window size for co-
occurrence computation in the word co-occurrence
network. For tasks like text categorization, a larger
window size aids in capturing broader, long-distance

C. Sianetal.

semantic dependencies, whereas a smaller window size
captures local, syntactic interactions between close words.
Depending on the needs of the text, the window size is
selected; larger windows make it easier to record intricate
relationships in lengthy texts. The sliding window size v
is first set to construct the co-occurrence matrix,
determining which words are closely related semantically.
Words that co-occur within a window are considered
related. If two words appear in the same window, they are
semantically related. The co-occurrence matrix D is
symmetric, and the element d;; represents the number of
times words v; and v; co-occur in the window. Each
document window is traversed, and the number of co-
occurrences of each pair of words is calculated to
construct a matrix. The formula (1) is:

dij = 21579 (vi, D -9(v, 1+ 1) (1)

Among them: 9(v;, 1) and 9(v;, | + 1)-the indicator
functions;

The total number of words in the document;

v-the set sliding window size.

If the words v; and v; appear adjacent in the text (v;
is at position I, and v; is at position 1+1), the function value
is marked as 1. Otherwise, it is marked as 0. Based on this
method, a symmetric matrix can be constructed, whose
element d;; represents the co-occurrence frequency of v;
and v; in a given window, reflecting the closeness of their
semantic connection.

When generating the graph structure, the words in
the document are represented as nodes, and the co-
occurrence matrix determines the edge weights to capture
the long-distance dependencies between words. Unlike the
traditional bag-of-words model, the graph structure retains
the order of words and effectively displays complex
semantic connections, providing rich information for
graph neural networks. PMI (Pointwise Mutual
Information) is used to measure the similarity of word
pairs to enhance the graph structure [12-13]. The formula
(2) for PMl is:

PMI(Vi,Vj) = logM 2)
Qv)Q(vj)

Among them: Q(v;,v;)-the joint probability of
words v; and v; appearing in the document at the same
time;

Q(v;) and Q(v;)-the marginal probabilities of words
v; and v;.

The joint probability Q(v;,v;) is derived from the
elements of the co-occurrence matrix, and the marginal

English Text Classification Model Based on Graph Neural Network...

probabilities Q(v;) and Q(v;) are estimated based on the
occurrence frequency of the words in the document.

Semantically related word pairs can be identified by
calculating PMI, and corresponding edges can be
established in the graph. The two words can be connected
only when the PMI value exceeds the set threshold. A text
graph is created using words as nodes and edges signifying
semantic associations in order to weight word correlations
and perform edge pruning. Pointwise Mutual Information
(PMI), which gauges how similar word pairings are to one
another, and a co-occurrence matrix are used to assess how
strong these links are. Stronger semantic connections are
captured when words with a PMI value above a threshold
are joined by edges. By eliminating shoddy or irrelevant
connections, edge pruning improves the graph's
performance and the quality of the semantic embedding.
In this way, the text graph structure can precisely model
the deep relationship between words and provide accurate
and rich data to the graph neural network, thereby
improving the performance of classification tasks. The
formation of text preprocessing to graph structure is
shown in Figure 2:

| Construct co-occurrence

Data preprocessing matrix

[
[
[e
|
(o e)
|

[

|

|

|

Traverse the document and

the window
Stop using words

Constructing a symmetric

|
|
|
|
|
calculate the co-occurrence |
|
|
[
co-occurrence matrix :

|
|
|
[
|
| | of each pair of words within
|
|
|
|
|

Calculate PMI and
construct graph structure
Calculate the PMI value
of word pairs

Output graph structure

Obtain a graphical
representation of the text
structure Set PMI threshold, only
connect words when PM1
value exceeds threshold

The graph structure includes
nodes (words), edges
(semantic relationships), and
weights

Establish nodes (words)
and edges (semantic
relationships) in the graph

The edge weight is determined
by the PMI value, representing
the strength of the relationship

Figure 2: The process of forming a graph structure
from text preprocessing

2.2 Graph neural network model design

2.2.1 Graph convolutional network

When designing a GNN model, first, a graph structure
is built based on the text, and then, GCN is used to
propagate information and learn features, aiming to deeply
capture the semantics and long-distance dependencies of
the text. A multi-layer GCN architecture is adopted to
enhance the model's performance, and residual

Informatica 49 (2025) 333-346 337

connections and normalization strategies are added to
ensure information flow and prevent gradient
disappearance. GCN is an effective method for processing
graph-structured data and performs well in graph-related
tasks [14-15]. Graph neural networks (GNNs) benefit
significantly from residual connections, especially when it
comes to solving the problem of gradient vanishing in
deep designs. The gradients don't decrease during
backpropagation, which is a common problem in deep
networks, because to these links, which allow information
to travel directly between layers. In the absence of residual
connections, deeper models have trouble with gradient
propagation, which can lead to poor convergence or
unsuccessful training. Residual connections provide more
effective feature learning and preserve stable training by
letting gradients avoid layers. They play a crucial role in
GCN-based models by maintaining pertinent data across
layers, which enhances the network's capacity to represent
intricate and distant connections in text. In the English text
classification task, GCN effectively captures the text's
deep semantics and long-distance dependencies through
the graph structure. Words are regarded as nodes, and
edges represent the relationship between words. The graph
convolution operation of GCN enables the model to
propagate and learn node information and then deeply
understand the semantics of words in context.

If the features of the nodes in the graph are

()

represented by g;"’, representing the features at the k-th

layer, GCN updates them according to Formula (3).

—y® g+

(k+1) _ R
9 = 5(2161“0 INDI ING)I

u?9) @)

Among them: N (i)-the set of neighbor nodes of the
node;

U® and U{¥-the learnable parameters of the k-t
layer;

6-the nonlinear
(Rectified Linear Unit).

gi(")—represents the features of node i at layer k.
normalizes the aggregation of neighbor

activation function is RelLU

IN(@DI
features.

2.2.2 Model architecture design

When designing the GCN model, multiple layers of
GCN are stacked to enhance the expression ability and
feature depth. Each layer updates the node features by
aggregating neighbor information, capturing complex
relationships more deeply than a single layer. The multi-
layer Graph Convolutional Network (GCN) is designed
with the primary goal of efficiently capturing long-
distance connections and semantic linkages in text. To
capture both local and global semantic patterns, the model
employs a multi-layer GCN architecture, in which each

338 Informatica 49 (2025) 333-346

layer collects data from nearby words (nodes). In order to
ensure efficient information transfer between the layers
and prevent gradient vanishing, residual connections are
included. By preserving constant feature scales,
normalization approaches are used to stabilize training and
enhance convergence. The graph-based structure
improves feature representation by enabling information
to spread through semantic relationships between words.
At each layer, contrastive learning is also used to further
improve semantic understanding by differentiating
between similar and dissimilar text categories using a
Triplet Loss function.

The performance of the Graph Convolutional
Network (GCN) model in text categorization is greatly
improved by its depth, which includes many layers,
residual connections, and normalization. The model's
several layers enable it to capture intricate, far-reaching
semantic relationships between words. However, residual
connections ensure that the gradient flow is maintained
during backpropagation, which helps to avoid the
vanishing gradients that might affect deeper networks. By
guaranteeing uniform feature distributions among layers,
normalization enhances convergence stability and speed,
further stabilizing training.

To solve the problem of gradient disappearance
caused by multiple layers, residual connections are
applied to ensure effective information transmission. The
graph convolution update formula (4) is:

k+1 k
gt = g

1

k) o0
wo U9t

+6 (Zjezv(i)ﬁ :
uPg®) @

By stacking multiple layers of GCN, the model can
learn richer node representations and integrate local and
global information. After GCN processing, word feature
representations can more precisely capture the complex
semantics of the text and help text classification. This
architecture improves model performance, effectively
copes with complex semantics in large-scale text data, and
achieves efficient processing. The model structure of this
article is shown in Figure 3.

ResNet is a deep residual network architecture that
enhances automated test case generation by improving
accuracy and efficiency. It overcomes challenges like
vanishing gradients, allowing deeper networks to train
without losing important information. ResNet captures
hierarchical features and retains essential data through
residual connections, making it useful for complex data
structures. It generates diverse test cases, including edge
cases, and ensures each network layer contributes to better
feature extraction, resulting in more accurate, reliable, and
efficient test case generation for robust software
validation.

C. Sianetal.

|

Output layer ‘ ‘ Cross-entropy loss

Minimize cross
entropy loss

‘ Softmax

e

One or more fully connected hidden
layers

- ——

|

Feature fusion layer OIS G I
Y/ different GCN layers |

[

S
L 1
Multiple stacked GCN
layers

|

|

|
Adggregate information from |
neighboring nodes to update the |
feature representation of the |
current node |
|

[

|

|

|

|

|

Add residual
connection
Add dropout layer

|
| Word embedding Convert each word in the text into a vector]

| layer representation in a high-dimensional space

S S S

Input text data

Figure 3: Model structure diagram

The proposed approach addresses the vanishing
gradient issue, increases training stability, and speeds up
convergence by utilizing ResNet layers to enhance pattern
recognition. While deeper layers concentrate on intricate
patterns like object pieces or semantic structures, early
layers capture basic aspects like edges and textures. Even
in deep networks, residual connections allow for the
effective learning of both low-level and high-level
information, leading to more reliable and accurate text
classification.

2.2.3 Normalization in graph convolutional networks

Normalization operations are added to the model to
improve the training stability and convergence speed of
GCN. The heterogeneity between nodes in graph structure
data leads to large differences in node feature distribution,
affecting training efficiency and performance. Therefore,
layer normalization technology ensures that the scale of
input features of each convolution layer is similar. Layer
normalization independently normalizes the features of
each layer of nodes to ensure that the input features are
evenly distributed and have consistent scales. Contrastive
learning refines Graph Convolutional Networks (GCNSs)
to improve text categorization performance by optimizing
the text's semantic representations.

English Text Classification Model Based on Graph Neural Network...

GCNs capture semantic relationships by converting text to
a graph structure while retaining long-distance
interdependence. Contrastive learning, using Triplet Loss,
refines these embeddings by bringing comparable text
samples closer together and pushing dissimilar ones apart,
hence boosting classification accuracy. Furthermore, Hard
Negative Mining concentrates on difficult-to-distinguish
negative data, speeding up the learning process and
improving the model's capacity to detect minor semantic
differences. The temperature parameter helps to stabilize
training by regulating gradient updates, resulting in
smoother learning and preventing abrupt changes early
on.

Unlike batch normalization, layer normalization
does not rely on batch statistical information and is more
suitable for graph data. Neural network training is
stabilized and accelerated by the use of Layer
Normalization (LN) and Batch Normalization (BN).
Because LN normalizes inputs across properties of each
individual data point, it can be used with graph-based
models. It guarantees that the feature representation of
every node is stable and performs well with tiny or
irregular batches. BN uses batch statistics to normalize the
entire batch, which may not be as successful because of
differences in node properties and graph sizes. In graph-
based models, LN is favored because it individually
normalizes the properties of each node, resulting in more
stable and efficient training, particularly in graph data that
is sparse and volatile.

The layer normalization formula (5) is:

()

—p®
~(k) _ 9 —¢
;l_() lg(k) ca® 4 gl (5)

Among them: ¢® and §*)-the mean and standard
deviation of the features of the k-th layer;

a® and B®-the learnable scaling and offset
parameters;

G -the normalized features.

Dropout is added after each layer to improve the
generalization ability by randomly discarding some
connections to prevent GCN from overfitting. With the
normalization operation, GCN is more robust when
processing high-dimensional data and complex tasks,
improving the generalization performance and training
efficiency of English text classification and ensuring that
the model is stable and has strong generalization ability.

2.2.4 Training and
convolutional networks

During the training process of GCN, supervised
learning is used, and the classification effect is optimized
by minimizing the cross-entropy loss. This loss function

optimization of graph

Informatica 49 (2025) 333-346 339

can measure the gap between the predicted result and the
true label. In the English text classification task, word
features are regarded as graph nodes and information
propagation and update are realized through GCN. The
loss function formula (6) is expressed as:

K=- 21\11 Zg=1 b;q IOg(Bi,d) (6)

Among them: M-the number of samples;
The number of categories;
b; 4-the true label of the i-th sample in category d;

b;, the prediction probability of the model in category

To improve the training speed and optimization
effect, the Adam (Adaptive Moment Estimation)
optimizer is selected, which can dynamically adjust the
learning rate according to the mean and variance of the
gradient, thereby achieving faster convergence and
preventing gradient problems. The updated rules are
shown in Formulas (7) to (10):

N, =y + (1 —yh, (7)

wy = yowy_q + (1 —y2)h? (8)

~ Ny w.
fl, = —=, W, = 1_;2r ©)

Ny = MNr—1 _M\/Wi;_e (10)

Among them: n,. and w,.-the mean and variance of
gradient;

h,-the gradient at the current moment;

y, and y,-the hyperparameters, used to control the
decay rate of the first-order moment estimate and the
second-order moment estimate;

u-the learning rate;

e-the small constant to prevent zero division errors.

Using the Adam optimizer, GCN can adaptively
adjust the parameter update step to avoid the limitations of
traditional gradient descent, such as learning rate
sensitivity and gradient explosion, thereby improving
convergence speed and model stability.

2.3 Application of contrastive
module

2.3.1 Objectives and methods of contrastive learning

To improve the performance of GNN in text
classification, this study applies a contrastive learning
mechanism. This mechanism optimizes semantic
representation by maximizing the distance between texts
of different categories, making texts of the same category
closer and texts of different categories more distant, which
helps GNN capture long-distance dependencies and

learning

340 Informatica 49 (2025) 333-346

complex semantics. The proposed discusses how Graph
Neural Networks (GNNs) form node representations by
using semantic relationships between words, transforming
text into a graph where words are nodes and edges
represent their semantic connections. GNNs capture long-
distance dependencies and complex relationships through
graph convolution operations. Additionally, contrastive
learning enhances these representations by refining the
similarity between words of the same category and
distinguishing those from different categories.
Contrastive learning performs an important role in

decreasing noise and improving the quality of semantic
embeddings in text classification because it optimises
semantic representations by enhancing the distance
between different samples and minimizing the distance
between comparable ones. This strategy enhances the
model's capacity to identify between categories,
particularly when dealing with noisy or ambiguous input.
In this study, contrastive learning, in conjunction with
Graph Neural Networks (GNN), refines semantic features
and aids in the capturing of deep word associations. Hard
Negative Mining prioritizes difficult negative samples,
enhancing the model's learning efficiency, and
temperature parameters stabilize training by managing
gradient updates. Contrastive learning does not rely on
traditional annotations and provides greater flexibility and
adaptability. This study uses Triplet Loss as the loss
function, which aims to reduce the distance between the
anchor point and the positive sample and increase the
distance between the anchor point and the negative
sample, significantly improving the accuracy and
efficiency of GNN in text classification. The formula (11)
is:

Lt‘riplet =max(e(x,p) —e(x,n) +1,0) (11)

Among them: A-the feature representation of anchor
samples;

p and the feature representations of positive samples
and negative samples.

By minimizing Triplet Loss, the model can make
similar samples closer and heterogeneous samples more
distant in the embedding space, thereby improving the
accuracy of text classification. Samples with similar or the
same labels are selected as positive samples, and samples
with different or low similarity are selected as negative
samples. The Comparing loss functions like Triplet Loss
and NT-Xent is essential for evaluating classification
performance. The model's capacity to differentiate
between classes is improved by both loss functions, which
modify the separation between sample representations.
Because of its ease of use and function in keeping anchor
samples far from negative ones and closer to positive ones,
triplet loss is prized. However, NT-Xent Loss is more

C. Sianetal.

successful at identifying minute variations across classes
because it adds a temperature parameter that gives it more
accurate control over the embedding space. Although
Triplet Loss was chosen for this study because of its
efficacy, a comparison with NT-Xent may provide more
information on how each model contributes to
performance, especially in cases with complicated
semantics and long-distance dependencies. Optimizing
this loss function helps the model learn more precise text
representation.

2.3.2 Combination of contrastive learning and graph
neural network

In GNN, text is converted into a graph structure, with
vocabulary represented by nodes and relationships
represented by edges. GCN learns node features, and
contrastive learning optimizes semantic dependencies.
Node characteristics are improved for text classification
using contrastive learning in a GNN by transforming text
into a graph with nodes representing words. A multi-layer
GCN captures semantic dependencies, but contrastive
learning using Triplet Loss reduces the distance between
similar phrases while increasing it for different ones in the
embedding space. Hard Negative Mining concentrates on
tough negative data, and a temperature parameter
smoothes the loss function for more stable training. This
combination enables the model to capture the
comprehensive semantics of the text. Contrastive learning
is added after each layer of graph convolution to improve
the discriminability of text representation. Node features
are regarded as global feature training, and similarity is
calculated based on node embedding so that GNN can
extract local and overall semantics at the same time.
During training, the model optimizes the graph structure
and node features through contrastive learning to capture
semantics more precisely.

Furthermore, combining contrastive learning and
GNN, a new graph contrast loss function is designed to
consider node similarity and category information to
improve the accuracy of semantic understanding. The
model extracts feature with GCN and then optimizes with
this function to enhance text classification performance.
The optimization formula (12) of the graph contrast loss
function is:

Ltriplet = Zi\il Zﬁl[e(fl’f]) —Al (bi * bj)]
(12)

Among node feature
representation;
b; and b;-the node category labels;

e(f,) the distance measurement between nodes.

them: f; and fj-the

English Text Classification Model Based on Graph Neural Network...

2.3.3 Optimization of contrastive
semantic embedding

This study integrates category information into
contrastive learning to improve the quality of semantic
embedding, making similar texts closer and different
categories more separated. Contrastive learning refines
Graph Convolutional Networks (GCNSs) to improve text
categorization performance by optimizing the text's
semantic representations. GCNs capture semantic
relationships by converting text to a graph structure while
retaining long-distance interdependence. Contrastive
learning, using Triplet Loss, refines these embeddings by
bringing comparable text samples closer together and
pushing dissimilar ones apart, hence boosting
classification accuracy. Furthermore, Hard Negative
Mining concentrates on difficult-to-distinguish negative
data, speeding up the learning process and improving the
model's capacity to detect minor semantic differences. The
temperature parameter helps to stabilize training by
regulating gradient updates, resulting in smoother learning
and preventing abrupt changes early on. The Hard
Negative Mining strategy is adopted to focus on negative
samples that are difficult to distinguish. Unlike traditional
methods, this strategy selects negative samples based on
model performance to improve learning efficiency. The
dynamic selection of 'hard' negative samples in contrastive
learning concentrates on the most difficult cases that are
closest to the anchor sample. This method, known as Hard
Negative Mining, increases model discriminative power,
speeds up training convergence, and improves
generalization. It helps the model better discern
insignificant distinctions, especially in complex or
imbalanced datasets, resulting in more efficient and robust
performance in tasks like as text categorization. Hard
Negative Mining, which concentrates on choosing
negative examples that are challenging to distinguish,
improves the negative sample selection procedure in this
research. By pushing the model to learn from difficult
examples rather than simple negatives, this technique
increases the discriminability of the model and produces
more robust and instructive representations. By lowering
the possibility of overfitting to readily classifiable
negative samples, it also helps to maintain the stability of
the model. Furthermore, the contrastive loss function's
incorporation of a temperature parameter regulates the
gradient updates' smoothness, avoiding drastic changes
early in the training process and encouraging steadier
optimization. By focusing on such samples, the model can
better capture the subtle differences in text features and
enhance classification capabilities.

Hard Negative Mining (HMN) is a technique used to
enhance model learning by choosing the most difficult
negative samples—those that are hard to differentiate

learning in

Informatica 49 (2025) 333-346 341

from positive ones. HMN highlights the most instructive
negative examples, in contrast to random negative mining,
which chooses negative samples independent of their
proximity to the decision boundary, or semi-hard negative
mining, which targets samples near but not on the
boundary. By making the model pick up on minute
differences, this method speeds up model convergence
and decreases overfitting. HMN improves the contrastive
learning framework and Graph Neural Network (GNN)
semantic embedding in the study, increasing classification
robustness and accuracy, especially for challenging tasks
like text categorization.

In each round of training, Hard Negative Mining
optimizes the negative samples closest to the anchor point.
Hard Negative Mining focuses on negative samples that
are hard to separate from positive samples by choosing
those that are closest to the anchor point in feature space.
Metrics like cosine similarity or Euclidean distance are
frequently used to measure the distance or similarity
between the feature vectors of the samples. By choosing
these difficult negative samples, the model improves its
generalization skills by learning to distinguish between
classes more precisely. This strategy encourages the
model to focus on those difficult-to-distinguish samples in
the feature space, thereby performing more precise feature
identification and improving the accuracy of text
classification. In addition, it prevents the model from
paying too much attention to samples that are easy to
classify, thereby reducing the risk of overfitting.
Therefore, the application of difficult negative samples
not only does it improve the model's classification ability
and accelerate training convergence, but its advantages
become more evident when processing complex texts.
This article applies a temperature parameter to optimize
the contrastive learning process. The intensity of gradient
updates is controlled by smoothing the loss function to
maintain training stability. The temperature parameter
adjusts the influence of the distance between samples,
enhances the robustness of the loss function, and avoids
extreme gradient updates in the early stage of learning.
The temperature loss function formula (13) is:

1 (xn)
Leontrastive = ;IOg (1 +exp (e 9;11)) (13)

Among them is T- the temperature parameter, which
controls the smoothness of the loss function.

By changing the temperature parameters, the model
can optimize the contrastive learning effect, prevent it
from entering local optima, and adjust the learning speed
and gradient changes according to the training stage and
sample difficulty. The model's optimal temperature
parameter was demonstrated to improve contrastive
learning's semantic embedding quality and training
stability. It ensures smoother convergence by preventing
problems like excessive gradients in the early phases of
training by regulating the degree of gradient updates. By

342 Informatica 49 (2025) 333-346

controlling the distance between samples, the temperature
balances the impact of both simple and complex examples.
The robustness of the methodology is further
demonstrated by a sensitivity study that shows how
changing the temperature impacts model performance. By
combining Hard Negative Mining and temperature
parameters, the contrastive learning mechanism in this
study optimizes semantic embedding, making the text
classification model more precise and efficient in
processing complex semantics. Hard Negative Mining
(HNM) improves feature representation in contrastive
learning by emphasizing the most difficult negative
samples, which are similar to positive samples but belong
to distinct classes. This method drives the model to
improve its feature space and learn smaller distinctions
between comparable cases, hence increasing the
discriminative strength of the learned representations. In
the study, HNM is integrated into the contrastive learning
framework to improve semantic embeddings and
generalization capacity. HNM accelerates model
convergence and reduces overfitting by prioritizing tough
negative samples over easy ones, resulting in better
accuracy and robustness, particularly for complex tasks
such as text classification. These strategies have improved
classification and generalization ability, especially on
diverse text datasets.

3 Evaluation and experiment of the

english text classification model

3.1 Experimental design

This experiment aims to explore the performance of
the English text classification model that integrates graph
neural networks and contrastive learning. The public 20
Newsgroups" dataset is selected for testing. This dataset
contains various news articles and can fully demonstrate
the model's performance after preprocessing. To evaluate
the model, indicators such as accuracy, recall, and F1
value are used to comprehensively measure the
classification effect. At the same time, compared with the
CNN-based classification model, the advantages of the
new method are highlighted, verifying the effectiveness of
the combination of graph neural networks and contrastive
learning. Through this comparative experiment, the
performance improvement of the proposed model and its
potential in practical applications can be demonstrated.
The experimental environment of this article is shown in
Table 1:

C. Sianetal.

Table 1: Experimental environment

Serial Experimental Specific
Number | Environment Configuration

1 Experimental Windows 11
System

2 Programming Python
Language

3 Central Intel i7, 8 cores
Processing Unit

4 Operating Pycharm
Medium

5 Memory 32GB
Video Memory | 12GB
CUDA 114
(Compute
unified device
architecture)
version

8 GPU Floating | Single
Point precision
Computing 15.7, TFLOPS
Power

9 GPU (Graphics | NVIDIA GTX
Processing Unit)

10 Deep Learning | PyTorch
Framework

11 database MySQL

3.2 Experimental results
3.2.1 Accuracy
Accuracy

findings:

Figure 4: Comparison of model accuracy results

Accuracy (%)

100

is the Kkey

o5

90

85,

80

=— This article
=— CNN

1 2 3 4 5 6

7 8

to evaluating model
performance. This article compares the accuracy of 15
model tests using these two methods. Figure 4 shows the

9 10 11 12 13 14 15

Number of tests

under the two methods

English Text Classification Model Based on Graph Neural Network...

According to the 15 test results in Figure 4, the
accuracy of this article's method is stable and high,
ranging from 91.41% to 97.60%, with an average of
94.46%. The accuracy of the CNN method ranges from
81.63% to 87.94%, with an average of 84.45%. For
example, in the first test, this article's method is 12.39%
higher than CNN. Even in the eighth test, this method is
still ahead. These data prove the advantages of this
article's method in dealing with complex semantics and
long-distance dependencies. They can distinguish texts
more precisely, showing their good generalization ability
and robustness. This again proves the effectiveness and
superiority of combining graph neural networks with
contrastive learning.

3.2.2 Recall rate

The recall rate is the core indicator for evaluating the
model's ability to identify positive samples. It reflects the
model's ability to find actual positive examples, which is
crucial to preventing the omission of key information. A
high recall rate means the model can more
comprehensively identify relevant text categories, which
is particularly important for information retrieval and
sentiment analysis tasks because it can reduce
underreporting. Based on this, the recall rate of the model
is further tested, and the results are shown in Figure 5.

100

B This article
C 1 CNN

95

90

85
B(
70
65
60

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Recall(%)

Number of tests

Figure 5: Comparison of recall results under two
methods

According to Figure 5, compared with CNN, the
recall rate of this article's method is significantly higher,
ranging from 86.89% to 91.20%, with an average of
89.27%, while that of CNN is 76.80% to 81.43%, with an
average of 79.02%. In the third test, the recall rate of this
article's method is 13.61% higher than that of CNN. Even
in the 13th test, this method is still ahead. This indicates
that the method proposed in this article can more
comprehensively recognize text and reduce false
negatives. When dealing with imbalanced data, stronger
detection of minority categories enhances system
reliability. This proves that combining GNNs and
contrastive learning can effectively improve recall rates,

Informatica 49 (2025) 333-346 343

enhance classification and provide

application guarantees.

performance,

3.2.3 F1 Value

F1 score is a key indicator for evaluating model
performance, which comprehensively reflects the
classification performance of the model by combining
precision and recall. Optimizing the F1 value can ensure
that the model is more accurate and reliable when dealing
with imbalanced datasets, reducing misjudgments and
omissions. This article calculates the F1 value, as
displayed in Table 2.

Table 2: Comparison of F1 value results

Ofl\izglsber 2;2;5 article CNN (%)
1 91.65 81.00
2 92.69 80.76
3 93.21 79.98
4 91.59 80.53
5 90.44 82.08
6 91.81 83.81
7 91.37 83.34
8 90.82 83.87
9 90.92 81.65
10 92.04 81.97
11 93.08 80.04
12 89.92 82.09
13 92.18 80.71
14 92.42 82.18
15 92.68 80.94

According to Table 2, the F1 value range of this
method is 89.92%-93.21%, with an average of 91.79%.
The F1 score of CNN ranges from 79.98% to 83.87%,
averaging 81.66%. In the third test, the F1 value of this
article's method is 13.23% higher than that of CNN. The
12th test also shows that this method is better than CNN.
This shows that this method is accurate and reliable, can
effectively identify positive examples, and is suitable for
information retrieval and sentiment analysis tasks. When
dealing with unbalanced data, this article's method reduces
misjudgments and positive example omissions greatly
improves the robustness and practicality of the system,
and once again proves the advantages of combining graph
neural networks with contrastive learning.

344 Informatica 49 (2025) 333-346

4 Conclusions

This study combines GNN with contrastive learning
to innovate the English text classification model. GNN
precisely captures the deep relationship between words in
the text, while contrastive learning strengthens semantic
embedding and improves the model's ability to identify
different texts. The experimental results show that the
accuracy, recall rate, and F1 value of the new model on
the public dataset are better than the traditional CNN
model, showing excellent classification performance. This
model is more accurate and stable when dealing with
complex semantics and long-distance dependencies,
opening up new avenues for English text classification. By
displaying text through graph structures, the model reveals
the associations between words more deeply, while
contrastive learning enhances feature representation,
making the model better at identifying text categories.
This improves classification accuracy and enhances the
model's generalization ability and robustness, making it
suitable for various application scenarios. However, there
are still limitations to this study. The model needs to adjust
parameters for specific text classification and is sensitive
to hyperparameters, requiring careful tuning. Meanwhile,
the unsupervised learning performance also needs to be
improved. The combination of GNN and contrastive
learning has brought breakthroughs in natural language
processing, with broad application prospects in
information retrieval, sentiment analysis, and other areas.

Funding
This research is supported by the China Vocational

Education Association of Zhejiang Province (Grant No.
ZJCV2024C01).

Data availability

All data generated or analyzed during this study are
included in the manuscript.

Author contributions

Chen Sia, Pan Guogiang is contributed to the design and
methodology of this study, the assessment of the
outcomes, and the writing of the manuscript.

References

[1] Martinez-Rodriguez, J. L., Hogan, A., & Lopez-
Arevalo, L. (2020). Information extraction meets the
semantic web: A survey. Semantic Web, 11(2), 255—
335. https://doi.org/10.3233/SW-180333

Tamine, L., & Goeuriot, L. (2021). Semantic
information retrieval on medical texts: Research
challenges, and open ACM

(2]

survey, issues.

(3]

[4]

(5]

[6]

(7]

(8l

(9]

[10]

[11]

[12]

C. Sianetal.

Computing Surveys, 1-38.
https://doi.org/10.1145/3462476
Martinez-Rodriguez, J. L., Lopez-Arevalo, 1., &
Rios-Alvarado, A. B. (2022). Mining information
from sentences through Semantic Web data and
Information Extraction tasks. Journal of Information
Science, 48(1), 3-20.
https://doi.org/10.1177/0165551520934387

Gao, L., Zhang, L., Zhang, L., & Huang, J. (2022).
RSVN: A RoBERTa sentence vector normalization
scheme for short texts to extract semantic
information. Applied Sciences, 12(21), 11278.
https://doi.org/10.3390/app122111278
Gharagozlou, H., Mohammadzadeh, J., Bastanfard,
A., & Ghidary, S. S. (2023). Semantic relation
extraction: A review of approaches, datasets, and
evaluation methods with looking at the methods and
datasets in the Persian language. ACM Transactions

54(7),

on Asian and Low-Resource Language Information
Processing, 22(7), 1-29.
https://doi.org/10.1145/3588940

Yu, S. (2024). Extraction and analysis of semantic
features of English texts under intelligent algorithms.
Automatic Control and Computer Sciences, 58(1),
109-115.
https://doi.org/10.3103/S0146411624010123

Wang, K., Ding, Y., & Han, S. C. (2024). Graph
neural networks for text classification: A survey.
Artificial Intelligence Review, 57(8), 190.
https://doi.org/10.1007/s10462-023-10290-1

Zong, D., & Sun, S. (2022). Bgnn-xml: Bilateral
graph neural networks for extreme multi-label text
classification. IEEE Transactions on Knowledge and
Data Engineering, 35(7), 6698-6709.
https://doi.org/10.1109/TKDE.2022.3140011

Vo, T. (2022). An integrated topic modelling and
graph neural network for improving cross-lingual
text classification. ACM Transactions on Asian and
Low-Resource Language Information Processing,
22(1), 1-18. https://doi.org/10.1145/3530800

Deng, Z., Sun, C., Zhong, G., & Mao, Y. (2022). Text
classification with attention gated graph neural
network. Cognitive Computation, 14(4), 1464—1473.
https://doi.org/10.1007/s12559-021-09960-1
Parthasarathy, K. (2023). ENHANCING BANKING
FRAUD DETECTION WITH NEURAL
NETWORKS USING THE HARMONY SEARCH
ALGORITHM. International Journal of
Management Research and Business Strategy, 13(2),
34-47.

Salle, A., & Villavicencio, A. (2023). Understanding
the effects of negative (and positive) pointwise
mutual information on word vectors. Journal of

https://doi.org/10.1007/s12559-021-09960-1

English Text Classification Model Based on Graph Neural Network...

Experimental & Theoretical Artificial Intelligence,
35(8), 1161-1199.
https://doi.org/10.1080/0952813X.2023.2172065

[13] Yao, M., Zhuang, L., Wang, S., & Li, H. (2022).
PMIVec: A word embedding model guided by
pointwise mutual information criterion. Multimedia
Systems, 28(6), 2275-2283.
https://doi.org/10.1007/s00530-022-00912-3

[14] Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A., &
Chanussot, J. (2020). Graph convolutional networks
for hyperspectral image classification. [EEE
Transactions on Geoscience and Remote Sensing,
59(7), 5966-5978.
https://doi.org/10.1109/TGRS.2020.3026211

[15] Kazi, A., Cosmo, L., Ahmadi, S. A., Navab, N., &
Bronstein, M. M. (2022). Differentiable graph
module (DGM) for graph convolutional networks.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2), 1606-1617.
https://doi.org/10.1109/TPAMI.2022.3140011

Informatica 49 (2025) 333-346 345

https://doi.org/10.1109/TPAMI.2022.3140011

346 Informatica 49 (2025) 333-346 C. Sian et al.

