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This study presents a Digital Control Circuit for Accelerometer Noise Reduction in Gravity Gradiometers 

Using Enhanced Particle Swarm Optimization algorithm. In the realm of geophysics and space 

exploration, gravity gradiometers are crucial for precise measurements, yet accelerometer noise and 

interference have long hindered performance enhancement. Our enhanced PSO algorithm, inspired by 

the natural foraging behaviors of avian species, mimics how birds utilize collective and individual 

experiences to search for food, translating this concept into the algorithm's particle movement and 

parameter update rules for exploring the solution space to effectively reduce high-frequency noise by 

30% and improve the signal-to-noise ratio by 25% compared to traditional methods. The designed digital 

control circuit, with the PSO algorithm integrated into its hardware framework based on a digital signal 

processor, enables real-time signal processing. Simulation results confirm the circuit's proficiency in 

noise reduction and enhancement of the collected data's signal-to-noise ratio, thereby validating our 

approach's effectiveness in improving accelerometer performance within gravity gradiometer systems. 

Povzetek: Članek predstavi digitalno krmilno vezje za pospeškomer v gravimetru, ki uporablja izboljšan 

PSO-algoritem za zmanjšanje šuma in izboljšanje merilne točnosti. 

 

1 Introduction 
In contemporary geophysics and space exploration, 

gravity gradiometers are essential instruments for precise 

measurements and have a profound impact on 

monitoring crustal structures, mineral exploration, and 

assessing the space environment. The accelerometer, as 

the core component of the gravity gradiometer, is vital 

for the overall system's performance regarding 

measurement precision and reliability [1]. However, 

accelerometers often face multiple noise and interference 

sources, making the improvement of their measurement 

accuracy and interference resilience a key research area 

[2]. 

The PSO algorithm adopted in this study is inspired by 

the natural foraging patterns of avian species. In this 

context, the movement of particles in the solution space 

during the PSO algorithm's operation is analogous to 

how birds search for food. Each particle's position and 

velocity update rules are designed to mimic the way birds 

adjust their flight paths based on both individual 

experiences and the collective behavior of the flock. This 

unique feature enables the PSO algorithm to explore the 

complex solution space effectively and find optimal 

parameters for reducing noise in the accelerometer's 

output signal [3]. Specifically, it allows us to address the 

challenges posed by various noise types that are 

commonly encountered in accelerometers within gravity 

gradiometer systems. 

The development of gravity gradiometers involves 

multiple disciplines such as precision machinery, 

electronic technology, and signal processing. For  

 

instance, Reference [4] presents a gravity gradiometer  

design to overcome the problems of bulkiness and high 

cost in traditional devices. Reference [5] employs the 

wavelet transform as a noise reduction technique for 

improving the quality of measurement data in gravity 

gradiometer signal processing. The digital control circuit 

plays a crucial role in enhancing accelerometer 

performance. Reference [6] constructs a digital control 

circuit based on FPGA, significantly enhancing the 

accelerometer's measurement resolution through digital 

filtering and calibration techniques. Reference [7] applies 

digital control circuits in multi-axis accelerometers to 

achieve precise control over the accelerometer's output. 

Our manuscript proposes a design for a digital control 

circuit based on an enhanced Particle Swarm 

Optimization (PSO) algorithm. The primary objective of 

this study is to develop a digital control circuit that 

leverages the PSO algorithm to enhance the performance 

of accelerometers in gravity gradiometers by reducing 

high-frequency noise and improving the signal-to-noise 

ratio. To achieve this, we first refine the PSO algorithm to 

enhance its convergence and stability within a high-

dimensional search space [8]. Then, we create a digital 

control circuit specifically tailored for the gravity 

gradiometer to rapidly process the accelerometer's output 

signal. System simulations have been conducted, and the 

results clearly demonstrate the proficiency of our 

proposed scheme in reducing noise and improving 

measurement precision, providing strong evidence of its 

effectiveness in practical applications [9]. 
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2 Theoretical basis of forward 

modeling 

The gravity gradient tensor plays a crucial role in this 

study as it represents the rate of change of the 

gravitational potential at the second order in every spatial 

direction [10]. In the Cartesian coordinate framework, 

with the gravitational potential denoted as U, the gravity 

gradient tensor is described by a 3×3 matrix. 
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In the massless region of space, the divergence and 

curl of the gravitational field are zero, so only five of the 

original nine components A are independent of each other. 

The International standard unit of gravity gradient is 1/s², 

but this unit value is usually too large, so Eotvos (E) is 

often used as the unit of measurement for the gravity 

gradient tensor. In this paper, the object is divided into 

many small cuboids, and the tensor of each small cuboid 

is calculated and then summed [11]. The schematic 

diagram of the cuboid model is shown in Figure 1. Where 

1 1 1 2 2 2( , , ),( , , )       represents the coordinates of 

cuboid vertices; ( , , )x y z   stands for the coordinates of 

the measuring point. 

 

 
Figure 1: Cuboid forward modeling model. 

 

In the massless region of space, due to the properties 

where the divergence and curl of the gravitational field 

are zero, only five out of the original nine components A 

are independent of each other. While the International 

standard unit of the gravity gradient is 1/s², this unit value 

is typically too large for practical applications in our 

context. Hence, Eotvos (E) is commonly adopted as the 

unit of measurement for the gravity gradient tensor. To 

analyze the gravity gradient tensor more effectively, in 

this paper, we divide the object into numerous small 

cuboids. The tensor of each small cuboid is calculated 

separately and then summed up. This approach allows for 

a more detailed and manageable analysis of the 

gravitational field characteristics related to the 

accelerometer and gravity gradiometer system. The 

schematic diagram of the cuboid model, as shown in 

Figure 1, clearly illustrates the relationship between the 

coordinates of cuboid vertices and the coordinates of the 

measuring point, which is crucial for understanding the 

spatial distribution and calculation of the gravity gradient 

tensor. 

The calculation formula of Bouguer gravity anomaly 

and each component of the gravity tensor is as follows: 
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3 Particle swarm optimization 

algorithm 
 This method involves the simulation of particles' 

trajectories within the solution domain, leveraging the 

best achievements of both individual particles and the 

swarm collectively to navigate toward the optimal 

solution [12]. Recognized for its straightforward 

application, minimal parameter set, and robust flexibility, 

the PSO has been extensively utilized in functional 

optimization and pattern recognition [13]-[14]. In this 

study, the PSO is implemented to address the inversion 

challenges associated with the gravity gradient tensor, to 

enhance the precision and efficiency of the solution 

discovery process. 
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Where t is the number of iterations; i is the number 

of the particle in the population. 
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Formula (4) represents the current position of the 

particle with the serial number i in the round t 

iteration; bestQ  represents the best position the 

particle has reached so far. 1  and 2  are learning 

rates, which regulate the amplitude of particle position 

update during iteration;  represents the inertial 

weight, which is used to determine the extent to which 

the particle retains the properties of the previous 

iteration [15]. Equation (1) revises the computation of 

a particle's velocity, considering the particle's present 

location, its most favorable past position, and the best 

position attained by the collective swarm [16]. 

Throughout the iterative process, the velocity 

adjustments for all particles are confined within the 

parameters set by H, ensuring that these modifications 

remain within the predefined limits of the solution 

space [17]. Subsequently, the swarm of particles 

navigates to a revised location following equation (2). 

The detailed procedure is outlined as follows: 

(1) Set parameters at the beginning, involving 

inertia weight  , learning parameters 1  and 2 . (2) 

Randomly generate a population of M particles, and 

randomly specify the initial position and speed of each 

particle within the specified limits. The performance 

of each particle is evaluated, and the objective 

function determines the performance score of each 

particle, and its performance is judged. (3) The 

particle is explored in the search space of the solution. 

The best solution obtained by each particle is recorded 

as bestQ . (4) The best solution explored by all particles 

in the group is named the global best solution, denoted 

as bestG . (5) Each particle adjusts its velocity and 

position according to formula (3) and formula (4), 

while limiting the velocity change within the limit of 

max max[ , ]u u− . (6) Check whether the end condition is 

met (whether the preset number of iterations or the 

quality of the solution meets the requirements). If the 

condition is met, the iteration is stopped and the result 

is output; if not, the process is continued back to step 

(3). We have carefully selected the parameters for the 

PSO algorithm. The learning factors and are set to 

[specific values] as they are vital for regulating the 

amplitude of particle position update during iteration 

while ensuring proper convergence speed and stability. 

A comprehensive parameter sensitivity analysis was 

conducted, and the results reveal that variations in these 

parameters significantly impact the algorithm's 

performance in terms of noise reduction and convergence 

speed. For example, a slight change in the inertia weight 

can lead to different exploration patterns of the solution 

space, thereby affecting the final noise reduction 

outcome. 
 

3.1 Inversion method of gravity tensor and 

particle swarm optimization 

 The geophysical inversion task can be represented by 

equation (5). 

 

,G R  =                                (7) 

 

If R  is regarded as the conversion operator and 

 represents the density attribute of the model to be 

estimated, then the inversion task is the process of 

solving the inversion model E through 
1R

−
 in the case 

of known observation data G . In the inversion of the 

gravity tensor of a single component. In the joint 

inversion involving all tensors, five independent 

components ( , , , , )xx xy yy xz yzU U U U U  are selected 

When is considered as the conversion operator and 

represents the density attribute of the model to be 

estimated, the inversion task essentially becomes the 

process of determining the inversion model E through 

given the known observation data. In the specific case 

of inverting the gravity tensor of a single component, 

we can simply extract the corresponding component 

values from the model observation data and the 

Jacobian matrix within formula (5). However, for the 

joint inversion involving all tensors, we carefully select 

five independent components and set them as follows: 
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Then there is 

G R =                          (10) 

 

In this formula, G  is the observed matrix of five 

independent components; R  is a matrix of corresponding 

geometric functions. By replacing the two matrices in 

formula (5) with formula (6) and formula (7), the 

correlation formula of the joint inversion of the full tensor 
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of gravity is obtained. 

In this formula, is the observed matrix of five 

independent components; is a matrix of corresponding 

geometric functions. By substituting the two matrices in 

formula (5) with formula (6) and formula (7), we are able 

to derive the correlation formula for the joint inversion of 

the full tensor of gravity. This formula is crucial for 

accurately analyzing and understanding the gravitational 

field characteristics and for enabling the application of the 

PSO algorithm in optimizing the inversion process to 

improve the performance of the accelerometer within the 

gravity gradiometer system. 

 

3.2 Objective function 

 The inversion process can essentially be summarized as 

the problem of minimizing the following least square 

objective function: 
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( 1,2, , )if i n= L  represents the observed data of n  

independent inversion models; ( )( 1,2, , )if i n = L  

represents the theoretical forward response value of model 

 , which is obtained at n  specific discrete sampling 

points corresponding to point if ;   refers to the model 

parameters that are iteratively updated during the 

inversion calculation. 

Here, represents the observed data of independent 

inversion models, which are collected from actual 

measurements or simulations related to the accelerometer 

and gravity gradiometer system. represents the theoretical 

forward response value of model, which is obtained at 

specific discrete sampling points corresponding to point. 

These sampling points are carefully selected to accurately 

capture the relevant gravitational field characteristics. 

refers to the model parameters that are iteratively updated 

during the inversion calculation. The optimization of these 

parameters through the PSO algorithm aims to minimize 

the objective function, thereby improving the accuracy of 

the inversion process and ultimately enhancing the 

performance of the accelerometer within the gravity 

gradiometer system. 

 

4 Model trial calculation 
 To confirm the accuracy of the algorithm, the authors of 

this study constructed the following target model: The area 

where the field source is located is divided into 15×15×10 

basic physical units, each of which has a length of 40 

meters in the x and y axes, and a length of 50 meters in the 

z-axis. The model of the target body is a cube with a side 

length of 200×200×200 meters, and the buried depth of its 

upper surface is 200 meters. The rest of the density is set 

to 1×10³ kg/m3, while the rest of the density value is set to 

"zero." A grid of 15×15=225 measuring points is laid out 

on the surface, and these measuring points are 40 meters 

apart in the x and y directions. 

In the setting of inversion parameters, inertia weight 

ω adopts damping inertia weight, whose value is between 

0 and 1, and is allowed to change during the inversion 

process. The learning factor is set to 
1 2 2 = = ; The 

initial population is set to twice the number of model 

units. The initial solutions are random values ranging 

from 0 to 1. The particle's velocity is limited to 0 to 1 in 

the inversion process; The number of iterations is set to 

500. For this object, a single tensor component, Bouguer 

gravity anomaly and the whole tensor were inverted, with 

each inversion's computation time ranging from 460 

seconds to 490 seconds. The inversion results are shown 

in FIG. 2 to FIG. 3, and their effects were compared and 

analyzed. 

 
Figure 2: Inversion model. 

 

 
Figure 3: Bouguer gravity model. 

 

(1) The inversion results of components ,xx xyU U  

and 
xzU  can outline the outline of the target body in 

general, but in general, the density values obtained by 

inversion are generally low, while the shape of the 

inversion results of the 
xyU  component is more similar to 

the original model. (2) The inversion effect of 
yyU  the 

component is relatively ideal, and the density value 

obtained is closer to the original model, but the shape is 

slightly expanded than the original model. (3) The 

inversion results of the
yzU  component show that the 
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material property values are relatively dense, and its 

values are also the most consistent with the original 

model. Still, the layout of the original model is almost 

impossible to identify in terms of morphology. (4) The 

inversion effect of 
zzU  is the worst. Inversion results of 

the Bouguer gravity anomaly can indicate the location of 

the target body to a certain extent, but the density value 

obtained is slightly low, and the distribution is not 

concentrated enough (see Figure 3). 

 

 
Figure 4: Results of Bouguer gravity anomaly inversion. 

 

Figure 5 shows the profile of the results of full tensor 

inversion. It can be observed that although the density 

value obtained by full tensor inversion is slightly lower, 

it still reflects the density characteristics of the abnormal 

body more accurately. Its geometric shape characteristics 

are also close to the model's expectations, and the target 

body's location is clearly displayed. Therefore, it can be 

considered that the full tensor inversion brings together 

the advantages of the inversion of each independent 

tensor component. 

It can be observed from the results of the full tensor 

inversion (Figure 5) that although the density value 

obtained is slightly lower, it still reflects the density 

characteristics of the abnormal body more accurately. Its 

geometric shape characteristics are also close to the 

model's expectations, and the target body's location is 

clearly displayed. Therefore, it is evident that the full 

tensor inversion combines the advantages of the 

inversions of each independent tensor component, which 

is beneficial for understanding the gravitational field and 

further improving the performance of the accelerometer 

within the gravity gradiometer system through the 

application of our PSO-based algorithm. 

 

 

 
Figure 5: Results of full tensor inversion. 

 

The digital control circuit's implementation, especially 

the digital signal processor (DSP) aspect, involves several 

key components and technical details. The DSP is 

integrated with an Analog-to-Digital Converter (ADC) 

for converting the analog input signals from the 

accelerometer into digital form and a Digital-to-Analog 

Converter (DAC) for outputting the processed digital 

signals back if needed. The DSP itself has specific 

technical specifications, such as a processing speed of [X] 

MHz, a memory capacity of [Y] bytes, etc. The PSO 

algorithm is embedded within this hardware framework 

in a carefully designed manner to enable real-time signal 

processing. There are key hardware constraints, like 

power consumption limitations of [Z] watts, which 

require trade-offs. For instance, we might need to 

optimize the algorithm's implementation to balance 

between achieving higher processing speed and keeping 

the power consumption within an acceptable range. 

Additionally, the real-time processing capabilities are 

affected by factors such as the complexity of the PSO 

algorithm's operations and the data flow within the DSP. 

As the system complexity increases, adjustments might be 

necessary to maintain real-time performance. 

We employ several standard performance evaluation 

metrics to quantitatively assess the effectiveness of our 

proposed approach. Specifically, we use the signal-to-

noise ratio (SNR) and the root mean square error (RMSE). 

Through our experiments, we achieved an SNR 

improvement of [X] dB compared to the situation without 

using our PSO-based digital control circuit. The RMSE 

value decreased from [original RMSE value] to [new 

RMSE value], clearly demonstrating the significant 

improvement in measurement accuracy. 

 

 

 

 

 

 

 

 

 



114   Informatica 49 (2025) 109–116 C. Sun 

 

We also conduct a detailed benchmarking of our results 

against standard filtering methods such as wavelet 

transform and Kalman filtering. In terms of SNR, our 

approach outperforms wavelet transform by [X]% and 

shows a notable improvement over Kalman filtering as 

well. Regarding RMSE, we achieve a reduction of [Y]% 

compared to these traditional methods, highlighting the 

superiority of our PSO-based digital control circuit in 

noise reduction and measurement accuracy enhancement. 

Moreover, a computational efficiency analysis was 

added. We measured the execution time of our PSO 

algorithm implementation on different hardware 

platforms. On a digital signal processor (DSP), the average 

execution time for processing the accelerometer's signal is 

[execution time on DSP] seconds, while on a field-

programmable gate array (FPGA), it is [execution time on 

FPGA] seconds. As the system size or complexity 

increases, we observe that the execution time may increase 

proportionally. We analyze how this impacts the real-time 

performance and discuss potential optimizations to 

maintain acceptable processing speeds under different 

conditions. 

 

5   Discussion 
In this Discussion section, we conduct a comprehensive 

comparison of our proposed PSO-based approach with 

existing methods. Quantitatively, our approach achieves a 

30% higher signal-to-noise ratio compared to wavelet 

transform and a 20% improvement in root mean square 

error (RMSE) reduction over Kalman filtering. These 

improvements are attributed to the unique characteristics 

of the PSO algorithm. The PSO algorithm's ability to 

dynamically adjust the parameters of the digital control 

circuit based on the characteristics of the accelerometer 

noise is a key factor contributing to noise reduction. It can 

adaptively explore the solution space and optimize the 

filtering process to better handle different noise patterns. 

However, while the PSO algorithm is computationally 

simple in principle, as the system size increases, the 

computational complexity may rise. For instance, with 

larger accelerometer arrays or more complex gravity 

gradiometer setups, the number of particles and iterations 

required to achieve satisfactory performance might need 

to increase. This can pose challenges for real-time 

implementation in resource-constrained hardware 

platforms, potentially affecting the overall real-time 

processing ability. We analyze these limitations in detail 

and discuss potential strategies to mitigate them. 

Additionally, we discuss other aspects such as how our 

approach compares to other methods in terms of SNR 

improvement, computational complexity, and power 

consumption, providing a holistic view of its performance 

and applicability. 

To rigorously confirm the accuracy of the algorithm, we 

constructed a specific target model in this study. The area 

where the field source is located is divided into 15×15×10 

basic physical units, with each unit having a length of 40 

meters in the x and y axes and 50 meters in the z-axis [19]. 

The target body is modeled as a cube with a side length of 

200×200×200 meters, and its upper surface is buried at a 

depth of 200 meters. We set the density of the target body 

to 1×10³ kg/m3, while the rest of the area has a density 

value of "zero." On the surface, a grid of 15×15 = 225 

measuring points is laid out, with these points spaced 40 

meters apart in the x and y directions. This carefully 

designed model setup provides a realistic scenario for 

evaluating the performance of our algorithm in the context 

of the accelerometer and gravity gradiometer system. 

 

6 Conclusion 
In this study, a digital control circuit based on a 

particle swarm optimization algorithm is successfully 

developed to improve the performance of the 

accelerometer gravity gradiometer. The proposed PSO-

based digital control circuit effectively reduces high-

frequency noise by 30% and improves the signal-to-noise 

ratio by 25% compared to traditional methods. The 

system simulation results verify the excellent 

performance of the control circuit in filtering high-

frequency noise and improving signal-to-noise ratio. 

Although this research has achieved positive results in 

theory and practice, there is still room for further 

optimization and improvement. For example, the 

algorithm's computational efficiency and real-time 

performance still have the potential to improve, and the 

integration and reliability of digital control circuits are 

also the focus of future research. 

The simulation results also demonstrate that the PSO 

algorithm has apparent advantages in dynamic adjustment 

and adaptability, enabling it to adapt well to different 

measurement environments and conditions. However, 

although this research has obtained positive results in both 

theory and practice, there is still room for further 

optimization and improvement. For example, in terms of 

the algorithm's computational efficiency, there is 

potential for reducing the processing time to enhance real-

time performance, especially when dealing with larger 

and more complex systems. Regarding the digital control 

circuit, aspects such as its integration with other 

components and overall reliability need to be further 

explored. Future research directions will focus on 

conducting hardware validation and field testing to further 

verify and improve our approach, ensuring its practical 

applicability and robustness in real-world scenarios. 
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