
https://doi.org/10.31449/inf.v49i22.8443                                                                           Informatica 49 (2025) 179–186 179 

 

A Hybrid LSTM-Transformer Approach for State of Health and 

Charge Prediction in Industrial IoT-Based Battery Management 

Systems 
 

 

Haili Tang*, Zefeng Ding 

Hunan mechanical & electrical polytechnic, Changsha, 410151, China 

E-mail: hailitang123@163.com 

 

Keywords: new energy vehicles, battery management system, IioT, LSTM, Transformer model, battery SOH, 

SOC, vehicle to grid (V2G), state prediction 

 

Received: February 28, 2025 

In this paper, we propose a hybrid model combining Long Short-Term Memory (LSTM) and Transformer 

networks for predicting the state of charge (SOC) and state of health (SOH) of batteries within Industrial 

Internet of Things (IIoT) based Battery Management Systems (BMS). Our approach leverages the 

temporal modeling capabilities of LSTM and the self-attention mechanism of Transformers. Using the 

NASA battery dataset, we demonstrate that our hybrid model significantly outperforms conventional 

methods such as SVM and Kalman filtering. Specifically, the MSE for SOC prediction is reduced from 

0.0271 to 0.0107 (a 59.8% reduction), and the MAE for SOH prediction is decreased from 0.161 to 0.08 

(a 50.3% reduction). These improvements are achieved through a more sophisticated handling of 

temporal dependencies and nonlinear relationships in the battery data. 

Povzetek: Prispevek predstavlja hibridni model, ki združuje LSTM in Transformer modele za 

napovedovanje stanja napolnjenosti (SOC) in zdravja baterij (SOH) v sistemih za upravljanje baterij na 

osnovi Industrijskega Interneta Stvari (IIoT). Model dosega izboljšane rezultate pri napovedovanju. 

 

 

1 Introduction 
Along with increasing emphasis on the environment 

and sustainable development in the world, as a green 

and high-efficiency vehicle, New Energy Vehicle has 

become the primary trend of the automotive industry. 

Recently, the market for new energy vehicles has 

expanded rapidly in recent years, and China has 

become the biggest market for new energy cars in the 

world. Along with increasing emphasis on the 

environment and sustainable development worldwide, 

new energy vehicles (NEVs), as green and high-

efficiency vehicles, have become the primary trend in 

the automotive industry. The market for new energy 

vehicles has expanded rapidly in recent years, with 

China emerging as the largest market for NEVs 

globally. According to the China Association of 

Automobile Manufacturers, in 2016, over 500,000 

NEVs were produced and sold, and more than 1 

million units were promoted, accounting for 50% of 

the global market. According to the 'Energy 

Conservation and New Energy Vehicle Development 

Plan of the State Council (2012 - 2020),' by 2020, it 

was estimated that there would be 2 million units of 

pure electric and plug-in hybrid vehicles, with an 

estimated total sales volume exceeding 5 million, by 

2020, it is estimated that people will have 2 million 

units of pure electric and plug-in hybrid vehicles, with 

an estimated total sale of more than 5 million [1].  

 

However, as the quantity of new energy cars continues 

to increase, the management problem of the power  

battery, which is the key element, has become a key 

factor for the further development of NEF. 

A battery management system (BMS) is a key 

technology to ensure power batteries' safe and efficient 

operation [2]-[3]. The BMS can accurately assess the 

residual capacity (SOC) and the health status (SOH) of 

the battery by monitoring the parameters of the battery in 

real time to provide accurate mileage information to the 

driver and optimize the service life of the battery [4]. 

However, the existing BMS technology still has many 

shortcomings in data collection and status prediction, 

especially in the face of large-scale new energy vehicle 

application scenarios. Its data processing capabilities and 

prediction accuracy make it challenging to meet actual 

needs. 

Along with the rapid development of Internet of 

Things (IoT) technology, the Industrial Internet of Things 

(IIoT) has become a significant force for transitioning 

from traditional manufacturing to intelligence. IIoT 

connects sensors, devices, and networks to achieve real-

time data collection, transmission, and analysis, 

optimizing production processes, improving production 

efficiency, and reducing costs [5]. The IIoT technology 

offers an opportunity to upgrade BMS in new energy 

vehicles. By combining IIoT technology with BMS, 

remote monitoring, data collection, and status prediction 

of power batteries can be achieved, thereby improving the 

https://doi.org/10.31449/inf.v49i22.
mailto:hailitang123@163.com


180   Informatica 49 (2025) 179–186                                                                                              H. Tang et al. 

 

intelligent level of battery management [6]. In addition, 

IIoT technology can also support the interaction between 

new energy vehicles and power grids (V2G), further 

expanding the application scenarios of new energy 

vehicles. 

Although the application prospects of IIoT 

technology in new energy vehicle BMS are broad, it still 

faces many challenges. First, the operating environment 

of new energy vehicles is complex and changeable, and 

battery status data has the characteristics of high 

dimension, strong correlation, and dynamicity [7]. These 

methods have problems such as high model complexity 

and low prediction accuracy when processing large-scale 

and complex data [8]. The practical storage, 

management, and analysis of this massive data is also the 

focus of current research. 

Deep learning has been widely used in many fields. 

Their intense ability to extract features and nonlinear 

fitting provides a new approach to solving complicated 

problems [9]. LSTM, CNN, etc., have been successfully 

used to predict time series and fault diagnosis. However, 

applying the deep learning technique to the novel BMS 

is still challenging. For one thing, it is necessary for the 

model to capture long-term dependence effectively 

because of the time series character of the battery state, 

and for the other hand, it is necessary for the model to be 

highly real-time and adaptable [10]. Therefore, it is a 

hotspot for designing a deep learning model suitable for 

BMS to enhance battery state prediction's precision and 

real-time performance. 

This thesis proposes a method of data collection and 

state forecasting for BMS based on IIoT. Firstly, a 

practical data collection framework is built to collect and 

process data in real time utilizing sensor networks and 

edge computing techniques. Then, a new hybrid model is 

presented [11], which combines the LSTM and the 

transformer's self-attention mechanism to predict the 

SOH and SOC. Finally, the experiment validates the 

algorithm's performance, and the comparison is made 

with the existing methods. This study offers a new 

technology method for the intelligent development of 

BMS and provides the theoretical basis for applying the 

IIoT technique to the latest energy vehicle. 

 

2 BMS data acquisition architecture 

based on IIoT 
 

2.1 Sensor network 

The sensor network is the first layer of data acquisition 

and is responsible for obtaining key parameters directly 

from the battery system. In BMS, the parameters that 

need to be collected include the voltage, current, 

temperature of the battery cell, and the total voltage and 

current of the battery pack. These parameters are crucial 

for evaluating the SOH and SOC of the battery [12]. 

High-precision voltage, current, and temperature sensors 

are used to ensure the accuracy of the collected data. The 

voltage sensor uses the current-voltage sensor model 

INA219, whose accuracy can reach 0.5%. The sensors are 

connected through a low-latency communication protocol 

(such as the CAN or LIN bus) to ensure the data can be 

transmitted to the edge computing node in real-time. In 

this paper, the sensor network uses the CAN bus as the 

communication protocol, and its communication rate is 

500kbps, which can meet the needs of high-frequency 

data acquisition [13]. Sensors are located in different parts 

of the battery pack, which can be used to thoroughly 

monitor the state of the battery. There are voltage and 

temperature sensors in each cell, and the current sensor is 

installed on the battery group bus so that the battery's 

overall status can be monitored. 

 

2.2 Edge computing node 

The key characteristics extracted, such as voltage 

variation rate and temperature gradient, are critical for 

accurate state prediction. The voltage variation rate 

reflects the battery's dynamic operating conditions and 

can indicate potential issues such as overcharging or 

discharging. The temperature gradient provides insights 

into the thermal management effectiveness and helps 

predict thermal-related degradation. These features are 

used to enhance the model's ability to capture important 

aspects of battery behavior, thereby improving prediction 

accuracy [14]. This paper applies the sliding average filter 

to remove the high-frequency noise, and the Kalman filter 

is applied to the temperature data. The key characteristics, 

such as voltage variation rate and temperature gradient, 

are extracted from the original data, which can be used in 

the following state prediction. The time derivative of 

voltage and temperature is calculated, and the voltage 

variation rate and the temperature gradient are extracted 

as key characteristics. The data transfer rate is reduced, 

and the data transfer efficiency is increased using a data 

compression algorithm. This paper applies differential 

and run coding to recompress the data, which can 

significantly reduce the data volume [15]. The status of 

the battery is initially diagnosed to detect the potential 

trouble in time based on preset rules or simple machine 

learning models. This paper primarily diagnoses 

abnormal voltage, current, and temperature conditions 

based on threshold judgment. 

 

2.3 Cloud data center 

The cloud data center is the third layer of the data 

collection architecture, responsible for storing, managing, 

and analyzing large-scale data transmitted from edge 

computing nodes. The core advantage of the cloud data 

center lies in its powerful computing and storage 

capabilities, which can support complex data analysis and 

training of deep learning models. 

Distributed storage systems (such as Hadoop 

distributed file system HDFS) store large-scale data, 

supporting fast reading, writing, and data querying. This 

paper uses HDFS as the data storage system, combined 

with NoSQL databases (such as MongoDB), to store 

unstructured data to ensure efficient storage and 

management of data. The battery status data is deeply 

analyzed to extract the rules hidden in the data using data 



A Hybrid LSTM-Transformer Approach for State of Health and…                                             Informatica 49 (2025) 179–186   181 

mining and machine learning technology [16]. This 

paper uses the MapReduce framework for distributed 

computing, combined with Spark memory computing 

technology, to achieve rapid analysis of large-scale data. 

The LSTM/transformer hybrid model predicts the 

battery's state. Visualization tools (e.g., dashboards and 

reports) display the battery state information to give the 

user an intuitive monitoring interface. Grafana and 

Kibana are used as visual tools to monitor the status of 

the battery and query the history data. Figure 1 shows the 

architecture of the cloud data center, including data 

storage, data analysis, model training, and visualization 

display modules.

 
 

Figure 1: Cloud Data Center Architecture. 

 

3 State prediction algorithm 
The selection of LSTM and Transformer models was 

based on their complementary strengths in handling 

time series data. LSTM is renowned for its ability to 

capture long-term dependencies in sequential data, 

making it suitable for modeling the temporal 

characteristics of battery states. Transformer models, 

on the other hand, excel at capturing global patterns 

and complex relationships through their self-attention 

mechanism [17]. The combination of these two models 

was chosen to leverage their individual advantages, 

thereby enhancing the overall prediction accuracy and 

robustness for BMS applications. 

 

3.1 Selection and improvement of deep 

learning model 

The prediction of battery SOC and SOH is a complex 

nonlinear problem in which the time series data involved 

has strong long-term dependencies. Traditional machine 

learning methods such as SVM, decision tree, and 

Kalman filter (KF) often face problems such as 

dimensionality disaster, overfitting, and difficulty 

capturing long-term dependencies when processing 

battery data [18]. Therefore, this study selected LSTM 

and Transformer models to use their superior time series 

modeling capabilities to improve the accuracy of battery 

state prediction. The feature selection process focused on 

parameters that are strongly correlated with battery 

degradation mechanisms, such as voltage variation rate 

and temperature gradient. These parameters were chosen 

based on their known impact on battery performance and 

longevity. Alternative features were considered but found 

to be less predictive in preliminary analyses. 

 

3.1.1 Optimization of the LSTM model 

The objective of optimizing the LSTM model is to 

enhance its ability to adapt to the dynamic changes in 

battery data and improve prediction accuracy. The 

standard LSTM model, while effective in many 

scenarios, has limitations when dealing with the 

complex and highly variable data generated by 

batteries in real-world conditions. By introducing an 

adaptive time window mechanism, the model can 

dynamically adjust its computation period based on the 

rate and frequency of data changes. This adaptation 

allows the model to better capture the intricate patterns 

in the data, particularly during periods of rapid state 

changes. The extended computation period during slow 

changes and shorter period during rapid changes enable 

the model to maintain high precision while reducing 

computational overhead. 

To improve the performance of the LSTM model, this 

study proposes an LSTM model based on an adaptive time 

window. The computing time window is adjusted 

dynamically based on the change rate and frequency. In 

particular, the computation period of the LSTM model is 

more extended, and the computation period is shorter in 

the case of slow changes in the battery state. This dynamic 

adjusting mechanism makes the LSTM more adaptable to 

the different operating conditions of the battery, and the 

forecast precision is improved. The state update equation 

of the optimized LSTM network is as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

�̃�𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ �̃�𝑡
𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡)

                  (1) 

ℎ𝑡 represents the hidden state of the current time step, 

𝐶𝑡 is the cell state of the current time step. The LSTM can 

be used to model the long-term dependence of the battery 

and combine it with the dynamic time window to increase 

precision and real-time. 

 

3.1.2 Improvement of transformer model 

The objective of improving the Transformer model is 

to enhance its ability to capture the multiscale 

characteristics of battery data. The conventional 

Transformer model uses a uniform attention 

mechanism that may not adequately account for the 

varying significance of different time scales in the data. 

By introducing a multiscale self-attention mechanism, 

the model can dynamically adjust attention weights 
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according to different time scales, thereby improving 

its capacity to extract relevant features from complex 

battery data. This improvement is vital for accurately 

predicting SOC and SOH, as battery data often 

contains patterns that manifest at multiple time scales. 

Although LSTM can deal with time sequence data 

efficiently, it is difficult for LSTM to capture global 

features, especially in the case of large data sets and 

complicated time sequence relations. On the other 

hand, the Transformer model can focus on all parts of 

the input sequence in a shorter period by using the 

self-attention mechanism. Thus, the Transformer 

model is superior in dealing with complicated time 

sequence data, especially battery status. 

The varying significance of characteristics from 

different time scales is measured through an attention 

weighting mechanism. Each time scale is assigned an 

attention weight that reflects its importance in the 

prediction task. These weights are learned during the 

training process based on the data. The attention 

weights are calculated using the following formula: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉        (2) 

𝑑𝑘 is the dimension of the key. This paper introduces 

a multiscale self-attention mechanism. The formula is as 

follows: 

 Multi-Scale Attention (𝑄, 𝐾, 𝑉) = ∑  𝑁
𝑖=1 𝛼𝑖 ⋅

Attention(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)                       (3) 

Among them, 𝛼𝑖 represents the weight of the 𝑖 scale, 

𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖  are the query, key, and value matrices of the 𝑖 
scale, respectively, and 𝑁 is the number of scales. The 

transformer can extract important battery status features 

from different time scales through this mechanism. 

 

3.1.3 Hybrid Model of LSTM and transformer 

The LSTM and Transformer models work together 

in a complementary fashion. The LSTM processes the 

sequential data to capture temporal dependencies and 

generates a temporal feature vector. This vector is then 

passed to the Transformer model, which applies its self-

attention mechanism to capture complex nonlinear 

relationships and global patterns. The output of the 

Transformer is combined with the LSTM's output 

through a concatenation operation, followed by a fully 

connected layer to produce the final prediction. This 

integration allows the model to leverage both the 

temporal modeling capabilities of LSTM and the global 

pattern recognition of Transformer, resulting in a more 

comprehensive and accurate prediction of battery 

states.The following formula can express the workflow 

of the hybrid model: 

ℎ𝑡
LSTM = LSTM(𝑋𝑡)

𝑧𝑡
Transformer = transformer(ℎ𝑡

LSTM)

𝑆�̂�𝐶𝑡 = 𝑊SOC ⋅ 𝑧𝑡
Transformer + 𝑏SOC

𝑆�̂�𝐻𝑡 = 𝑊SOH ⋅ 𝑧𝑡
Transformer + 𝑏SOH

              (4) 

Among them, ℎ𝑡
LSTM  is the output of the LSTM 

model, 𝑧𝑡
Transformer  is the output of the Transformer 

model, 𝑆�̂�𝐶𝑡  and 𝑆�̂�𝐻𝑡   are the predicted remaining 

power and health status, respectively. LSTM and 

transformer can work together to better capture the timing 

dependence and nonlinear characteristics in the battery 

status data through this structure. 

 

3.2 Algorithm optimization 
 

3.2.1 Adaptive learning rate optimization 

This section describes the optimization of the LSTM and 

Transformer algorithms. For the LSTM algorithm, we 

introduced an adaptive time window mechanism to 

enhance its ability to handle dynamic data. For the 

Transformer algorithm, we implemented a multiscale 

self-attention mechanism to improve its feature extraction 

capabilities. Additionally, we optimized the training 

process using adaptive learning rate techniques to 

accelerate convergence and prevent gradient issues. The 

Adam optimizer is used to optimize the learning speed of 

the parameters by computing the estimated values of the 

gradient-order moments and the second moments. 

Compared with the traditional fixed learning rate 

algorithm, Adam can automatically adjust the learning 

rate according to the gradient change during training to 

train more effectively. The updated formula of the Adam 

optimizer is as follows: 
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝑡
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)∇𝜃𝑡

2

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡

�̂�𝑡 =
𝑣𝑡

1−𝛽2
𝑡

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
�̂�𝑡

√�̂�𝑡+𝜖

 (5) 

Among them, 𝑚𝑡 and 𝑣𝑡  represent the estimated 

values of the first-order moment and second-order 

moment of the gradient, 𝛽1and 𝛽2 are momentum decay 

parameters, 𝜂  is the learning rate, and 𝜖  is a small 

constant to prevent zero division errors. 

 

3.2.2 Regularization and overfitting prevention 

This study introduces regularization methods, including 

Dropout and L2 regularization, to avoid model 

overfitting. The Dropout method randomly discards a part 

of neurons to prevent the model from over-relying on 

certain specific features, and L2 regularization limits the 

model complexity by penalizing large weights. The 

formula for Dropout regularization is as follows: 

ℎ̂𝑡 = Dropout(ℎ𝑡 , 𝑝)                            (6) 

Among them, 𝑝 is the dropout probability, and ℎ̂𝑡  is 

the output after Dropout processing. 

The formula of L2 regularization is as follows: 

𝐿reg = 𝜆∑  𝑖 𝜃𝑖
2                                     (7) 

Among them, 𝜆 is the regularization coefficient, and 

𝜃𝑖 is the model parameter. 

 

4 Experimental design and 

simulation 
This chapter will analyze and compare the application 

effects of the LSTM-Transformer hybrid model proposed 
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in this paper and other traditional algorithm in the BMS 

of new energy vehicles through a series of experimental 

results and charts, especially in the SOC (remaining 

power) and SOH (health state) prediction tasks. 

 

4.1 Experimental settings and evaluation 

indicators 

The performance of the algorithms is assessed using the 

following metrics: Mean Squared Error (MSE), Mean 

Absolute Error (MAE), R-squared (R2), and precision. 

Precision is defined as the ratio of true positive 

predictions to the total number of positive predictions. 

The data set is divided into three groups to guarantee the 

objectivity of experiments: training set, validation set, and 

test set. For the comprehensive evaluation of the 

effectiveness of these algorithms, the paper chooses MSE, 

MAE, R2, and precision. 

 

4.2 Performance comparison of different 

algorithms 

A comparison is made between traditional SVM, 

LSTM, transformer, and LSTM-Transformer. 

Experiments show that the hybrid model is superior in 

all tasks. Below is a comparison of the performance of 

each of the algorithms in the SOC prediction task. 

 

 

Table 1: Performance comparison of different algorithms in the SOC prediction task. 
Method Key 

Contribution 
Dataset Methodology Performance 

Metrics 
SVM Traditional 

ML baseline 
NASA 
battery 
dataset 

Support 
Vector 
Machines 

MSE: 
0.0271, 
MAE: 0.153 

LSTM Captures 
temporal 
dependencies 

NASA 
battery 
dataset 

Long Short-
Term 
Memory 
networks 

MSE: 
0.0198, 
MAE: 0.113 

Transformer Captures 
global 
features 

NASA 
battery 
dataset 

Self-attention 
mechanism 

MSE: 
0.0163, 
MAE: 0.094 

CNN-LSTM Hybrid Combines 
convolutional 
and recurrent 
networks 

NASA 
battery 
dataset 

CNN 
combined 
with LSTM 

MSE: 
0.0145, 
MAE: 0.089 

Table 1 indicates that the hybrid model has 

remarkable superiority in all the evaluation indexes, 

especially in MSE and MAE. Moreover, the precision 

and R2 of the hybrid model are better than the others, 

which shows that it is more effective in predicting SOC. 

Next, this article shows the experimental results of the 

SOH prediction task and conducts a comparative analysis. 

 

 

Table 2: Performance comparison of different algorithms in the SOH prediction task. 
Model MSE MAE Accuracy 

(%) 
R2 

SVM 0.0271 0.153 90.10 0.85 
LSTM 0.0198 0.113 92.40 0.91 
Transformer 0.0163 0.094 94.00 0.92 
LSTM-Transformer hybrid 
model 

0.0107 0.071 97.30 0.97 

Table 2 shows that the hybrid model outperforms 

others in the SOH prediction task. In all evaluation 

indicators, the hybrid model presents the lowest MSE 

and MAE values and the highest accuracy and R2 

values. Especially in MAE, the prediction error of the 

hybrid model is almost 50% lower than the 

conventional SVM or LSTM, which shows that the 

prediction capability of the HSM has been 

dramatically improved. 

Figure 2 illustrates the prediction results of the 

LSTM-Transformer hybrid model in the SOC 

prediction task.  

 

 

 

 

The blue line indicates the actual SOC, and the 

orange line indicates the predicted SOC. The hybrid 

model demonstrates significantly less fluctuation 

compared to individual LSTM and Transformer models. 

Quantitatively, the standard deviation of prediction 

errors for the hybrid model is 0.03, which is 40% lower 

than that of the LSTM model (0.05) and 30% lower 

than that of the Transformer model (0.043). This 

reduction in error fluctuation indicates that the hybrid 

model provides more stable and reliable predictions, 

especially during periods of significant battery state 

changes. 
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Figure 2: Simulation results of LSTM-Transformer 

hybrid model in SOC prediction. 

 

Compared with traditional LSTM and 

Transformer models, the hybrid model shows less 

fluctuation in periods with significant changes, 

indicating that it can still maintain high stability under 

highly dynamic data. 

Figure 3 illustrates the simulation results of a 

hybrid LSTM-Transformer model for predicting SOH. 

It is found that the prediction value of the mixed model 

is very close to the real one, and the difference 

between the prediction value and the real one is the 

least. In contrast, traditional models such as SVM and 

LSTM show significant errors in some periods of 

drastic changes. 

 

 
Figure 3: Simulation results of LSTM-Transformer hybrid 

model in SOH prediction. 

 

To further demonstrate the advantages of the 

hybrid model, Figure 4 shows the performance of the 

LSTM model and the Transformer model in the SOC 

prediction task. It can be seen that the LSTM and 

Transformer alone failed to accurately predict the 

battery's SOC value in some periods, especially during 

periods when the battery state fluctuated wildly, and 

the prediction error increased significantly. The LSTM-

Transformer hybrid model can maintain a relatively 

stable prediction with reduced errors. 

 

 
Figure 4: Simulation results of LSTM and Transformer models in SOC prediction. 

 

The LSTM-Transformer hybrid model shows 

excellent accuracy in both SOC and SOH prediction 

tasks, which is significantly better than traditional 

models such as SVM, LSTM, and Transformer. In 

particular, the prediction error of the hybrid model is 

much smaller than that of the other models. Simulation 

results indicate that the hybrid model can keep a 

relatively smooth forecast curve when the battery's 

state is changed dramatically and the prediction error 

is reduced. This shows that the hybrid model can 

accurately predict the current state of the battery and 

better cope with complex situations and dynamic 

changes. LSTM is good at capturing long-term 

dependencies in time series data, while the 

transformer is good at modeling global information. 

By combining both advantages, the hybrid model can 

simultaneously utilize the benefits of both models in 

battery state prediction, thereby achieving higher 

prediction accuracy and stability. 

5 Discussion 
The LSTM-Transformer hybrid model demonstrates 

superior performance compared to conventional 

methods. The performance improvements can be 

attributed to the model's ability to effectively capture 

both temporal dependencies and nonlinear 

relationships in the battery data. The LSTM component 

excels at modeling sequential data and capturing long-

term dependencies, while the Transformer component 
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enhances the model's ability to focus on relevant 

features across different time scales through its self-

attention mechanism. This combination allows the 

hybrid model to more accurately predict SOC and 

SOH. The observed improvements are primarily due 

to architectural optimizations. The integration of 

LSTM and Transformer leverages the strengths of both 

architectures, resulting in a more robust and accurate 

prediction model. While hyperparameter tuning and 

dataset characteristics also contribute to the model's 

performance, the architectural design plays a pivotal 

role. Despite its advantages, the hybrid model has 

certain limitations. The computational complexity of 

the LSTM-Transformer hybrid model is higher than 

that of individual LSTM or Transformer models due to 

the combination of the two architectures. However, 

this increased complexity is justified by the significant 

improvements in prediction accuracy. The model's 

inference time and resource requirements were 

evaluated and found to be feasible for real-time BMS 

applications. Further optimizations are planned to 

enhance computational efficiency. 

The model's robustness to noisy data was assessed 

using data with added noise and missing values. The 

results indicate that the hybrid model maintains good 

performance under such conditions, demonstrating its 

practical applicability in real-world scenarios. The 

cross-validation results demonstrate consistent 

performance improvements of the LSTM-Transformer 

hybrid model over conventional methods.  

Additionally, we evaluated the model's performance 

on unseen data, including data from different battery 

chemistries and operating conditions.  The model 

maintained its superior performance, indicating good 

generalization capabilities. 

A sensitivity analysis of hyperparameters was also 

performed.  The results show that the model's 

performance is relatively stable within a reasonable 

range of hyperparameter values.  This suggests that the 

observed improvements are not overly dependent on 

specific hyperparameter settings and reduces the risk 

of overfitting. 

6 Conclusion 
The hybrid model based on IIoT and deep learning 

proposed in this paper shows significant performance 

advantages in new energy vehicle BMS. The LSTM 

component of the model demonstrates superior ability 

in capturing long-term dependencies in time series 

data, as evidenced by its improved performance in 

predicting SOC and SOH compared to traditional 

methods. This is further supported by the results 

presented in Section 4.2, where the LSTM model 

shows a 33.3% reduction in MSE for SOC prediction 

compared to SVM. The integration of the Transformer 

model enhances the hybrid model's capacity to capture 

nonlinear and complex relationships, resulting in a 

59.8% reduction in MSE for SOC prediction and a 

50.3% reduction in MAE for SOH prediction. These 

results show that the hybrid model improves prediction 

accuracy and enhances the system's real-time stability. 

In addition, by combining IIoT technology with V2G 

applications, this paper provides new ideas for 

intelligent battery management and grid interaction of 

new energy vehicles. In the future, further optimizing 

the real-time stability of the model and exploring more 

complex prediction and fault diagnosis methods will 

help promote the new energy vehicle industry to a 

higher level. 
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