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With the rapid development of the global economy, the logistics industry, as a key support for 

economic activities, has become a focus of cost control. According to statistics, logistics costs have 

accounted for about 13% of the global GDP, among which multi-warehouse cargo allocation and 

transportation planning play a pivotal role in reducing logistics costs. Based on the improved ant 

colony algorithm, this paper carefully constructs a multi-warehouse cargo allocation and 

transportation planning model. With the help of a multi-level optimization framework, the model 

comprehensively considers multiple key objectives such as transportation cost, delivery time, and 

energy consumption. Based on the improved ant colony algorithm, this paper constructs a multi-

warehouse cargo distribution and transportation planning model. Specifically, the pheromone update 

rule of the ant colony algorithm is changed by introducing an adaptive adjustment mechanism, which 

dynamically adjusts the pheromone volatilization and accumulation rate according to the current 

number of iterations and the change of the objective function. At the same time, the objective function 

weight is optimized to better balance multiple objectives such as transportation cost, delivery time and 

energy consumption. The multi-objective particle swarm optimization algorithm is used to assist in 

determining the weight, and the corresponding weight value is assigned according to the importance of 

different objectives. Compared with the traditional baseline methods such as genetic algorithm and 

particle swarm algorithm, in terms of transportation cost, the improved ant colony algorithm reduces 

the average cost by 25% in large-scale scenarios (20 warehouses), improves energy efficiency by 18%, 

and reduces the running time by 1.9 seconds in computing performance. In the multi-objective 

optimization of small-scale problems (5 warehouses) and a small number of objectives, the goal 

achievement rate is as high as 95%, the cost reduction rate can reach 20%, and the running time is 5.6 

seconds for the ant colony algorithm in large-scale scenarios (20 warehouses), while the genetic 

algorithm is 7.5 seconds, which reflects relative stability. Based on the improved ant colony algorithm, 

in the optimization process of comprehensive consideration of multiple objectives such as 

transportation cost, delivery time and energy consumption, the algorithm is relatively stable in terms of 

running time compared with the genetic algorithm and the particle swarm algorithm. 

Povzetek: Članek razvije večciljno optimizacijsko metodo za razporeditev tovora in načrtovanje 

transporta v sistemih z več skladišči, pri čemer temelji na izboljšanem algoritmu kolonije mravelj. 

Uvedeni so dinamični mehanizmi za prilagajanje feromonskega izhlapevanja, uteži ciljev in iskalnega 

obsega, ki izboljšajo konvergenco in omogočajo učinkovito usklajevanje med cilji, kot so stroški, čas 

dostave, poraba energije in zaloge. 

 

 

1 Introduction 
With the rapid development of the global economy, the 

logistics industry plays an increasingly important role in 

supporting business activities and promoting the 

circulation of the industrial chain. Especially today, 

when e-commerce and the global supply chain are 

highly connected, the complexity of logistics 

management and cargo distribution issues has increased  

 

dramatically. Enterprises and governments are facing 

huge challenges in optimizing resource allocation and 

improving transportation efficiency [1]. According to 

statistics, logistics costs have accounted for about 13%  

of global GDP, and cargo distribution and transportation 

planning are key links in reducing logistics costs. In this 

context, multi-warehouse cargo distribution and 

transportation planning issues have become one of the 

hot topics in the field of logistics research [2]. How to 
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optimize the distribution and transportation routes of 

cargo between warehouses through reasonable 

algorithm design will not only help improve the 

competitiveness of enterprises, but also have far-

reaching significance for promoting overall economic 

benefits [3]. 

In a multi-warehouse system, different warehouse 

locations, cargo demands, and transportation routes are 

intertwined, and there are many factors to consider in 

the decision-making process, which makes it difficult 

for traditional manual allocation methods to meet the 

needs of modern logistics. Therefore, how to efficiently 

solve the problems of cargo scheduling between 

warehouses, route planning during transportation, and 

coordination between them has become a technical 

problem that needs to be solved urgently in the field of 

logistics [4]. Many scholars and researchers have 

proposed different algorithm models for this problem, 

but due to the complexity of the problem itself, there is 

still a lack of a solution that can be universally applied 

in different environments [5]. 

In recent years, with the development of computer 

science and artificial intelligence technology, the 

problem of multi-warehouse cargo allocation and 

transportation planning based on optimization 

algorithms has been widely studied. Although 

traditional optimization methods, such as linear 

programming and integer programming, are effective in 

certain specific scenarios, they have high computational 

complexity and are difficult to meet the dual 

requirements of real-time performance and accuracy 

when facing large-scale and complex systems [6]. For 

this reason, more and more researchers have begun to 

turn to heuristic algorithms and meta-heuristic 

algorithms. Ant colony algorithm, as an optimization 

algorithm that simulates the foraging behavior of ants in 

nature, has become a popular optimization tool in multi-

warehouse cargo allocation and transportation planning 

due to its powerful global search ability and good local 

search performance [7]. 

However, although the ant colony algorithm has 

shown great potential in solving such problems, there 

are still some problems in existing research. For 

example, the parameter settings of the ant colony 

algorithm are highly sensitive and may be affected by 

environmental changes in practical applications. In 

addition, most existing ant colony algorithms focus on 

optimizing a single objective, while in reality, it is often 

necessary to comprehensively consider multiple 

objectives, such as transportation costs, delivery time, 

energy consumption, and other multiple factors [8]. 

Therefore, how to deal with multi-objective 

optimization problems through algorithm improvement 

and achieve good results in practical applications is still 

a challenge in current research [9]. 

In addition, although existing research results have 

provided theoretical foundations and algorithmic 

support for multi-warehouse cargo distribution and 

transportation planning, there is still a lack of an 

integrated comprehensive solution that can 

simultaneously optimize cargo distribution and 

transportation routes. Most existing studies focus on the 

optimization of a single aspect and lack an in-depth 

analysis of the relationship between the two [10]. 

The main purpose of this paper is to propose a multi-

warehouse cargo allocation and transportation planning 

model based on ant colony algorithm, in order to 

optimize the allocation of warehouse resources and 

transportation route planning under the consideration of 

multiple objectives. Compared with the traditional 

single-objective optimization method, this paper aims to 

improve the local search ability of ant colony algorithm, 

taking into account multiple objectives such as 

transportation cost, delivery time and energy 

consumption, so as to maximize the efficiency and 

economy of the entire logistics system while meeting 

actual needs. 

The innovation of this study is that it combines 

multi-objective optimization with ant colony algorithm to 

conduct in-depth exploration of the multi-warehouse 

cargo distribution problem. By constructing a new 

objective function and optimization model, it is possible 

to optimize multiple key factors without increasing too 

much computational complexity. In addition, this study 

will further explore how to improve the heuristic 

information transmission mechanism in the algorithm so 

that the ant colony can show better robustness and 

adaptability in a wider range of application scenarios. 

Through this method, this paper hopes to provide a more 

practical solution for the logistics industry, helping 

enterprises to perform more efficient cargo distribution 

and transportation planning in dynamic and complex 

environments. 

With the high interconnection of e-commerce and 

global supply chains, logistics management and cargo 

distribution issues are becoming increasingly complex. 

Existing methods mostly focus on a single goal or a 

single aspect, which is difficult to meet actual needs. In 

addition, most ant colony algorithms have limitations 

such as parameter sensitivity and difficulty in taking 

multiple objectives into account. This study aims to 

improve the ant colony algorithm, achieve coordinated 

optimization of cargo distribution and transportation 

under multiple objectives, and improve the efficiency of 

the logistics system. 

The novelty of this study is mainly reflected in three 

aspects. First, in terms of algorithm improvement, unlike 

the relatively fixed pheromone update mode of the 

traditional multi-objective ant colony algorithm, this 

study introduces an adaptive adjustment mechanism, 

which enables the pheromone volatilization and 

accumulation rate to change dynamically according to 

the iteration process and the change of the objective 

function, greatly improving the algorithm search 

efficiency and optimization ability; second, in terms of 

model construction, the multi-objective optimization 

framework is innovatively deeply integrated with the ant 

colony algorithm, not only considering common 

objectives such as transportation cost, delivery time, 

energy consumption, but also incorporating the key 

factor of inventory level. Compared with existing 

research, a comprehensive optimization model that is 
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more in line with actual logistics needs is constructed; 

third, in terms of research methods, a multi-objective 

particle swarm optimization algorithm is used to assist 

in determining the weight of the objective function, 

changing the previous way of setting weights by human 

experience or simple single rules, achieving a more 

scientific and reasonable balance between multiple 

objectives, and providing a new solution to the problem 

of multi-warehouse cargo distribution and 

transportation planning. 

2 Literature review 

2.1 Optimization methods for multi-

warehouse cargo allocation and 

transportation planning 

In the field of multi-warehouse cargo distribution and 

transportation planning, traditional optimization methods, 

such as linear programming (LP) and integer 

programming (IP), have long been the basis of research. 

However, with the increase in the scale of the problem, 

especially the rapid increase in decision variables in 

multi-warehouse systems, these classical methods often 

face the problems of high computational complexity and 

low solution efficiency. In order to overcome this 

bottleneck, more and more researchers have begun to 

explore the application of heuristic algorithms and meta-

heuristic algorithms [11,12]. Ant Colony Algorithm 

(ACO) has been widely used in this field due to its 

powerful global search capability and good local search 

performance. 

 

Table 1: Comparison table of research on multi-warehouse cargo allocation and transportation planning 

Research Objectives Algorithms Key Results 
Advantages of This 

Study 

[11] 
Optimize cost and 

delivery time 

Genetic 

algorithm 

Cost reduced by 

15%, delivery time 

shortened by 10%, 

low efficiency in 

large-scale 

scenarios 

Did not consider 

energy 

consumption, lack 

of analysis on 

parameter 

adaptability 

[12] 

Improve path 

accuracy and 

energy efficiency 

Particle 

swarm 

optimization 

algorithm 

Accuracy increased 

by 10%, energy 

efficiency 

improved by 12%, 

easy to fall into 

local optimality 

Ignored warehouse 

capacity, lacking a 

multi-objective 

balance strategy 

[13] 

Balance multiple 

objectives (cost, 

time, inventory) 

Simulated 

annealing 

algorithm 

Cost reduced by 

12%, time 

optimized by 8%, 

poor multi-

objective 

optimization effect 

Lack of research on 

algorithm 

convergence and 

network scalability 

[14] 

Multi-objective 

optimization 

(cost, time, 

energy 

consumption, 

inventory) 

Improved ant 

colony 

algorithm 

Cost reduced by 

25%, energy 

efficiency 

improved by 18%, 

inventory reduced 

by 15% 

Integrate multiple 

objectives, consider 

constraints, analyze 

algorithm 

robustness and 

adaptability 

 

Table 1 systematically compares the relevant 

research in the field of multi-warehouse cargo allocation 

and transportation planning. It unfolds from four 

dimensions: research objectives, algorithms used, key 

results, and the advantages of this study compared with 

existing research, clearly presenting the differences in 

optimization directions, method selections, and 

achievements among different studies. Existing studies 

respectively have problems such as single objectives, 

limited algorithm performance, and incomplete 
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consideration of factors. In contrast, this study, by 

adopting the improved ant colony algorithm, 

comprehensively considers multiple objectives and 

practical constraints, and conducts in-depth analysis of 

the algorithm's robustness and adaptability to warehouse 

networks of different scales, effectively making up for 

the deficiencies of previous studies and demonstrating 

stronger practicality and innovativeness. 

The application of ant colony algorithm is not 

limited to single-objective optimization problems. In 

multi-warehouse cargo allocation and transportation 

planning, multiple objectives are involved in 

simultaneous optimization problems, such as 

transportation cost, delivery time, cargo allocation 

accuracy, etc. In order to solve this complex multi-

objective optimization problem, scholars have begun to 

propose improvements based on ant colony algorithm 

[13]. For example, an adaptive mechanism is used to 

dynamically adjust the search strategy of ants so that they 

can perform appropriate local searches at different 

operation stages. In addition, some researchers have also 

introduced hybrid algorithms that combine ant colony 

algorithm with other metaheuristic methods, such as 

particle swarm optimization (PSO) and genetic algorithm 

(GA), to further improve the efficiency and accuracy of 

the solution. These innovative algorithm improvements 

help alleviate the application difficulties of traditional 

methods in large-scale and complex systems, and to a 

certain extent improve the efficiency of cargo allocation 

and transportation [14,15]. 

Although the ant colony algorithm has shown great 

advantages in solving the multi-warehouse cargo 

allocation problem, it still faces some challenges in 

practical application. Problems such as slow algorithm 

convergence speed and easy to fall into local optimal 

solutions limit its promotion and application in complex 

logistics systems [16]. To this end, some researchers 

have tried to improve the performance of the ant colony 

algorithm by optimizing the algorithm parameter 

selection, enhancing the global search capability, and 

improving the pheromone update mechanism. These 

studies provide a theoretical basis for the further 

development of this field and also provide a direction for 

subsequent researchers to innovate in optimization 

methods [17]. 

 

2.2 Application of multi-objective 

optimization in cargo distribution 
The application of multi-objective optimization problems 

in logistics and transportation planning has made some 

important progress, but there are still many unresolved 

challenges. In many practical problems, cargo 

distribution not only needs to optimize transportation 

costs, but also needs to take into account multiple 

objectives such as time efficiency, environmental impact, 

and vehicle capacity [18]. Therefore, how to find the best 

balance between multiple objectives has become one of 

the research hotspots. 

Multi-objective optimization methods based on ant 

colony algorithms have received increasing attention in 

recent years. On the one hand, researchers have been able 

to achieve a good balance between multiple objectives by 

designing a multi-objective ant colony algorithm model 

with strong adaptability. On the other hand, researchers 

have also proposed a strategy based on the Pareto 

optimal solution. With the help of the concept of the 

Pareto frontier, a near-optimal solution can be found 

between multiple objectives. This method avoids the 

problem of excessive bias towards a certain objective that 

may occur in single-objective optimization methods and 

ensures balanced consideration of various objectives 

[19,20]. However, although the multi-objective ant 

colony algorithm has achieved certain results in theory 

and practice, it still faces problems such as high 

algorithm computational complexity and low solution 

efficiency. Therefore, some researchers have tried to 

combine heuristic and meta-heuristic algorithms to 

improve the solution efficiency through hybrid 

algorithms. By introducing other optimization techniques 

such as genetic algorithms and simulated annealing 

algorithms into the ant colony algorithm, it can not only 

optimize the local search ability in the search process, but 

also enhance the global search performance. With the 

continuous improvement of these hybrid algorithms, their 

application prospects in multi-warehouse cargo 

distribution and transportation planning are becoming 

more and more broad [21]. It is worth noting that 

although the multi-objective optimization method 

provides a more comprehensive solution for cargo 

distribution, in practical applications, how to reasonably 

select and adjust the multi-objective optimization model 

according to different logistics environments and demand 

characteristics is still a difficult point [22]. Therefore, 

developing more flexible and efficient multi-objective 

optimization algorithms for different logistics scenarios 

and application requirements has become an important 

research topic. 

 

2.3 Integration of ant colony algorithm and 

other optimization techniques 
With the deepening of research, the use of ant colony 

algorithm alone to solve the multi-warehouse cargo 

allocation and transportation planning problems can no 

longer meet the increasingly complex practical needs. 

Therefore, the integration of ant colony algorithm and 

other optimization technologies has become a new 

development trend. In particular, the combination of ant 

colony algorithm with genetic algorithm, particle swarm 

optimization and other algorithms has shown great 

potential in improving optimization effects and solving 

multi-objective problems [23]. Studies have shown that 

the combination of ant colony algorithm and genetic 

algorithm can give full play to the advantages of both. Ant 

colony algorithm is good at global search, while genetic 

algorithm has strong ability in local search. Through the 

integration of the two, researchers can introduce more 

accurate local search in the global search process and 

improve the quality and efficiency of the solution [24]. In 

some studies, researchers have designed new crossover 

and mutation operations to enable genetic algorithm to 
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better update pheromones and select paths under the 

framework of ant colony algorithm, thereby improving 

the accuracy of the solution. Particle swarm optimization 

algorithm (PSO), as another common metaheuristic 

algorithm, has also been combined with ant colony 

algorithm in recent years to optimize multi-warehouse 

cargo allocation and transportation planning problems. 

By combining the local search capability of particle 

swarm optimization with the global search capability of 

ant colony algorithm, researchers have successfully 

improved the algorithm’s solution efficiency and global 

optimality. In this process, particle swarm optimization is 

mainly responsible for path refinement and adjustment, 

while ant colony algorithm is responsible for global 

pheromone update and overall path optimization. The 

combination of the two greatly reduces the ants’ search 

time and can provide more efficient solutions in complex 

logistics systems [25]. 

Through the study of the integration of ant colony 

algorithms and other optimization technologies, we can 

see that new hybrid optimization algorithms provide 

more powerful tools for solving multi-warehouse cargo 

distribution and transportation planning problems. These 

hybrid algorithms can not only handle complex problems 

that traditional ant colony algorithms cannot effectively 

deal with, but also show higher efficiency and accuracy 

in multi-objective optimization and large-scale problems. 

This trend indicates that in the field of logistics 

optimization, the integration of algorithms will become 

an important direction for future development. 

3 Study plan 

3.1 Model framework and design ideas 
In the multi-warehouse cargo allocation and 

transportation planning model proposed in this paper, the 

solution is based on the improved ant colony algorithm 

(ACO) to address the challenges of inefficiency and lack 

of precision commonly encountered in large-scale, multi-

objective optimization problems. The model promotes 

innovation in solutions in this field through a precisely 

designed multi-level optimization framework, combining 

global search and local optimization strategies. The 

model assumes that each warehouse has a fixed cargo 

demand and storage capacity, and during transportation, 

factors such as cost, time and energy consumption must 

be fully considered in the optimization process. 

Therefore, the model includes four key modules: cargo 

allocation decision, transportation path planning, 

objective function construction, and pheromone update 

mechanism. 

The goal of the cargo allocation decision module is 

to reasonably allocate cargo from the supply warehouse 

to the demand warehouse according to the storage 

capacity of each warehouse and the demand for cargo, so 

as to meet the overall needs of the logistics system. In 

this module, the transportation path planning module is 

responsible for calculating the optimal transportation 

route based on the physical distance and traffic 

conditions between each warehouse, with the goal of 

reducing transportation costs and time while optimizing 

energy consumption. The design of the objective function 

takes into account the balance of multiple objectives, 

taking into account multiple aspects such as cost, time and 

energy consumption. The pheromone update mechanism 

dynamically adjusts the search path by imitating the 

foraging behavior of ants in nature, so that the ant colony 

gradually converges to the optimal solution. 

The model is solved using the improved ant colony 

algorithm (ACO), in which each ant simulates the 

decision of the cargo transportation route by selecting 

different paths in the search space. After each path 

selection, the ant updates the pheromone concentration 

based on factors such as the cost, time and energy 

consumption of the selected path, so that the 

attractiveness of the preferred path gradually increases. 

The pheromone update process not only accelerates the 

convergence of the optimal solution, but also ensures the 

globality and diversity of the search process. Overall, the 

design of the model effectively avoids the problem of 

local optimal solutions by balancing global optimization 

and local refinement. 

This study uses a linear cost function, mainly based 

on three considerations. First, from the perspective of 

computational efficiency, the linear function is simple in 

form, has low computational complexity in large-scale 

multi-warehouse scenarios, can be quickly solved, and 

meets the real-time requirements of actual logistics 

systems. For example, in a network containing 20 

warehouses and numerous transportation routes, the 

calculation time of the linear cost function is only about 

1/3 of that of the nonlinear function. Secondly, in the 

initial construction and verification stage of the model, 

the linear function can simplify the problem, facilitate the 

rapid construction of the basic model framework, and 

verify the core logic and effectiveness of the algorithm 

and model. Finally, in actual logistics business, when the 

transportation distance is short, the type of goods is 

single, and the transportation conditions are stable, the 

transportation cost and factors such as transportation 

distance and quantity of goods often show an 

approximately linear relationship. However, it is 

undeniable that in the complex and changeable real 

world, nonlinear cost functions do have their application 

advantages. For example, when considering factors such 

as the scale effect in long-distance transportation, the 

coordinated cost of mixed transportation of different 

goods, and the dynamic price increase during 

transportation peak periods, the nonlinear cost function 

can more accurately characterize the law of cost changes. 

Subsequent research can try to introduce nonlinear cost 

functions, such as quadratic functions, exponential 

functions, etc., and combine them with actual logistics 

data. Through model comparison experiments, the impact 

of different function forms on model accuracy, 

computational efficiency, and optimization results can be 

analyzed to explore better cost modeling methods and 

improve the model's ability to fit the real world. 

 

3.2 Optimization of cargo distribution and 

transportation route planning 
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In the problem of multi-warehouse cargo distribution 

and transportation planning, cargo distribution and 

transportation route planning are the two core links to 

achieve overall optimization. The core of cargo 

distribution lies in how to reasonably arrange the cargo 

distribution of each warehouse according to the storage 

capacity of the warehouse and the demand for goods. 

The planning of transportation routes requires the 

optimization of transportation routes through the 

shortest path algorithm to minimize transportation costs 

and time. This paper uses the ant colony algorithm to 

simultaneously optimize the decision of cargo 

distribution and transportation routes, so that the two 

problems are solved jointly, thereby further improving 

the overall efficiency of the model. 

The optimization model of cargo allocation 

decision can be mathematically formalized by Formula 

1. 

1 1

min
n m

ij ij

i j

c x
= =

  (1) 

ijc  is unit cost of transport of goods j from 

warehouse i , 
ijx  indicates the quantity of goods j

 
which allocated to the warehouse i . The goal is to 

minimize the total transportation cost. The constraints 

in Formula 2 and Formula 3 include the storage 

capacity of the warehouse and the demand for each type 

of goods. 

1

m

ij i

j

x S i
=

   (2) 

1

n

ij j

i

x D j
=

=   (3)

 
iS  is the maximum storage capacity of  warehouse 

i . 
jD  is the quantity demanded of goods j . This 

constraint ensures that the goods allocation complies 

with the warehouse capacity limit in actual operation 

and can meet the demand for each type of goods. 

In the transportation route planning, the model uses 

the shortest path algorithm to calculate and determine 

the best transportation route from each warehouse to the 

target warehouse. To this end, the ant colony algorithm 

guides the search direction by simulating the selection 

process of ants on the path through the update of 

pheromones. In each iteration, the ants will select a path 

and update the pheromone according to Formula 4. 

 

( 1) (1 ) ( )ij ij ijt t   + = − +   (4) 

 

( )ij t  is the current pheromone concentration of 

path ij ,   is the pheromone volatility coefficient, 
ij  

is the amount of pheromone newly added to the path ij . 

The pheromone update process further strengthens the 

search for the optimal path, thereby driving the model 

to gradually converge to the optimal solution. 

 

3.3 Multi-objective optimization and 

objective function design 

In the problem of multi-warehouse cargo distribution and 

transportation planning, different optimization objectives 

often conflict with each other. Traditional optimization 

methods often focus on a single objective and ignore the 

complex relationship between multiple objectives in 

practical problems. To this end, this paper introduces a 

multi-objective optimization framework into the model, 

and takes into account the needs of different optimization 

objectives by establishing a comprehensive objective 

function. The core of the objective function design is to 

incorporate the optimization of multiple objectives into a 

unified mathematical expression so as to simultaneously 

solve multiple objective problems such as transportation 

cost, delivery time and energy consumption. 

The objective function of the multi-objective 

optimization model proposed in this paper can be 

expressed as Formula 5. 

1 2 3

1 1 1 1 1 1

min
n m n m n m

ij ij ij ij ij ij

i j i j i j

w c x w t x w e x
= = = = = =

 
+ + 

 
         (5) 

1w
, 2w

, 3w  are the weight coefficients that control 

the proportion of transportation cost, time and energy 

consumption in the objective function respectively. 
ijc  is 

transportation costs, 
ijt  is transportation time, 

ije  is 

energy consumption during transportation. This objective 

function comprehensively considers multiple key factors 

involved in the transportation process, ensuring that the 

optimization process can balance the relationship 

between different objectives. 

In order to solve this multi-objective optimization 

problem, this paper adopts the Pareto optimal solution 

method. The Pareto optimal solution is a set of solutions 

that cannot dominate each other, representing the best 

balance between multiple objectives. In each round of 

iteration, by calculating the Pareto dominance 

relationship of each solution, a set of non-dominated 

solutions can be obtained, representing the optimal 

balance between multiple objectives. Specifically, if the 

solution X  is not inferior to the solution Y  in all 

objective functions, and solution X  is better than the 

solution Y  in at least one objective function, then the 

solution X  dominates the solution Y . 

Through the above multi-objective optimization 

design, the model in this paper can not only effectively 

optimize multiple objectives in the multi-warehouse 

cargo allocation and transportation planning problem, but 

also achieve a balance between objectives, avoid over-

optimization on a certain objective, and ensure the 

maximization of the comprehensive benefits of the 

logistics system. Finally, through the optimization 

iteration of the ant colony algorithm, the model can find 

the optimal solution and provide efficient decision 

support for complex multi-warehouse logistics systems. 

The pheromone update rule of the ant colony 

algorithm was changed as follows: an adaptive 

adjustment mechanism was introduced, and the 

pheromone volatilization coefficient was dynamically 

adjusted between 0.1 and 0.3 according to the current 

number of iterations and the change of the objective 
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function value. The pheromone accumulation amount 

was calculated according to the quality of the path and 

the contribution of the objective function. At the same 

time, in order to enhance the guiding role of 

pheromones, when the ants found the current optimal 

path, the pheromone of the path was additionally 

enhanced with an enhancement coefficient of 1.5. 

The optimization of the objective function weight 

adopted the multi-objective particle swarm optimization 

algorithm to assist in determining the weight, and the 

corresponding weight value was assigned according to 

the importance of different objectives. At initialization, 

a set of weight values was randomly generated, and 

then iteratively optimized by the multi-objective 

particle swarm optimization algorithm. In each 

iteration, the weight was adjusted according to the 

fitness value of the particle (comprehensively 

considering the multi-objective function value). After 

50 iterations, the optimal weight combination was 

obtained: the transportation cost weight was 0.4, the 

transportation time weight was 0.3, the energy 

consumption weight was 0.2, and the inventory level 

weight was 0.1, so that the transportation cost, time and 

energy consumption objectives were reasonably 

balanced in the optimization process. 

In order to improve the convergence of the ant 

colony algorithm, the elite ant strategy and the method 

of dynamically adjusting the search range are adopted. 

The elite ant strategy refers to marking the ants that find 

the best path in each iteration as elite ants. Elite ants 

have higher pheromone release in the next iteration, 

guiding other ants to approach the optimal solution 

faster. The dynamic adjustment of the search range is 

based on the convergence of the algorithm. When the 

objective function value of the algorithm changes less 

than 0.01 in 10 consecutive iterations, the search range 

is narrowed to improve the search accuracy; when the 

algorithm does not converge significantly within a 

certain number of iterations, the search range is 

expanded to avoid falling into the local optimal 

solution. 

The selection of parameters such as pheromone 

decay rate and number of ants is based on multiple 

experiments and theoretical analysis. The pheromone 

decay rate is set to 0.2 to achieve a balance between the 

volatilization and accumulation of pheromones and 

prevent the algorithm from falling into the local optimal 

solution too early. Through experiments, it is found that 

when the pheromone decay rate is between 0.1 and 0.3, 

the performance of the algorithm is relatively stable, 

and 0.2 is finally selected as the optimal value. The 

number of ants is set to 50. Through experiments with 

different numbers of ants (from 20 to 80), it is found 

that 50 ants can achieve a good balance between search 

efficiency and coverage, which can ensure that the 

algorithm fully explores the search space, and will not 

cause excessive computational complexity due to too 

many ants. 

In the study, hyperparameter tuning was carried 

out, and the grid search method was used to adjust the 

key hyperparameters. Hyperparameters include 

pheromone decay rate (range 0.1 to 0.3, step size 0.05), 

number of ants (range 20 to 80, step size 10), heuristic 

factor (range 1 to 3, step size 0.5), etc. Through 

experiments with different hyperparameter combinations, 

the optimal hyperparameter combination was found: 

pheromone decay rate of 0.2, number of ants of 50, and 

heuristic factor of 2, in order to find the optimal 

parameter combination. 

At the same time, parameter sensitivity analysis was 

performed to evaluate the robustness of the algorithm. By 

changing the pheromone decay rate between 0.15 and 

0.25, the number of ants between 40 and 60, and the 

heuristic factor between 1.5 and 2.5, the changes in the 

algorithm in indicators such as transportation cost, 

delivery time, and energy consumption are observed. The 

analysis results show that the algorithm has good 

robustness in the range of pheromone decay rate between 

0.18 and 0.22, the number of ants between 45 and 55, 

and the heuristic factor between 1.8 and 2.2, and the 

change range of each indicator is within 10%. 

4 Experimental evaluation 

4.1 Experimental design 
The experimental design of this study aims to verify the 

effectiveness and practicality of the multi-warehouse 

cargo allocation and transportation planning model based 

on the improved ant colony algorithm. The main goal of 

the experiment is to evaluate the optimization effect of 

the model when dealing with large-scale complex 

problems, especially in reducing transportation costs, 

shortening delivery time, and reducing energy 

consumption. This experiment will set up multiple 

experimental scenarios to compare the optimization 

effects of different algorithms and verify the advantages 

of the proposed model. 

The experiment will be simulated based on a set of 

typical warehouse logistics networks. It is assumed that 

the logistics network consists of multiple warehouses and 

distribution targets, each with different storage capacity 

and cargo demand. The distribution target includes 

multiple demand points, and the demand and location of 

each demand point are known. The experimental scenario 

will include 3 networks of different sizes, namely small 

scale (5 warehouses), medium scale (10 warehouses) and 

large scale (20 warehouses) to ensure that the algorithm 

can cope with practical problems of different scales. In 

addition, it is assumed that data such as transportation 

distance, time and energy consumption can be obtained 

through the set distance matrix and transportation time 

matrix, and it is assumed that the transportation costs 

between different warehouses are different. 

In order to verify the optimization effect of the 

proposed model, the experiment will be compared with 

traditional greedy algorithms, genetic algorithms and other 

commonly used optimization algorithms. The evaluation 

indicators will include: transportation cost, delivery time, 

energy consumption and calculation time. The 

transportation cost will be quantified based on the 

transportation cost calculation formula of each path, the 

delivery time will be calculated based on the timeliness of 
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the transportation path, and the energy consumption will 

consider the energy consumption during the 

transportation process. All indicators will be 

comprehensively evaluated in the experiment to 

comprehensively examine the advantages and 

disadvantages of different algorithms. 

The experiment will be divided into two main stages. 

First, the experimental data will be initialized and 

warehouse logistics networks of different sizes will be 

set. In each experimental scenario, multiple initial 

parameter values will be set, such as the number of ants, 

the maximum number of iterations, the pheromone 

volatility coefficient, etc., and several experiments will 

be conducted to ensure the stability of the results. 

Secondly, in each experiment, the cargo distribution and 

transportation path will be optimized by iteratively 

calculating and updating pheromones. The performance 

of the algorithm will be recorded and analyzed after each 

iteration until the convergence condition is reached. 

Finally, the experimental results will be compared and 

analyzed to evaluate the performance of the proposed 

model in different scenarios and compare it with other 

optimization methods. 

The ultimate goal of the experiment is to verify the 

advantages of the improved ant colony algorithm in 

multi-warehouse cargo allocation and transportation 

planning.  By analyzing the performance in logistics 

networks of different scales and configurations, it can 

provide valuable reference data for the optimization of 

larger-scale and multi-level warehouse logistics systems in 

the future. In addition, the experimental results will also 

provide important basis for practical applications such as 

relevant policy formulation and transportation plan design. 

 

4.2 Experimental results 
Table 2 shows the path optimization of different models 

at different scales. The ant colony algorithm can obtain a 

better path at most scales because it can effectively 

explore the solution space by guiding the search direction 

through the accumulation and update of pheromones. The 

genetic algorithm uses genetic operators to evolve the 

population. For large-scale problems, due to the vast 

search space, it is more difficult to find the global 

optimal solution, resulting in a relatively long optimal 

path. The particle swarm algorithm and the simulated 

annealing algorithm can also achieve good results. The 

particle swarm algorithm relies on the cooperation 

between particles, and the simulated annealing algorithm 

controls the search process based on the temperature 

drop. Their optimization effect improvement rate reflects 

the degree of approaching the target path at different 

scales, reflecting the effectiveness of the algorithm in 

path optimization. 

 

Table 2: Path quality and optimization effect 

Model 

Type 

Target 

Path 

Length 

(km) 

Ant Colony 

Algorithm 

Optimal 

Path (km) 

Genetic 

Algorithm 

Optimal 

Path (km) 

Particle swarm 

optimization 

optimal path 

(km) 

Optimal Path 

of Simulated 

Annealing 

Algorithm 

(km) 

Optimization 

Effect 

Improvement 

Rate (%) 

Small 

scale 
200 180 190 185 188 10% 

Medium 

scale 
500 480 490 485 470 4% 

Large 

scale 
800 760 780 770 760 5% 

Hyperscale 1500 1450 1480 1470 1460 3% 

Extra large 

scale 
2000 1900 1950 1920 1905 5% 

 

Table 3: Algorithm stability and robustness evaluation 
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Model Type 

Data 

Fluctuation 

Range (%) 

Ant Colony 

Algorithm 

Output 

Fluctuation (%) 

Genetic 

Algorithm 

Output 

Fluctuation (%) 

Particle swarm 

Algorithm 

Output 

Fluctuation (%) 

Simulated 

Annealing 

Algorithm 

Output 

Fluctuation (%) 

Small scale 5 3 4 3 3 

Medium scale 10 5 6 5 4 

Large scale 15 7 9 8 6 

Hyperscale 20 9 11 10 8 

Extra large 

scale 
25 10 13 12 9 

 

 
Figure 1: Comparison of energy consumption and efficiency 

 

Table 3 is used to evaluate the stability and 

robustness of the algorithm under different data 

fluctuation ranges. The output fluctuation of the ant 

colony algorithm is relatively small because its search 

process is based on group behavior. The search results of 

multiple ants influence and balance each other, reducing 

the interference of individual factors on the overall result. 

The fluctuation of the genetic algorithm is relatively 

large. Due to the randomness of its genetic operation, the 

direction of population evolution may change greatly 

under different data conditions. The fluctuations of the 

particle swarm algorithm and the simulated annealing 

algorithm are also within an acceptable range. In the 

particle swarm algorithm, particles are affected by the 

global optimum and their own optimum. The simulated 

annealing algorithm adjusts the search step by controlling 

the temperature. When facing data fluctuations, they can 

maintain a certain stability through their own mechanisms, 

which reflects the adaptability of the algorithm in a 

complex data environment. 

Figure 1 explains and compares the energy 

consumption and energy efficiency of different model 

types at each transport mileage. The ant colony algorithm 

performs well in terms of energy consumption. As the 

transport mileage increases, its energy consumption 

increases more steadily. This is because the ant colony 

algorithm can select a better path based on the pheromone 

concentration of the path, reducing unnecessary energy 

loss. The energy consumption of the genetic algorithm is 

relatively high because its search process is relatively 

random, which may produce more invalid paths and 

consume more energy. The energy consumption of the 
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particle swarm algorithm and the simulated annealing 

algorithm is in the middle. The particle collaboration 

mechanism of the particle swarm algorithm and the 

temperature control strategy of the simulated annealing 

algorithm enable them to achieve a certain balance in 

energy utilization. 

 

 
Figure 2: Total transportation cost and cost saving analysis 

 

 
Figure 3: Comparison of adaptability and flexibility 

 

Figure 2 shows the total transportation cost of 

different model types at different scales and the storage 

cost of each algorithm. The ant colony algorithm has a 

relative advantage in storage cost control. As the scale 

increases, its storage cost increases relatively slowly. 

This is because the optimization strategy of the ant 

colony algorithm helps to reasonably plan the storage 

and transportation arrangements of goods and reduce 

storage costs. The genetic algorithm has a high storage 

cost, and its optimization process focuses on global 

search, which is not sophisticated enough in the local 

optimization of storage costs. The storage costs of the 

particle swarm algorithm and the simulated annealing 

algorithm are at an intermediate level. Through their 

unique optimization methods, they balance the 

relationship between transportation and storage costs to a 

certain extent. These data provide an important reference 

for actual logistics transportation cost control. 

Figure 3 evaluates the adaptability and flexibility of 

different models at different scales. The ant colony 

algorithm, particle swarm algorithm, and simulated 

annealing algorithm have higher adaptability scores for 

small-scale problems. The ant colony algorithm can 

quickly adapt to changes in the small-scale environment 
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through the pheromone mechanism; the particle fast 

response of the particle swarm algorithm and the initial 

high temperature exploration of the simulated annealing 

algorithm enable it to quickly find a suitable solution 

for small-scale problems. As the scale increases, the 

adaptability of the ant colony algorithm decreases due 

to the complexity of pheromone updating and 

propagation. The genetic algorithm has a lower 

adaptability score for large-scale problems because its 

genetic operation is difficult to quickly converge to an 

effective solution in a large-scale complex environment. 

These scores reflect the differences in the adaptability 

of the algorithm in different scale scenarios. 

Figure 4 records the convergence speed of different 

models in the optimization process at various scales. 

The ant colony algorithm converges relatively quickly, 

and it only takes 100 iterations to converge on small-

scale problems. This is because its pheromone update 

mechanism can quickly guide the search direction, 

allowing the algorithm to quickly approach the optimal 

solution. The genetic algorithm converges slowly, and it 

requires more iterations to evolve the population to find 

the optimal solution, especially on large-scale problems, 

as the search space increases and the number of iterations 

increases significantly. The particle swarm algorithm and 

simulated annealing algorithm converge in the middle. 

The particle swarm algorithm accelerates convergence 

through information exchange between particles, and the 

simulated annealing algorithm gradually converges to the 

optimal solution as the temperature decreases. The 

difference in convergence speed reflects the difference in 

optimization efficiency of each algorithm. 

 
Figure 4: Convergence speed during optimization 

 

 
Figure 5: Model scalability and adaptability 

 

 

Figure 5 shows the scalability and adaptability of 

different models under different data scales. The ant 
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colony algorithm has an excellent scalability of 100% 

when the data is small. As the data scale increases, its 

scalability decreases, but it still remains at a relatively 

high level. This is because the ant colony algorithm is 

based on distributed search and can adapt well to 

changes in data scale. The scalability of the genetic 

algorithm is relatively low. Under large-scale data, the 

amount of computation of its genetic operations 

increases dramatically, affecting the scalability. The 

scalability of the particle swarm algorithm and the 

simulated annealing algorithm is at a medium level. 

Through their own search and optimization mechanisms, 

they can maintain a certain adaptability under different 

data scales. These data provide a basis for selecting 

appropriate algorithms to deal with data of different 

scales. 

 

 
Figure 6: Scheduling performance and multi-objective optimization evaluation 

 

 
Figure 7: Cost savings and efficiency improvement analysis 

 

Figure 6 evaluates the scheduling performance and multi-objective optimization capabilities of different 
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models under different numbers of objectives. The ant 

colony algorithm performs well in multi-objective 

optimization, with a target achievement rate of up to 

95% for small-scale problems and a small number of 

objectives. This is because the ant colony algorithm can 

consider multiple objectives at the same time and 

coordinate the relationship between the objectives 

through pheromone updates. As the number of 

objectives increases, the target achievement rates of 

each algorithm decrease, but the ant colony algorithm 

can still maintain a relatively high level. Due to the 

limitations of its genetic operations, the genetic 

algorithm has a relatively low target achievement rate in 

multi-objective processing. The particle swarm 

algorithm and simulated annealing algorithm can also 

play a role in multi-objective optimization. They 

balance multiple objectives through their respective 

optimization strategies and provide multiple solutions to 

actual multi-objective scheduling problems. 

Figure 7 compares the performance of different 

algorithms in terms of cost savings and efficiency 

improvement. The ant colony algorithm is more 

significant in cost savings. It can save 400,000 yuan 

when the total transportation cost is 2 million yuan, and 

the cost reduction rate is 20%. The cost after 

optimization is only 1.45 million yuan. This is due to its 

efficient path and resource optimization strategy, which 

can effectively reduce transportation costs. The particle 

swarm algorithm and simulated annealing algorithm also 

have a cost reduction rate of 20%. They have achieved 

good results in cost control through different search and 

optimization methods. The cost reduction rate of the 

genetic algorithm and the taboo search algorithm is 

relatively low. The randomness of the genetic algorithm 

search and the taboo table mechanism of the taboo search 

algorithm are slightly inferior in the efficiency of cost 

optimization. 

 

Table 4: Computational efficiency and running time analysis 

Model 

Type 

Problem 

Size 

Computational 

Complexity 

(O()) 

Ant Colony 

Algorithm 

Running 

Time 

(seconds) 

Genetic 

Algorithm 

Running 

Time 

(seconds) 

Particle 

Swarm 

Algorithm 

Running 

Time 

(seconds) 

Simulated 

Annealing 

Algorithm 

Running 

Time 

(seconds) 

Small 

scale 
Small O(n^2) 0.3 0.5 0.4 0.45 

Medium 

scale 
middle O(n^2) 1.2 2.0 1.5 1.8 

Large 

scale 
big O(n^3) 5.6 7.5 6.0 7.3 

Hyperscale huge O(n^4) 20.0 28.0 22.0 25.0 

Extra large 

scale 

Extra 

Large 
O(n^4) 70.0 85.0 75.0 80.0 

 

Table 4 shows the computational complexity and 

running time of different model types at different 

problem scales. As the problem scale increases, the 

computational complexity increases exponentially and 

the running time also increases significantly. The 

running time of the ant colony algorithm is relatively 

stable at each scale, thanks to its distributed search 

mechanism based on the ant foraging principle, which 

can efficiently handle complex problems. The running 

time of the genetic algorithm is relatively long because 

it relies on a large number of genetic operations and 

population iterations. The running time of the particle 

swarm algorithm and the simulated annealing algorithm 

is between the two. The particle swarm algorithm 

optimizes the search by sharing information between 

particles, and the simulated annealing algorithm uses 

probabilistic jumps to avoid local optimality. Their 

performance at different scales is closely related to their 

own optimization strategies. 

In order to deeply analyze the convergence 

performance of different ant colony algorithm variants, 

this study conducted comparative experiments on the 

basic ant colony algorithm (Basic - ACO), the ant colony 

algorithm that only improves the pheromone update 

strategy (ACO - Pheromone), the ant colony algorithm 

that only optimizes the weight of the objective function 

(ACO - Weight), and the improved ant colony algorithm 

(Improved - ACO) proposed in this study. A medium-
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sized (10 warehouses) logistics network was used as the 

experimental scenario, the number of iterations was set 

to 300, the optimal value of the objective function of 

each algorithm in each iteration was recorded, and the 

convergence analysis diagram was drawn (Figure 8). 

In order to confirm whether the difference between 

the improved ant colony algorithm and other alternative 

methods (genetic algorithm, particle swarm algorithm, 

etc.) in transportation cost, delivery time, energy 

consumption, etc. is significant, t test (for data that 

conforms to normal distribution) and Wilcoxon test (for 

data that is not normally distributed) are performed. In 

terms of transportation cost, the t test is performed on 

the multiple experimental data of the improved ant 

colony algorithm and genetic algorithm in a large-scale 

scenario (20 warehouses). The results show that the t 

value is 3.5, the degree of freedom is 30, and the p value 

is 0.002<0.05, indicating that the difference between the 

improved ant colony algorithm and the genetic algorithm 

in reducing transportation costs is statistically significant, 

and the effect of the improved ant colony algorithm in 

reducing transportation costs is not accidental. Similar 

tests were also conducted in terms of delivery time and 

energy consumption, all of which showed that the 

difference between the improved ant colony algorithm 

and other algorithms in these indicators is statistically 

significant. 

 

 
Figure 8: Convergence analysis diagram of different ant colony algorithm variants 

 

The results such as the 20% cost reduction rate 

mentioned in the article are derived from the simulated 

logistics data set. This study constructed a simulated 

logistics environment with warehouse networks of 

different sizes (5, 10, and 20 warehouses), different 

cargo demands, and transportation conditions. In order 

to verify the representativeness of the simulated data, 

the key parameters in the simulated data, such as 

warehouse location, cargo flow, and transportation 

distance, were compared with the data in the actual 

logistics network. It was found that the similarity 

between the simulated data and the actual data in these 

key parameters reached more than 80%. At the same 

time, through cooperation with actual logistics 

companies, some actual logistics order data was 

selected for testing in the simulated environment. The 

results showed that the simulated data can better reflect 

the logistics network in the real world and has a certain 

degree of credibility. 

 

 

4.3 Discussion 

The improved ant colony algorithm proposed in this 

study has demonstrated excellent performance in the 

problem of multi-warehouse cargo allocation and 

transportation planning. Now, a detailed comparison and 

analysis will be conducted between this algorithm and 

the Genetic Algorithm (GA) and the Particle Swarm 

Optimization algorithm (PSO). 

From the data in Table 5, it can be seen that in terms 

of the reduction of transportation costs, the improved ant 

colony algorithm is 10% higher than the genetic 

algorithm and 7% higher than the particle swarm 

optimization algorithm. In terms of running time, the 

improved ant colony algorithm is 1.9 seconds faster than 

the genetic algorithm and 0.4 seconds faster than the 

particle swarm optimization algorithm. In terms of the 

rate of energy efficiency improvement, the improved ant 

colony algorithm has a significant advantage. In terms of 

the effect of multi-objective optimization, the improved 

ant colony algorithm has the highest objective 

achievement rate in small-scale scenarios. 

The performance improvement is mainly attributed 

to two aspects of improvement. On the one hand, an 
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adaptive adjustment mechanism has been introduced 

into the pheromone update mechanism. The evaporation 

and accumulation rates are dynamically adjusted 

according to the number of iterations and the changes in 

the objective function, making it easier for ants to find 

high-quality paths. On the other hand, a multi-objective 

particle swarm optimization algorithm is used to assist in 

determining the weights of the objective function, 

achieving a good balance among multiple objectives. 

 

Table 5: Comparison with the State-of-the-Art Technologies 

Algorithm 

Rate of 

Transportation 

Cost Reduction 

(in Large-scale 

Scenarios) 

Running Time 

(in Large-scale 

Scenarios with 

20 Warehouses, 

unit: seconds) 

Rate of Energy 

Efficiency 

Improvement 

Effect of Multi-

objective 

Optimization 

(Objective 

Achievement Rate 

in Small-scale 

Scenarios) 

Improved 

Ant Colony 

Algorithm 

25% 5.6 18% 95% 

Genetic 

Algorithm 
15% 7.5 8% 78% 

Particle 

Swarm 

Optimization 

Algorithm 

18% 6.0 12% 85% 

 

In terms of computational complexity, the 

improved ant colony algorithm has a relatively low 

computational complexity in small-scale scenarios. As 

the number of warehouses increases, although the 

complexity rises to some extent, due to its distributed 

search mechanism and adaptive strategy, compared with 

other algorithms, it can still be effectively scaled in 

large-scale scenarios. 

However, this method has limitations. When the 

data variability is extremely high, the pheromone 

update is difficult to adapt to the changes in a timely 

manner, affecting the convergence of the algorithm. In 

ultra-large-scale warehouse networks (such as those 

with more than 50 warehouses), the computational 

complexity increases significantly, and it may fall into a 

local optimum. In addition, in the face of dynamic 

situations such as sudden transportation restrictions or 

emergency orders, the real-time adaptability of the 

algorithm needs to be improved. 

To explore the contributions of various 

enhancement strategies to the performance of the 

algorithm, an ablation study was carried out. The 

algorithm versions of removing the adaptive pheromone 

update strategy (Improved - ACO without Adaptive 

Pheromone), removing the multi-objective particle 

swarm optimization weight determination strategy 

(Improved - ACO without PSO - Weight), and 

removing both strategies simultaneously (Basic - ACO) 

were experimentally tested in logistics networks of 

different scales. The results are shown in the following 

Table 6. 

As shown in Table 6, the experimental data shows 

that the adaptive pheromone update strategy increases the 

rate of transportation cost reduction in small-scale 

scenarios by 4%, reduces the running time in large-scale 

scenarios by 1.2 seconds, and improves the effect of 

multi-objective optimization by 7%. The multi-objective 

particle swarm optimization weight determination 

strategy brings performance improvements of 3%, 1.6 

seconds, and 5% respectively. The synergistic effect of 

the two strategies significantly enhances the performance 

of the algorithm in all aspects, verifying the effectiveness 

and complementarity of the improvement strategies in 

this study. 

Relevant content of the robustness check was added 

to the experimental evaluation section: 

To test the robustness of the improved ant colony 

algorithm under the fluctuations of warehouse demand or 

storage capacity, the following interference scenarios 

were set up in the experiment: randomly select 30% of 

the warehouses and make their cargo demands fluctuate 

up and down by 20% - 50% based on the original 

amounts, or randomly increase or decrease the storage 

capacity by 15% - 30%. The optimization results of the 

algorithm in normal scenarios and interference scenarios 

were compared, as shown in Table 7. 
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Table 7 shows that in the demand fluctuation 

scenario, the transportation cost increases by 6.8%, the 

delivery time is extended by 7.1%, and the energy 

consumption rises by 4.2%. In the storage capacity 

fluctuation scenario, the change ranges of various 

indicators are relatively small. Although the 

performance of the algorithm decreases, it can still 

maintain a certain optimization effect, indicating that 

the improved ant colony algorithm has a certain degree 

of robustness and can, to a certain extent, adapt to the 

unpredictable fluctuations of warehouse demand and 

storage capacity. Follow-up research can further increase 

the fluctuation range and complexity to explore the 

boundaries of the algorithm's robustness and 

improvement strategies. 

 

Table 6: Contributions of various enhancement strategies 

Algorithm 

Version 

Rate of Transportation 

Cost Reduction in 

Small-scale Scenarios 

(5 Warehouses) 

Running Time in 

Large-scale Scenarios 

(20 Warehouses, in 

seconds) 

Effect of Multi-

objective 

Optimization 

(Objective 

Achievement 

Rate) 

Improved - 

ACO 
22% 5.6 95% 

Improved - 

ACO without 

Adaptive 

Pheromone 

18% 6.8 88% 

Improved - 

ACO without 

PSO - Weight 

19% 7.2 90% 

Basic - ACO 15% 8.5 82% 

 

Table 7: Robustness check 

Scenario Type 
Transportation Cost 

(in ten thousand yuan) 

Delivery Time 

(in hours) 

Energy Consumption 

(in kilojoules) 

Normal Scenario 120.5 18.2 350.6 

Demand 

Fluctuation 

Scenario 

128.7 19.5 365.2 

Storage Capacity 

Fluctuation 

Scenario 

126.3 18.9 358.8 
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5 Conclusion 
This study focuses on the problem of multi-warehouse 

cargo distribution and transportation planning, and 

proposes a comprehensive optimization model based on 

the improved ant colony algorithm. The model is 

verified experimentally to be effective in improving the 

efficiency and economy of the logistics system. 

However, existing research still has certain limitations. 

In terms of practical application, although the model 

performs well in simulation scenarios, it has not yet 

been deployed on a large scale in real logistics 

companies. Future research will conduct in-depth 

cooperation with logistics companies, select typical 

logistics networks for model implementation, and 

optimize the model through actual operation data 

feedback to improve its feasibility and practicality in 

actual business. For example, for the regional logistics 

network of a large e-commerce company, the model is 

applied to its daily cargo distribution and transportation 

planning, optimizing logistics resource allocation in real 

time and reducing operating costs.In terms of research 

direction, on the one hand, the applicable scenarios of 

the model can be further expanded, and more complex 

real-life factors can be considered, such as dynamic 

changes in traffic congestion, differences in cargo 

priority, and multimodal transport modes, to enhance 

the universality of the model; on the other hand, the 

integration of improved ant colony algorithms and other 

intelligent algorithms (such as deep learning 

algorithms) can be explored, and the powerful data 

processing and pattern recognition capabilities of deep 

learning can be used to optimize the initial parameter 

settings and search direction guidance of the ant colony 

algorithm, so as to provide more efficient and intelligent 

solutions for multi-warehouse logistics optimization 

problems and promote the development of the logistics 

industry towards intelligence and refinement. 
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