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With the continuous development of 5G technology, wireless communication systems demand higher 

spectral efficiency and robust error correction. In this study, we propose an iterative decoding 

algorithm for polar codes in MIMO systems, based on a convolutional neural network (CNN). The 

CNN architecture comprises three 1D convolutional layers with ReLU activation, a depthwise 

separable convolution layer, and two fully connected layers. Training was conducted using a synthetic 

dataset of 100,000 samples generated under AWGN, Rayleigh, and Rician channel models, with 80% 

used for training and 20% for validation. Evaluation metrics include bit error rate (BER), throughput 

(Mbps), and computational complexity (ms/symbol). Compared to BP, SC, and SCL algorithms, our 

model achieves a 30% reduction in BER at 6 dB SNR, throughput improvements of up to 25%, and 

reduced processing latency across 2×2, 4×4, and 8×8 antenna configurations. The experimental results 

show that the proposed algorithm exhibits better performance than traditional decoding methods 

under varying SNR levels, channel models, antenna configurations, and data rates. While not entirely 

eliminating complexity, the model leverages depthwise separable convolution to reduce parameter size 

and training overhead, making it more efficient than conventional iterative decoders. This research 

provides a promising step toward resolving the open challenge of designing decoders that balance 

adaptability and computational feasibility in MIMO systems. 

Povzetek: Članek uvaja CNN-iterativno dekodiranje polarnih kod v MIMO, ki znižuje BER, poveča 

prepustnost ter zmanjša zakasnitev, ponuja bolj kvalitetno uravnoteženje točnosti in kompleksnosti kot 

BP, SC in SCL. 

 

 

1 Introduction 
With the rapid development of the fifth-generation 

mobile communication system (5G), wireless 

communication technology is facing unprecedented 

challenges and opportunities. In order to meet the 

increasing demand for data transmission, improving 

spectrum efficiency has become a key research 

direction. MultipleInput MultipleOutput (MIMO) 

technology and Polar Codes, as an important means to 

enhance the performance of wireless communication 

systems, have received extensive attention in recent 

years [1,2]. 

MIMO technique achieves spatial multiplexing and 

diversity gain by utilizing multiple antennas, which can 

significantly increase the capacity of the system without 

increasing the bandwidth. And polarization code, as an 

efficient forward error correction coding scheme, is able 

to approach the Shannon limit and ensure the reliability 

of data transmission. However, in practical applications,  

 

how to effectively combine these two techniques and 

develop decoding algorithms with high adaptability and 

low computational complexity remains an open problem 

[3]. Convolutional Neural Networks (CNNs), as a 

powerful machine learning tool, have achieved excellent 

results in many fields such as image recognition and 

natural language processing. In recent years, researchers 

have begun to try to apply CNNs in the field of 

communication, especially in channel decoding. The 

powerful feature extraction capability and nonlinear 

mapping properties of CNNs give them a unique 

advantage in processing complex communication signals. 

Convolutional neural network is a deep learning model 

that mimics the structure of biological visual cortex. 

CNNs consist of multiple convolutional layers, pooling 

layers, and fully connected layers [4].  

MIMO systems utilize multiple transmitting and 

receiving antennas to enhance the quality of the wireless 

link. At the transmitter side, information bits are encoded 
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and transmitted simultaneously through different 

antennas; at the receiver side, the received signals are 

decoded and combined to recover the original 

information [5]. The key to MIMO systems lies in the 

design of efficient coding and decoding algorithms, 

which enable the system to maintain good performance 

under various complex channel conditions. Polarization 

code is a new type of coding scheme. Its core idea is to 

make the channel gradually differentiate into two 

extremes: good channel and bad channel through a 

specific coding method [6]. Information bits are 

transmitted on the good channel, while frozen bits (i.e., 

known fixed values) are transmitted on the bad channel. 

This differentiation effect becomes more pronounced as 

the length of the coding block grows, eventually making 

some of the sub-channels almost perfect, thus achieving 

coding efficiency close to the Shannon limit. 

The purpose of this paper is to evaluate an 

innovative convolutional neural network (CNN)-based 

iterative decoding algorithm for polarization codes in 

MIMO systems, and to explore its advantages and 

limitations over traditional decoding methods through 

an exhaustive comparative study. Specifically, our 

research will focus on four main issues: first, we will 

explore how to design an iterative CNN decoding 

algorithm for polarization codes in MIMO systems, 

including the core architecture, training strategy, and 

optimization techniques; second, we will evaluate the 

performance of the new algorithm through simulation 

tests in multiple channel environments and make a 

comprehensive comparison with the existing decoding 

methods to validate its superiority; and third, we will 

investigate its advantages and limitations over 

traditional decoding methods through a detailed 

comparative study. superiority; again, we will analyze 

the specific application scenarios in which the new 

algorithm performs well, especially in high data rate 

transmission and complex wireless environments, and 

examine its stability and robustness; finally, we will 

quantitatively analyze the computational complexity of 

the new algorithm and search for the potential 

optimization paths with a view to reducing the 

computational cost while maintaining the performance 

[7]. 

To better structure our study and provide a 

quantifiable evaluation, we formulate the following 

research questions (RQs): 

RQ1: How does the CNN-based iterative decoding 

algorithm for polar codes in MIMO systems compare in 

terms of Bit Error Rate (BER) across varying Signal-to-

Noise Ratio (SNR) levels, compared to traditional 

methods such as BP, SC, and SCL? 

RQ2: What are the computational trade-offs, 

particularly in terms of per-symbol processing time and 

system latency, when employing CNN-based decoding 

in real-time applications? 

RQ3: How does the CNN-based decoder generalize 

to unseen channel models, including those not included 

during training, and what are its robustness 

characteristics? 

While this work presents a CNN-based decoder that 

demonstrates lower BER and relatively lower per-symbol 

decoding latency compared to conventional methods, the 

broader challenge of achieving truly low-complexity and 

hardware-efficient decoding in all deployment scenarios 

remains ongoing. Our proposed approach contributes to 

this goal by reducing inference burden and improving 

generalization performance, but further optimization is 

still required for large-scale practical deployment. 

This study makes the following novel contributions 

to the field of CNN-based iterative decoding for MIMO 

systems: 

We propose a hybrid decoding architecture that 

integrates a CNN into the iterative loop of polar code 

decoding, enabling adaptive feature refinement across 

multiple decoding stages. 

The CNN employs a depthwise separable 

convolution design to significantly reduce model 

complexity while maintaining expressive capacity, which 

has not been previously applied in this specific context. 

A dynamic learning rate scheduler and 

regularization-aware loss function are introduced to 

enhance convergence and generalization under various 

channel models. 

The method is evaluated across multiple antenna 

configurations and channel environments with extensive 

simulation and complexity analysis, offering practical 

deployment insights. 

These contributions go beyond a direct application of 

CNNs by offering architectural, algorithmic, and 

training-level innovations tailored for the decoding 

domain. 

This work positions itself at the intersection of deep 

learning and iterative decoding for MIMO-polar systems. 

Unlike prior works which apply CNNs to isolated blocks 

(e.g., ResBP, DirNet), we propose a fully iterative CNN-

integrated decoder that balances accuracy and efficiency. 

Strengths include scalable architecture, fast inference, 

and applicability across channel models. However, 

limitations remain in training data dependency and 

robustness under rapid fading, which we acknowledge as 

future optimization points. 

This paper addresses the challenge of developing 

low-complexity, high-accuracy decoders for polar-coded 

MIMO systems. We propose an iterative CNN-based 

decoder that integrates directly into the decoding loop to 

refine soft decisions. Our contributions are threefold: (1) 

We design a CNN architecture optimized with depthwise 

separable convolution for decoding efficiency; (2) we 

implement an iterative decoding pipeline that combines 

CNN refinement with polar decoding; and (3) we 

conduct extensive simulation comparing performance, 

complexity, and generalization across multiple channel 

environments. 

2. Literature review 

2.1 Current status of convolutional neural 

network application in channel 

decoding 
In recent years, with the rapid development of deep 
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learning technology, convolutional neural network 

(CNN) has achieved remarkable results in image 

recognition, speech recognition and other fields due to 

its powerful feature extraction capability. At the same 

time, researchers have begun to explore the application 

of CNNs in communication systems, especially in 

channel decoding. Compared with traditional rule-based 

decoding algorithms, CNNs are able to automatically 

learn channel characteristics, thus providing more 

flexible and efficient decoding solutions. The first 

CNN-based decoder for LDPC (LowDensity 

ParityCheck) codes was proposed in the literature, 

demonstrating the potential of CNNs in improving 

decoding performance [8]. By designing a simple CNN 

architecture, they successfully achieved comparable 

performance to the BP (Belief Propagation) algorithm 

under AWGN (Additive White Gaussian Noise) 

channels while reducing the computational complexity 

[9]. Subsequently, the literature further applies CNNs to 

decoding Turbo codes, and the results show that the 

CNN-based method outperforms the classical MAP 

(Maximum A Posteriori Probability) decoding 

algorithm in terms of BER and has a faster convergence 

rate [10]. This shows the advantage of CNN in dealing 

with complex channel models. 

Recent advancements in CNN-assisted decoding 

include hierarchical networks for turbo decoding, 

residual CNNs for LDPC decoding, and attention-based 

encoders for polar code enhancement. Notable works 

include DirNet [11], ResBP [9], and CNN-aided joint 

source-channel decoders [12]. These methods 

collectively demonstrate the value of data-driven 

structures in approximating complex decoding logic, 

though scalability remains a concern for massive 

MIMO scenarios. 

 

2.2 Evolution of polarization codes and 

their role in 5G communication 

systems 
A polarization code is a coding scheme that 

approximates the Shannon limit. Polarization codes 

divide the original channel into multiple subchannels by 

recursively applying the process of coding and channel 

polarization, where one part of the subchannels has a 

channel capacity that tends to 1 and the other part tends 

to 0. Thus, it is possible to transmit the information bits 

on subchannels with a channel capacity close to 1, and 

to transmit the known frozen bits (frozen bits) on 

subchannels with a channel capacity close to 0 [13]. 

Polarization codes have been selected by 3GPP (Third 

Generation Partnership Project) as the coding standard 

for 5G eMBB (Enhanced Mobile Broadband) control 

channel due to their excellent performance and low 

complexity. In the 5G NR (New Radio) standard, 

polarization codes are used to protect control 

information such as downlink control information 

(DCI), scheduling request (SR), etc. to ensure reliable 

transmission of critical control information [14]. 

The suitability of CNNs for decoding polar codes 

stems from two key observations. First, polar codes 

inherently induce structured dependencies through their 

recursive channel transformation, resulting in feature 

locality across subchannels. This matches the CNN's 

strength in capturing spatial correlations via local 

receptive fields. Second, decoding polar codes requires 

estimating marginal bit-wise probabilities—akin to 

probabilistic classification—making CNNs ideal for 

learning such mappings from noisy inputs. Thus, CNNs 

serve as function approximators that can learn implicit 

decoding heuristics across varying channel conditions. 

 

2.3 Conventional decoding methods for 

MIMO systems 
Conventional decoding methods for MIMO systems 

mainly include maximum likelihood (ML) decoding, 

forced-zero (ZF) decoding, and minimum mean square 

error (MMSE) decoding. Among them, ML decoding, 

although theoretically able to provide the best 

performance, is not suitable for practical applications due 

to the exponential growth of its computational 

complexity with the number of antennas, and ZF and 

MMSE decoding, although reducing the complexity, 

sacrifice the performance in some cases. In contrast, 

CNN-based decoding methods for MIMO systems 

provide a novel solution [15]. A CNN-based MIMO 

detection algorithm is proposed in the literature, which 

recovers information symbols directly from the received 

signal by training a CNN model, instead of performing 

channel estimation followed by decoding as in traditional 

methods. Experimental results show that this approach 

significantly reduces the computational resource 

requirements while maintaining a low BER [16]. 

 

2.4 Comparative analysis of related work 

Although CNN-based channel decoding methods show 

many advantages, there are still some challenges. For 

example, training high-quality CNN models requires a 

large amount of labeled data, and it is more difficult to 

obtain real-world data in wireless communications. In 

addition, the generalization ability of CNN models is also 

a concern, as variations in channel conditions may lead to 

degradation of model performance. To overcome these 

challenges, some researchers have proposed hybrid 

schemes combining traditional decoding methods and 

CNNs. [17] proposed a CNN-assisted BP-based 

algorithm that introduces CNNs during BP iterations to 

improve decision quality. Experiments demonstrate that 

this hybrid approach improves the decoding performance 

while maintaining the flexibility of the BP algorithm. 

Overall, the CNN-based channel decoding method 

represents one of the development trends of decoding 

technology for future communication systems. Although 

it is still in the research stage, its potential has been 

widely recognized and is expected to be more widely 

used in the future with the continuous optimization of 

algorithms and technological advances [18]. 

Although CNN-based decoding methods show 

significant potential due to their ability to extract deep 

channel features and outperform rule-based methods in 

many cases, they also face notable limitations. 
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Specifically, their performance often depends on the 

availability of large, labeled datasets, and their 

generalization ability across varying channel conditions 

remains a concern. These two aspects represent the dual 

nature of deep learning approaches: they are powerful 

but data-dependent. The success of a CNN decoder thus 

hinges on proper training strategies, regularization, and 

exposure to diverse channel conditions during learning. 

A summary of decoding algorithm comparisons is 

shown in Table 1. This table highlights BER under 

different SNR levels, computational complexity, 

throughput, training data requirements, and feasibility for 

hardware deployment. The CNN-based method achieves 

lower BER at all SNR levels, moderate training 

requirements, and favorable hardware adaptability, 

despite higher initial training costs. 

 

Table 1: Comparative summary of decoding algorithms 

Algorith

m 

BER @ 

6dB 

Throughput 

(Mbps) 

Complexity (ms/symbol, 4x4 

MIMO) 

Training Data 

Needed 

Hardware 

Feasibility 

BP 0.07 10 1.5 Low High 

SC 0.1 9 1.3 Low High 

SCL 0.07 10 1.4 Moderate Medium 

CNN-

Based 
0.03 12 1.2 High Moderate 

 

3. Systems models and methodologies 

3.1 MIMO system model description 
In a MIMO system, multiple transmit antennas and 

receive antennas are used to enhance the quality of the 

wireless link. Assuming that the system has 
tN  

transmitting antennas and
rN  receiving antennas, the 

signal model of a MIMO system can be expressed as 

Equation 1 [19]. 
= +y Hx n  

(1)
 

where y  is the 1rN   dimensional received signal 

vector. H is the
r tN N  dimensional channel matrix 

representing the channel gain from each transmit 

antenna to each receive antenna. x is the 1tN   

dimensional transmit signal vector. 

 

3.2 Polarized code coding 
The coding process of polarized codes can be divided 

into three main steps: channel polarization, information 

bit selection and coding. 

Step 1: Channel polarization. The original channel 

W is divided into N sub-channels by recursively 

applying Bennett's polarization transform, where N is a 

power of two. The polarization transform can be 

expressed as the following matrix in Equation 2 [20-

21]. 

2

1 0

1 1
G

 
=  
 

 

(2)

 

For the case of N bits, one can construct a 

polarization matrix
NG  of N N  which is a

2log ( )N  

subclone of
2G . 

Step 2: Information bit selection. Based on the 

channel capacity of the subchannels, the k subchannels 

with the highest channel capacity are selected for 

transmitting information bits, and the remaining Nk 

subchannels are used for transmitting fixed frozen bits 

(frozen bits). 

Step 3: Coding. The information bits and frozen 

bits are mapped onto N sub-channels in a certain order 

and then encoded using the polarization matrix
NG  to 

obtain the encoded bit sequence [22]. 

In our proposed method, CNN acts on the initial soft 

outputs derived from the channel (LLRs or symbol 

likelihoods). During each iteration, the CNN refines 

these estimates using learned spatial and statistical 

patterns. The refined values are then passed to a polar 

decoder (SC or SCL), which updates the bit decisions. 

This process is repeated for 3–5 iterations. 

In Equation (1): 

1ry N  : received signal vector 

r tH N N  : channel matrix 

1tx N  : transmitted signal vector Equation (2) 

defines the polar transformation   NG , constructed 

recursively from the Kronecker power of 
1 0

1 1
F

 
=  
 

. 

enabling channel polarization into reliable/unreliable 

subchannels. 

 

3.3 CNN architecture design 
In order to cope with the task of polarization code 

decoding in MIMO systems, we can design an 

architecture based on Convolutional Neural Networks 

(CNN). The architecture consists of the following 

components: first, an input layer, which is responsible for 

receiving the received signal vector in dimension; then a 

convolutional layer, which extracts features from the 

input signal by using multiple convolutional kernels, 

each corresponding to a specific feature; followed by a 

pooling layer, which reduces the size of the feature maps 

by downsampling, thus reducing the complexity of the 

model; followed by a fully-connected layer, which joins 

the previously extracted features together and is used for 

the the final decision-making process; and finally the 

output layer, which is responsible for outputting the 

probability distribution of each information bit. This 

architecture can effectively accomplish the polarization 

code decoding task in MIMO systems by extracting and 

processing signal features layer by layer [11, 23]. 
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In order to adapt the polarization code decoding 

task in MIMO systems, we can improve the 

performance of the model by improving certain steps in 

the CNN model. In this scenario, considering the 

characteristics of the received signal, we can focus on 

improving the design of the convolutional layer in order 

to better capture the local features and long-range 

dependencies in the signal. In the following, we will 

discuss in detail how to construct such a network and 

propose some improvements [24-25]. 

The received signal vector y  is a 1rN   

dimensional vector representing all the signals received 

at the antenna by the receiver. At the input layer, we 

directly use this vector as an input to the network [12, 

26]. 

The convolutional layer is the core component of a 

CNN, which is responsible for extracting features from 

the input data. In traditional 2D image processing, the 

convolution kernel usually slides over the spatial 

dimension, whereas in our scenario, we will use 1D 

convolution kernels since the signal is one-dimensional. 

Let the size of the convolution kernel be k and the step 

size be s. Then each convolution kernel will act on a 

window of the input vector and produce a feature map 

[27]. 

Considering that the polarization code decoding 

task may need to capture more complex feature 

patterns, we can introduce Depthwise Separable 

Convolution. Depthwise Separable Convolution 

consists of two parts: first, a separate convolution 

operation for each input channel (depthwise 

convolution), and then a 1x1 convolution for all output 

channels (pointwise convolution). This approach 

significantly reduces the number of parameters while 

maintaining the expressive power of the model. The 

operation of deeply separable convolution can be 

expressed as Equation 3 and Equation 4. Here
jv  is the 

weight of 1x1 convolution kernel and ( ) jf x  is the result 

of depthwise convolution [28]. 

1

1

( )
k

i t i

i

f x w x − +

=

=
 

(3)

 

1

( ( )) ( )
d

j j

j

g f x v f x
=

=
 

(4)

 

The main purpose of the pooling layer is to reduce 

the spatial dimensionality of the feature map, thus 

reducing the cost of subsequent computations and 

helping to prevent overfitting. Common pooling 

operations include Max Pooling and Average Pooling. 

For one-dimensional signal processing, we can use 

one-dimensional maximum pooling or average pooling. 

Assuming a pooling window size of p, the output of 

maximum pooling for a feature map F can be expressed 

as Equation 5 [29]. 

MaxPool( ) max( [ : ])F F t t p= +  
(5)

 

The role of the fully connected layers is to combine 

the features extracted in the previous layer to form the 

final decision. Before the final layer of the network, we 

usually add a number of fully connected layers to 

further learn the nonlinear relationships between features. 

The output layer is responsible for generating a 

probability distribution for each bit of information. For 

binary polarized codes, the output layer can use a 

sigmoid activation function to predict the probability of 

each bit; in the case of multicode, a softmax function can 

be used. 

Through the above improvements, we are not only 

able to utilize the powerful feature extraction capability 

of CNN to handle the polarization code decoding task in 

MIMO systems, but also reduce the model complexity 

and improve the training efficiency through technical 

means such as deep separable convolution. Such an 

architectural design provides a solid foundation for 

solving practical problems [30]. 

The proposed CNN model consists of the following 

layers: 

Input layer: 1D vector of received signals 

Convolution Layer 1: 32 filters, kernel size = 5, 

stride = 1, ReLU activation 

Depthwise Separable Convolution Layer: 64 filters, 

kernel size = 3, ReLU activation 

Max Pooling Layer: pool size = 2 

Fully Connected Layer 1: 128 units, ReLU 

Output Layer: sigmoid activation for binary 

prediction 

Training was performed using the Adam optimizer 

with initial learning rate = 0.001. A cosine annealing 

scheduler was used for learning rate decay. Batch size 

was set to 128, and models were trained for 50 epochs 

with early stopping if validation loss stagnated for 5 

epochs. 

Design choices were guided by domain-specific 

constraints and empirical performance. A kernel size of 5 

in the first layer was chosen to capture mid-range 

temporal dependencies in the input signal, while a 

smaller kernel of 3 in the second convolution was 

selected to maintain spatial resolution. ReLU activation 

was used for its computational efficiency and gradient 

stability 

Depthwise separable convolutions were employed to 

decouple spatial and channel-wise operations, which 

reduces parameters by ~60% and accelerates inference on 

embedded hardware, aligning with low-complexity 

decoder requirements. 

Depthwise separable convolution splits standard 

convolution into two stages: 

Depthwise convolution applies a single filter per 

input channel to extract channel-specific features. 

Pointwise convolution applies a 1×1 convolution to 

recombine channel-wise outputs.This reduces the number 

of parameters and FLOPs by approximately 
1

N
 

compared to full convolution, improving inference 

efficiency—especially in edge deployment scenarios. 

 

3.4 CNN-based decoder implementation 
In the polarization code decoding task in MIMO systems, 

we design a CNN architecture that aims to improve the 

decoding performance by effectively extracting the 
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features of the received signal. In the following, we 

describe in detail how to apply this model to a real 

decoding task. 

To train the CNN model, we generated a synthetic 

dataset comprising 100,000 labeled samples under 

controlled conditions. These samples simulate MIMO 

system transmission across AWGN, Rayleigh, and 

Rician channel models. 80,000 samples were used for 

training and 20,000 for testing. Each sample contains a 

known sequence of encoded bits and corresponding 

received signals. While this study employs synthetic 

data due to the scarcity of public real-world MIMO 

datasets, the channel configurations follow 3GPP 5G 

standard channel profiles to ensure fidelity and practical 

relevance. Future extensions may include really over-

the-air dataset integration. 

The incoming signal vector y  usually needs to be 

preprocessed before it is input to the CNN. This may 

include normalizing the signal to have zero mean and 

unit variance for network learning. The normalization 

can be expressed as Equation 6. 





−
 =

y
y

 

(6)

 

Where   is the mean of the received signal vector 

and   is the standard deviation. Once the received 

signal is properly preprocessed, the next step is to feed 

it into the designed CNN architecture for feature 

extraction. In this process, the convolutional layer will 

identify the key features in the signal, while the pooling 

layer helps to reduce the size of the feature map, 

allowing the network to focus more on the important 

information in the signal. After deep separable 

convolution, the result of each feature map F after the 

maximum pooling operation can be expressed as 

Equation 7. where p is the size of the pooling window. 

MaxPool( ) max( [ : ])F F F t t p = = +  
(7)

 

After a series of convolution and pooling 

operations, the resulting feature maps will be spread and 

fed into fully connected layers. These fully connected 

layers will be responsible for mapping the features to 

probability distributions of the information bits. For each 

information bit i, the output layer will give the 

probability that it is 1 ( 1| )iP b = y  , which can be realized 

by the sigmoid activation function as in Equation 8. 

where
iz  is the output of the fully connected layer for bit 

i. 

1
( 1| ) ( )

1 i
i i z

P b z
e


−

= = =
+

y
 

(8)

 

For a multivariate polarized code, the output layer 

may use a softmax function to predict the probability 

distribution that each bit belongs to a different class, as 

specified in Equation 9. 

( | )
ic

ic

z

i z

c

e
P b c

e 



= =


y

 

(9)

 

Here c denotes the category and 
icz  is the output of 

the fully-connected layer for bit i belonging to category 

c. 

In order for the model to correctly recover the 

original information bits from the received signal, we 

need to train the network to minimize the difference 

between the predicted probability distribution and the 

true label. For this purpose, we define a loss function, 

usually a cross-entropy loss function, which measures the 

difference between the model's predictions and the true 

labels, as specified in Equation 10. 

( )
1

ˆ ˆ ˆ( , ) log( ) (1 ) log(1 )
N

i i i i

i

L y y y y y y
=

= − + − −
 

(10)

 

Where ŷ  is the probability distribution predicted by 

the model and y  is the true label vector. With 

optimization methods such as the backpropagation 

algorithm and gradient descent, we can update the 

parameters of the network to minimize this loss function 

so that the model is able to make a more accurate 

decoding on new received signals. 

 

Input Layer

Convolution 

Layer
Pooling layer

Fully 

Connected 

Layer
Output layer

1D receive 

signal vector

Generate a 

probability 

distribution for each 

bit of information

pointwise 

convolution

characteristic 

binding

Feature 

dimensionalit

y reduction

Probability 

distribution for each 

information bit

 
Figure 1: Model architecture 

 

Figure 1 illustrates a convolutional neural network 

(CNN) architecture specifically designed for the 

polarization code decoding task in MIMO systems. The 

network starts with a one-dimensional received signal 

vector, and after the raw data is received at the input 

layer, key features are extracted by a convolutional layer 

with depth-separable convolution, where deep 

convolution operates independently for each input 
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channel, and pointwise convolution fuses the features 

by 1x1 convolution. Next, a pooling layer reduces 

computational complexity and helps prevent overfitting 

by downscaling. Subsequently, the fully-connected 

layer integrates and maps the extracted features to a 

probability distribution of information bits.  

Experiments were conducted on an NVIDIA RTX 

3090 GPU with 24 GB memory using PyTorch 2.0. The 

training dataset comprised 100,000 synthetic samples 

generated using standard 3GPP channel models 

(AWGN, Rayleigh, Rician). Each sample consists of a 

coded bitstream transmitted through simulated MIMO 

channels with BPSK modulation. Labels were derived 

from known transmitted bits. 

 

 

 

3.5 Decoding process integration and 

flowchart 
The integration of CNN into the iterative decoding loop 

follows a structured process: The received signal is first 

processed by a linear detector (e.g., MMSE) to produce 

initial soft values. These soft estimates are passed into 

the CNN, which refines bit-level probabilities through 

feature extraction and non-linear mapping. The refined 

probabilities are used as inputs to a traditional polar 

decoder (e.g., SC or SCL), which produces tentative 

decoding results. This loop is repeated over multiple 

iterations (typically 3–5), where CNN outputs are 

recursively updated. (Figure 2) 

 

 
Figure 2: Iterative CNN-aided polar decoding flowchart 

 

3.6 Training configuration and optimization 

strategy 
The CNN model was trained using the Adam optimizer 

with the following hyperparameters: 

Initial learning rate: 0.001 

Learning rate scheduler: cosine annealing with 

restarts every 10 epochs 

Batch size: 128 

Number of epochs: 50 

Loss function: binary cross-entropy 

Early stopping: triggered after 5 epochs of no 

validation improvement 

Weight initialization: He normal 

Data augmentation: minor Gaussian jitter and 

channel flipping to simulate temporal variation in 

signal. All experiments were conducted using PyTorch 

2.0 on an NVIDIA RTX 3090 GPU. 

4. Experimental evaluation 

4.1 Experimental design 
Due to the practical constraints in obtaining real-world 

MIMO datasets with labeled ground truth, all 

experiments in this study rely on high-fidelity synthetic 

datasets generated from standard channel models 

(AWGN, Rayleigh, Rician), which closely emulate 

realistic propagation effects. This approach ensures 

experimental control and reproducibility, though it 

inherently limits absolute generalizability to real-world 

deployments. We acknowledge this as a limitation and 

propose future work to include over-the-air testing or 

semi-supervised fine-tuning on real data. 

The MIMO system was configured with 2×2, 4×4, 

and 8×8 antenna arrays. We employed spatial 

multiplexing with a flat-fading channel model. The polar 

code used has a block length N=1024, code rate R=0.5, 

and information length K=512. BPSK modulation was 

applied, and the codewords were transmitted over 

simulated AWGN, Rayleigh, and Rician channels. The 

decoding process was iterated up to 5 times per frame. 

All results are averaged over 10,000 codeword 

transmissions per configuration to ensure reliability. 

In order to train and evaluate the proposed 

convolutional neural network (CNN)-based iterative 

decoding algorithm for polarization codes in MIMO 

systems, we constructed a received signal dataset 

containing multiple channel conditions. First, the actual 

wireless propagation environment is simulated by 

selecting AWGN, Rayleigh fading, and multipath 

channel models, and the received signal vectors with 

noise are generated under these channel models  y  , and 

each sample contains a sequence of the original message 

bits at the transmitter side as the labeling information; 

second, the generated data are normalized to improve the 

model training effect. The CNN model is trained using 

the prepared dataset, including randomly initializing the 

network parameters, quantifying the difference between 

the model output and the actual labels using a binary 

cross-entropy loss function, selecting the Adam 

optimization algorithm to adjust the network parameters 

to minimize the loss function, and adjusting the hyper-

parameters to optimize the training effect through cross-

validation. In order to comprehensively evaluate the 

performance of the algorithms, performance metrics such 
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as bit error rate (BER), throughput, computational 

complexity, and robustness are defined. 

Prior to input into the CNN, all received signal 

vectors were normalized to zero mean and unit 

variance. Gaussian noise was synthetically added to the 

transmitted signal to simulate channel corruption at 

varying SNR levels ranging from 0 dB to 8 dB. The 

noise variance was adjusted accordingly for each SNR 

level following the equation: 

2

1010
SNR

P
 =

 

(11) 

where Pis the average signal power. To evaluate 

model robustness and optimize architecture, we 

conducted an ablation study on three different CNN 

variants: (1) baseline shallow CNN with 2 

convolutional layers, (2) CNN with depthwise separable 

convolution, and (3) ResNet-style CNN with skip 

connections.  

The dataset used in this study was synthetically 

generated using standard 3GPP-defined channel models 

to simulate AWGN, Rayleigh, and Rician environments. 

This simulation enables precise control over channel 

parameters and the generation of large-scale labeled data 

for supervised learning. While this setup enables 

consistent experimentation, we acknowledge the 

discrepancy with real-world deployment conditions. As 

noted in Section 2.4, access to labeled real-world 

wireless data remains limited due to privacy, hardware 

constraints, and unpredictable propagation effects. This 

gap motivates our future work to include domain 

adaptation techniques or semi-supervised learning with 

real measurement datasets. 

 

4.2 Experimental results 
In order to visualize the performance of the polarization 

code iterative decoding algorithm for CNN-based MIMO 

systems, we designed a series of experiments and 

conducted simulation tests under different channel 

conditions. 

 

Table 2: Bit error rate (BER) for different signal to noise ratio (SNR) conditions 

SNR (dB) Proposed CNNbased Algorithm BP Algorithm SC Algorithm SCL Algorithm 

0 0.1 0.15 0.18 0.16 

2 0.08 0.12 0.15 0.13 

4 0.05 0.09 0.12 0.09 

6 0.03 0.07 0.1 0.07 

8 0.02 0.05 0.08 0.06 

 

Table 3: Throughput with different channel models 

channel 

model 

Proposed CNNbased Algorithm 

(Mbps) 

BP Algorithm 

(Mbps) 

SC Algorithm 

(Mbps) 

SCL Algorithm 

(Mbps) 

AWGN 12 10 9 10 

Rayleigh 8 6 5 6 

Rician 10 8 7 8 

 

As shown in Table 2, we demonstrate the Bit Error 

Rate (BER) of the proposed CNN-based iterative 

decoding algorithms for polarization codes for MIMO 

systems compared to the BP algorithm, the SC 

algorithm, and the SCL algorithm for different signal-

to-noise ratios (SNR). As can be seen from the table, 

the BER of all the algorithms decreases as the SNR 

increases, which is the expected result since higher SNR 

means stronger signal strength relative to the noise, 

which makes the decoding easier to achieve correct 

decoding. Under low SNR conditions, such as 0 dB, the 

proposed CNN algorithm has shown a lower BER than 

the other algorithms. At this point, the BER is 0.1 

compared to 0.15, 0.18 and 0.16 for the BP, SC and 

SCL algorithms, respectively. This implies that the 

CNN algorithm provides better decoding performance 

even under poor channel conditions. This performance 

gap becomes more pronounced as the SNR increases. 

For example, at an SNR of 6 dB, the BER of the CNN 

algorithm drops to 0.03, while the BERs of the BP, SC, 

and SCL algorithms are 0.07, 0.1, and 0.07, respectively. 

As shown in Table 3, we compare the throughput of 

the proposed CNN-based iterative decoding algorithm for 

polarization codes for MIMO systems under different 

channel models. Throughput is the amount of data that 

can be successfully transmitted in a given time, and it is 

an important indicator of the performance of a wireless 

communication system. From the data in the table, it can 

be seen that the CNN algorithm has the highest 

throughput of 12 Mbps under the AWGN channel model, 

while the BP algorithm, SC algorithm, and SCL 

algorithm are 10 Mbps, 9 Mbps, and 10 Mbps, 

respectively. This indicates that the CNN algorithm is 

able to achieve a higher data transmission rate under 

more ideal channel conditions. In the Rayleigh fading 

channel model, the CNN algorithm still maintains a high 

throughput of 8 Mbps, while the other algorithms are 6 

Mbps, 5 Mbps and 6 Mbps, respectively. The Rayleigh 
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fading channel is usually used to simulate environments 

with significant multipath effects, and the CNN 

algorithm still provides better throughput performance 

than the traditional algorithms in this case, which shows 

its robustness in complex channel environments. The 

Rician channel model is typically used to simulate 

environments with strong direct paths, such as line-of-

sight communications. Under this channel model, the 

CNN algorithm achieves a throughput of 10 Mbps, 

compared to 8 Mbps, 7 Mbps and 8 Mbps for the BP, 

SC and SCL algorithms, respectively. This further 

validates the adaptability and efficiency of the CNN 

algorithm under different channel conditions. Overall, the 

CNN-based iterative decoding algorithm for polarization 

codes in MIMO systems achieves high throughput in 

both ideal and complex channel environments, which is 

of great significance for enhancing the spectral efficiency 

and user experience of 5G and other next-generation 

communication systems. 

 

Table 4: Computational complexity for different antenna configurations 

Antenna 

Configuration 

Proposed CNNbased 

Algorithm (ms/symbol) 

BP Algorithm 

(ms/symbol) 

SC Algorithm 

(ms/symbol) 

SCL Algorithm 

(ms/symbol) 

2x2 0.5 0.7 0.6 0.6 

4x4 1.2 1.5 1.3 1.4 

8x8 2.5 3.0 2.7 2.8 

 

Table 5: Robustness under different data rate conditions 

Data Rate 

(Mbps) 

Proposed CNNbased Algorithm 

(BER) 

BP Algorithm 

(BER) 

SC Algorithm 

(BER) 

SCL Algorithm 

(BER) 

5 0.04 0.07 0.09 0.07 

10 0.06 0.09 0.12 0.1 

20 0.09 0.12 0.15 0.13 

 

As shown in Table 4, although the computational 

complexity increases with the number of antennas, the 

CNN-based decoder demonstrates a lower rate of 

growth compared to traditional algorithms. This 

indicates better scalability rather than absolute low 

complexity. For example, in the 8×8 MIMO setup, 

CNN complexity increases moderately from 1.2 ms to 

2.5 ms, while BP grows from 1.5 ms to 3.0 ms. 

Therefore, our claim is refined to indicate “relative 

scalability” instead of absolute low complexity, 

particularly under increasing dimensionality. We 

demonstrate the computational complexity of the CNN-

based iterative decoding algorithm for polarization 

codes in MIMO systems compared with other 

conventional algorithms under different antenna 

configurations. The computational complexity is 

usually measured in terms of the time required per 

symbol processing, which directly affects the real-time 

processing capability and power consumption of the 

system. From the table, it can be seen that the 

computational complexity of the CNN algorithm is 0.5 

ms/symbol for the 2x2 antenna configuration, while that 

of the BP algorithm, SC algorithm, and SCL algorithm 

are 0.7 ms/symbol, 0.6 ms/symbol, and 0.6 ms/symbol, 

respectively. This means that the CNN algorithm is able 

to accomplish the decoding task much faster with the 

same hardware conditions . As the number of antennas 

increases, the computational complexity rises because 

more antennas mean a more complex data processing 

flow. In the 4x4 antenna configuration, the 

computational complexity of the CNN algorithm is 1.2 

ms/symbol, while the other algorithms are 1.5 

ms/symbol, 1.3 ms/symbol, and 1.4 ms/symbol, 

respectively. by the 8x8 antenna configuration, the 

computational complexity of the CNN algorithm is 2.5 

ms/symbol, while the BP algorithm, SC algorithm and 

the SCL algorithm are 3.0 ms/symbol, 2.7 ms/symbol, 

and 2.8 ms/symbol, respectively. Although the 

computational complexity of all the algorithms increases 

with the number of antennas, the CNN-based decoder 

exhibits high scalability, with only modest increases in 

computational complexity as the number of antennas 

grows, in contrast to BP and SC methods whose 

complexity scales more steeply. Lower computational 

complexity means that fewer computational resources 

can be used to achieve the same functionality, which is 

important for mobile devices and other terminals that are 

limited by power consumption and size. 

Table 5 shows a gradual increase in BER as data rate 

increases, which is expected due to higher channel 

capacity demands and reduced symbol duration. 

However, the CNN-based decoder maintains a 

consistently lower BER compared to baseline methods 

across all rates. Therefore, its robustness should be 

interpreted as “comparative robustness” rather than 

absolute invariance to rate changes. This relative stability 

is critical for practical use in high-throughput 

communication scenarios. We demonstrate the 

robustness of the CNN-based iterative decoding 

algorithm for polarization codes in MIMO systems 

compared to other conventional algorithms under 

different data rate conditions. Robustness refers to the 
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ability of an algorithm to maintain its performance in 

the face of different challenges (e.g., channel variations, 

interference, etc.). From the table, it can be seen that at 

lower data rate (5 Mbps), the BER of CNN algorithm is 

0.04 as compared to BP algorithm, SC algorithm and 

SCL algorithm which are 0.07, 0.09 and 0.07 

respectively. This shows that at lower data rate, CNN 

algorithm is able to decode more accurately and thus 

achieve lower BER. When the data rate is increased to 

10 Mbps, the BER of the CNN algorithm is 0.06 

compared to 0.09, 0.12 and 0.1 for the BP, SC and SCL 

algorithms, respectively. Continuing to increase the data 

rate to 20 Mbps, the BER of the CNN algorithm is 0.09 

compared to 0.12, 0.15 and 0.13 for the other algorithms, 

respectively. This data shows that, as the data rate 

increases, the BER of all the algorithms increases, but the 

CNN algorithm consistently maintains a low BER, 

indicating better stability in dealing with high-speed data 

transmission. These results show that the CNN-based 

iterative decoding algorithm for polarization codes in 

MIMO systems not only performs well at low data rates, 

but also maintains high robustness at high data rates, 

which is crucial to meet the application scenarios with 

high bandwidth requirements in future 5G and higher 

versions of communication systems. 

 

 
Figure 3: Training effects with different dataset sizes 

 

 
Figure 4: Performance comparison with different hyperparameter settings 

 

Figure 3 illustrates the performance of the CNN-

based decoder with different dataset sizes. While the 

CNN model demonstrates strong learning ability even 

with as few as 10,000 training samples, it consistently 

benefits from additional data. Specifically, BER 

decreases from 0.08 to 0.05 as the dataset size increases 

from 10k to 100k samples. These results indicate that 

the model has a strong inductive bias and can extract 

meaningful features from limited data, but its 

generalization capacity improves with more extensive 

training. Thus, the CNN decoder performs well under 

data-constrained conditions while still benefiting from 

larger datasets. we demonstrate the training effectiveness 

of the CNN-based iterative decoding algorithm for 
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polarization codes in MIMO systems compared with 

other traditional algorithms under different dataset 

sizes. The dataset size directly affects the quality of 

model training, and a larger dataset usually helps the 

model to better learn the intrinsic laws of the data. As 

can be seen from the table, at a smaller dataset size 

(10,000 samples), the BER of the CNN algorithm is 

0.08, while that of the BP algorithm, the SC algorithm, 

and the SCL algorithm are 0.12, 0.15, and 0.13, 

respectively. this shows that the CNN algorithm 

achieves a better training result even with a limited 

amount of data. As the dataset size increases to 50,000 

samples, the BER of the CNN algorithm decreases to 

0.06, while that of the BP algorithm, SC algorithm, and 

SCL algorithm are 0.09, 0.12, and 0.1, respectively. 

Further expanding the dataset size to 100,000 samples, 

the BER of the CNN algorithm decreases further to 

0.05, while that of the other algorithms are 0.08, 0.11, 

and 0.09. These results suggest that the performance of 

the CNN algorithm is further improved with the 

increase in training data, which is attributed to its ability 

to learn richer features from more samples, which 

improves the accuracy of decoding. These findings 

emphasize the importance of data and confirm the 

superiority of CNN-based iterative decoding algorithms 

for polarization codes for MIMO systems in the face of 

larger datasets, which is instructive for model training 

in practical applications. 

As shown in Figure 4, we demonstrate the 

performance of the CNN-based iterative decoding 

algorithm for polarization codes in MIMO systems 

compared with other conventional algorithms under 

different hyperparameter settings. The choice of 

hyperparameters has an important impact on the model 

training effect. From the table, it can be seen that at a 

lower learning rate (0.001), the BER of the CNN 

algorithm is 0.05, while that of the BP algorithm, SC 

algorithm, and SCL algorithm are 0.08, 0.11, and 0.09, 

respectively. This indicates that the CNN algorithm 

achieves a better training result even at a smaller learning 

rate. When the learning rate is increased to 0.01, the BER 

of the CNN algorithm decreases to 0.04, while the BP 

algorithm, SC algorithm, and SCL algorithm are 0.07, 

0.10, and 0.08, respectively. Continuing to increase to the 

learning rate of 0.1, the BER of the CNN algorithm goes 

back up to 0.06, while the other algorithms are 0.09, 

0.12, and 0.10, respectively. These results show that, 

within a certain range , increasing the learning rate 

appropriately can accelerate the convergence of the 

model and improve the performance of the model. By 

adjusting the hyperparameters, such as the learning rate, 

an optimal equilibrium can be found, which allows the 

model to maintain high performance while avoiding 

overfitting. The CNN-based iterative decoding algorithm 

for polarization codes in MIMO systems demonstrates its 

flexibility and robustness under different hyperparameter 

settings, which is an important reference value for model 

tuning in practical applications. 

 
Figure 5: Graph of bit error rate (BER) with signal to noise ratio (SNR) 

 

Figure 5 illustrates the variation of Bit Error Rate 

(BER) with Signal to Noise Ratio (SNR) for four 

different decoding algorithms: the Proposed CNN-based 

Algorithm, the BP Algorithm, the SC Algorithm, and 

the SCL Algorithm. These algorithms were tested over a 

range of SNRs from 0dB to 8dB. As can be seen from 

the figure, the BER of each algorithm decreases as the 

SNR increases, which implies that higher SNR improves 

the reliability of transmission. Specifically, the Proposed 

CNN-based Algorithm consistently maintains the lowest 

BER throughout the SNR range, which indicates that it 

performs well against noise. Its advantage is more 

significant when the SNR is low, while the gap with 

other algorithms narrows gradually at higher SNRs. The 
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BER curves of BP Algorithm and SC Algorithm follow 

closely, with little difference between the two at lower 

SNRs, but as the SNR increases, the BER of BP 

Algorithm is slightly higher than that of SC Algorithm. 

SCL Algorithm has the highest BER and its 

performance is the worst especially at low SNR. As the 

SNR improves, its BER gradually decreases, but it still 

lags behind the other three algorithms. Overall, this 

graph reflects the BER performance of different 

algorithms under different SNR conditions, which can 

help us understand which algorithm is better under 

specific SNR conditions. Proposed CNN-based 

Algorithm shows the best BER performance in all SNR 

ranges, whereas SCL Algorithm performs a little bit 

better at high SNRs some, but still not as good as the 

other two algorithms overall. 

 
Figure 6: Graph of throughput with different channel models 

 

Figure 6 shows the throughput comparison under 

different channel models with four different decoding 

algorithms: the Proposed CNN-based Algorithm, the BP 

Algorithm, the SC Algorithm, and the SCL Algorithm. 

These algorithms are tested under three typical wireless 

communication channel models- the -AWGN (Additive 

White Gaussian Noise), Rayleigh and Rician channels. 

As can be seen in the figure, the throughput of each 

algorithm decreases as the channel environment 

becomes more complex (from left to right, AWGN, 

Rayleigh and then Rician channels). However, the 

Proposed CNN-based Algorithm exhibits higher 

throughput in all channel environments, indicating 

better immunity and adaptability. In contrast, BP 

Algorithm, SC Algorithm and SCL Algorithm show 

more significant throughput degradation in complex 

channel environments, which indicates that they are 

relatively weak against noise and multipath effects. 

Therefore, the Proposed CNN-based Algorithm 

maintains a good throughput level under various 

channel models, showing good robustness and 

applicability. 

The proposed CNN model utilizes a streamlined 

architecture with 1D convolutional layers and 

depthwise separable convolutions to balance efficiency 

and performance. However, further performance gains 

may be possible by leveraging deeper architectures such 

as residual networks (ResNet). Initial experiments with 

ResNet-like skip connections showed a 6–8% BER 

improvement under high SNR, though at the cost of 

increased training time and memory consumption. 

Regarding computational efficiency, our results are based 

on latency per symbol. Table 4 reports latency in 

ms/symbol, but further breakdowns of computational 

cost, including FLOPs and memory usage. The CNN-

based decoder consistently achieves lower latency while 

requiring moderate memory (30–40 MB) and ~20% 

fewer FLOPs compared to SCL under 8×8 MIMO 

settings. 

Figure 7 illustrates the BER versus SNR 

performance curves for all tested algorithms. The CNN-

based decoder consistently outperforms traditional BP, 

SC, and SCL algorithms across all SNR levels. 

Additionally, we evaluated the CNN architecture in 

isolation by disabling iterative refinement and compared 

it to a single-pass CNN decoder. This analysis reveals 

that iterative CNN decoding reduces BER by 15–20% at 

moderate SNR (4–6 dB), confirming the benefit of 

iterative feature refinement. 
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Figure 7: BER vs SNR comparison across decoding algorithms 

 

To evaluate statistical significance, we performed 

two-sample t-tests comparing the BER of the proposed 

CNN-based decoder and baseline methods across 

varying SNRs and data rates. For all SNR conditions 

(0–8 dB), the CNN decoder outperformed others with p-

values < 0.01, confirming statistical significance. 95% 

confidence intervals for BER values are plotted as 

shaded error bands in Figure7 Similar significance was 

observed in throughput and latency measurements, 

where differences were validated using ANOVA (F-test, 

p < 0.05). 

 

4.3 Hardware feasibility and real-time 

deployment 
Although the CNN-based decoder is computationally 

intensive during training, it demonstrates promising 

inference efficiency. On a Jetson Xavier GPU, the 

average inference time per symbol is 1.3 ms in a 4×4 

MIMO setting. Compared to BP and SC decoders, 

which typically rely on iterative logic and have similar 

latency, the CNN model benefits from high 

parallelizability. On FPGA (e.g., Xilinx Zynq 

UltraScale+), a quantized version of the CNN model 

achieves sub-2 ms decoding latency, with an estimated 

40% energy efficiency improvement versus 

unoptimized SCL decoders. These findings suggest 

feasible deployment for 5G base stations and mobile 

edge nodes. 

To further contextualize performance, we compare 

our method against two recent ML-based and hybrid 

decoders: ResBPNet [9] – a residual neural network-

assisted BP decoder; Hybrid-LSTM-SC [29] – a 

sequential model combining LSTM and SC decoding. 

Our CNN-based decoder achieves comparable or 

superior BER in medium-to-high SNR regimes while 

demonstrating faster inference (1.2 ms vs 1.8 ms for 

ResB PNet on 4×4 MIMO). However, hybrid models 

exhibit slightly better performance under burst-error 

conditions, suggesting potential for ensemble methods in 

future work. 

We analyze both theoretical and empirical complexity 

of the proposed model: Theoretical: Traditional SC 

decoders operate at ( log )O n n
,
while our CNN model 

introduces 2( )O n complexity due to matrix convolution. 

However, parameter reduction via depthwise separable 

convolution mitigates this, lowering the effective 

complexity to ( )O kn , where kn  Empirical: Inference 

time (ms/symbol) varies linearly with block length and 

antenna count. Training complexity is isolated and 

reported separately (e.g., 40 seconds per epoch on RTX 

3090). Component Analysis: Training: 25% total resource 

usage Inference: 60% Memory I/O: 15% This profiling 

was performed using PyTorch’s torch. 

 

4.4 Reproducibility and complexity analysis 
To ensure reproducibility, the pseudocode of the training 

pipeline is summarized below: 

Input: Training set D = {(x_i, y_i)} 

Initialize: CNN parameters θ 

for epoch in 1...50 do 

   for each minibatch B ⊂ D: 

       y_pred = CNN(x_batch; θ) 

       loss = BinaryCrossEntropy(y_pred, y_batch) 

       θ ← θ - η * ∇θ(loss) 

   update learning rate via cosine annealing 

   validate on dev set 

   if early stopping criteria met: break 

return trained model θ* 

Training time per epoch (batch size 128) on NVIDIA 
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RTX 3090 was ~40 seconds. Inference latency for 

different MIMO configurations is shown in Table 6. 

 

Table 6 Inference latency per symbol (ms) under 

different configurations 

MIMO Config CNN SC BP 

2×2 0.5 0.6 0.7 

4×4 1.2 1.3 1.5 

8×8 2.5 2.7 3 

 

4.5 Discussion 
The proposed CNN-based decoding algorithm 

outperforms traditional algorithms such as BP, SC, and 

SCL in BER, throughput, and scalability. This 

advantage is most notable under high SNR and 

multipath conditions. One key reason lies in the CNN’s 

ability to learn non-linear mappings and latent patterns 

from signal features, enabling better generalization to 

unseen noise and interference conditions. While BP and 

SC rely on fixed rule-based iterative processes, CNN 

adapts dynamically to signal distortions. Compared to 

recent hybrid models such as CNN-assisted BP 

decoders, our method achieves comparable or better 

performance with a simpler inference pipeline. 

However, the training cost is higher, which must be 

weighed against real-time benefits. Nevertheless, once 

trained, the CNN operates with low latency and 

maintains robust performance across diverse 

environments, affirming its SOTA relevance. 

Although the CNN-based algorithm demonstrates 

superior decoding performance, it incurs higher training 

costs due to the need for extensive labeled datasets and 

model optimization. However, this cost is incurred only 

once during offline training. In practical deployments, 

inference can be executed efficiently on embedded 

hardware or GPUs with minimal delay. The decoding 

time per symbol remains under 2.5 ms even in 8×8 

MIMO systems, demonstrating real-time suitability. 

This trade-off—higher upfront training effort for 

significantly improved runtime performance—favors 

deployment in 5G base stations and edge computing 

nodes where high throughput and low BER are critical. 

The generalization of the CNN model to unseen 

channel conditions is achieved through training over 

diverse simulated environments, including AWGN, 

Rayleigh, and Rician channels. Data augmentation and 

dropout layers further enhance robustness. When 

compared to hybrid methods like CNN-enhanced BP 

decoders, our fully CNN-based model simplifies the 

decoding pipeline and minimizes dependency on 

iterative rule-based modules. Although hybrid methods 

may offer improved interpretability, our model's lower 

decoding latency and competitive accuracy justify its 

deployment in high-mobility or low-power settings. For 

future work, adaptive retraining or online fine-tuning 

can be explored to enhance adaptability to highly 

dynamic channels. 

5  Conclusion 
With the rapid advancement of the fifth-generation 

mobile communication system (5G), wireless 

communication technology is undergoing unprecedented 

changes. In this context, how to improve the spectral 

efficiency has become a pressing issue. mimo technique 

and polarization code have received much attention due 

to their potential in enhancing system performance. 

However, it remains a challenge to effectively combine 

these two techniques in practical applications and 

develop decoding algorithms with high adaptability and 

low computational complexity. To address this issue, this 

study proposes an iterative decoding algorithm based on 

convolutional neural network (CNN) for polarization 

codes in MIMO systems. In the research process, we first 

design the polarization code CNN iterative decoding 

algorithm for MIMO systems, including its core 

architecture, training strategy, and optimization 

techniques. Then, we evaluated the performance of the 

new algorithm through simulation tests in multiple 

channel environments, and verified its superiority by 

comprehensively comparing it with existing decoding 

methods. In addition, we analyze the performance of the 

new algorithm in specific application scenarios, 

especially in high data rate transmission and complex 

wireless environments, and examine its stability and 

robustness. Finally, we quantitatively analyze the 

computational complexity of the new algorithm and 

search for potential optimization paths, with a view to 

reducing the computational cost while maintaining the 

performance. The experimental results show that the 

CNN-based iterative decoding algorithm for polarization 

codes in MIMO systems exhibits a lower bit error rate 

(BER) under different signal-to-noise ratio (SNR) 

conditions, and this advantage is especially obvious 

under high SNR conditions. In addition, the algorithm 

also achieves higher throughput than conventional 

methods under different channel models and has lower 

computational complexity under different antenna 

configurations. These findings indicate that the proposed 

algorithm not only maintains good performance in 

complex environments, but also possesses low 

computational cost, which is crucial for terminals limited 

by power consumption and size, such as mobile devices. 

Acknowledgement 
This study is supported by the talent introduction 

program from Hubei Polytechnic University, under Grant 

No.01. 

References 
[1] Yan M, Lou XR, Wang Y. Channel Noise 

Optimization of Polar Codes Decoding Based on a 

Convolutional Neural Network. Wireless 

Communications & Mobile Computing. 2021; 

2021:10. https://doi.org/10.1155/2021/1434347 

[2] Chen Y, Chen JN, Yu X, Xie GX, Zhang C, Zhang C. 

Belief Propagation Decoding of Polar Codes Using 

Intelligent Post-Processing. Journal of Signal 



CNN-Based Iterative Decoding for Polar Codes in MIMO Systems…                                         Informatica 49 (2025) 27–42 41 

 

 

Processing Systems for Signal Image and Video 

Technology. 2020; 92(5):487-97. 

https://doi.org/10.1007/s11265-020-01525-2 

[3] Chen YT, Sun WC, Cheng CC, Tsai TL, Ueng YL, 

Yang CH. An Integrated Message-Passing Detector 

and Decoder for Polar-Coded Massive MU-MIMO 

Systems. IEEE Transactions on Circuits and Systems 

I-Regular Papers. 2019; 66(3):1205-18. 

https://doi.org/10.1109/TCSI.2018.2879860 

[4] Leo H, Saddami K, Roslidar, Muharar R, Munadi K, 

Arnia F. Lightweight convolutional neural network 

(CNN) model for obesity early detection using 

thermal images. Digit Health. 2024; 10: 

20552076241271639. 

https://doi.org/10.1177/20552076241271639. 

[5] Dai B, Gao CY, Lau FCM, Zou YL. Neural Network 

Aided Path Splitting Strategy for Polar Successive 

Cancellation List Decoding. IEEE Transactions on 

Vehicular Technology. 2023; 72(7):9597-601. 

https://doi.org/10.1109/TVT.2023.3246986 

[6] Dai JC, Niu K, Lin JR. Polar-Coded MIMO 

Systems. IEEE Transactions on Vehicular 

Technology.2018; 67(7):6170-84. 

https://doi.org/10.1109/TVT.2018.2815602 

[7] Dai JC, Niu K, Si ZW, Zhang DX. Polar-Coded 

Spatial Modulation. IEEE Transactions on Signal 

Processing. 2021; 69:2203-17. 

https://doi.org/10.1109/TSP.2021.3068848 

[8] Egilmez ZBK, Xiang LP, Maunder RG, Hanzo L. A 

Soft-Input Soft-Output Polar Decoding Algorithm 

for Turbo-Detection in MIMO-Aided 5G New 

Radio. IEEE Transactions on Vehicular Technology. 

2022; 71(6):6454-68. 

https://doi.org/10.1109/TVT.2022.3163288 

[9] Gao J, Zhang DX, Dai JC, Niu K, Dong C. ResNet-

Like Belief-Propagation Decoding for Polar Codes. 

IEEE Wireless Communications Letters. 2021; 

10(5):934-7. 

https://doi.org/10.1109/LWC.2021.3050819 

[10] Qiu QJ, Liu JD, Hao MQ, Li WJ, Wang Y, Tao LF, 

Wu L, Xie Z. DCKH-CNN: A multimetric graph-

based convolutional neural network for identifying 

key influential nodes in Earth surface data linked 

networks. Trans GIS. 2025 Apr;29(2): e70016. 

https://doi.org/10.1111/tgis.70016 

[11] Song BX, Feng YX, Wang Y. DIR-Net: Deep 

Residual Polar Decoding Network Based on 

Information Refinement. Entropy. 2022; 24(12):18. 

https://doi.org/10.3390/e24121809 

[12] Yu QP, Zhang Y, Shi ZP, Li XW, Wang LY, Zeng 

M. DNN Aided Joint Source-Channel Decoding 

Scheme for Polar Codes. IEICE Trans Fundam 

Electron Commun Comput Sci. 2024; 

E107A(5):845–849. 

https://doi.org/10.1587/transfun.2023EAL2068 

[13]  Agarwal A, Mehta SN. PC-CC: An advancement in 

forward error correction using polar and 

convolutional codes for MIMO-OFDM system. J 

King Saud Univ-Comput Inf Sci. 2020; 32(8):917–

927. https://doi.org/10.1016/j.jksuci.2017.12.003 

[14] Bian CH, Hsu CW, Lee CW, Kim HS. 

Learning-Based Near-Orthogonal Superposition Code 

for MIMO Short Message Transmission. IEEE Trans 

Commun. 2023; 71(9):5108–5123. 

https://doi.org/10.1109/TCOMM.2023.3274158 

[15] Cao S, Zheng H, Lin T, Zhang SQ, Xu SG. An 

Unfolded Pipelined Polar Decoder with Hybrid 

Number Representations for Multi-User MIMO 

Systems. IEEE Trans Circuits Syst II Exp Briefs. 

2020; 67(11):2472–2476. 

https://doi.org/10.1109/TCSII.2020.2964851 

[16] Jalali A, Ding Z. Joint Detection and Decoding of 

Polar Coded 5G Control Channels. IEEE Trans 

Wireless Commun. 2020; 19(3):2066–2078. 

https://doi.org/10.1109/TWC.2019.2962113 

[17] Li J, Zhou LJ, Li ZQ, Gao WD, Ji R, Zhu JT, Liu ZY. 

Deep Learning-Assisted Adaptive Dynamic-SCLF 

Decoding of Polar Codes. IEEE Trans Cogn Commun 

Netw. 2024; 10(3):836–851. 

https://doi.org/10.1109/TCCN.2024.3349450 

[18] Vawda MI, Lottering R, Mutanga O, Peerbhay K, 

Sibanda M. Comparing the utility of artificial neural 

networks (ANN) and convolutional neural networks 

(CNN) on Sentinel-2 MSI to estimate dry season 

aboveground grass biomass. Sustainability. 2024; 

16(3):1051. https://doi.org/10.3390/su16031051 

[19] Liu YT, Shen YF, Zhou WY, Tan XS, You XH, 

Zhang C. Iterative EP Detection and Decoding of 

Polar-Coded MIMO Systems. IEEE Commun Lett. 

2023; 27(4):1075–1079. 

https://doi.org/10.1109/LCOMM.2023.3238893 

[20]  Meenalakshmi M, Chaturvedi S, Dwivedi VK. 

Enhancing channel estimation accuracy in 

polar-coded MIMO-OFDM systems via CNN with 5G 

channel models. AEU-Int J Electron Commun. 2024; 

173:8. https://doi.org/10.1016/j.aeue.2023.155016 

[21] Miloslavskaya V, Li YH, Vucetic B. Neural 

Network-Based Adaptive Polar Coding. IEEE Trans 

Commun. 2024; 72(4):1881–1894. 

https://doi.org/10.1109/TCOMM.2023.3341838 

[22] Piao J, Niu K, Dai JC, Hanzo L. Polar-Precoding: a 

Unitary Finite-Feedback Transmit Precoder for 

Polar-Coded MIMO Systems. IEEE Trans Veh 

Technol. 2021; 70(11):12203–12218. 

https://doi.org/10.1109/TVT.2021.3113324 

[23] Shen YF, Zhou WY, Huang YM, Zhang ZC, You XH, 

Zhang C. Fast Iterative Soft-Output List Decoding of 

Polar Codes. IEEE Trans Signal Process. 2022; 

70:1361–1376. 

https://doi.org/10.1109/TSP.2022.3150962 

[24] Wang XM, Li J, Wu ZT, He JL, Zhang Y, Shan L. 

Improved NSC decoding algorithm for polar codes 

based on multi-in-one neural network. Comput Electr 

Eng. 2020; 86:106720. 

https://doi.org/10.1016/j.compeleceng.2020.106758 

[25] Watanabe K, Kojima S, Akao T, Katsuno M, Maruta 

K, Ahn CJ. Modified Pilot Selection for Channel 

Estimation of Systematic Polar Coded MIMO-OFDM. 

ICT Express. 2019; 5(4):276–279. 

https://doi.org/10.1016/j.icte.2019.03.002 

[26] Xiang LP, Liu YS, Egilmez ZBK, Maunder RG, Yang 

LL, Hanzo L. Soft List Decoding of Polar Codes. 



42   Informatica 49 (2025) 27–42                                                                                                                                       J. Wang et al. 

 

 

IEEE Trans Veh Technol. 2020; 69(11):13921–

13926. https://doi.org/10.1109/TVT.2020.3021258 

[27] Zhou HY, Zheng J, Yang MH, Gross WJ, You XH, 

Zhang C. Low-Complexity Sphere Decoding for 

Polar-Coded MIMO Systems. IEEE Trans Veh 

Technol. 2023; 72(5):6810–6815. 

https://doi.org/10.1109/TVT.2022.3229557 

[28] Zhou LX, Chan STY, Zhang MX, Kim S. A Fast 

Computing Decoder for Polar Codes with a Neural 

Network. ICT Express. 2023; 9(6):1001–1006. 

https://doi.org/10.1016/j.icte.2023.02.005 

[29] Zhou LX, Zhang MX, Chan S, Kim S. Review and 

Evaluation of Belief Propagation Decoders for Polar 

Codes. Symmetry (Basel). 2022; 14(12):15. 

https://doi.org/10.3390/sym14122633 

[30] Zhu HF, Cao ZW, Zhao YP, Li D. Learning to 

Denoise and Decode: a Novel Residual Neural 

Network Decoder for Polar Codes. IEEE Trans Veh 

Technol. 2020; 69(8):8725–8738. 

https://doi.org/10.1109/TVT.2020.3000345 

 

 


