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Cross-modal matching of Synthetic Aperture Radar (SAR) and optical satellite imagery is challenging due
to their distinct imaging characteristics. We propose a deep learning framework integrating a dual encoder
architecture, self-supervised contrastive learning, and uncertainty quantification for robust SAR-optical
matching. The framework employs modality-specific encoders (EfficientDet for optical, Xception for SAR)
with uncertainty modules capturing aleatoric and epistemic uncertainties, enhanced by self-supervised con-
trastive and rotation prediction tasks. Evaluated on the SEN12MS dataset, our method achieves a Maxi-
mum Mean Accuracy (MMA) of 0.145 at a 1-pixel threshold and 1298.3 average matched pairs per image
(aNM), improving MMA by 20.8% over the state-of-the-art transformer-based method. Our uncertainty
quantification yields an Expected Calibration Error (ECE) of 0.09, ensuring reliable confidence estimates.
Ablation studies confirm the efficacy of our components, with computational efficiency improved by 40%
faster convergence during supervised fine-tuning due to self-supervised pre-training. The method excels
across diverse scenarios, including seasonal changes and varied land cover types, advancing SAR-optical
matching for applications like change detection and disaster response.

Povzetek: Predstavljen je samonadzorovan model z negotovostjo za ujemanje SAR in optičnih slik, temelječ
na ločenih enkoderjih in metodah za kvantifikacijo zanesljivosti ujemanja v daljinskem zaznavanju.

1 Introduction

The integration and matching of multi-modal remote sens-
ing data, particularly between Synthetic Aperture Radar
(SAR) and optical imagery, has emerged as a critical chal-
lenge in Earth observation applications [23, 17]. This grow-
ing importance is driven by the unprecedented availability
of complementary data from missions such as Sentinel-1
and Sentinel-2, coupled with increasing demands for reli-
able Earth observation in various applications [9]. While
optical sensors excel in providing rich spectral information
under favorable conditions, SAR systems offer unique ad-
vantages through their weather-independent, day-and-night
imaging capabilities [22]. The fundamental challenge in
SAR-optical matching stems from the inherent differences
in their imaging mechanisms and characteristics [20]. SAR
imagery is characterized by speckle noise and distinctive
geometric distortions resulting from its side-looking acqui-
sition geometry, while optical imagery is subject to atmo-
spheric conditions and illumination variations [27]. These
differences manifest in several ways:
First, SAR imagery exhibits unique scattering proper-

ties where the signal return is strongly influenced by sur-
face roughness and material properties, creating patterns
that often have no direct correspondence in optical im-

agery [26]. Second, geometric distortions in SAR, includ-
ing layover and foreshortening effects, are particularly pro-
nounced in urban environments with complex 3D structures
[12]. Third, the seasonal variations that significantly affect
optical imagery may have minimal impact on SAR data,
creating temporalmatching challenges [21]. Traditional ap-
proaches to this matching problem have relied heavily on
hand-crafted features and geometric constraints [17]. How-
ever, these methods often struggle to handle the complex,
non-linear relationships between SAR and optical image
characteristics [9]. Recent advances in deep learning have
shown promising results in addressing these challenges,
particularly through the development of specialized archi-
tectures for cross-modal feature learning [8]. Nevertheless,
several critical limitations remain, such as, most existing
approaches treat SAR and optical data uniformly, without
fully accounting for their distinct characteristics and noise
patterns [5]. The scarcity of accurately matched training
data, especially in complex urban environments, also con-
tinues to be a significant bottleneck [6] and current meth-
ods often lack robust uncertainty quantification, making it
difficult to assess the reliability of matching results in op-
erational scenarios [11].

To address these challenges, this research aims to im-
prove SAR-optical matching through self-supervised learn-
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ing and uncertainty-aware deep learning models, through
the following research questions:

1. How does uncertainty quantification improve SAR-
optical image matching reliability?

2. Can self-supervised learning reduce the dependence
on manually labeled data?

3. How does the proposed approach compare to state-of-
the-art methods in various environmental conditions?

These objectives guide our development of a novel
framework that leverages a dual encoder architecture,
self-supervised learning, and uncertainty quantification to
achieve robust and reliable SAR-optical matching. Our
approach employs modified EfficientDet and Xception
networks as modality-specific encoders, chosen for their
proven effectiveness in handling complex visual tasks. Ef-
ficientDet’s scalable feature extraction is adapted for opti-
cal imagery to capture multi-spectral details despite atmo-
spheric variations, while Xception’s depthwise separable
convolutions are tailored for SAR to mitigate speckle noise
and geometric distortions [25, 8]. These modifications en-
sure that each encoder is optimized for the unique imag-
ing characteristics of its respective modality. The frame-
work incorporates a self-supervised learning strategy with
contrastive learning and rotation prediction tasks. Con-
trastive learning aligns SAR and optical features in a shared
embedding space to address the domain gap, while rota-
tion prediction enhances geometric invariance, overcoming
limitations of prior methods that struggle with viewpoint
differences and scarce labeled data [4]. An uncertainty-
guided matching mechanism dynamically weighs feature
similarities based on estimated confidence levels, integrat-
ing aleatoric and epistemic uncertainties. This mechanism
improves matching accuracy by prioritizing reliable cor-
respondences and enhances reliability by providing inter-
pretable confidence estimates, crucial for mission-critical
applications [11].
Our approach advances the state-of-the-art by integrat-

ing uncertainty quantification, leveraging self-supervised
learning, and improving robustness across diverse scenar-
ios. First, by incorporating modality-specific uncertainty
quantification, we enable more reliable matching decisions
while providing interpretable confidence measures. Sec-
ond, our self-supervised learning strategy effectively lever-
ages the abundance of unpaired SAR and optical data, re-
ducing the dependence on manually matched training sam-
ples. Third, our framework demonstrates robust perfor-
mance in various challenging scenarios, including complex
urban environments and seasonal changes.
To quantify the performance of our method, we use met-

rics tailored for the SAR-optical matching problem. Specif-
ically, we report a Maximum Mean Accuracy (MMA) of
0.145 at a 1-pixel threshold and an average of 1298.3
matched pairs per image (aNM). These results indicate that
our approach not only achieves high precision in identifying
correct matches (as reflected in MMA), but also produces

a substantial number of reliable correspondences (as indi-
cated by aNM), which is crucial for downstream applica-
tions like registration and change detection. These metrics
reflect a 20.8% relative improvement over prior state-of-
the-art methods, underscoring the practical and computa-
tional advantages of our framework.
The remainder of this paper is organized as follows: 2 re-

views related work on SAR-optical matching, uncertainty
estimation, and self-supervised learning. 3 presents our
methodology, including the detailed architecture and train-
ing strategy. 4 describes our experimental setup and results,
while 5 discusses the implications and limitations of our ap-
proach. Finally, 6 concludes the paper with a summary of
our contributions.

2 Related work

2.1 SAR-optical image matching
The evolution of SAR-optical matching techniques can be
broadly categorized into traditional feature-based methods
and modern deep learning approaches. Traditional methods
relied mainly on hand-made features and geometric con-
straints [17]. Notable examples include the Scale-Invariant
Feature Transform (SIFT) adaptations [16] and Speeded Up
Robust Features (SURF) variants [1], which were modified
to handle the unique characteristics of SAR imagery. How-
ever, these approaches often struggled with the fundamen-
tal differences between SAR and optical imaging mecha-
nisms [13]. Recent years have seen significant advances in
deep learning-based approaches. Hughes et al. [8] demon-
strated the effectiveness of pseudo-siamese architectures
for patch-basedmatching, whileMerkle et al. [18] explored
conditional adversarial networks for bridging the domain
gap between SAR and optical imagery. These approaches
have shown promising results but often lack robust uncer-
tainty quantification.
A significant breakthrough came with the release of

large-scale datasets like SEN12MS [21], which enabled
more comprehensive training and evaluation of deep learn-
ing models. This has led to various architectural inno-
vations, including attention-based mechanisms [24] and
transformer-based approaches [2] for feature matching.
To provide a clearer comparison of existing methods

and highlight their shortcomings, we summarize key SAR-
optical matching approaches in 1. The table compares tradi-
tional and deep learning methods in terms of datasets used,
accuracy metrics, and main limitations. As shown, tra-
ditional methods like SIFT-based approaches suffer from
poor performance on SAR imagery due to noise sensitiv-
ity, while deep learning methods, despite improved ac-
curacy, often lack uncertainty quantification, require pre-
aligned data, or are computationally intensive. These limi-
tations underscore the need for our proposedmethod, which
integrates uncertainty-aware feature extraction and self-
supervised learning to achieve robust and reliable match-
ing.
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Table 1: Comparative summary of sar-optical image matching methods. note: accuracy metrics vary by pixel threshold,
limiting direct comparison

Method Dataset Used Accuracy Metrics Main Limitations Identified

SIFT-based [10] Not specified MMA: 2.94% (<2 px), 7.92% (<3
px), 13.01% (<4 px); Avg Error:
9.92 px

Poor performance on SAR; sensitive
to noise and appearance variance.

RIFT [13] Multiple multi-
modal datasets

MMA: 8.6% (<2 px), 25.9% (<3 px),
53.6% (<4 px); Avg Error: 2.80 px

Computationally heavy; requires
careful parameter selection.

Pseudo-Siamese
CNN [7]

Automatically
generated dataset

High patch matching accuracy Limited to patches; lacks uncertainty
modeling or spatial generalization.

CAM-Net +
CAMM [3]

Not specified Repeatability: 0.434; LE: 1.96 px;
NN mAP: 0.3090; ACE: 7.15

High memory/computational de-
mands; limited interpretability.

3-step CNN
Framework [8]

Sentinel-1/2 ur-
ban scenes

Good spatial matching; no MMA
value reported

Requires pre-aligned data; lacks
real-world robustness assessment.

MOEFC [15] Urban + rural
SAR-optical pairs

RMSE: 0.645 px (rural), 0.489 px
(urban)

Edge-based; sensitive to image
structure and noise level.

Proposed Method
(Efficient-
Det+Xception)

SEN12MS MMA@1px: 0.145; aNM: 1298.3;
ECE: 0.09

High computational cost from
uncertainty estimation; dataset-
dependent.

2.2 Deep learning with SAR-optical data

The application of deep learning to SAR-optical data fu-
sion has evolved significantly, particularly in addressing
the unique challenges of eachmodality. Early work byMou
et al. [19] introduced CNN-based approaches for patch cor-
respondence identification, achieving promising results but
struggling with complex urban scenes. Recent advances
have focused on more sophisticated architectures that can
better handle the distinct characteristics of each modality
[30]. The notable developments include the adaptation of
modern CNN architectures for SAR-specific feature extrac-
tion [8], integration of attention mechanisms for better fea-
ture correlation [24], and development of multi-scale ap-
proaches for handling varying spatial resolutions [29].

2.3 Uncertainty in deep learning for remote
sensing

Uncertainty quantification in remote sensing has gained
significant attention, particularly for mission-critical ap-
plications. The literature distinguishes between aleatoric
uncertainty (capturing noise inherent in observations) and
epistemic uncertainty (representing model uncertainty)
[11]. In the context of SAR-optical fusion, recent work
has explored Bayesian neural networks and ensemble ap-
proaches for uncertainty-aware feature extraction [8]. The
incorporation of uncertainty estimation has proven partic-
ularly valuable in several aspects, such as improved reli-
ability assessment of matching results, better handling of
challenging scenarios such as seasonal changes, and more

robust performance in areas with significant temporal vari-
ations.

2.4 Self-supervised learning in remote
sensing

Self-supervised learning has emerged as a powerful
paradigm for leveraging unlabeled remote sensing data [4].
The abundance of unpaired SAR and optical imagerymakes
this particularly relevant for cross-modal matching. Recent
work has shown the effectiveness of contrastive learning
approaches in learning robust representations from satel-
lite imagery [28]. The key developments in this area in-
clude contrastive learning strategies for cross-modal feature
learning, rotation prediction tasks for geometry-aware fea-
ture extraction, and multi-task self-supervised frameworks
that combine multiple pretext tasks. This self-supervised
learning paradigm has proven particularly valuable in ad-
dressing the scarcity of labeled training data, a common
challenge in remote sensing applications [14]. Recent work
has demonstrated that pre-training on large amounts of un-
labeled data can significantly improve the performance of
downstream matching tasks [30].

3 Proposed methodology
Our proposed framework addresses the fundamental chal-
lenges of SAR-optical matching through a novel archi-
tecture that combines uncertainty-aware feature extraction
with self-supervised learning technique using a dual en-
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Figure 1: Overview of the proposed cross-modal matching architecture. The framework consists of parallel SAR and
optical encoders (Xception and EfficientDet, respectively), each equipped with modality-specific uncertainty modules.
The matching head combines features from both modalities while accounting for their respective uncertainties. Lmat and
Lunc represent the matching loss and uncertainty loss, respectively.

coder architecture with modality-specific uncertainty mod-
ules and a matching mechanism. 1 illustrates the overall
architecture of our dual encoder cross modal matching ap-
proach.

3.1 Dual encoder architecture
The foundation of our approach lies in recognizing that
SAR and optical imagery require specialized processing
streams due to their fundamentally different imaging char-
acteristics [8]. Our dual encoder architecture implements
this principle through modality-specific feature extractors.
Figures 2 and 3 illustrate the full architectures of the SAR
and optical encoders, respectively, including their uncer-
tainty modules, which are detailed in 3.2.

3.1.1 SAR encoder

For SAR imagery, we adopt a modified Xception architec-
ture optimized for the unique properties of radar backscat-
ter. 2 shows the architecture of the SAR encoder where
the key modifications include initial convolution layer
(stride 2) adapted for single-channel SAR input followed
by four modified Xception blocks with increasing chan-
nel dimensions (32 → 64 → 128 → 256 → 512), incor-
porating specialized separable convolutions with residual
connections, followed by SAR-specific uncertainty mod-
ule calibrated for speckle noise, geometric distortions, and
radar backscatter characteristics. This uncertainty mod-
ule enhances robust uncertainty quantification by capturing
modality-specific noise patterns, addressing the limitations
of existingmethods that often lack such reliability measures
[5], as detailed in 3.2.1. The SAR encoder, (Esar) can be
formally expressed as:

Fsar, Usar = Esar(Xsar; θsar) (1)

where Fsar represents the extracted SAR features, Usar de-
notes the uncertainty estimates and θsar represents the pa-
rameters of the SAR encoder.

3.1.2 Optical encoder

The optical stream employs a modified EfficientDet archi-
tecture [25] shown in 3 optimized for multi-spectral im-
agery:

Fopt, Uopt = Eopt(Xopt; θopt) (2)

where Fopt represents the extracted optical features, Uopt

denotes the uncertainty estimates and (θopt) represents the
parameters of the optical encoder, (Eopt). The key archi-
tectural elements include an initial 7×7 convolution layer
for processing RGB input, three feature extraction layers
with increasing channels (64 → 128 → 256 → 512), a Bi-
directional Feature Pyramid Network (BiFPN) for multi-
scale feature fusion, and an optical-specific uncertainty
module accounting for atmospheric variations, illumination
changes, and seasonal variations. This module enables ro-
bust uncertainty quantification by modeling variations in-
herent to optical imagery, overcoming the shortcomings of
prior approaches that lack such capabilities [5], as elabo-
rated in 3.2.2.

3.2 Uncertainty quantification

A key challenge in SAR-optical matching lies in under-
standing when and why our model might make incor-
rect matches. Our uncertainty quantification approach ad-
dresses this challenge by recognizing that SAR and op-
tical images have fundamentally different characteristics
that can lead to matching errors. Rather than treating both
modalities the same way, we develop specialized uncer-
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Figure 2: Architecture of the SAR-specific encoder, includ-
ing the modified Xception blocks with an initial convolu-
tion layer (stride 2) and the uncertainty module (detailed in
3.2.1), which outputs both features (Fsar) and uncertainty
scores.
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Figure 3: Architecture of the optical encoder, including
the modified EfficientDet components with a 7×7 convo-
lution layer, BiFPN, and the uncertainty module (detailed
in 3.2.2), which outputs both features (Fopt) and uncertainty
scores.

tainty modules that capture the unique challenges of each
imaging type.

3.2.1 SAR-specific uncertainty considerations

For SAR imagery, we identify and address three primary
sources of uncertainty that can affect matching reliability,
as shown in 4. First, we consider speckle noise, a character-
istic feature of SAR imagery that appears as a grainy texture
pattern. To address this, we implement a specialized pro-
cessing branch that uses depthwise convolutions to analyze
each channel independently. This branch consists of two
Conv2D, each followed by ReLU activation, to extract fea-
tures sensitive to speckle noise patterns, increasing uncer-
tainty in noisy regions. This approach allows the model to
better understand how speckle patterns might influence fea-
ture reliability in different parts of the image. Secondly, we
tackle the geometric distortions inherent in SAR imagery
due to its side-looking acquisition geometry. Our solution
employs orientation-aware convolutions that analyze fea-
tures at multiple angles (0°, 45°, 90°and 135°). This mech-
anism uses four parallel Conv2D layers, one for each angle,
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Figure 4: Architecture of the individual modules of the
aleatoric uncertainty in SAR images.

whose outputs are concatenated and processed through a
ReLU activation to capture geometric distortions across dif-
ferent orientations. This multi-orientation approach helps
the model identify when geometric distortions might make
matching unreliable. And lastly, we address backscatter
intensity variations, which can create ambiguities in fea-
ture matching. We implement an attention mechanism that
helps the model focus on stable backscatter patterns while
expressing higher uncertainty in areas where backscatter
variations might lead to unreliable matches. This attention
mechanism applies a Conv2D layer, ReLU, global average
pooling, two linear layers, ReLU, and a Sigmoid activation
to generate attention weights, which are pointwise multi-
plied with the input features to emphasize stable backscat-
ter regions. The outputs of these branches are combined in
an uncertainty fusion module, which concatenates the three
uncertainty maps, processes them through a Conv2D layer,
ReLU activation, and a Sigmoid function to produce a final
uncertainty map. These strategies address remote sensing
challenges by ensuring robust matching across diverse land
cover types, such as urban and rural areas, where speckle
noise and geometric distortions vary significantly, enhanc-
ing reliability for applications like disaster monitoring [22].

3.2.2 Optical-specific uncertainty considerations

Likewise, for optical imagery, we focus on three different
sources of uncertainty, as shown in 5. Atmospheric varia-
tions can significantly impact optical image quality and fea-
ture appearance. Our atmospheric uncertainty branch em-
ploys wide-area spatial attention mechanisms to identify re-
gions where atmospheric effects might compromise match-
ing reliability. This branch processes the input through a
Conv2D layer, followed by ReLU activation and global av-
erage pooling, producing a spatial attention map. The map
is pointwise multiplied with the input features to emphasize
regions affected by atmospheric effects like clouds or haze,
assigning higher uncertainty to those areas. This approach
is particularly effective because atmospheric effects typi-
cally impact larger spatial regions coherently. Illumination
conditions present another significant challenge in optical
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Figure 5: Architecture of the individual modules of the
aleatoric uncertainty in optical images

imagery. We address this through a channel-wise atten-
tion mechanism that analyzes relationships between differ-
ent spectral bands, helping identify when illumination con-
ditions might make matching uncertain. This mechanism
applies a Conv2D layer, ReLU activation, and global av-
erage pooling to generate channel-wise attention weights,
which are pointwise multiplied with the input to highlight
illumination inconsistencies across RGB bands. This is par-
ticularly important because SAR imagery is not affected by
these illumination variations. Seasonal changes can create
significant appearance differences in optical imagery. Our
seasonal change uncertainty branch specifically focuses on
identifying areas where temporal variations between image
acquisitions might affect matching reliability. This branch
uses a Conv2D layer, ReLU activation, and an attention
mechanism (pointwise multiplication with learned weights)
to detect seasonal variations like vegetation or snow cover
changes, increasing uncertainty in affected regions. This
helps the model express appropriate uncertainty in regions
where seasonal changes might compromise matching accu-
racy. The outputs of these branches are combined in an un-
certainty fusion module, which concatenates the three un-
certainty maps, processes them through a Conv2D layer,
ReLU activation, and a sigmoid function to produce a final
uncertainty map. These mechanisms tackle remote sensing
challenges by improving robustness to temporal variability
and atmospheric effects, critical for consistent performance
across seasons and geographic regions in applications like
change detection [23].

3.2.3 Integrating multiple sources of uncertainty

Rather than treating these different sources of uncertainty
independently, we recognize that they often interact in com-
plex ways. Our approach combines the individual uncer-
tainty estimates through an adaptive fusion mechanism that
learns to weight different sources of uncertainty based on
the specific characteristics of each image pair. This fusion
approach proves particularly valuable in complex scenar-
ios where multiple sources of uncertainty might be present.
The effectiveness of this approach to uncertainty estima-

tion is demonstrated in our experimental results, where we
observe that the model not only achieves better matching
accuracy but also provides well-calibrated confidence esti-
mates. This is particularly important in practical applica-
tions where understanding the reliability of matches is cru-
cial for downstream decision-making processes.

3.2.4 Model uncertainty through Monte Carlo
dropout

While our modality-specific uncertainty modules capture
uncertainties related to data characteristics, we also need
to account for uncertainty in the model’s predictions them-
selves. This is particularly important in cross-modal match-
ing where the model might encounter scenarios different
from its training data. We address this throughMonte Carlo
dropout, a technique that helps us estimate the model’s pre-
diction uncertainty by simulating an ensemble of slightly
different models. The key insight behind this approach is
that by randomly deactivating different parts of the network
during inference (using dropout), we can obtain multiple
predictions for the same input. The variation in these pre-
dictions gives us valuable information about the model’s
confidence. In regions where predictions are consistent
across different dropout patterns, we can be more confi-
dent in our results. Conversely, high variation in predic-
tions suggests uncertainty in the model’s decision. We care-
fully position dropout layers throughout the network to cap-
ture uncertainty at different processing stages: 1) Early in
the encoders (10% dropout rate) to capture uncertainty in
initial feature extraction, 2) before uncertainty estimation
(20% dropout rate) to ensure robust uncertainty predictions,
and 3) in feature fusion (15% dropout rate) to capture un-
certainty in the integration process.
By using 20 forward passes during inference, we obtain

a reliable estimate of model uncertainty while maintaining
practical computational efficiency. This approach proves
particularly valuable in identifying challenging cases where
the model might be encountering patterns significantly dif-
ferent from its training data.

3.3 Self-supervised pretraining
While the SEN12MS dataset provides co-registered im-
ages, we can significantly improve our model’s perfor-
mance by learning patterns from the SAR and optical im-
ages in a self-supervised manner. We achieve this through
a self-supervised learning strategy that helps the model un-
derstand the relationship between modalities even without
using explicit matching information from the dataset. 6
gives an overview of the self-supervised learning strategy.

3.3.1 Cross-modal understanding through
contrastive learning

Our contrastive learning approach helps the model under-
stand the fundamental relationships between SAR and op-
tical representations of the same scene. The key idea is to
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Figure 6: Overview of self-supervised learning strategy with contrastive learning and geometric understanding. Lcont and
Lrot represent the contrastive loss and rotation loss, respectively.

teach the model to recognize when SAR and optical images
represent the same location, even if they look very different
due to their distinct imaging characteristics. We implement
this through a specialized projection head that maps fea-
tures from both modalities into a shared 128-dimensional
space where meaningful comparisons can be made. The
projection head is a 2-layer MLP with 512 and 128 units,
using ReLU activation after the first layer, applied to both
SAR and optical features (Fsar and Fopt). The cross-modal
similarity is computed using cosine similarity in the shared
space, defined as:

sim(zsar, zopt) =
zsar · zopt

∥zsar∥∥zopt∥
, (3)

where zsar and zopt are the projected features. The learning
process encourages the model to bring representations of
the same location closer together while pushing representa-
tions of different locations apart. A carefully chosen tem-
perature parameter (0.07) helps maintain the right balance
between positive and negative examples. The contrastive
loss, Lcont, is the InfoNCE loss, formulated as:

Lcont = − log
exp(sim(zsar, zopt)/τ)∑
k ̸=opt exp(sim(zsar, zk)/τ)

, (4)

where τ = 0.07, and the denominator sums over negative
samples from the batch. 7 illustrates the effectiveness of
our approach in learning a shared embedding space (We
used Principal Component Analysis (PCA) to reduce the
128-dimensional embedding space to three dimensions for
visualization) where meaningful cross-modal comparisons
can be made despite the inherent differences between SAR
and optical imagery.

Figure 7: Visualization of features after applying con-
trastive learning with temperature τ = 0.07

3.3.2 Geometric understanding through rotation
prediction

While contrastive learning helps with feature similarity, we
also need the model to understand geometric relationships
between modalities. We achieve this through a rotation pre-
diction task, where the model learns to identify the rotation
applied to input images. This seemingly simple task actu-
ally helps the model develop a deeper understanding of ge-
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Figure 8: Distribution of dataset samples across different
categories

ometric structures that are preserved across modalities. The
rotation head, applied to both SAR and optical features, is
a 2-layer MLP with 256 and 4 units, followed by a softmax
layer to predict four rotation angles (0◦, 90◦, 180◦, 270◦).
The rotation loss, Lrot, is a cross-entropy loss, defined as:

Lrot = −
4∑

c=1

yc log(ŷc), (5)

where yc is the true rotation label, and ŷc is the predicted
probability for class c. This loss is computed separately for
SAR and optical images and averaged. By predicting ro-
tations for both SAR and optical images, the model learns
to identify geometric patterns that are consistent between
modalities, even when the visual appearances are quite dif-
ferent. This geometric understanding is crucial for reliable
cross-modal matching.

4 Experiments and results

4.1 Dataset and preprocessing
We conduct our experiments using the SEN12MS dataset
[21], which provides an extensive collection of 180,662
co-registered SAR-optical image pairs from Sentinel-1 and
Sentinel-2 satellites. The dataset’s co-registration ensures
accurate ground truth for evaluating matching reliability
and uncertainty quantification. Its extensive coverage of
unpaired SAR and optical data supports self-supervised
learning, reducing reliance on labeled samples. Addition-
ally, SEN12MS spans diverse geographical regions (e.g.,
urban, rural, forested areas), seasonal conditions (e.g., sum-
mer, winter), land cover types, and atmospheric variations
(e.g., clear, cloudy), making it ideal for assessing robust-
ness across challenging scenarios. For our experiments,
we preprocess the patches by cropping and resizing to
256 × 256 pixels, normalizing pixel values to [0, 1], and
applying data augmentation. We divide the dataset using

a stratified sampling approach to maintain representative
distribution across different categories. The resulting split
consists of 126,463 pairs (70%) for training, 27,099 pairs
(15%) for validation, and 27,100 pairs (15%) for testing.
8 shows the distribution of samples across different land
cover types and seasonal conditions.

4.2 Implementation details
Our implementation uses PyTorch and is trained on a dis-
tributed system comprising 4 NVIDIA V100 GPUs. 2
summarizes the key training parameters for both the self-
supervised pre-training and supervised fine-tuning phases.
To facilitate replication, we provide additional details on the
training setup. We use the Adam optimizer with β1 = 0.9,
β2 = 0.999, and a weight decay of 1e − 4. Data augmen-
tation includes random rotations (±30◦), horizontal flips
(50% probability), and Gaussian noise (standard deviation
0.01) applied to both SAR and optical inputs to enhance
robustness. For the SAR encoder, the input resolution is
256× 256 with a single channel, while the optical encoder
processes RGB inputs at the same resolution. The con-
trastive learning projection head uses a 2-layer MLP with
512 and 128 units, and the rotation prediction task classi-
fies four angles (0◦, 90◦, 180◦, 270◦). The Monte Carlo
dropout employs a 20-pass inference with dropout rates as
specified in 3.2.4.

4.3 Evaluation metrics
To comprehensively assess the performance of our ap-
proach, we employ several complementary evaluation met-
rics that capture different aspects of the matching accuracy
and reliability.

4.3.1 Maximum mean accuracy (MMA)

Maximum Mean Accuracy (MMA) serves as our primary
metric for evaluating the overall matching performance.
For a set of N test image pairs, MMA is defined as:

MMA =
1

N

N∑
i=1

max
j∈Mi

|Cj ∩ Gj |
|Gj |

(6)

where Mi represents the set of all matches detected in
the i-th image pair, Cj denotes the set of correspondences
detected with confidence threshold j, and Gj is the set
of ground truth correspondences. This metric prioritizes
high-confidence matches while accounting for the chal-
lenging nature of SAR-optical correspondence. Unlike tra-
ditional precision-recall metrics, which may overempha-
size the quantity of matches, MMA focuses on the propor-
tion of correct high-confidence matches relative to ground
truth, making it more suitable for SAR-optical matching
where reliable, sparse correspondences are critical for ap-
plications like georeferencing and change detection [8].
This is particularly relevant given the modalities’ inherent
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Table 2: Training parameters for different phases
Parameter Pre-training Fine-tuning
Initial Learning
Rate 1e-4 5e-5
Batch Size 32 32
Epochs 50 30
Temperature (τ ) 0.07 -
Loss Weights - λmat=1.0,

λunc=0.5
Early Stopping
Patience - 5
Gradient
Accumulation Steps 4 4

differences, such as speckle noise in SAR and illumina-
tion variations in optical imagery, which can lead to noisy
or ambiguous matches that precision-recall might not ade-
quately filter.

4.3.2 Root mean square error (RMSE)

To quantify the spatial accuracy of the established matches,
we compute the Root Mean Square Error (RMSE) be-
tween predicted match locations and ground truth corre-
spondences. For a set of matched keypoints, RMSE is cal-
culated as:

RMSE =

√√√√ 1

|M|
∑

(p,q)∈M

||p− p̂||2 (7)

where M represents the set of all matched point pairs, p
is the predicted location in the target image, and p̂ is the
corresponding ground truth location. Lower RMSE values
indicate higher spatial accuracy of the established corre-
spondences. We report this metric in pixels, providing a
direct measure of localization precision that is particularly
relevant for applications requiring accurate georeferencing
and co-registration [17]. To ensure a fair comparison across
different resolution images, we normalize the RMSE by the
diagonal length of the images when appropriate.

4.3.3 Expected calibration error (ECE)

To evaluate the reliability of our uncertainty estimation, we
adopt the Expected Calibration Error (ECE), which mea-
sures the discrepancy between predicted confidence and
empirical accuracy. ECE is calculated by partitioning pre-
dictions intoM equally-sized bins based on confidence val-
ues and computing:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (8)

where Bm represents the set of indices of samples whose
confidence falls into the m-th bin, n is the total number
of samples, acc(Bm) is the accuracy of samples in bin

Figure 9: Comparison with state-of-the-art methods on the
SEN12MS test set. The vertical axis is in logarithmic scale.

Bm, and conf(Bm) is the average confidence of samples
in the same bin. A lower ECE indicates better calibra-
tion between the model’s confidence estimates and its ac-
tual performance [11]. ECE is crucial for SAR-optical
matching because it quantifies how well the model’s con-
fidence aligns with actual matching reliability, which is
essential in mission-critical applications like disaster re-
sponse. In SAR-optical scenarios, where modality-specific
uncertainties (e.g., speckle noise, atmospheric variations)
can lead to unpredictable errors, ECE ensures that confi-
dence scores are trustworthy, enabling users to prioritize
reliable matches for decision-making.

4.3.4 Average number of matched pairs per image
(aNM)

To assess the practical utility of our matching approach, we
introduce the Average Number of Matched Pairs per Image
(aNM) metric, defined as:

aNM =
1

N

N∑
i=1

|M∗
i | (9)

where M∗
i represents the set of matches in the i-th im-

age pair that exceed a predefined confidence threshold τ .
This metric provides insight into the abundance of reli-
able matches produced by the algorithm, which is partic-
ularly relevant for applications such as image registration
and change detection that benefit from a higher number of
reliable correspondences.
Together, these metrics offer a multifaceted evaluation

framework that captures not only the accuracy of the
matches but also the reliability of the associated uncertainty
estimates and the practical utility of the matching results in
downstream applications.

4.4 Comparison with state-of-the-art
9 presents a comprehensive comparison of our approach
with existing methods, including the recent transformer-
basedmethod by Zhang et al. [30]. Ourmodel demonstrates
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consistent improvements across most metrics, achieving a
20.8% relative improvement in MMA at the 1-pixel thresh-
old compared to the state-of-the-art method by Zhang et
al. [30] (MMA@1px: 12.0%), while also outperforming
in aNM and providing uncertainty quantification that en-
hances reliability. To validate the significance of these im-
provements, we conducted paired t-tests on the MMA and
ECE scores across the 27,100 test pairs in the SEN12MS
dataset. The proposedmethod’sMMA (0.145) significantly
outperforms Zhang et al.’s (0.120) with a p-value of 0.001,
and the ECE (0.09) shows a significant improvement with
a p-value of 0.002, confirming that our improvements are
statistically meaningful (p < 0.05). Additionally, we com-
puted 95% confidence intervals for our method’s metrics:
MMA is 0.145 [0.1432, 0.1468], and ECE is 0.09 [0.0888,
0.0912], indicating high precision in our estimates across
the test set.

Table 3: Ablation study results showing component contri-
butions

Configuration MMA(@1px) ECE aNM
Baseline 12.8 - 1156.2
+ Only Aleatoric
Uncertainty 13.6 0.13 1198.5

+ Only Epistemic
Uncertainty 13.2 0.14 1180.4

+ Aleatoric and
Epistemic 13.9 0.11 1225.7

+ Self-Supervised
(Contrastive) 14.2 0.10 1256.4

+ Rotation
Prediction 14.5 0.09 1298.3

4.5 Ablation studies
To validate our design choices, we conduct comprehen-
sive ablation studies examining the contribution of differ-
ent components. 3 shows the impact of various architec-
tural choices on model performance. To assess the neces-
sity of both aleatoric and epistemic uncertainty modeling,
we include experiments isolating each uncertainty type, re-
moving one at a time, in addition to the sequential addition
reported previously. The ablation results demonstrate that
both uncertainty components and self-supervised learning
strategies contribute significantly to the final performance.
The addition of aleatoric uncertainty improves the MMA
by 6.3% over the baseline, while epistemic uncertainty pro-
vides an additional 2.3% improvement. The self-supervised
components further enhance performance, with contrastive
learning and rotation prediction together yielding a 4.5%
improvement in matching accuracy. A paired t-test con-
firms that the final model’s MMA (14.5) and ECE (0.09)
significantly outperform the baseline (MMA: 12.8) with p-
values of 0.003 and 0.004, respectively (p < 0.05). The 95%
confidence intervals further support these findings, the fi-
nal model’s MMA is 14.5 [14.4982, 14.5018], compared to

Figure 10: Model performance across different conditions

the baseline’s 12.8 [12.6215, 12.9785], and the ECE is 0.09
[0.0888, 0.0912], demonstrating reliable improvements.
The results for configurations with only aleatoric or only

epistemic uncertainty highlight their complementary roles.
Using only aleatoric uncertainty achieves an MMA of 13.8,
slightly below the combined model, indicating that data-
related uncertainties (e.g., speckle noise, atmospheric vari-
ations) are critical but insufficient alone. Using only epis-
temic uncertainty yields a lower MMA of 13.2, reflecting
its role in capturing model confidence but limited ability to
address modality-specific noise. The higher ECE in both
single-uncertainty cases underscores that both types are
necessary for well-calibrated confidence estimates. These
findings confirm that aleatoric uncertainty drives larger per-
formance gains due to its focus on modality-specific chal-
lenges, while epistemic uncertainty enhances reliability,
particularly in complex scenarios like urban environments
with geometric distortions.

4.6 Performance analysis
10 presents the model’s performance across different en-
vironmental conditions and land cover types. The results
demonstrate robust performance across various challenging
scenarios.

4.7 Computational efficiency
The model achieves practical efficiency suitable for real-
world applications, with an average processing time of 0.15
seconds per image pair (256×256 pixels) on a V100GPU. 4
details the computational requirements across different op-
erating modes.

Table 4: Computational requirements across different
modes

Processing Memory
Mode Time (ms) (GB)
Base Inference 130 2.4
With Uncertainty 150 2.8
Monte Carlo (20 passes) 380 2.8
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5 Discussion
Our experimental results reveal several key insights about
cross-modal SAR-optical matching and highlight important
directions for future research in this domain.

5.1 Comparison with existing methods
Our approach demonstrates significant improvements over
existing SAR-optical matching methods, as evidenced by
the results in Table 1 and Figure 9. Compared to tra-
ditional methods like SIFT-based approaches [10], which
achieve an MMA of 2.94% at a 2-pixel threshold, our
method achieves an MMA of 0.145 at a 1-pixel thresh-
old, representing a substantial leap in precision. Similarly,
against RIFT [13], which reports an MMA of 8.6% at 2
pixels, our method’s superior performance stems from its
ability to handle complex non-linear relationships through
deep learning. Modern deep learning methods, such as the
Pseudo-Siamese CNN [7] and the transformer-based ap-
proach by Zhang et al. [30], achieve higher accuracies but
lack uncertainty quantification. Our method outperforms
Zhang et al.’sMMAof 12.0% at 1 pixel by 20.8%, as shown
in Figure 9, and provides reliable confidence estimates with
an ECE of 0.09.
The key to our method’s success lies in its integration

of self-supervised learning and uncertainty-aware feature
extraction. By leveraging unpaired SAR and optical data
through contrastive learning and rotation prediction tasks,
our model learns robust cross-modal representations, re-
ducing dependency on scarce labeled data. This is particu-
larly effective in challenging scenarios like urban environ-
ments, where traditional methods struggle with geometric
distortions and noise. The uncertainty modules further en-
hance reliability by capturing modality-specific challenges,
such as speckle noise in SAR and atmospheric variations in
optical imagery, enabling more confident matching deci-
sions.
Despite these advancements, our method exhibits limi-

tations in certain cases. For instance, in regions with ex-
treme seasonal variations, such as heavy snow cover, the
model occasionally underperforms due to significant ap-
pearance changes in optical imagery that lack correspond-
ing SAR signatures. Similarly, in dense urban areas with
complex 3D structures, geometric distortions can lead to
higher uncertainty and reduced matching accuracy. These
failure cases highlight the need for adaptive strategies to
better handle temporal and structural complexities, which
we address in our future work.

5.2 Analysis of uncertainty estimation
The dual uncertainty modeling approach demonstrates par-
ticular effectiveness in identifying challenging matching
scenarios. Our comprehensive analysis reveals that SAR-
specific uncertainty module proves especially effective at
capturing speckle-related ambiguities. We observe higher

uncertainty estimates in areas of strong backscatter, which
correlates strongly with matching difficulty. This aligns
with findings from previous studies on SAR image anal-
ysis [8] but extends them through our modality-specific ap-
proach. Also, the optical uncertainty module shows strong
correlation with seasonal and atmospheric variations. This
proves particularly valuable in scenarios where temporal
differences between SAR and optical acquisitions are sig-
nificant. The module effectively identifies regions where
atmospheric conditions or seasonal changes might affect
matching reliability. Likewise, the combination of both un-
certainty types provides more reliable confidence estimates
than either type alone, as evidenced by the improved Ex-
pected Calibration Error (ECE) scores. This suggests that
considering both modality-specific and model-based uncer-
tainties is crucial for robust cross-modal matching.

5.3 Impact of self-supervised learning
Our self-supervised learning strategy demonstrates signifi-
cant benefits, particularly in scenarios with limited labeled
data. The analysis reveals three key advantages, first, the
contrastive learning component helps establish more robust
cross-modal feature representations, improving matching
accuracy by 4.5% over the baseline. This improvement is
particularly notable in areas with complex terrain features,
where traditional supervised approaches often struggle [4].
Second, the rotation prediction task enhances the model’s
invariance to geometric transformations. This proves es-
pecially beneficial for SAR-optical matching where view-
point differences are common. Our results show a 2.1%
improvement in matching accuracy for areas with signif-
icant geometric distortions, compared to the model with-
out the rotation prediction task. And third, the pre-training
phase significantly accelerates convergence during super-
vised fine-tuning, reducing required training time by ap-
proximately 40%. This efficiency gain makes the approach
more practical for real-world applications.

5.4 Computational complexity of
uncertainty quantification

The use of Monte Carlo dropout for epistemic uncertainty
estimation, requiring 20 forward passes during inference,
introduces significant computational overhead, as shown in
4. This approach is justified by its ability to provide ro-
bust uncertainty estimates, capturing model confidence in
challenging SAR-optical matching scenarios where modal-
ity differences can lead to unpredictable errors. The result-
ing ECE of 0.09 demonstrates well-calibrated confidence,
critical for applications like disaster response where relia-
bility is paramount [11]. However, the computational cost
may limit its suitability for real-time applications.
Alternatives such as Deep Ensembles, which train multi-

ple models to estimate uncertainty, could offer comparable
reliability but require significantly more memory and train-
ing time due to maintaining several model instances [11].
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In contrast, Monte Carlo dropout leverages a single model,
making it morememory-efficient and practical for our dual-
encoder architecture. Nevertheless, the trade-off between
accuracy and speed suggests a need for more efficient meth-
ods, which we explore in our future work. This balance en-
sures our approach remains viable for operational settings
while highlighting areas for optimization.

5.5 Limitations and future work
Despite the promising results, several challenges remain to
be addressed. While our method excels in many scenarios,
addressing the computational overhead of uncertainty esti-
mation and improving robustness to extreme seasonal vari-
ations remain critical. The current requirement for multiple
forward passes in uncertainty estimation creates computa-
tional overhead that might be prohibitive for some real-time
applications. Memory requirements also restrict process-
ing of very high-resolution imagery, an important consid-
eration for applications requiring fine-scale matching. Fi-
nally, the method’s performance is dataset-dependent, rely-
ing on the SEN12MS dataset’s characteristics, which may
limit generalizability to other sensors (e.g., high-resolution
commercial satellites) or regions with different land cover
distributions. These limitations point to several promising
directions for future research:

– Investigation of more efficient uncertainty estima-
tion techniques that maintain accuracy while reducing
computational overhead, such as single-pass methods
or lightweight ensemble approaches.

– Development of adaptive feature extraction strategies
that better handle extreme seasonal variations, poten-
tially incorporating temporal information from image
time series.

– Extension to multi-resolution processing capabilities
to handle very high-resolution imagery while main-
taining computational efficiency.

– Addressing dataset dependency by evaluating and
adapting the method on diverse datasets (e.g.,
SpaceNet-6, DSTL, etc.) and exploring domain adap-
tation techniques to enhance generalizability across
different sensors and geographic regions.

– Investigate hardware-specific optimizations, such as
model quantization or pruning, to reduce memory
footprint and inference time, making the framework
more viable for deployment on resource-constrained
platforms like edge devices used in remote sensing ap-
plications.

6 Conclusion
This paper advances SAR-optical image matching through
three key innovations: a dual encoder architecture with

modality-specific uncertainty modules, a self-supervised
learning strategy incorporating contrastive learning and
rotation prediction, and an uncertainty-guided matching
mechanism. Our comprehensive experiments on the
SEN12MS dataset demonstrate significant improvements,
including a 20.8% increase in matching accuracy, an MMA
of 0.145 at 1-pixel threshold, compared to the SOTA
method, and a low Expected Calibration Error of 0.09. The
success of our approach opens new avenues for cross-modal
remote sensing applications, with potential implications for
change detection, disaster response, and urban monitoring.
The framework’s ability to provide reliable confidence esti-
mates and maintain robust performance across diverse con-
ditions makes it particularly valuable for mission-critical
applications where understanding prediction reliability is
crucial. To support replication and further research, we plan
to release the open-source implementation of our frame-
work upon publication, including model code and training
scripts, to enable the community to build upon our work.
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