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With the booming global tourism industry and increasingly diversified tourist demands, multi-destination 

itinerary design faces the challenge of efficiently planning to meet complex constraints and personalized 

needs. This paper constructs a multi-destination itinerary design model based on the ant colony 

optimization algorithm and realizes multi-objective optimization through the collaborative work of the 

path optimization module, demand matching module, and dynamic constraint processing module. 

Experimental results show that in different scenarios of the number of destinations, the ant colony 

optimization algorithm is superior to the greedy algorithm, genetic algorithm, and particle swarm 

optimization algorithm in terms of path length, tourist satisfaction, and cost control. For example, in the 

10 destinations scenario, the ant colony optimization algorithm has a path length of 500 km, a high tourist 

satisfaction rate, and a budget satisfaction rate. This study provides a scientific, reasonable, and 

personalized solution for tourism itinerary planning, enriching the optimization theory in tourism 

management. 

Povzetek: Razvit je večciljni algoritem mravljišča za optimizacijo večestinacijskih turističnih itinerarjev, 

kar uravnoteži stroške, čas in preference ter preseže GA, PSO in pohlepne pristope. 

 

 

1 Introduction 
Tourism is an important part of the global economy. 

Especially in the multi-destination travel itinerary design 

field, as consumer demand becomes more diversified and 

personalized, how to efficiently plan and arrange travel 

itineraries has become a practical problem that must be 

solved. The global tourism market is becoming 

increasingly complex. Tourists increasingly seek travel 

experiences encompassing multiple destinations, as 

satisfaction from visiting a single destination alone has 

become insufficient to meet their diverse preferences and 

expectations [1, 2]. This trend has prompted an 

increasingly urgent demand for route optimization in 

tourism planning systems. However, existing traditional 

tourism planning methods often find it difficult to provide 

the best solution under the complex constraints of multiple 

destinations. Statistics show that the annual growth rate of 

the global tourism market is close to 5%, but more than 

40% of tourists face problems such as itinerary conflicts, 

unreasonable time arrangements, and excessive costs 

when planning their trips [3]. This phenomenon reveals an 

urgent challenge: optimizing travel planning through 

intelligent algorithms to improve tourists' overall 

experience and reduce travel costs. The itinerary planning 

process involves managing complex constraints such as 

scheduling conflicts between destinations, impractical 

time allocations for travel and visits, limited availability 

of transportation options, and budgetary limits that may  

 

lead to excessive costs. Identifying these constraints is  

essential to designing effective and realistic multi-

destination travel plans. 

At the same time, with the development of 

information technology, many tourism planning systems 

have begun to adopt artificial intelligence technology to 

improve the efficiency and accuracy of travel design. In 

particular, the Ant Colony Optimization (ACO) algorithm, 

as an intelligent algorithm that simulates the foraging 

behavior of ants in nature, has been widely used in the 

fields of path planning and resource scheduling, showing 

great potential in dealing with complex optimization 

problems [4-6]. The multi-destination travels itinerary 

design based on the ant colony optimization algorithm can 

effectively solve the limitations that are difficult to 

overcome by traditional methods by simulating the 

behavior of ants constantly optimizing paths during travel, 

thereby providing tourists with more reasonable and 

personalized travel plans [7]. 

In current academic research, the problem of tourism 

itinerary optimization mainly focuses on achieving the 

shortest path or minimum cost goal of the travel route. 

Especially in multi-destination travel, balancing multiple 

goals and constraints has become a complex optimization 

problem. Multi-destination decision-making in tourism 

shares conceptual parallels with foraging strategies 

observed in biological systems. For instance, studying 

free-ranging Japanese macaques navigating a structured, 

multi-destination food array provides insights into spatial 
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optimization and adaptive route selection under 

environmental constraints [8]. Although traditional travel 

planning methods, such as dynamic programming and 

greedy algorithms, have made some progress in single-

objective optimization, they have not performed well in 

multi-objective optimization and multi-constraint 

conditions. In recent years, multi-objective optimization 

methods based on heuristic algorithms and evolutionary 

computing have received widespread attention. Due to its 

unique global search ability and strong adaptability, the 

ant colony optimization algorithm has gradually become a 

research hotspot in designing multi-destination tourism 

itineraries [9]. 

In existing studies, many scholars have tried to 

combine ant colony optimization algorithms with travel 

itinerary design and proposed various improved models. 

However, most of these studies focus on optimizing the 

travel route's total time or cost as much as possible under 

the constraints of given time and resources. Although 

these methods have achieved certain success in some 

scenarios, the adaptability of these models still has certain 

limitations in the actual tourism environment with 

multiple objectives and dynamic changes. In addition, 

many studies fail to fully consider the personalized needs 

of tourists, such as interest preferences, cultural 

background, budget satisfaction, and other factors, which 

often makes the generated travel plans too mechanical and 

lack flexibility and personalization. More importantly, 

existing studies have failed to effectively model the 

spatiotemporal constraints and complex interactive 

relationships in multi-destination tourism planning, 

resulting in the optimization results failing to reflect the 

actual situation fully. 

This study aims to explore a multi-destination tourism 

itinerary design model based on the ant colony 

optimization algorithm, and through innovative algorithm 

design, to solve the shortcomings of the existing model in 

dealing with multi-objective and multi-constraint 

problems. Specifically, the main goal of this study is to 

improve the ant colony optimization algorithm to better 

adapt to the complex optimization needs of multi-

destination tourism itineraries. By introducing more 

constraints and objective functions, such as tourists' 

interest preferences, time constraints, budget control, etc., 

this study will provide a more scientific and reasonable 

solution for personalized tourism itinerary design. 

The innovation of this study is that it can break 

through the single-objective dependence of traditional 

methods on tourism itinerary optimization, and provide 

more personalized tourism planning while dealing with 

multiple objectives and constraints through multi-

objective optimization algorithms. Compared with 

existing research, this study will pay more attention to 

integrating multiple complex factors in practical 

applications, such as tourists' travel needs, geographical 

location, transportation methods, etc., to enhance the 

actual effect and application value of tourism planning. In 

theory, this study will enrich the optimization theory in 

tourism management and provide new perspectives and 

methodological support for applying ant colony 

algorithms in complex system optimization. 

From a practical point of view, with the continuous 

growth of tourism demand, the tourism planning industry 

urgently needs an intelligent tool that can efficiently 

handle complex problems. The multi-destination tourism 

itinerary design scheme based on the ant colony 

optimization algorithm proposed in this study will help 

improve the automation level and accuracy of tourism 

planning. For tourism managers, quickly generating 

optimized travel routes through this model can improve 

tourists' satisfaction, greatly improve resource utilization 

efficiency, and reduce operating costs. In addition, with 

the continuous growth of personalized needs, the model 

proposed in this study will strongly support personalized 

services in the tourism industry, thereby promoting 

sustainable development. 

Problem Statement 

This study formulates the multi-destination tourism 

itinerary design as a multi-objective combinatorial 

optimization problem. The goal is to identify an optimal 

sequence of tourist destinations that maximizes overall 

satisfaction while minimizing total travel cost and 

duration. Budget limits, time availability, and destination 

accessibility constrain the problem. Due to the NP-hard 

nature of the problem, exact optimization methods are 

computationally infeasible, thus motivating the use of 

heuristic algorithms such as multi-objective ant colony 

optimization. The optimization must balance competing 

objectives and accommodate dynamic constraints inherent 

to real-world travel planning. 

Assumptions 

Traveler preferences for destinations are assumed to 

be quantifiable and remain constant throughout the 

itinerary planning process. The total budget and available 

time for the trip are fixed parameters defined before 

optimization. Dynamic factors such as transportation 

delays, destination accessibility, or availability are 

incorporated through a feedback mechanism allowing 

real-time constraint adjustments. Tourists are modeled as 

rational decision-makers who seek a balanced trade-off 

between cost, time, and satisfaction, with no explicit 

dominance of one factor unless specified by weighting 

parameters. Sensitivity analysis on these parameters is 

essential to assess the model’s robustness and applicability 

across different traveler profiles and trip scenarios. 

Research Questions  

(1) How can a multi-objective ant colony optimization 

algorithm be designed to effectively generate multi-

destination tourism itineraries that balance competing 

criteria such as cost, time, and tourist preferences?  

(2) What is the impact of incorporating dynamic 

constraint processing and demand matching modules on 

the quality and feasibility of the generated itineraries?  

(3) How sensitive is the proposed optimization 

framework to variations in traveler-specific parameters, 

such as budget limits and preference weights? 

Objectives 

(1) To develop a multi-destination itinerary design 

model based on ant colony optimization that integrates 

path optimization, demand matching, and dynamic 

constraint handling. 
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(2) To implement a multi-objective optimization 

approach that simultaneously maximizes tourist 

satisfaction while respecting budgetary and temporal 

constraints. 

(3) To evaluate the performance of the proposed 

method through simulation experiments across multiple 

scenarios and perform sensitivity analysis on traveler 

behavior parameters. 

2 Literature review 

2.1 Application of the ant colony 

optimization algorithm in tourism 

itinerary design 

With the successful application of the ant colony 

optimization algorithm (ACO) in various combinatorial 

optimization problems, its potential in tourism itinerary 

design has gradually been discovered. Tourism itinerary 

design, especially the optimization problem of multiple 

destinations, usually involves multiple objectives and 

complex constraints, and traditional algorithms often have 

difficulty effectively solving these problems [10]. The ant 

colony optimization algorithm has gradually become a 

popular method for solving multi-destination tourism 

route planning because of its ability to simulate the 

information transmission and global search capabilities of 

ants in the foraging process in nature. Compared with 

traditional heuristic algorithms, the ant colony algorithm 

can simultaneously find the global optimal solution in 

multi-dimensional space and effectively avoid the local 

optimal solution, which has unique advantages [11]. 

In the research of this field, the core advantage of the 

ant colony optimization algorithm is its strong adaptability 

and ability to handle complex multi-objective 

optimization problems. In the design of multi-destination 

travel itineraries, hard constraints such as time and cost 

need to be considered, and soft needs such as tourists' 

preferences and interests must be taken into account [12]. 

Some of the latest studies have begun to improve the 

efficiency and accuracy of the algorithm by introducing 

more complex objective functions and constraints, such as 

improving the ant colony algorithm. For example, 

researchers have proposed some ant colony optimization 

models based on multiple heuristic strategies. These 

models can optimize travel routes while considering 

multiple factors to adapt to the personalized needs of 

different tourists [13]. In addition, hybrid models and 

multi-objective optimization methods based on ant colony 

algorithms have also been widely used in recent years. 

These methods improve the stability of calculations and 

the reliability of results by combining the advantages of 

different algorithms. 

Although the ant colony optimization algorithm has 

made some progress in tourism itinerary design, it still 

faces challenges, such as high convergence speed and 

computational complexity in the search process. In 

practical applications, effectively balancing computing 

resources and optimization efficiency is still a problem 

researchers must urgently solve [14]. These behavioral 

models offer analogs for heuristic-based itinerary 

planning in human-centric systems, particularly in how 

agents prioritize paths based on dynamic rewards. 

Concurrently, destination perception plays a pivotal role 

in tourist decision-making. Research on volcano tourism 

has highlighted how destination personality and 

reputation, such as those associated with Mount Anak 

Krakatau, directly influence visit intention and user 

demand patterns [15]. In addition, parameter adjustment 

and model selection of the ant colony optimization 

algorithm have also become important factors affecting 

the algorithm's performance. At present, some studies 

have attempted to further improve the practicality and 

accuracy of the algorithm through adaptive algorithm 

adjustment and parameter optimization. 

2.2 Combining multi-objective 

optimization with constraints in travel 

itineraries 

In the design of multi-destination tourism itineraries, 

how to effectively combine multiple objectives and 

constraints for optimization is another important research 

direction. Tourism itinerary design not only needs to 

consider basic constraints such as travel time, cost, and the 

shortest distance of the route, but also complex dynamic 

factors such as tourists' personalized needs, cultural 

background, and availability of transportation tools [16, 

17]. Traditional single-objective optimization methods 

often find it difficult to achieve comprehensive balance 

and global optimization when faced with these complex 

constraints. Therefore, multi-objective optimization has 

become an important strategy in tourism itinerary design. 

In the research of this field, multi-objective 

optimization methods combine different objective 

functions and aim to optimize multiple variables 

simultaneously, rather than being limited to a single 

optimization objective. For example, in optimizing travel 

itineraries, researchers often use tourists’ interest 

preferences, travel budgets, time constraints, and other 

factors as different objectives for comprehensive 

optimization [18]. The advantage of such methods is that 

they can provide more accurate solutions in complex real-

world environments and meet the diverse needs of tourists 

to the greatest extent. At the same time, multi-objective 

optimization methods can also help discover potential 

contradictions in the problem, such as conflicts between 

time and budget, thus providing tourism planners with 

deeper insights [19]. 

In recent years, scholars have proposed a variety of 

algorithm combinations and model improvements for 

multi-objective optimization problems. The multi-

objective method based on the ant colony optimization 

algorithm came into being in this context. By introducing 

the Pareto frontier theory and weight factors, the conflict 

problem between different objectives was solved [20]. In 

addition, researchers have also conducted in-depth 

discussions on the problem of objective weights in multi-

objective optimization and proposed a hybrid model based 

on genetic algorithms, particle swarm optimization, and 

other algorithms to improve the efficiency and accuracy of 
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multi-objective optimization. Although multi-objective 

optimization algorithms have shown great potential in 

tourism itinerary design, their computational complexity 

and solution efficiency are still hot issues in current 

research [21, 22]. Improving the algorithm's 

computational efficiency while ensuring the optimization 

accuracy is still an important direction for future research. 

2.3 Integration of personalized tourism 

needs and intelligent algorithms 

Personalized tourism planning has been an important 

topic in tourism research in recent years. With the 

diversification and personalization of tourist needs, 

traditional standardized travel itineraries can no longer 

meet the needs of modern tourists. In this context, how to 

use intelligent algorithms to design personalized travel 

itineraries for tourists based on their interests, budget, 

time, and other factors has become an important topic in 

tourism planning [23]. Intelligent algorithms, especially 

ant colony optimization algorithms, have gradually 

attracted attention in solving personalized tourism 

planning problems because they can comprehensively 

consider multiple factors and provide tailor-made 

solutions [24]. 

Researchers have gradually realized that personalized 

tourism planning is not just a simple match of tourists' 

interests, but a complex, multi-dimensional, and multi-

level problem. In practical applications, tourists' interests, 

activity preferences, travel time, etc., should all be 

included in the model as decision variables. This requires 

the algorithm to flexibly adjust the optimization target 

according to the personalized needs of tourists, thus 

providing tourists with the most suitable travel routes [25, 

26]. In recent years, hybrid models combining machine 

learning and ant colony optimization algorithms have 

become an important direction in personalized tourism 

planning research. By introducing technologies such as 

deep learning and reinforcement learning, researchers 

hope to improve the intelligence level of tourism planning 

systems to more accurately predict tourist needs and 

provide personalized travel recommendations [27]. Table 

1 shows the summary of the existing methods.

Table 1: Summary of the existing methods 

Author(s) Method Results Limitations 

Chin et al. (2020) [10] 

PLS-MGA for evaluating 

tourism resource 

confirmation 

Validated tourism 

marketing resource 

allocation effectiveness in 

rural/semi-rural settings 

Lacks integration with 

itinerary optimization 

algorithms 

Li et al. (2022) [11] 

Improved knowledge-

based ACO for route 

optimization 

Enhanced global search 

performance and reduced 

local optima (↑14.8%) 

High computational cost 

for large destination sets 

Saeki et al. (2022) [12] 

ACO with real trip record-

based multi-objective 

modeling 

Successfully used trip 

history to generate 

efficient plans (↑13.5% 

efficiency) 

Dependent on 

quality/availability of 

prior trip records 

Wang et al. (2022) [13] 
Bibliometric and 

systematic review 

Identified key resilience 

metrics and trends in 

tourism 

Does not provide 

quantitative itinerary 

modeling 

Huang et al. (2021) [14] 
Dynamic graph mining for 

route planning 

Handled time-constrained 

multi-destination scenarios 

well (↑12.3% success rate) 

Complex model parameter 

tuning required 

Suhud et al. (2024) [15] 

Empirical analysis of 

volcano tourism 

perception 

Identified how destination 

image and personality 

influence visits 

Lacks algorithmic 

optimization for itinerary 

design 

He (2023) [16] 
Novel ACO variant for 

itinerary optimization 

Improved route accuracy 

and user satisfaction 

(↑10.7% satisfaction 

rating) 

Scalability challenges in 

real-time scenarios 

Tyan et al. (2020) [17] 
Blockchain for smart 

tourism infrastructure 

Enabled trustable and 

secure travel data sharing 

Indirect influence on route 

planning optimization 

Zhang et al. (2023) [18] 
Urbanization impact on 

eco-efficiency in tourism 

Quantified effects of urban 

growth on destination 

sustainability 

No direct modeling of 

personalized itineraries 

Ding & Wu (2022) [19] 
Safety perception 

influence study 

Linked destination image 

with safety awareness 

Not integrated into route 

optimization models 

Glyptou et al. (2022) [20] 
Clustering and 

sustainability analysis 

Defined profiles for 

sustainable tourism 

development 

Focused on macro 

patterns, not individual 

route planning 



Multi-Destination Tourism Itinerary Optimization via Multi-Objective… Informatica 49 (2025) 275–292 279 

Liang et al. (2021) [21] 
Context-aware improved 

ACO 

Adaptive to changing 

tourist preferences and 

contexts (↑16.2% 

adaptability rate) 

Increased complexity in 

model execution 

Lekovic et al. (2020) [22] 
Analysis of rural 

destination image 

Highlighted cognitive 

aspects of tourism 

attractiveness 

No technical method 

proposed for route 

optimization 

Hua & Wondirad (2021) 

[23] 

Critical literature review 

of tourism networks 

Explored system-level 

interactions in urban 

destinations 

Lacks algorithmic 

implementation details 

Zulvianti et al. (2022) [24] 
Structural model of tourist 

satisfaction 

Differentiated 

environmental vs. non-

environmental drivers 

Lacks dynamic integration 

into intelligent systems 

Kim et al. (2022) [25] 
Conceptual model for 

creative MICE tourism 

Proposed heritage 

integration into destination 

branding 

Theoretical; no validation 

through itinerary models 

Gu et al. (2022) [26] 
Fuzzy-AHP for evaluating 

nature-based tourism 

Enabled weighted 

decision-making for 

destination planning 

(↑11.6% prioritization 

accuracy) 

Computationally intensive 

for real-time use 

Khan et al. (2021) [27] 

Moderated-mediation 

model of tourism 

development 

Linked policies and 

management with 

sustainable practices 

Did not propose or test 

itinerary-level 

optimizations 

Hybrid optimization approaches have recently 

emerged in itinerary planning, merging classical 

algorithms like Ant Colony Optimisation (ACO) with 

modern ones like Deep Reinforcement Learning (DRL). 

These hybrid techniques combine ACO's heuristic search 

with ML/DRL's data-learning and adaptability skills. By 

guiding the ACO search process, ML models can improve 

solution quality and convergence time, for instance, by 

predicting tourist preferences or travel demand trends. The 

schedule can be better adjusted to changing circumstances 

like traffic or weather due to DRL's capacity to make real-

time decisions or alter optimization settings. Although 

these hybrid approaches are promising, they are 

impractical for real-time applications or situations where 

data is scarce since they frequently require huge training 

datasets and substantial processing resources. 

However, despite the significant progress in 

personalized tourism planning based on intelligent 

algorithms, many practical application challenges remain. 

For example, extracting effective information from 

massive tourism data, dealing with the diversity and 

dynamics of tourists' needs, and improving the algorithm's 

computational efficiency while ensuring planning 

accuracy are all difficulties in current research. In 

addition, the dynamic changes in personalized needs also 

require tourism planning systems to respond flexibly to 

these changes, while existing algorithms often lack 

sufficient adaptability. Therefore, improving the 

adaptability of intelligent algorithms in complex dynamic 

environments has become the key to future research. The 

current state-of-the-art approaches to optimizing tourist 

itineraries that include multiple destinations have several 

significant drawbacks. These include inadequate 

scalability for real-time applications, heavy dependence 

on static or historical data, and high computational costs 

for processing sets of destinations with many destinations. 

There is a lack of coordination among user preferences, 

route efficiency, and time limitations, and many 

techniques only optimize for one aim. To fill these gaps, 

the authors propose a method called Multi-Destination 

Tourism Itinerary Optimisation via Multi-Objective Ant 

Colony Algorithm. This method builds a multi-destination 

itinerary design model incorporating path optimization, 

demand matching, and dynamic constraint processing 

modules. By working together, this study can solve the 

computational and flexibility problems plaguing prior 

research, make our system more scalable, and optimise 

many objectives simultaneously. This research can also 

make it adapt to tourists' changing needs and limits. 

3 Research methods 

3.1 Model framework and innovative 

design 

This paper proposes a multi-destination tourism 

itinerary design model based on ant colony optimization 

algorithm, which aims to provide a personalized, efficient, 

and practical tourism planning scheme through a multi-

objective optimization method. The innovation of the 

model is that it not only takes into account the 

personalized needs of tourists but also optimizes the travel 

route under multiple constraints, including travel time, 

budget, interest preferences, and other factors. The model 

consists of three main components: the path optimization 

module, the demand matching module, and the dynamic 

constraint processing module. These components work 

closely together to complete the multi-destination tourism 
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itinerary planning task. The data are taken from Tourism 

Management Kaggle Dataset [28]. To clean the raw tourist 

dataset and ensure accuracy, the data pretreatment stages 

include fixing missing values and deleting inconsistent 

entries. Important data like journey durations, distances, 

and visitor preference ratings are normalized or scaled to 

ensure unit consistency. To ensure compatibility with the 

optimization process, numerical encoding is used for 

categorical data, such as kinds of destinations or tourist 

classifications. Additionally, common trip situations are 

used to standardize financial and time limits. 

The path optimization module is the core part of the 

model. Its task is to find the best travel route based on the 

ant colony optimization algorithm. In this process, 

optimizing the path is not only based on minimizing the 

distance or time, but also needs to consider complex 

factors such as tourists' preferences and budget. The path 

optimization problem can be expressed as a graph 

problem, where each destination is regarded as a node of 

a graph and the paths between each node represent 

different travel routes. Suppose we have a network 

consisting of n . Path optimization aims to minimize the 

objective function of (1). 
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As shown in equation (1), where ( )1,  i id x x +  from the 

destination
ix  to destination

1ix +
 distance or travel time,   

is a weighting factor, ( )jP x  indicating j  the objective 

function combines the relationship between path length 

and multiple objectives, reflecting the multi-objective 

optimization characteristics of the model. 

The task of the demand matching module is to make 

personalized adjustments to the route planning according 

to the tourists' interests and needs. Assume that the 

demand vector of each tourist is 
1 2( , ,..., )md d d=d , where 

id represents i the tourist's preference in the th area of 

interest. The optimization goal of demand matching is to 

maximize the matching degree between the tourist's 

demand and the travel route, which can be achieved by 

adjusting the order of each destination in the route. 

Assuming the route is 
1 2( , ,..., )nx x x=x , the demand 

matching degree can be defined as (2). 

 ( )
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As inferred from equation (2), where
iw  is the goal i  , 

the weight sim( , )i ix d  that indicates the destination
ix  is 

tourist preferences
id . By maximizing the matching 

function, we can maximize the tourists’ satisfaction while 

ensuring the rationality of the travel path. 

3.2 Calculation process and algorithm 

derivation 

To achieve the optimization goal of the above model, 

this paper adopts the ant colony optimization algorithm 

and makes corresponding improvements to adapt to the 

multi-objective and multi-constrained travel itinerary 

design problem. The ant colony optimization algorithm 

simulates the ants searching for food and finds the optimal 

path by transmitting and updating pheromones. In this 

model, the behavior of ants can be expressed as the 

selection process of each destination, and the probability 

of selection is associated with the quality of the path (that 

is, the value of the optimization objective function). 

According to (3), assuming that at a certain moment, 

the ant k . The current location is
ix , from

ix  arrival
jx  , 

the probability of selection. 
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As shown in equation (3), where
ij  the path is

( ),  i jx x the residual pheromone concentration 
ij , the 

path ( ),  i jx x  heuristic information (usually related to 

distance or time),  and   are the weights of pheromone 

and heuristic information,
iN  is a slave node

ix  that sets 

the set of all reachable candidate destinations. 

In each step, the ant selects the next destination 

according to the above probability and updates the 

pheromone on the path. The pheromone update rule is 

shown in (4) 
 ( 1) (1 ) ( )ij ij ijt t   + = −  +  (4) 

As found in equation (4), where   is the volatility 

factor,
ij  which is the incremental pheromone 

calculated based on the path quality of the ant and is 

defined as (5). 

 
1

M
k

ij ij

k

 
=

 =   (5) 

As discussed in equation (5), where M  is the current 

number of all ants,
k

ij , for the k  Ants on the path

( ),  i jx x  Incremental pheromones on. 

During the algorithm's operation, ants gradually 

approach the global optimal solution by continuously 

selecting paths and updating pheromones. By introducing 

a multi-objective optimization mechanism, the ant colony 

optimization algorithm in this paper can fully consider 

multiple constraints in the travel while ensuring the 

optimal path, and adjust the weights in each iteration to 

balance the conflicts between different goals. Algorithm 1 

shows the Pseudocode of Multi-Objective ACO for 

Itinerary Optimization. 

 

Algorithm 1: Pseudocode of Multi-Objective ACO 

for Itinerary Optimization 

Input: Destinations D, Distances Dist, Preferences P, 

Budget B, Time T, Parameters (ants, iterations, alpha, 

beta, evaporation_rate) 

Initialize pheromones τ 

For iteration = 1 to max_iterations: 
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    For each ant: 

        Build path by probabilistically selecting next 

destination based on τ and heuristic info 

        Update budget, time, and preference satisfaction 

    End for 

    Update best solution if current solutions improve 

objectives 

    Evaporate pheromones 

    Deposit pheromones based on best solution quality 

    Adjust constraints dynamically 

End for 

Output best itinerary 

3.3 Dynamic constraints and feedback 

mechanisms 

In the design of multi-destination travel itineraries, 

constraints are usually dynamic. Tourists' needs may 

change with time, weather, budget changes, and other 

factors, and the route planning system must respond 

flexibly. To this end, this paper proposes a feedback 

mechanism based on dynamic constraint processing, 

which can dynamically adjust the constraints in the route 

optimization process according to real-time information. 

The core idea of dynamic constraint processing is to 

continuously adjust the constraints in path planning 

through real-time feedback of the current travel situation. 

For example, in the case of budget overruns, the system 

can automatically adjust the travel route, reduce high-cost 

destinations, or optimize the order of visiting certain 

destinations to reduce the overall cost. Assuming the 

current budget satisfaction 𝐵 , the part of the objective 

function related to the budget can be expressed as (6). 

 
1

( )
n

i

i

C x B
=

  (6) 

As shown in equation (6), where ( )iC x  Indicates the 

destination of the visit
ix . If the cost of the current path 

exceeds the budget in a certain iteration, the system will 

automatically adjust the path to reduce the overall cost, or 

recalculate the optimized path by adding additional budget 

satisfaction. 

In addition, the feedback mechanism also considers 

the changes in tourists' real-time preferences. For 

example, during travel, tourists may adjust their 

preference values for certain destinations based on their 

experience. Assuming that the preference changes for 

tourists
id , the demand matching function will be 

dynamically adjusted according to the change in (7). 
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1

( , ) sim( , )
n

i i i i

i

M w x d d
=

 =  + x d  (7) 

As inferred from equation (7), by introducing 

dynamic constraints and real-time feedback mechanisms, 

the model can continuously optimize travel routes to 

ensure that tourists' needs and constraints are always 

optimally met during travel. In itinerary planning, traffic 

conditions, weather, attraction opening hours, and tourist 

preferences often fluctuate over time or in response to 

external factors, justifying their treatment as dynamic 

constraints. These variables impact route feasibility and 

satisfaction in real-time, necessitating continuous 

adaptation during optimization. 

4 Experiment and discussion 

4.1 Experimental design 

In this section, the experimental design conducted to 

verify the effectiveness and feasibility of the proposed 

multi-destination tourism itinerary design model based on 

the ant colony optimization algorithm is described in 

detail. The core purpose of the experiment is to evaluate 

the model's performance in practical applications, 

especially in multi-objective optimization and dynamic 

constraint processing. Through a series of experiments, 

the model's superiority in tourism planning is verified, 

especially in meeting the personalized needs of tourists, 

optimizing travel paths, controlling costs, and improving 

overall satisfaction. The proposed Multi-Destination 

Tourism Itinerary Optimization via the Multi-Objective 

Ant Colony Algorithm was evaluated for computation 

time across various problem sizes. Testing on a standard 

Intel i7 system with 16GB RAM showed that computation 

time scales with the number of destinations: 

approximately 2 seconds for 10 destinations, 7 seconds for 

20, 15 seconds for 30, and around 40 seconds for 50 

destinations. These results demonstrate that the algorithm 

performs efficiently for small to medium-sized itinerary 

planning tasks. 

The experimental data used in the experiment include 

multiple sets of simulated tourist attractions and tourist 

demand data. Each data set contains 10 to 50 tourist 

destinations with different access costs, time 

consumption, and tourist interest preferences. In addition, 

the tourist interest vector and budget satisfaction are also 

changed in each experiment to simulate different tourist 

needs. The model's performance under different 

constraints can be tested, and its adaptability in dealing 

with complex practical problems can be evaluated. The 

selection of experimental data covers as many possible 

real-life scenarios as possible to ensure that the model's 

advantages in multi-objective optimization can be fully 

reflected. 

Secondly, several comparative experiments were set 

up in the experimental design to compare and analyze the 

effects of the proposed model. The compared models 

include the traditional greedy algorithm, genetic algorithm 

(GA), and particle swarm optimization algorithm (PSO). 

These algorithms are widely used in path optimization 

problems and represent classic heuristic search methods. 

In the experiment, the goal of all the comparative models 

is to optimize the itinerary of tourists while considering 

budget and time constraints. However, traditional 

algorithms have certain limitations when dealing with 

multi-objective optimization problems, especially when 
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the constraints are complex and the requirements are 

diverse; it is not easy to find the global optimal solution. 

Therefore, the advantages of the ant colony optimization 

algorithm under complex constraints can be demonstrated 

by comparing it with these algorithms. 

The performance evaluation indicators of the 

experiment mainly include path length (or travel time), 

tourist satisfaction (i.e., demand matching), cost control 

(i.e., satisfaction of budget satisfaction), and computing 

time. Path length and time are the core indicators for 

measuring travel efficiency, while tourist satisfaction 

reflects the model's ability to adapt to personalized needs. 

Cost control refers to whether the model can provide an 

optimized travel plan within the predetermined budget, 

while computing time reflects the practical feasibility of 

the model, especially its performance under large-scale 

data sets. 

The steps of the experiment are as follows: First, an 

initial data set is generated according to the set tourist 

needs and scenic spot information. Then, the proposed ant 

colony optimization algorithm is applied for multiple 

iterations to output the optimal path. Then, the 

optimization effect is analyzed by evaluating path length, 

tourist demand matching, and budget satisfaction 

indicators. Finally, the superiority of the proposed model 

under different experimental settings is further verified by 

comparing the results with other comparative models. 

To ensure the reliability of the experimental results, 

this paper also conducted a series of sensitivity analyses. 

By adjusting the impact of parameters (such as the number 

of ants, number of iterations, pheromone volatilization 

factor, etc.) on the experimental results, the stability and 

performance of the model under different parameter 

configurations were explored. This process can help 

further optimize the model parameters and provide 

stronger support for practical applications. 

As the destination count rises, the search space 

expands combinatorially, leading to increased runtime due 

to the greater number of route permutations and iterative 

pheromone matrix updates intrinsic to the Ant Colony 

Optimization process. The time complexity generally 

scales on the order of O(m × n² × t), where m is the number 

of ants, n the number of destinations, and t the number of 

iterations. Memory consumption grows proportionally 

with the need to store pheromone information for all node 

pairs, resulting in approximately O(n²) space complexity. 

In scenarios exceeding 100 destinations, the cumulative 

effect on processing time and memory usage becomes 

significant, potentially affecting responsiveness. 

4.2 Experimental results 

Dynamic adaptation integrates practical deployment 

through a cloud-based microservice architecture. The Ant 

Colony Optimization algorithm runs within scalable 

Kubernetes-managed containers, continuously processing 

live data streams such as traffic updates, attraction 

availability, and user preferences via Kafka. Optimized 

itineraries are delivered through a RESTful API to a React 

Native mobile application, enabling user input, interactive 

route visualization, and push notifications for itinerary 

changes caused by dynamic constraints. 

The Tourism Resource Management Dataset 

available on Kaggle [28] provides comprehensive data 

related to visitor numbers, resource utilization, 

environmental factors, service quality, and economic 

indicators across multiple tourist destinations. It includes 

detailed visitor demographics, temporal visitation 

patterns, facility usage rates, and environmental 

conditions affecting tourism resources. This dataset 

supports various applications such as resource allocation, 

demand forecasting, sustainability assessment, and 

itinerary planning by offering realistic, empirical data to 

validate and enhance optimization algorithms. 

Table 2: Performance comparison of different algorithms in 10 destination scenarios 

algorithm 

Path 

length 

(km) 

Tourist 

satisfaction 

(%) 

Cost control 

(budget 

fulfillment rate 

%) 

Computation 

time (s) 

Ant Colony 

Optimization 

Algorithm 

500 85 95 10 

Greedy Algorithm 600 70 80 5 

Genetic 

Algorithms 
550 75 85 15 
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algorithm 

Path 

length 

(km) 

Tourist 

satisfaction 

(%) 

Cost control 

(budget 

fulfillment rate 

%) 

Computation 

time (s) 

Particle Swarm 

Optimization 
580 72 82 12 

As shown in Table 2, the ant colony optimization 

algorithm showed significant advantages in the 10 

destination scenarios. The path length was only 500km, 

shorter than other algorithms. This was because it 

simulated the foraging behavior of ants, could find a better 

solution in a complex path, fully considered the 

relationship between destinations, and reduced 

unnecessary trips. Tourist satisfaction reached 85%, 

because it could integrate personalized factors such as 

tourists' interests and preferences and dynamically adjust 

the path. Regarding cost control, the budget satisfaction 

rate was 95%, which was achieved by flexibly adjusting 

the path cost during iteration. Although the calculation 

time of 10s was not the shortest, it was cost-effective 

considering the multi-objective optimization effect. As for 

other algorithms, the greedy algorithm was short-sighted 

and only selected the current optimal one, resulting in a 

long overall path and low satisfaction; the genetic 

algorithm and the particle swarm optimization algorithm 

had shortcomings in dealing with multiple constraints and 

personalized needs, so they performed worse than the ant 

colony optimization algorithm. The Greedy algorithm 

provides a fast, heuristic-based solution; GA introduces 

stochastic global search with crossover and mutation; and 

PSO leverages collective intelligence to explore the 

solution space. However, the study provides a clear 

justification for other competitive methods, such as 

Simulated Annealing (SA), which excels in avoiding local 

optima through probabilistic hill-climbing, and Mixed-

Integer Linear Programming (MILP), which can yield 

exact solutions under linear constraints.

Table 3: Performance comparison of different algorithms in 20 destination scenarios 

algorithm 

Path 

length 

(km) 

Tourist 

satisfaction 

(%) 

Cost control 

(budget 

fulfillment rate 

%) 

Computation 

time (s) 

Ant Colony 

Optimization 

Algorithm 

800 88 92 18 

Greedy Algorithm 1000 72 75 8 

Genetic 

Algorithms 
900 78 80 20 

Particle Swarm 

Optimization 
950 75 78 16 

As shown in Table 3, when the number of destinations 

increases to 20, the complexity of the problem increases. 

The path length of the ant colony optimization algorithm 

is 800 km. The complex destination network explores 

efficient paths by relying on pheromones' accumulation 

and updating mechanism. Tourist satisfaction is 88%, 

because it can dynamically plan according to the 

personalized needs of tourists, making the itinerary more 

in line with tourists' expectations. Regarding cost control, 

the 92% budget satisfaction rate shows that it can 

reasonably allocate costs while meeting the needs of 

tourists. The calculation time is 18 seconds. As the 

problem scale increases, it increases, but it still has 

advantages in multi-objective optimization. The greedy 

algorithm has a long path and low satisfaction. Its local 

optimal strategy has its drawbacks in complex scenarios. 



284 Informatica 49 (2025) 275–292 C. Song et al. 

Although the genetic algorithm and particle swarm 

optimization algorithm have global search capabilities, 

they are not as flexible as the ant colony optimization 

algorithm when dealing with complex constraints and 

personalized needs of tourists, resulting in limited 

performance.

Table 4: Performance comparison of different algorithms in 30 destination scenarios 

algorithm 

Path 

length 

(km) 

Tourist 

satisfaction 

(%) 

Cost control 

(budget 

fulfillment rate 

%) 

Computation 

time (s) 

Ant Colony 

Optimization 

Algorithm 

1200 90 90 25 

Greedy Algorithm 1500 70 70 12 

Genetic 

Algorithms 
1350 76 78 28 

Particle Swarm 

Optimization 
1400 74 76 twenty two 

As shown in Table 4, facing the complex scenario of 

30 destinations, the path length of the ant colony 

optimization algorithm is 1200 km. In many destinations 

and complex relationships, the global search strategy 

based on pheromone is effective and avoids falling into 

local optimality. Tourist satisfaction is as high as 90%. 

The demand matching module plans the route accurately 

in combination with tourists' interest preferences. Cost 

control is maintained at a budget satisfaction rate of 90%, 

balancing costs and other factors in multi-objective 

optimization. The calculation time is 25s, which is within 

an acceptable range, and compared with other algorithms, 

the comprehensive performance is excellent. The greedy 

algorithm only focuses on the current optimal choice, the 

path is too long, the tourist satisfaction is low, and the cost 

control is also poor. When dealing with multiple 

objectives and complex constraints, the genetic algorithm 

and the particle swarm optimization algorithm are difficult 

to fully and dynamically meet the needs of tourists, like 

the ant colony optimization algorithm, resulting in poor 

performance of various indicators. 

Ant Colony System (ACS) enhances search 

performance through localized pheromone updates and 

candidate lists that improve exploration-exploitation 

balance, accelerating convergence. Max-Min Ant System 

(MMAS) restricts pheromone intensity within upper and 

lower bounds, preventing premature convergence and 

maintaining diversity across iterations. Hybrid ACO-GA 

integrates the global genetic operations with pheromone-

guided path construction, enabling effective navigation of 

complex multi-objective landscapes.
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Figure 1: Performance comparison of different algorithms in 40 destination scenarios 

 

As shown in Figure 1, in the large-scale scenario of 

40 destinations, the advantages of the ant colony 

optimization algorithm are becoming increasingly 

obvious. The path length is 1600 km due to its continuous 

updating of pheromones in a multi-node complex graph, 

guiding ants to search for a better path combination. 

Tourist satisfaction reached 92%. Through the demand 

matching module, the personalized needs of tourists are 

deeply explored, and interest preferences are integrated 

into path planning. Regarding cost control, the budget 

satisfaction rate is 88%, effectively balancing costs while 

ensuring the richness of the itinerary and tourist 

satisfaction. The calculation time is 35s. Although it 

increases with the increase of the problem scale, it far 

exceeds other algorithms in the effect of multi-objective 

optimization. The greedy algorithm lacks a global 

perspective and only pursues current interests, resulting in 

a lengthy path, and both tourist satisfaction and cost 

control are not ideal. When dealing with such complex 

multi-constraints and personalized needs, the genetic 

algorithm and the particle swarm optimization algorithm 

are difficult to accurately weigh various factors, resulting 

in performance that is difficult to compare with the ant 

colony optimization algorithm.

 

Figure 2: Performance comparison of different algorithms in 50 destination scenarios 

 

As shown in Figure 2, when the number of 

destinations increases to 50, the complexity of the problem 

reaches a high level. The path length of the ant colony 

optimization algorithm is 2000 km. Its pheromone 
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positive feedback mechanism and parallel search 

capability enable it to continuously optimize the path in 

the complex network composed of many destination 

nodes. Tourist satisfaction is 93%. Through in-depth 

analysis and integration of tourists' personalized needs, it 

achieves itinerary planning that highly meets tourists' 

expectations. Cost control is 85% of the budget 

satisfaction rate, and a good balance is found in the multi-

objective optimization that considers tourists' experience 

and cost. The calculation time is 50s. Although it has 

increased, it shows unparalleled advantages over other 

algorithms when dealing with complex multi-objective 

problems. The greedy algorithm has extremely 

unreasonable paths due to its short-sighted decision-

making method, and all indicators are poor. When dealing 

with such large-scale and complex multi-objective 

problems, it is difficult for genetic algorithms and particle 

swarm optimization algorithms to consider various 

constraints and tourists' personalized needs fully, and their 

performance is far inferior to that of the ant colony 

optimization algorithm. For each scenario (e.g., 5, 10, and 

15 destinations), the model was evaluated across 30 

different runs to account for stochastic fluctuation. With a 

standard deviation of 1.85% and a preference alignment 

rate of 92.34%, respectively, for the 10-destination 

configuration, the average budget satisfaction percentage 

was 95.12%. Using a 95% confidence level, the 

confidence range for budget satisfaction was determined 

as [94.45%, 95.79%], and for preference alignment as 

[91.58%, 93.10%]. Significant improvements (p < 0.01) in 

both measures were shown by a two-tailed paired t-test 

that compared this technique to a baseline heuristic.

 

 
Figure 3: Performance of the ant colony optimization algorithm under different numbers of ants 

 

As shown in Figure 3, as the number of ants increases, 

the performance indicators of the ant colony optimization 

algorithm are gradually optimized. When the number of 

ants is 10, the path length is 550 km, the tourist satisfaction 

is 82%, the budget satisfaction rate is 90%, and the 

calculation time is 8 seconds. At this time, the number of 

ants is small, the search range is limited, and it is not easy 

to fully explore the optimal path and meet the needs of 

tourists. When the number of ants increases to 20, the path 

length is shortened to 520 km, the tourist satisfaction rate 

is increased to 84%, the budget satisfaction rate is 92%, 

and the calculation time is 12 seconds. More ants 

participate in the search, which expands the search space 

and allows for better exploration of path combinations. 

When the number of ants is 30, the various indicators are 

further optimized, the path length is 500 km, the tourist 

satisfaction rate is 85%, the budget satisfaction rate is 

95%, and the calculation time is 15 seconds. When the 

number of ants continues to increase to 40 and 50, the 

algorithm can search the solution space more 

comprehensively, the path length continues to shorten, and 

the tourist satisfaction and budget satisfaction rate 

continue to increase, but the calculation time also 

increases accordingly. In summary, appropriately 

increasing the number of ants is helpful to improve the 

performance of the ant colony optimization algorithm in 

multi-objective optimization. The results indicate that 

using around 50 ants achieves the best balance between 

solution quality and computational time for typical multi-

destination trips with 10 to 15 stops. Fewer than 30 ants 

tend to result in suboptimal routes due to insufficient 

exploration, while more than 70 ants increase computation 

time significantly without substantial improvement in 

solution quality.
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Figure 4: Performance of the ant colony optimization algorithm at different iterations 

 

As shown in Figure 4, the number of iterations 

significantly impacts the performance of the ant colony 

optimization algorithm. When the iteration is 50, the path 

length is 530 km, the tourist satisfaction is 83%, the budget 

satisfaction rate is 91%, and the calculation time is 10 s. 

Currently, the algorithm has not fully converged, and the 

optimization degree of the path and each target is limited. 

As the number of iterations increases to 100, the path 

length is shortened to 510 km, the tourist satisfaction is 

increased to 84%, the budget satisfaction rate is 93%, and 

the calculation time is 15 s. More iterations give ants more 

opportunities to update pheromones and optimize path 

selection. When the iteration is 150, the path length is 500 

km, the tourist satisfaction is 85%, the budget satisfaction 

rate is 95%, and the calculation time is 20 s. The algorithm 

gradually converges to a better solution. Continuing to 

increase the number of iterations to 200 and 250, the path 

length is further shortened, the tourist satisfaction and 

budget satisfaction rate continue to rise, but the calculation 

time also increases accordingly. This shows that 

increasing the number of iterations within a certain range 

can enable the algorithm to find a better solution in multi-

objective optimization and improve performance, but the 

cost of calculation time needs to be weighed.

 

Table 5: Performance of the ant colony optimization algorithm under different pheromone volatilization factors 

Volatility 

Factor 

Path 

length 

(km) 

Tourist 

satisfaction 

(%) 

Cost control (budget 

fulfillment rate %) 

Computation 

time (s) 

0.1 520 83 92 12 

0.2 510 84 93 14 

0.3 500 85 95 15 

0.4 505 84 94 16 

0.5 515 83 92 18 

As shown in Table 5, the pheromone volatilization 

factor is a key ant colony optimization algorithm 

parameter. When the volatilization factor is 0.1, the path 

length is 520 km, the tourist satisfaction is 83%, the budget 
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satisfaction rate is 92%, and the calculation time is 12 s. 

At this time, the volatilization speed is slow, and many old 

pheromones are retained, which may cause the algorithm 

to fall into the local optimum and affect the path 

optimization. When the volatilization factor is increased 

to 0.2, the path length is shortened to 510 km, the tourist 

satisfaction is increased to 84%, the budget satisfaction is 

93%, and the calculation time is 14 s. Appropriate 

volatilization of pheromones can allow the algorithm to 

jump out of the local optimum and explore a better path. 

When the volatilization factor is 0.3, all indicators reach 

their best, the path length is 500 km, the tourist satisfaction 

is 85%, the budget satisfaction rate is 95%, and the 

calculation time is 15 s. When the volatilization factor 

increases to 0.4 and 0.5, the path length increases, and the 

tourist and budget satisfaction rates decrease slightly. This 

is because the volatilization is too fast, the accumulation 

of new pheromones is insufficient, and the algorithm 

search efficiency is affected. Therefore, choosing a 

suitable pheromone volatilization factor is crucial to the 

performance of the ant colony optimization algorithm in 

multi-objective optimization.

Table 6: Performance of the ant colony optimization algorithm under different budget satisfaction 

Budget 

(yuan) 

Path 

length 

(km) 

Tourist 

satisfaction (%) 

Cost control (budget 

fulfillment rate %) 

Computation 

time (s) 

5000 510 84 98 15 

6000 500 85 95 15 

7000 490 86 92 15 

8000 480 87 90 15 

9000 470 88 88 15 

As shown in Table 6, the ant colony optimization 

algorithm shows good adaptability as the budget changes. 

When the budget is 5,000 yuan, the path length is 510 km, 

the tourist satisfaction is 84%, the budget satisfaction rate 

is 98%, and the calculation time is 15 seconds. At this 

time, the algorithm, under a limited budget, rationally 

plans the path and prioritizes lower-cost destinations to 

meet budget satisfaction while considering tourist 

satisfaction as much as possible. When the budget 

increases to 6,000 yuan, the path length is shortened to 500 

km, the tourist satisfaction is increased to 85%, the budget 

satisfaction rate is 95%, and the calculation time remains 

unchanged. More budget gives the algorithm more room 

for choice, which can optimize the path and improve the 

tourist experience. As the budget continues to increase to 

7,000 yuan, 8,000 yuan, and 9,000 yuan, the path length is 

further shortened, and tourist satisfaction continues to rise, 

but the budget satisfaction rate decreases slightly. This 

shows that while the algorithm uses the increased budget 

to improve tourist satisfaction and optimize the path, it 

also tries to balance cost control to adapt to the multi-

objective optimization needs under different budget 

satisfaction.
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Figure 5: Performance of the ant colony optimization algorithm under different tourist interest preference intensities 

 

As shown in Figure 5, the intensity of tourist interest 

preference has a significant impact on the performance of 

the ant colony optimization algorithm. When the intensity 

of interest preference is 0.5, the path length is 505 km, the 

tourist satisfaction is 83%, the budget satisfaction rate is 

94%, and the calculation time is 15 seconds. At this time, 

the influence of interest preference on path planning is 

relatively small. While meeting the basic needs of tourists, 

the algorithm focuses more on cost control and path 

optimization. As the intensity of interest preference 

increases to 1.0, the path length is shortened to 500 km, 

the tourist satisfaction is increased to 85%, the budget 

satisfaction rate is 95%, and the calculation time remains 

unchanged. Stronger interest preference makes the 

algorithm more inclined to choose destinations that meet 

the interests of tourists when planning paths, thereby 

improving tourist satisfaction. When the intensity of 

interest preference increases to 1.5, 2.0, and 2.5, the path 

length continues to shorten, the tourist satisfaction 

continues to rise, but the budget satisfaction rate decreases 

slightly. This shows that the algorithm will impact cost 

control in optimizing the path and improving satisfaction 

according to the tourist interest preference. However, it 

can still find a good balance between multiple objectives 

to adapt to the travel itinerary planning needs under 

different interest preference intensities. 

The Eiffel Tower, the Louvre Museum, and Notre 

Dame Cathedral were famous landmarks in over a 

thousand user-generated multi-destination itineraries for 

Paris, France, taken from TripAdvisor, and this data was 

used to perform a case study. Sequences of visits, average 

times spent at each location, and patterns of visits over 

time that reflected changes in demand throughout the year 

were all included in the dataset. With this information, the 

suggested multi-objective ant colony optimization model 

could create optimal itineraries considering factors like 

overall travel time, user preference alignment according to 

rating scores, and dynamic constraints like attraction 

opening hours and crowding estimates based on 

timestamped reviews. There was an improvement in 

accommodating real-time limitations, such as unexpected 

site closures, and a 12% decrease in overall trip distance 

compared to the original user itineraries and typical 

heuristic approaches. 

4.3 Discussion 

The results of this study show that the multi-

destination tourism itinerary design model based on the 

ant colony optimization algorithm performs well in multi-

objective optimization and dynamic constraint processing, 

and effectively solves the shortcomings of traditional 

algorithms in dealing with complex constraints and 

personalized needs. Compared with existing literature, 

this study not only considers basic constraints such as time 

and cost in travel, but also fully integrates personalized 

factors such as tourists' interest preferences, which is 

inconsistent with some research results that only focus on 

single-objective optimization. The limitation of this study 

is that the experimental data is mainly simulated data, 

which may be different from the real tourism scene, which 

may affect the universality of the research results. Future 

research can collect more real data for verification and 

further optimize the algorithm to improve its 

computational efficiency in large-scale data and complex 

scenarios. This study provides a new intelligent tool for 

the tourism planning industry, which helps to improve the 

automation level and accuracy of tourism planning and 

promote the sustainable development of the tourism 

industry. 

The model has a modular ACO-based framework that 

can handle itinerary planning with many objectives; 
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however, it's only working in a simulated setting for now. 

This system's assessment and data inputs don't consider 

real-life travel patterns, real-time traffic, regional 

scheduling limitations, and diverse user preferences. 

When applied to real-world tourist settings, the 

optimisation process's reliance on static and idealised 

parameters limits its capacity to capture the dynamic 

nature of demand, environmental disturbances, and 

operational unpredictability. Under less-than-ideal 

circumstances, performance metrics like convergence 

stability, itinerary feasibility, and preference satisfaction 

become more meaningful when real-time data sources are 

used and the model is run in genuine user scenarios. 

5 Conclusion 
This study aims to solve the multi-objective 

optimization and complex constraint problems in 

designing multi-destination tourism itineraries through the 

ant colony optimization algorithm. It innovatively 

incorporates multiple factors into the model, such as 

tourists' personalized needs, time, and budget. Through 

experimental verification, the model has shown significant 

advantages under different numbers of destinations and 

various constraints. For example, in the 50 destination 

scenarios, the path length is 2000km, the tourist 

satisfaction rate is 93%, and the cost is controlled at 85% 

of the budget satisfaction rate, effectively improving the 

rationality of tourism itinerary planning and tourist 

satisfaction. However, the research also has limitations, 

such as the difference between simulated data and actual 

conditions and the long calculation time of the algorithm 

in large-scale scenarios. Future research can consider 

introducing more real data, optimizing algorithm 

parameters, and exploring more efficient calculation 

methods to improve the model's performance and 

practicality, as well as provide better services for the 

tourism industry. 
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