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This study proposes a modified multi-objective chimp optimization algorithm (MO-ChOA) to optimize 

energy consumption retrofits for existing buildings to reduce operational energy consumption. First, a 

back-propagation neural network was used to predict carbon emission factors, and a mathematical model 

for multi-objective optimization of building energy consumption was established. Subsequently, 

Hammersley sequence and somersault foraging heuristic strategy were introduced to improve MO-ChOA, 

and the improved MO-ChOA was used to solve the multi-objective optimization model of building energy 

consumption. The experimental results showed that the proposed improved MO-ChOA had a reverse 

generation distance of 0.113 and a super volume of 0.973, which was superior to the traditional MO-

ChOA. This study proposed a modified MO-ChOA to optimize energy consumption retrofits for existing 

buildings, aiming to reduce operational energy consumption. First, a back-propagation neural network 

was used to predict carbon emission factors, and a mathematical model for multi-objective optimization 

of building energy consumption was established. In the optimization of building energy consumption, the 

proposed method had a solution interval of only 0.110, an average uniformity evaluation index of more 

than 0.8, a carbon emission saving rate of 0.7-0.95, a cost saving rate of 0.79, and an investment return 

rate of 0.685, which could effectively reduce carbon emissions and operating costs. The study encourages 

the development and innovation of energy-saving retrofitting technologies and offers new technical tools 

and solutions for retrofitting existing buildings with lower energy use. 

Povzetek: Predlagan je izboljšan večciljni metahevristični algoritem optimizacije šimpanzov z 

Hammersleyjevim vzorčenjem in strategijo, ki učinkovito zmanjša porabo energije ter emisije pri 

energetski sanaciji stavb. 

 

1 Introduction 
The building industry is a major contributor to energy 

consumption (EC) and CO2 emissions. A large number of 

old residential buildings have poor envelope structures, 

old and inefficient equipment, and a large proportion of 

non-energy efficient buildings. Moreover, the lack of 

operation and maintenance management leads to a high 

percentage of building whole-life EC in the total EC [1-2]. 

In conclusion, achieving carbon peak, carbon neutrality, 

and advancing green, low-carbon, and high-quality 

development all depend heavily on accelerating the 

promotion of energy saving (ES) and carbon reduction 

(CR) in the building industry. In the meanwhile, building 

CR initiatives can raise the energy efficiency level of 

buildings by utilizing ES materials, optimizing building 

design, and taking other steps. Buildings must conduct ES 

and CR since this can give occupants a more comfortable 

and healthful living environment [3]. Building operations 

contribute significantly to carbon emissions (CEs). 

Reducing EC directly lowers emissions while improving 

energy efficiency. Retrofitting existing buildings (EBs) 

for energy efficiency is still fraught with difficulties,  

 

though. On the one hand, the current energy efficiency 

retrofit schemes are less generalizable due to the  

complexity of the EB stock and the range of building 

kinds, ages, and purposes. For example, building types can 

be divided into residential buildings, public buildings, 

industrial buildings, and agricultural buildings according 

to their functions. According to the structural form, it can 

be divided into wall load-bearing structure, skeleton 

structure, etc. It also includes special types of buildings 

such as historical buildings and memorial buildings. On 

the other hand, the integration of multiple technologies 

such as renewable energy integration and smart building 

technologies for the energy efficiency retrofit design of 

existing EBs increases the complexity of technology 

implementation [4-5]. Multi-objective optimization 

algorithm (MOOA) refers to an algorithm that searches for 

a set of non-inferior solutions in optimization problems 

where there are conflicts or contradictions among multiple 

objective functions (OFs). In recent years, MOOA has 

been widely applied in fields such as engineering design, 

supply chain management, and logistics optimization due 

to its unique advantages in handling multiple conflicting 
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or contradictory OFs. The energy-saving renovation of 

EBs faces challenges such as complex types and poor 

universality of schemes. This study aims to optimize the 

EC and cost of EBs through an improved MOOA to reduce 

operational EC, reduce CEs, and improve energy use 

efficiency. The study first determines the CE indexes of 

EB operations based on the ES objectives and CE factors, 

and constructs a mathematical multi-objective 

optimization (MOO) model. Then, the Hammersley 

sequence and somersault foraging heuristic strategy are 

introduced to improve the Chimp optimization algorithm 

(ChOA), which aims to enhance the multi-objective 

optimization performance of ChOA and achieve energy 

and cost optimization of EBs. 

The study is mainly composed of four sections. The 

first section reviews the relevant studies on building ES 

and emission reduction optimization at home and abroad. 

The second section describes the construction of MOO 

model for EC of EBs and the design process of the 

improved multi-objective chimp optimization algorithm 

(MO-ChOA) solution algorithm. In the third section, the 

improved MO-ChOA solution algorithm is tested for 

performance and the EC optimization analysis is carried 

out. The fourth section summarizes the experimental 

results. 

2 Related work 
Renovating buildings contributes to a decrease in EC and 

CEs, which has broad social and practical implications as 

well as significant theoretical importance. Research on ES 

and emission reduction in buildings has been conducted 

by numerous academics and researchers. To properly 

analyze the energy performance of buildings, Fallah et al. 

used feed-forward neural network combined with 

electrostatic discharge algorithm to optimize and design 

an annual thermal energy demand prediction model for 

residential buildings. Experimental results indicated that 

the method demonstrated higher prediction accuracy 

compared to atomic search optimization, future search 

algorithm and satin gardener bird optimization [6]. To 

control building EC towards sustainable buildings, 

Tahmasebinia et al. explored the potential of building 

information modeling (BIM) and digital twin technology 

in building energy efficiency and management, supported 

by citing case studies [7]. An energy-efficient building 

management information system based on multi-

intelligent body topology was proposed by Verma et al. to 

address the conflict between occupant comfort and EC in 

residential structures. To find the best way to reduce EC 

and increase comfort, the system first optimized the 

environmental parameters using a restricted nonlinear 

optimization algorithm. Artificial intelligence (AI) and 

deep learning techniques were then used to further train 

and validate the system. The findings proved that the 

system successfully decreased EC while maintaining high 

levels of occupant satisfaction with regard to air quality, 

thermal comfort, and visual comfort [8]. To optimize the 

design of commercial buildings in the tropical climate of 

India to enhance thermal performance and reduce EC, 

Sana et al. used building energy simulation optimization 

(BESO) in conjunction with grasshopper optimization 

algorithm (GOA). The experimental results indicated that 

the method performed better in reducing the annual 

thermal load and was more computationally efficient with 

a reduction in computation time by 4.18%-37.11% [9]. To 

solve the problems of low efficiency and high cost of 

traditional building construction and to promote the green 

and sustainable development of buildings, Wu constructed 

a multi-objective decomposition building energy 

efficiency optimization model based on BIM. It also 

introduced the intelligent body-assisted multi-objective 

particle swarm optimization (MOPSO) to enhance the 

optimization effect. According to the experimental 

findings, the model exhibited good convergence, 

adaptability, and optimization time performance. In 

particular, it achieved the shortest search time, the 

smallest total EC and the highest oversize volume index in 

the ES optimization design of urban single-room office 

buildings [10]. Khan et al. proposed a bacterial foraging 

ant colony optimization algorithm to schedule electricity 

consumption for building energy optimization problems. 

The results showed that the proposed algorithm could 

reduce electricity cost and improve user comfort [11]. Xu 

et al. proposed a building EC optimization model based on 

convolutional neural networks and BIM. The results 

showed that the proposed method could reduce building 

EC by 24.53% and increase natural lighting by 18.98% 

[12]. Gheoany et al. proposed an energy management 

system based on branch and bound algorithm and particle 

swarm optimization algorithm for building energy 

management problems. The results showed that the 

proposed method could reduce the electricity bills and 

standard number of poles by 28% and 49.32%, 

respectively [13]. 

To optimize the building envelope and photovoltaic 

modules to enhance the performance of energy-efficient 

buildings, Zhao et al. constructed an efficient hybrid 

algorithm using PSO, support vector machines, non-

dominated sorting genetic algorithms (NSGA) II, and 

sequential selection of optimization techniques. The 

method significantly reduced building EC by 41%, CE by 

34% and retrofit operation cost by 20% [14]. Building 

envelopes can be retrofitted to adapt to the future climate 

using a MOO design process that Ding et al. designed to 

address the impact of global climate change on building 

EC. The method utilized back-propagation neural network 

(BPNN) to establish the correlation between design 

parameters and performance metrics and NSGA-III to 

optimize the retrofit strategy. The results revealed that the 

method was more efficient in terms of ES solutions, 

emphasizing the importance of considering climate 

change factors [15]. To address the problem of high 

dependence on expert knowledge and subjective decision 

making in traditional green building design, Khan et al. 

proposed an innovative framework integrating BIM, 

interpretable AI and MOO. The framework used Bayesian 

optimization for energy prediction and MOO with the help 

of multi-objective evolutionary algorithm (MOEA) based 

on decomposition. The results revealed that the 

framework achieved highly accurate prediction and 

significant optimization results, improved energy 
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efficiency and thermal comfort, and reduced CO2 

emissions [16]. To solve the MOO problem in the 

renovation of historic buildings, Wei et al. proposed a 

renovation method that combines the building envelope 

with systematic standard measures. Using energy 

simulation technology and NSGA-II algorithm, multiple 

retrofit solutions were generated by logarithmic additive 

decomposition, and then the weighted sum method was 

applied to find the optimal solution. Taking the Nanjing 

Courtyard as an example, EC was reduced by 63.62% after 

the retrofit, the net present value increased by 151.84%, 

and the CR rate was up to 60.48%, which realized the 

balance of ES, CR and economy [17]. The summary table 

of the above-mentioned related work is shown in Table 1. 

Table 1: Summary table of related work 
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In summary, in the area of ES and emission reduction 

in building retrofitting, which successfully increases 

building energy efficiency and comfort by adding cutting-

edge algorithms and technologies, current research has 

produced noteworthy outcomes. Nonetheless, the majority 

of current studies concentrate on optimizing the structure 

and performance of a particular building.  

To reduce the operational EC of EBs, the study 

innovatively constructs a mathematical MOO model and 

introduces intelligent optimization algorithms to improve 

the optimization, in order to achieve further optimization 

of EC. 

3 optimization study of operational 

energy retrofit in EBS 
The study unfolds the optimal design of operational 

energy retrofit of EBs in the context of carbon peak ES 

and the MOO study of ES with the help of multi-objective 

intelligent algorithms. 

3.1 Construction of MOO model based on 

building ES and emission reduction 

The determination of CE indexes is the basis for the MOO 

study of EC in the operation of EBs. By defining the CE 

index, it can quantify the CE of EBs in the process of 

operation, and provide a clear target and evaluation 

standard for the subsequent optimization study. To 

establish the CE index of EBs in the operation stage to 

realize the ES standard, the study firstly launches the 

prediction of building carbon peak CE factor. The 

prediction process is shown in Figure 1. 
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Figure 1: CE accounting process of EBs 

As shown in Figure 1, the spatial boundary of the CE 

calculation is the area of the building and its annexes, and 

the time boundary is the life cycle of the building. The 

direct source of CE is the combustion of fuel in buildings, 

and the calculation factors include fuel type, fuel 

consumption, and fuel CE factor. Indirect CE refers to the 

use of electricity and heat, with calculation factors 

including electricity consumption, CE factors from 

electricity sources, and CE factors from heat consumption 

and heat. Transportation emissions refer to the 

transportation of building materials (BMs) and 

construction processes, with calculation factors including 

transportation distance, mode, and CE factors of 

transportation vehicles. Hidden CE refer to the CE during 

the production, transportation, and construction processes 

of BMs. The calculation factors include the type of BMs 

and the CE factors during the production and 

transportation stages of the materials. In addition, included 

are CEs from building-related transportation operations as 

well as CEs from the choice and application of BMs. With 

reference to the Standard for Calculating CEs from 

Buildings (GB/T51366-2019), Equation (1) illustrates how 

CEs G  are calculated during a building's whole life 

cycle. 

s j y cG G G G G= + + +                                     (1) 

In Equation (1), sG , jG , yG , and cG  represent the 

emissions (kgCO2e/m2) from the production of BMs, 

building construction, operation, and demolition stages, 
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respectively. The CEs in the building production stage 

mainly come from the mining, production, transportation, 

and construction of BMs. Carbon accounting is shown in 

Equation (2). 

s i iG AD EF=                                         (2) 

In Equation (2), iAD  denotes the activity volume of 

the first BM. iEF  is the CE factor of the i th BM, i.e. the 

CE corresponding to the unit activity volume. Carbon 

accounting in the operation phase of the building is shown 

in Equation (3). 

y i iG P PF=                                          (3) 

In Equation (3), iP  denotes the amount of energy 

consumed by Type i  energy sources. iPF  represents the 

CE factor of the i th type of energy. The EB retrofit 

process needs to consider the CEs from operation and 

retrofit at the same time. The calculation of CE gG  of 

building retrofit is shown in Equation (4). 

g gs gcG G G= +                                       (4) 

In Equation (4), gsG  and gcG  represent the CEs caused 

by the production of BMs and construction in the 

remodeling process, respectively. Based on the CE 

accounting of EBs at different stages, the study builds a 

basic CE factor prediction framework with the help of 

classical BPNN. BPNN consists of input layer, hidden 

layer, and output layer (OL). The work signal and the error 

signal propagate in the BPNN simultaneously. Until the 

actual output is produced at the output, the work signal 

continues to travel forward. Layer by layer, the erroneous 

signal travels backwards from the output. The expression 

of the error E  is shown in Equation (5). 

( )
21

-
2

N m

zs zss 1 z 1
E d y

= =
=                                 (5) 

In Equation (5), s  denotes the data sample. z  

denotes the input. d  and y  denote the expectation and 

prediction of the OL nodes, respectively. To make the 

output as close to the intended target as possible, the 

learning objective of BPNN is to adjust its weights based 

on the error between the network's actual output and the 

target vector. The updating process of the weight factor SS 

is shown in Equation (6). 

E
w w

w



 = −


                                       (6) 

In Equation (6),   denotes the hyper-parameter 

learning rate, which takes the value of 0.01. In addition, 

BPNN utilizes the chain rule to decompose the gradient of 

the loss function into local gradients. The simplified 

computational procedure is shown in Equation (7). 

( ) ( )'( ) 1 ( )k

k k k k k k k k

k k k

yE E
d y f I y y d y

I y I


 
= − = − = − = − −

        (7) 

In Equation (7), k  denotes the error signal. kI  

denotes the input of the k th node of the OL. Finally, the 

study predicts the CE factor when the carbon peaks 

according to BPNN. The input layer of BPNN receives 

key feature data that affect the CE factor, including BM 

parameters, EC data, building structure parameters, and 

environmental parameters. The hidden layer is used for 

nonlinear mapping and feature extraction, adopting a 

single hidden layer structure to avoid overfitting and using 

the ReLU function to alleviate the gradient vanishing 

problem. The prediction target of the OL is the CE factor 

during the building operation phase, with a node count of 

1. The activation function is selected as a linear function 

to directly output continuous values. The core module of 

the CE prediction framework, known as BPNN, possesses 

the capability to dynamically modify the CE factor. This 

modification is contingent upon real-time input EC data 

and building parameters. BPNN facilitates the iterative 

solution of multi-objective optimization models. 

Subsequently, the spatial model of the building is 

constructed using computer-aided design software 

according to the construction standards of the EB, and the 

building model constructed by the study is oriented in the 

north-south direction with reference to GB50176-2016 

Thermal Design Code for Civil Buildings. Moreover, it 

comprehensively considers the building structure and 

environmental characteristics to determine the 

transformation parameters, including the transformation 

of lighting, thermal environment, and envelope structure. 

Finally, the study synthesizes the CE factor and ES 

demand at the time of carbon peaking, and determines the 

CE index of EBs with reference to the Energy 

Conservation Design Standard for Public Buildings 

(GB50189-2015). 

Energy retrofit of EBs mainly involves windows, 

lighting, envelope, cooling and heating systems. Window 

retrofit is an important part of EC retrofit, and the study 

mainly takes the window-to-ground ratio (WGR) as the 

retrofit standard. The lighting schematic of the building 

rooms is shown in Figure 2. 

Interior 
Window 
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light 

source



Reference  

plane

Existing buildings

Radiation  area
 

Figure 2: Schematic diagram of room lighting in the EB 

In Figure 2, the WGR affects the lighting of the 

building. The average lighting coefficient avC  of a room is 

calculated in Equation (8). 

2(1 )

w

sum

w

av

sum

A
WGR

A
A

C
A






=


 =

−

                                     (8) 

In Equation (8), wA  and sA  denote window and 

room areas, respectively.   denotes the elevation angle 

between the window center and the sun.   denotes the 
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light transmission ratio.   denotes the reflectance ratio. 

The study uses Ecotect Analysis building simulation 

software to simulate the change of WGR and lighting 

coefficient. Supplemental artificial lighting is also 

required when natural lighting is insufficient. The total 

indoor illuminance value is composed of the natural 

lighting illuminance value and the lamp illuminance 

value. Finally, the final optimal WGR and illuminance 

values are determined according to the Building Lighting 

Design Standard GB50033-2013, and the number and 

power of luminaires are then determined. The heat balance 

of the envelope involves a number of aspects such as 

building EC, indoor thermal environment, and ES design 

of the building, and is mainly divided into the envelope 

modification of non-transparent and transparent envelopes 

[18-19]. The heat balance process of the two structures is 

shown in Figure 3. 

Reflection  

of light 

source

Absorbed  

heat

Absorbed  

heat

External 

environmental 

radiation

Transmitted 

solar 

radiation

Transparent enclosure
Non-transparent 

envelope  

Figure 3: Schematic diagram of the thermal equilibrium 

of the different structures 

In Figure 3, the difference between the two structures 

is mainly reflected in the fact that the transparent envelope 

enters a portion of the radiation affecting the heat load of 

the building. The heat transfer coefficient of the non-

transparent enclosure and the indoor-outdoor temperature 

differential are the primary determinants of the thermal 

balance. In contrast, the heat balance of the transparent 

envelope is not only affected by the heat transfer 

coefficient, but also by the solar heat gain coefficient. In 

addition, the study introduces the ground source heat 

pump system to complete the renovation of the cooling 

and heating system. In summary, the study realizes that 

the multi-objective of building energy retrofit (BER) is 

mainly composed of EC and cost. The OF is shown in 

Equation (9). 

( ) min    

min

, ( , ) ( )
( ) ( )

sum ac i ac if f E E f x K f x
g g x g k

= = +
= +

        (9) 

In Equation (9), minf  represents the minimum EC. 

acE  represents the EC of the air conditioner.  iE  

represents the EC of lighting. ( , )acf x K  represents the 

OF for optimizing air conditioning EC.  ( )if x  represents 

the OF for optimizing lighting EC. ming  represents the 

lowest renovation cost. K  represents the heat transfer 

coefficient. x  represents the window to ground ratio 

coefficient. ( )g x  represents the cost of window 

renovation. ( )g k  represents the renovation cost of the 

enclosure structure. To ensure the feasibility and 

rationality of the optimization plan, some additional 

constraints need to be met, as shown in Equation (10). 

 min max

( ) ( ) budget

K K K
g x g k C

 
+                               (10) 

In Equation (10), minK  and maxK  represent the 

minimum and maximum values of the heat transfer 

coefficient. budgetC  represents the budget. 

 

3.2 Design of EC optimization solution 

algorithm based on improved MO-ChOA 
Following the completion of the EC optimization 

model design for EBs, the study presents MOOA as a 

solution to the challenge of balancing several energies 

retrofit design goals. The EC MOO process proposed by 

the study is shown in Figure 4. 
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Figure 4: EC MOO process diagram 

In Figure 4, the EC optimization process mainly 

includes three modules: determining the CE index, energy 

reform performance simulation, and optimization of CE 

index. The CE index and EC transformation OF are input 

into MOOA, and the search of the optimal solution is 

completed by using the CE index to search the solution 

space. The results of the energy reform performance 

simulation can be fed back into MOOA again, and the 

parameters of the algorithm can be adjusted according to 

the simulation results to complete the optimization of 

energy reform. The intelligent optimization algorithm 

used in the study is ChOA. ChOA is an intelligent 

optimization algorithm based on chimpanzee population 

behavior, which is characterized by fast convergence 

speed and high computational accuracy. ChOA mimics 

the strategies and behaviors of chimpanzee populations in 

terms of hunting, communication, and decision-making. It 

categorizes the population into attackers, interceptors, 

repellers and chasers. Attacking chimpanzees are 

responsible for the final attack behavior, usually 

representing the optimal solution, and their position 

vectors (PVs) are used to guide other chimpanzees to 

update their positions. The pursuers are responsible for 

collaborating with the repelling chimpanzees to bring 

them into attack range, guiding the search process towards 

the area of potential optimal solutions. Interceptor 

chimpanzees are responsible for blocking the escape route 

of prey and assisting other chimpanzees to surround the 
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prey during the hunting process [20-21]. In the ChOA, the 

chimpanzee's PV represents the solution vector, and the 

update process of the PV is also the optimization process 

of the solution vector. ChOA first randomly generates a 

certain number of solution vectors to model the initial state 

of the chimpanzee population and randomly updates the 

population position. As demonstrated by Equation (11), 

during the exploration phase, population members adjust 

their positions in accordance with the prey's position. 
1

  

  

t t

chimp prey
t t

prey chimp

X X a d

d c X m X

+ = − 


=  −                                 (11) 

In Equation (11), 
 

t

preyX
 represents the PV of the 

prey at time t . 
 

t

chimpX
 and 

1

 

t

chimpX +

 represent the PV of 

individuals in the population at time t  and time 1t + , 

respectively. a  denotes the coefficient vector, which is 

controlled by the convergence factor. d  denotes the 

distance between the prey and the population. c  denotes 

the influence factor of obstacles on the prey of the 

population. m  denotes the chaotic mapping vector. 

During the exploitation phase, the chimpanzee population 

approaches the optimal solution by collaboratively 

updating their positions, which are shown in Equation 

(12). 
1 1 1 1
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denote the updated PVs of the attacker, encircler, repeller, 

and pursuer, respectively. However, the initial population 

generation of traditional ChOA is too random, which leads 

to poor diversity and uniformity of the population 

distribution of the algorithm and affects the algorithm's 

traversal of the solution space [22-23]. In this regard, the 

study introduces the Hammersley sequence to help ChOA 

generate the initial population. The Hammersley sequence 

can generate a uniformly distributed point set in the 

multidimensional space. The improved calculation of the 

initial position of the population is shown in Equation 

(13). 

( )k b k b bX l H u l= + −
                                   (13) 

In Equation (13), bu  and bl  denote the upper and 

lower bounds of the positional variable interval. kH  

denotes the Hammersley sequence. The Hammersley 

sequence is a low variance sequence that can generate 

uniformly distributed sample points. In ChOA, the 

Hammersley sequence first determines the number and 

dimension of the sample points. Second, the first d-1 

primes are selected to generate Halton sequences in other 

dimensions. Then, Hammersley sequences are generated 

and the sequences for each dimension are combined to 

form complete Hammersley sequential sampling points. 

Finally, the sampling points are normalized to map them 

to actual variable ranges. Moreover, the generated sample 

points are used as the initial totality for the optimization 

of the algorithm. In addition, the traditional ChOA is 

prone to gradual convergence of population individuals to 

the local optimal solution as the number of iterations 

increases, resulting in the algorithm's difficulty in jumping 

out of this local optimal region. In this regard, the study 

introduces the somersault foraging heuristic strategy, 

which simulates the behavior of an animal looking for 

more food by somersaulting during foraging. The working 

mechanism is shown in Figure 5. 
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Figure 5: Mechanism of the somersault foraging heuristic 

working mechanism 

As demonstrated in Figure 5, the somersault foraging 

strategy emulates the foraging behavior of organisms and 

updates the current solution symmetrically to the opposite 

side of the fulcrum. This allows the algorithm to explore 

the symmetric region of the current position, thereby 

increasing the diversity of the search and avoiding 

premature convergence of the population to the local 

optimal solution. In addition, the random number of the 

somersault foraging strategy also introduces randomness 

into the update process, making it possible to generate 

different new solutions with each update. The 

mathematical expression is given in Equation (14). 
1

1 2( ),   / , [0,1]t t t t

preyX X S r X r X if i N r r+ = +  −   
     

       (14) 

In Equation (14), S  is the blanking factor. r  denotes 

the random number. N  is the maximum iterations’ 

quantity. Finally, the study draws on NSGA II to design a 

multi-objective search strategy for improving ChOA, 

which mainly includes fast non-dominated sorting, 

congestion comparison operator, and elite strategy. The 

working mechanism is shown in Figure 6. 
Crowding Comparison 
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(a) Fast Undominated Sorting and Crowding Comparison (b) Elite Strategy

 

Figure 6: Multi-objective search strategy of improved 

MO-ChOA 
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In Figure 6, based on the population's fitness and each 

person's Pareto dominance connection, the enhanced MO-

ChOA first completes the population hierarchy. Then, the 

comparison of individuals between the same tiers is 

performed. Finally, the optimal solution of the previous 

generation is retained and the multi-objective search is 

performed again for the new population of the next 

generation. The complexity analysis of the improved MO-

CHOA is performed. It is assumed that the population size 

is N and the dimensionality of the decision variables is D. 

The computational complexity of the improved MO-

CHOA to generate the initial population and the 

somersault foraging strategy is O(N·D). It is assumed that 

the computational complexity of the fitness function is 

O(F), and the complexity of each fitness computation is 

0(N·F). The computational complexity of fast non-

dominated sorting is O(M·N2), where M represents the 

number of targets. The computational complexity of the 

crowding comparison operator is O(N·logN), and the 

computational complexity of the elite strategy is O(N·D). 

It is assumed the algorithm runs T iterations, the overall 

complexity of the improved MO-CHOA is 

O[T(M·N2+N·F+N·logN+N·D). 

4 Building energy retrofit MOOA 

performance testing and 

application effect analysis 
To verify the effectiveness of the research-designed MOO 

model for BER and the improved MO-ChOA, the research 

launched performance testing and application analysis 

experiments. 

4.1 MOOA performance testing 

The comparative analysis of MOOA is unfolded first. The 

experiment is completed based on Windows 10 operating 

system; the central processor is Intel(R) Core (TM) i5-

6300HQ with 16G of RAM. The image processor is GTX 

3060 12G. The algorithm implementation language is 

Python3.8. Using hyper volume (HV) and inverse 

generation distance (IGD) as evaluation metrics. HV is 

employed to assess the extent to which the target space is 

encompassed by an approximate set. A higher value of HV 

signifies a more comprehensive coverage of the target 

space by the solution set, thereby indicating a higher 

quality of the solution. IGD measures the average distance 

from a reference point set to a solution set, with smaller 

values indicating that the solution set is closer to the true 

Pareto front and more evenly distributed. Sensitivity 

analysis is performed on the ZDT3 function by setting the 

maximum number of iterations to 100. The population size 

is set to 50, 100, and 150. The flip factor is set to 1, 3, and 

5. The mutation probability is set to 0.01, 0.05, and 0.1, 

respectively. The results of the hyper-parameter 

sensitivity analysis of the improved MO-ChOA are shown 

in Table 2. In this table, a population size too small (50) 

leads to insufficient diversity and low HV, while a 

population size too large (150) increases the 

computational cost and slows down the convergence 

speed. When the population size is 100, convergence and 

diversity are balanced. If the flip factor is too small (1), 

the local search ability of the algorithm is weak, and if it 

is too large (5), it can lead to oscillations. If the mutation 

probability is too low (0.01), the algorithm will tend to get 

stuck in local optima. Furthermore, if it is too high (0.1), 

it will lead to a decrease in the convergence performance 

of the algorithm. When the population size is 100, the flip 

factor is 3, and the mutation probability is 0.05. Moreover, 

the improved MO-ChOA performs best in HV and IGD 

indicators, with values of 0.973 and 0.113, respectively. 

Therefore, in the study, the population size is set to 100, 

the flip factor is set to 3, and the mutation probability is 

set to 0.05. 

Table 2: Hyper-parameter sensitivity analysis results 

Hyper-parameters HV IGD 

Population 

size 

50 0.952 0.125 

100 0.973 0.113 

150 0.962 0.119 

Flip factor 

1 0.931 0.142 

3 0.973 0.113 

5 0.958 0.121 

Mutation 

probability 

0.01 0.962 0.129 

0.05 0.973 0.113 

0.10 0.955 0.124 

 

The test functions include the dual-OF ZDT3, and the 

triple-OFs are DTLZ1 and DTLZ3. ZDT3 is a dual 

objective optimization test function with one global 

optimal solution and multiple local optimal solutions, 

which is commonly used to test the global convergence 

ability and local optimal solution avoidance ability of 

algorithms. DTLZ1 and DTLZ3 are multi-objective 

optimization test functions commonly used to test the 

performance of algorithms in multi-objective optimization 

problems. The performance of MO-CHOA on the test 

function before and after improvement is shown in Figure 

7. Comparing Figure 7 (a) and (b), the improved MO-

ChOA has a better solution on the ZDT3 function, and the 

solution value is more uniformly fit to the real frontier. 

The traditional MO-ChOA has poorer convergence of the 

solved values with more breakpoints. Comparing Figures 

7(c) and (d), the improved MO-ChOA has better 

convergence on the DTLZ1 function, and the solved 

values are uniformly distributed on the frontiers, which 

can cover the true frontiers better. The solution deviation 

of the traditional MO-ChOA is obviously increased. 

Comparing with Figures 7(e) and (f), the improved MO-

ChOA has better distributability on the DTLZ3 function, 

the overlap of the solution set gets reduced, the blank 

region of the true frontier is reduced, and the solution set 

distributability is superior. The results indicate that the 

improved MO-ChOA proposed by the study has a better 

multi-objective solution performance compared to the 

MO-ChOA. This is because the improved MO-ChOA uses 

a uniform initial population generated by Hammersley 

sequences, which can explore the search space more 

widely and avoid getting stuck in local optima. 

Meanwhile, the somersault foraging strategy further 

enhances the global search capability of the algorithm, 
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enabling it to more accurately find the global optimal 

solution. In addition, the multi-objective search strategy of 

NSGA II ensures the diversity and convergence of the 

solution, so that the solution values of the algorithm more 

closely match the real frontier. However, traditional MO-

ChOA lacks these enhancements, resulting in poor 

convergence, multiple breakpoints, and poor distribution 

of the solution set. 
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Figure 7: Performance of MO-ChOA on test functions 

before and after improvement 

To verify the effectiveness of the proposed 

improvement strategy, ablation experiments are 

performed on the ZDT3 function. The original MO-

ChOA, MO-ChOA with Hammersley sequences only, 

MO-ChOA with somersault foraging heuristic strategy 

only, MO-ChOA with NSGA II multi-objective search 

strategy only, and the complete algorithm are compared. 

The results of the ablation experiment are shown in Table 

3. The full model performs best in terms of HV and IGD 

indicators. Next is the MO-ChOA, which only introduces 

the NSGA II multi-objective search strategy, with HV and 

IGD indicators of 0.765 ± 0.020 and 0.121 ± 0.008, 

respectively. This indicates that the NSGA II multi-

objective search strategy contributes the most to 

improving the performance of MO-CHOA. 

Table 3: Results of ablation experiment 

Algorithm HV IGD 

MO-ChOA 0.674±0.012 0.150±0.014 

Hammersley+MO-

ChOA 
0.742±0.018 0.129±0.009 

Heuristic strategy of 

somersault for 

foraging+MO-ChOA 

0.721±0.015 0.134±0.012 

NSGA II+MO-ChOA 0.765±0.020 0.121±0.008 

Improved MO-CHOA 0.973±0.009 0.113±0.005 

 

Compared with traditional MO-CHOA, MOPSO, 

non-dominated sorting genetic algorithm III (NSGA-III), 

and MOEA in reference [16]. The MOPSO algorithm 

simulates the foraging behavior of flocks of birds, finds 

the optimal solution through cooperation and competition 

among particles. Moreover, it introduces diversity search 

strategy and convergence search strategy to enhance the 

diversity and convergence of solutions. NSGA-III is a 

multi-objective algorithm based on evolutionary 

optimization, which uses genetic operations to optimize 

multiple conflicting objectives. Furthermore, it employs 

non-dominant sorting and crowding distance mechanisms 

to maintain population diversity and quality. MOEA is an 

algorithm that solves multi-objective optimization 

problems by simulating the process of biological evolution 

to simultaneously optimize multiple conflicting 

objectives. It uses dominance-based relationships and 

diversity preservation mechanisms to generate Pareto 

optimal solution sets. The comparison results of HV and 

IGD values for different algorithms are shown in Figure 8. 

In Figure 8(a), the IGD curve of the improved MO-ChOA 

is always at the lowest level, and the minimum value 

converges to 0.113, which is the closest distance to the real 

frontier, in line with the solution distribution in Figure 7. 

In contrast, the IGD values of the conventional MO-

ChOA, MOPSO, NSGA-III, and MOEA converge at 

0.353, 0.341, 0.301, and 0.295, respectively. Hammersley 

sequences with heuristic strategies to improve the 

convergence of the solution set. In Figure 8(b), the HV 

curve of the improved MO-ChOA grows the fastest and 

quickly converges to 0.973 at the late stage of iteration. 

The IGD values of the traditional MO-ChOA, MOPSO, 

NSGA-III, and MOEA converge to 0.826, 0.768, 0.751, 

and 0.820, respectively. The improved approach raises the 

convergence and diversity of the solution set while also 

improving the algorithm's overall performance. 
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Figure 8: Comparison of HV and IGD values for 

different algorithms 

The study used binary metrics (coverage metric, C-

Metric) and knee driven dissimilarity (KD) as evaluation 

indicators. C-Metric is a performance metric used to 

measure the dominance relationship between two solution 

sets. It can evaluate which algorithm generates a solution 

set with better dominance relationship. KD is mainly used 

to measure the difference between the solution set and the 
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true knee point. The smaller its value, the closer the 

solution set is to the true knee point, and the better the 

algorithm performance. Adding more test functions to 

compare the different algorithms for solution set solving 

quality, Figure 9 displays the outcomes of the experiment. 

In Figure 9(a) and (b), the improved MO-ChOA designed 

by the study achieves the maximum C-metric on the test 

function ZDT3, which takes the value of 0.991. The C-

metric is used to measure the degree of superiority of one 

solution set with respect to another solution set. That is, 

what percentage of solutions in one solution set is 

dominated by a particular solution in another solution set. 

Meanwhile, the minimum value of KD of 0.118 is 

obtained on the SCH test function. In Figure 9(c) and (d), 

the C-metric and KD values of other MOOA are worse 

than those of the improved MO-ChOA. The solution set 

of the algorithm can cover the real solution set more 

widely. 
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Figure 9: Comparison of C-metric and KD values for 

different algorithms 

4.2 Effect of the application of building EC 

optimization 

To verify the practical application effect of the proposed 

improved MO-ChOA, this study takes an EB in a city in 

China as an example to carry out EC optimization and 

renovation. The building is constructed in the 1990s, with 

a total area of about 5000 square meters and an annual CE 

target of 2.81 kg CO2e/m2. The energy utilization 

efficiency is relatively low, mainly relying on traditional 

central heating and air conditioning systems. The annual 

EC for cooling and heating is 27.81 kW·h/m2, lighting EC 

is 6.95 kW·h/m2, and other EC is 3.86 kW·h/m2. The heat 

transfer coefficients of the interior and exterior walls of 

the building are 1.52W/(m2 · k) and 0.92W/(m2 · k), 

respectively. The heat transfer coefficient of the windows 

is 2.9W/(m2·k), and the heat transfer coefficient of the 

doors is 1.35W/(m2·k). A comprehensive optimization of 

the building's heating, air conditioning, lighting, and 

building envelope is planned. The solution quality of 

different algorithms in energy optimization is shown in 

Figure 10. In Figure 10(a), there is a significant difference 

in the solution spacing performance (SP) of different 

algorithms. Improved MO-ChOA has the smallest range 

of SP distribution. During 120 iterations, the minimum SP 

value is only 0.110. It can be concluded that the solutions 

inside the Pareto solution set of Improved MO-ChOA are 

denser and more diverse. While the minimum SP values 

of the other algorithms are on the level of 0.20 values. In 

Figure 10(b), the improved MO-ChOA performs well in 

uniformity performance (UP), with the average UP values 

all above the 0.80 taking level. Taken together, the studied 

design achieves the most widely distributed solution set in 

energy optimization. 
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Figure 10: Comparison of SP and UP for different 

algorithms 

The ESs rate (ESR) and CE savings ratio (CESR) of 

the building are compared after optimization with 

different algorithms. Figure 11 displays the outcomes of 

the experiment. Following energy optimization, the 

optimization scheme produced by the upgraded MO-

ChOA in Figure 11(a) produces the maximum ESR fetch 

while the building is in operation. It is substantially 

superior to the solution schemes of other algorithms, 

fluctuating between 0.8 and 1.0. Following the building's 

refurbishment, the higher ESR readings indicate a notable 

decrease in EC and an increase in energy use efficiency. 

The retrofit effect of the other solutions is not significant 

and the reduction of EC is limited. In Figure 11(b), the 

optimization scheme obtained by the improved MO-

ChOA obtained the highest CESR fetch value, fluctuating 

within the interval of 0.7-0.95. The method effectively 

reduces the carbon footprint of the building with less 

negative impact on the environment. China's Energy 

Consumption Standards for Civil Buildings has set 

binding and guiding indicators for building EC, and the 

energy-saving rate of the Energy Efficiency Design 

Standards for Public Buildings has increased from 65% to 

72%. The improved MO-ChOA proposed in this study 

optimized the ESR of the building within the range of 0.8-

1.0, which is much higher than the energy-saving rate 
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level of the energy-saving benchmark building. This 

indicates that the EC of the renovated building has been 

significantly reduced and the energy utilization efficiency 

has been improved, reaching the leading energy-saving 

level in China. 
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Figure 11: Comparison of ESR and CESR for different 

algorithms 

The results of cost savings ratio (CSR) and return on 

investment (ROI) obtained by different algorithmic 

optimization schemes are shown in Figure 12. In Figure 

12(a), the CSR curve of the improved MO-ChOA is the 

highest throughout the iterative optimization process, 

converging to the highest value of 0.790. It demonstrates 

that by increasing energy efficiency and lowering EC, the 

energy optimization plan lowers energy bills and other 

associated expenses. In Figure 12(b), the ROI of the 

Improved MO-ChOA is the highest, taking the value of 

0.685. In summary, the scheme has significantly reduced 

the operating costs of the retrofitted building, with a high 

ROI and a high economic feasibility of the project. 
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Figure 12: Comparison of CSR and ROI of different 

algorithms 

5 Discussion 
To optimize the operational EC of EBs, an improved MO-

ChOA was proposed. The results showed that the 

convergence of the solution value of the improved MO-

ChOA was better and could cover the real frontier better. 

The minimum value of IGD converged to 0.113 and the 

maximum value of HV converged to 0.973. IGD reflected 

the degree of closeness between the solution set and the 

true frontier, while HV was used to measure the coverage 

and overall quality of the solution set. The improved MO-

ChOA focused more on the convergence of the solution 

set rather than the coverage area. Therefore, IGD had been 

significantly improved, but HV remained similar. The C-

metric value of the improved MO-ChOA could reach 

0.991 on the ZDT3 test function, and the KD value was 

only 0.118 on the SCH test function. Meanwhile, the 

minimum value of SP was only 0.110, and the UP values 

were all at the 0.80 fetch level. The investigated design 

achieved the most widely distributed solution set in energy 

optimization. During the operation of the building after 

energy optimization, the optimized solution obtained by 

improving MO-ChOA achieved the best ES rate and 

economic feasibility. The ESR took values fluctuating in 

the range of 0.8-1.0, the CESR took values fluctuating in 

the range of 0.7-0.95, the CSR converged to the highest 

value of 0.790, and the ROI took values as high as 0.685. 

The ESR, CESR, CSR, and ROI were all higher than the 

MOEA algorithm, indicating that the application effect 

was better than the MOEA algorithm proposed by Khan et 

al. [16]. In addition, the HV index of the method proposed 

by Zhao et al. [14] was 0.891, and the IGD index was 

0.201. The HV index of the method proposed by Wei et 

al. [17] was 0.902 and the IGD index was 0.148, both of 

which performed worse than the algorithm in this study. It 

can be concluded that the improved MO-ChOA proposed 

by the research had a good multi-objective optimization 

performance. This was because the Hammersley sequence 

and the somersault strategy introduced in the study could 

generate an initial population by multi-dimensional 

uniform distribution. Moreover, the step size was 

controlled by the flip factor to make the algorithm jump 

out of local optima. The NSGA-II multi-objective search 

strategy could balance convergence and distribution. 

Compared to traditional MO-ChOA and NSGA-II 

algorithms, it was closer to the real frontier. 

The proposed method can significantly reduce the EC 

of buildings during operation, thereby increasing the 

economic value and market competitiveness of buildings. 

Although in the case analysis, this study focuses on a 

specific building in a Chinese city and may not directly 

reflect the actual operation of other buildings. However, 

the proposed improved MO-ChOA has universality in 

principle and good scalability under different building 

types and climatic conditions. It can be combined with the 

automation control system of industrial buildings to 

optimize and schedule EC in the production process. To 

further improve the adaptability of the proposed method 

in different building types and climates, the optimization 

objectives and constraints can be redefined or adjusted. 

In addition, the optimization and renovation of 

building EC also face various limitations in practical 

situations. In terms of data reliability, the collection of 

building EC data relies on various sensors and metering 

devices that may experience malfunctions or errors, 

resulting in inaccurate or incomplete data collection. In 

building renovation, the fact that the building is already in 

use and the construction space is limited, some large 

construction equipment cannot enter the site, which limits 

the choice of construction techniques and methods. 

Moreover, some EBs may have structural safety hazards 

due to their long construction history. To address the 

above issues, cross-validation and correction of 

anomalous data can be achieved by combining 

information from multiple data sources, such as fusing 

meter data with power sensor data to improve data 

accuracy and reliability. Prior to the initiation of 

construction renovations, a comprehensive survey of the 

building site should be conducted to formulate a 
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scientifically sound construction plan, methodically 

arrange the construction process, and develop appropriate 

reinforcement and repair strategies for addressing 

structural safety hazards. 

6 Conclusion 
To find the optimal retrofit solution through the 

optimization algorithm in the retrofit of EBs by 

simultaneously considering multiple objectives such as 

ES, economy, and comfort, the study implemented the 

solution of EC MOOA based on the improved MO-ChOA. 

The study provides effective technical means for the ES 

retrofit of EBs and promotes the development of the 

construction industry in the direction of low-carbon and 

sustainable development. However, the design of the 

study does not take into account the differences in 

structure, function, and usage patterns of different 

buildings, and the applicability of improving MO-ChOA 

needs to be further explored. 
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