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Continuous Sign Language Recognition (CSLR) is a critical communication tool for the hearing-impaired
community, relying heavily on changes in facial expression, hand movement, and body posture to convey
meaning. Traditional CSLR methods primarily focus on frame-level feature extraction but often overlook
dynamic temporal relationships across frames. To address this, we propose a novel hybrid architecture
CNN Transformer with Adaptive Temporal Hierarchical Attention (CT-ATHA) which captures both local
motion patterns and long-range dependencies for improved temporal modeling. Our architecture consists
of a ResNet-34 backbone enhanced with Motor Attention Modules (MAM) to emphasize motion-centric
regions such as hands and facial areas. Temporal modeling is achieved through a two-stage process: 3D-
CNN layers extract short-term spatio-temporal features, followed by Adaptive Temporal Pooling to reduce
redundant frames, focusing the model’s attention on the most informative temporal segments. A Trans-
former encoder with hierarchical attention then combines local frame-level and global sentence-level con-
text through specialized attention heads. Additionally, we introduce learnable temporal gates to detect
critical motion phases, retaining high-entropy frames and pruning static frames. Our decoder utilizes a
BiLSTMwith a CTC head for sequence alignment and classification. Themodel is trained using amulti-task
learning approach, jointly optimizing for recognition accuracy and critical phase detection. Experimental
evaluation across multiple benchmark CSLR datasets demonstrates that our CT-ATHA model significantly
enhances motion information extraction, achieving a WER of 18.1% on RWTH, 18.8% on RWTH-T, and
23.9% on CSL-Daily, despite challenges like variable signing styles and lack of clear segmentation, offer-
ing a robust and efficient framework for continuous sign language recognition.

Povzetek: Opisana je hibridna arhitektura CNN-Transformer z adaptivno hierarhično pozornostjo (CT-
ATHA) za prepoznavanje nadaljevalnega znakovnega jezika. Model izboljša prepoznavanje gibov in
časovno modeliranje, kar omogoča natančnejšo razlago znakov in boljše rezultate pri prepoznavanju.

1 Introduction

Continuous Sign Language Recognition (CSLR) plays a
pivotal role in bridging the communication gap between the
hearing-impaired community and the hearing population.
Sign language, as a complex gestural-motor language, con-
veys semantic information through a sophisticated interplay
of hand shapes, facial expressions, and body movements
[1]. It serves as the primary mode of communication for
many hearing-impaired individuals, enabling them to ex-
press thoughts and emotions effectively [2]. The develop-
ment of robust CSLR systems is therefore crucial for pro-
moting inclusivity and accessibility in various social, edu-
cational, and professional environments [3].
Despite its significance, CSLR presents numerous chal-

lenges due to the continuous nature of sign language, where
gestures flow without clear boundaries between signs. This
lack of explicit segmentation makes it difficult to accu-
rately recognize and translate sign language sequences.

Moreover, the variability in signing styles and the pres-
ence of non-manual signals, such as facial expressions, add
layers of complexity to the recognition process [4]. For
instance, traditional CNN-LSTM models achieve WERs
around 26.5% on RWTH [5], while more advanced meth-
ods like MAM-FSD reach 18.6% [6], yet still struggle
with dynamic temporal relationships and non-manual cues,
underscoring the need for improved approaches like our
CT-ATHA model. These non-manual components, along-
side hand and body movements, are critical for convey-
ing meaning, yet traditional methods struggle to effectively
capture their dynamic interplay across frames. Traditional
CSLR methods have primarily focused on frame-level fea-
ture extraction, often utilizing convolutional neural net-
works (CNNs) [7] for spatial analysis and recurrent neural
networks (RNNs) for temporal modeling. However, these
approaches may overlook the dynamic temporal relation-
ships across frames, which are crucial for understanding the
context and meaning of sign language gestures.
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Recent advancements in deep learning, particularly the
integration of attention mechanisms and transformer archi-
tectures, have shown promise in addressing these limita-
tions by capturing both local motion patterns and long-
range dependencies [8]. The effectiveness of these ad-
vanced architectures is further supported by the availability
of large-scale datasets such as RWTH-PHOENIX-Weather-
2014 (RWTH) [5], its extended version RWTH-T [9], and
CSL-Daily [10]. These datasets, featuring thousands of
continuous sign language sequences with detailed gloss an-
notations, have made it possible to develop and refine ad-
vanced architectures capable of tackling the recognition
difficulties posed by the lack of explicit sign boundaries
and variable signing styles. By providing a robust foun-
dation for training and evaluating models on real-world,
unsegmented data, they have enabled methods like ours
to achieve higher accuracy and efficiency, addressing the
inherent challenges of continuous sign language recogni-
tion. This work addresses the following research ques-
tions: (1) How can we improve recognition accuracy in
CSLR by enhancing temporal modeling? (2) Can a hy-
brid architecture effectively reduce redundant frames while
preserving critical motion information? (3) How does hi-
erarchical attention improve context capture in continuous
sign sequences? Success in this study is defined primar-
ily by achieving lower Word Error Rates (WER) on bench-
mark datasets (e.g., RWTH, RWTH-T, CSL-Daily), with
secondary goals of maintaining computational efficiency
for potential real-time applications, rather than solely fo-
cusing on larger vocabularies or minimal computation cost.
In this paper, we propose a novel hybrid architecture

CNN Transformer with Adaptive Temporal Hierarchical
Attention (CT-ATHA) designed to enhance the extraction
of motion information and improve recognition accuracy
in CSLR. Our approach makes several key contributions to
the field: Conventional CSLR systems face challenges in
sequence alignment due to the lack of explicit sign bound-
aries, process redundant static frames that dilute temporal
efficiency, and struggle with diverse signing styles. To ad-
dress these issues, particularly the complexity from non-
manual signals and motion-centric regions like hands and
face, we integrate a Motor Attention Module (MAM) into
the ResNet-34 backbone, enhancing focus on these criti-
cal areas for robust feature extraction. We introduce learn-
able temporal gates to detect critical motion phases, re-
taining high-entropy frames rich in gestural content while
pruning static ones, optimizing temporal focus and com-
putation. The model is trained using a multi-task learn-
ing approach, jointly optimizing recognition and temporal
phase detection to improve generalization across signing
variations and leverage task synergy. Finally, a Bidirec-
tional Long Short-Term Memory (BiLSTM) network with
a Connectionist Temporal Classification (CTC) head aligns
and classifies unsegmented sequences, capitalizing on BiL-
STM’s bidirectional temporal modeling and CTC’s ability
to map frames to glosses without pre-segmentation.

– Motor Attention Module (MAM): We introduce

a specialized attention mechanism integrated into
the ResNet-34 backbone, which emphasizes motion-
centric regions such as hands and facial areas. This
innovation significantly enhances the model’s ability
to capture nuanced spatial features essential for sign
language interpretation.

– Adaptive Temporal Pooling: Our architecture incor-
porates a novel Adaptive Temporal Pooling mecha-
nism that intelligently reduces redundant frames, fo-
cusing the model’s attention on the most informative
temporal segments. This contribution addresses the
challenge of variable-length sign language sequences
and improves the efficiency of temporal modeling.

– Learnable Temporal Gates: We introduce learn-
able temporal gates designed to detect critical mo-
tion phases, effectively retaining high-entropy frames
while pruning static or less informative frames. This
mechanism significantly enhances the model’s ability
to focus on the most relevant temporal information,
crucial for accurate sign language interpretation .

– Hierarchical Attention in Transformer Encoder:
Our Transformer encoder utilizes a hierarchical atten-
tion mechanism [11] that combines local frame-level
and global sentence-level context through specialized
attention heads. This multi-level attention approach
enables more comprehensive temporal modeling, cap-
turing both fine-grained details and overarching se-
mantic structures in sign language sequences, while
reducing computational complexity by prioritizing rel-
evant temporal contexts over uniform processing.

The temporal modeling in our CT-ATHA architecture is
achieved through a sophisticated two-stage process. Ini-
tially, 3D-CNN layers extract short-term spatio-temporal
features, providing a robust representation of local mo-
tion patterns. This is followed by the Adaptive Temporal
Pooling mechanism, which feeds into the Transformer en-
coder with hierarchical attention for refined temporal mod-
eling. Our decoder utilizes a Bidirectional Long Short-
Term Memory (BiLSTM) network with a Connectionist
Temporal Classification (CTC) head for sequence align-
ment and classification. This combination allows for effec-
tive handling of the variable-length nature of sign language
sequences and provides robust alignment between input
frames and output gloss sequences. The CT-ATHA model
is trained using a multi-task learning approach, jointly op-
timizing for recognition accuracy and critical phase detec-
tion. This holistic training strategy ensures that the model
not only excels in overall recognition performance but also
develops a keen ability to identify and focus on the most
crucial aspects of sign language gestures.
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2 Related work

2.1 Traditional approaches in continuous
sign language recognition

Continuous Sign Language Recognition (CSLR) has been
a subject of extensive research due to its significance
in bridging communication gaps for the hearing-impaired
community [12] [13]. Early approaches to CSLR primar-
ily relied on handcrafted features and traditional machine
learning techniques. Hidden Markov Models (HMMs)
were among the first methods used for temporal modeling
in sign language recognition, capable of capturing the se-
quential nature of gestures [14]. These models were effec-
tive in handling the temporal dynamics of sign language
but faced limitations when dealing with the complex, high-
dimensional data typical of sign language videos. Feature
extraction methods in these traditional approaches often in-
volved the use of data gloves or color gloves to capture
hand shapes, positions, and motion trajectories [15]. While
these methods laid the groundwork for CSLR, they were
often cumbersome and limited in their practical applica-
tions. The transition to image processing techniques aimed
to overcome these limitations by extracting features directly
from video data, eliminating the need for specialized equip-
ment. However, these image processing operators were not
specifically designed for sign language, which posed chal-
lenges in achieving high recognition accuracy.

2.2 Deep learning advancements in CSLR
The advent of deep learning has revolutionized the field
of CSLR, introducing more sophisticated techniques for
feature extraction and temporal modeling [16]. Convo-
lutional Neural Networks (CNNs) have become instru-
mental in extracting spatial features from sign language
videos, while Recurrent Neural Networks (RNNs), partic-
ularly Long Short-Term Memory (LSTM) networks, have
proven effective in modeling temporal dependencies [17].
The combination of CNNs and LSTMs, as seen in mod-
els like CNNSa-LSTM, has enhanced the ability to han-
dle complex gesture dynamics by integrating spatial and
temporal information processing. These deep learning ap-
proaches have significantly improved the accuracy and ro-
bustness of CSLR systems compared to traditional meth-
ods.

2.3 Attention mechanisms and transformers
in CSLR

Recent years have seen the introduction of attention mech-
anisms and transformer architectures in CSLR, marking a
significant advancement in the field [6]. Attention mech-
anisms allow models to focus on relevant parts of the in-
put sequence, addressing the variability and complexity of
sign language gestures [18]. Transformers, which leverage
self-attention mechanisms, have shown promise in CSLR

by providing a more flexible and powerful framework for
capturing temporal dependencies without the need for re-
current connections. These models have demonstrated su-
perior performance in handling long-range dependencies
and context in sign language sequences, leading to more
accurate recognition systems. The ability of transformers
to process entire sequences simultaneously rather than se-
quentially, as in RNNs, provides a significant advantage in
CSLR, particularly in capturing the nuanced and complex
nature of sign language [19].

2.4 Hybrid architectures and multi-modal
approaches

The development of hybrid architectures that combine dif-
ferent neural network models has emerged as a promis-
ing direction in CSLR research [20]. These architectures
aim to leverage the strengths of various components to im-
prove overall recognition performance. For instance, the
integration of Graph Convolutional Networks (GCNs) with
LSTMs has been explored to model both spatial and tempo-
ral aspects of sign language simultaneously. Multi-modal
networks that combine different types of input data, such
as RGB videos and body pose estimates, have also shown
promising results. The Two-Stream model [21] [22] uti-
lizes knowledge distillation and multiple auxiliary losses to
compensate for data scarcity, achieving state-of-the-art re-
sults in CSLR. These hybrid and multi-modal approaches
demonstrate the potential of combining diverse techniques
to enhance the accuracy and robustness of CSLR systems.

2.5 Adaptive pooling and temporal
modeling techniques

Adaptive pooling techniques have emerged as a significant
area of interest in CSLR, offering improved feature extrac-
tion and reduced computational costs. Methods such as
Temporal Lift Pooling (TLP) [23] and Adaptive Dynamic
Temporal Pooling (ADTP) [24] have shown promise in pre-
serving key sign language information while enhancing the
efficiency of CSLR systems. These techniques dynami-
cally adjust the pooling process based on the temporal char-
acteristics of the input data, ensuring that critical temporal
patterns are retained for accurate recognition. In parallel,
advancements in temporal modeling have led to the devel-
opment of more sophisticated approaches for capturing the
dynamic nature of sign language. The use of 3D CNNs for
short-term spatio-temporal feature extraction, followed by
transformer-based models for long-range temporal model-
ing, has shown significant improvements in recognition ac-
curacy.

2.6 Motor attention and multi-task learning
in CSLR

Recent research has highlighted the importance of mo-
tor attention mechanisms in CSLR. These mechanisms fo-
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Figure 1: Overview of the proposed CT-ATHA architecture for continuous sign language recognition (CSLR). The model
consists of three main components: a Spatial Feature Extractor (input: T × 224× 224× 3, output: T × 56× 56× 512), a
Temporal Encoder (input: T ′× 56× 56× 512, output: T ′× 512), and Learnable Temporal Gates (LTG) (input: T ′× 512,
output: T ′′ × 512), followed by a BiLSTM and CTC head for sequence decoding (output: gloss sequence). Tensor
dimensions are annotated, where T is the original frame count, T ′ is after 3D-CNN pooling, and T ′′ is after temporal
gating, reflecting adaptive reduction.

cus on capturing the dynamic changes in local motion re-
gions during sign language expression, which are crucial
for accurate recognition. By enhancing the model’s abil-
ity to focus on changes in facial expressions, head move-
ments, body movements, and gestures, motor attention
mechanisms provide a more comprehensive representation
of sign language dynamics. This approach has led to im-
proved model robustness and accuracy, particularly evi-
dent in achieving state-of-the-art performance on large-
scale datasets. Additionally, multi-task learning (MTL) ap-
proaches have gained traction in CSLR research. MTL al-
lows models to learn shared representations across multi-
ple related tasks, such as gesture recognition, facial expres-
sion analysis, and hand shape classification [25]. This ap-
proach has shown potential in improving the overall perfor-
mance and generalization capabilities of CSLR systems by
leveraging the interrelated nature of various sign language
recognition tasks. A broader summary of such approaches,
including their architectures, performance metrics, and lim-
itations, is provided in Table 1, highlighting the challenges
that motivate our work.

3 Methodology
This section details our novel approach to Continuous
Sign Language Recognition (CSLR) through the CNN-
Transformer with Adaptive Temporal Hierarchical Atten-

tion (CT-ATHA) architecture. Our model builds upon re-
cent advancements in the field, particularly drawing inspi-
ration from the Motor Attention Mechanism (MAM) intro-
duced in the MAM-FSD model, while introducing several
innovative components to enhance CSLR performance.
The CT-ATHA architecture is designed to significantly

enhance motion information extraction in CSLR by lever-
aging the Motor Attention Module (MAM) and 3D-CNN
layers to capture both spatial and temporal features of
sign language sequences, focusing on dynamic regions like
hands and facial expressions. As illustrated in Figure 1, our
model integrates a CNN-based feature extractor enhanced
with Motor Attention Modules, a 3D-CNN for short-term
spatio-temporal feature extraction, an Adaptive Temporal
Pooling mechanism, and a Transformer encoder with hier-
archical attention. This combination allows for robust fea-
ture extraction, efficient temporal modeling, and the ability
to capture both local and global contextual information cru-
cial for accurate sign language recognition.
Figure 1 provides a comprehensive overview of the CT-

ATHA architecture. The diagram clearly illustrates the
flow of information through the three main components:
the Spatial Feature Extractor, the Temporal Encoder, and
the Learnable Temporal Gates (LTG). This visual repre-
sentation helps in understanding how each component con-
tributes to the overall CSLR process, from initial feature
extraction to final sequence decoding.
At the core of our spatial feature extraction process is
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Table 1: Summary of continuous sign language recognition (CSLR) methods. This table compares key architectures,
datasets, WER performance, and limitations of various approaches, highlighting advancements and challenges in CSLR.
Method Architecture Datasets WER(Test%) Limitation
HMM [14] Hidden Markov Models Early

Datasets
Not reported Struggles with high dimensional

data
CNN+LSTM
[17]

CNN+LSTM RWTH ∼26.5 (est.) Limited long-range dependency
capture

STMC [26] Spatial-Temporal Multi-
Cue

RWTH,
RWTH-T

20.5, 20.8 High computational cost

TwoStream-
SLR [21]

Two-Stream Network RWTH, CSL-
Daily

18.6, 25.1 Data scarcity compensation issues

MAM-FSD [6] Motor Attention + CNN RWTH, CSL-
Daily

18.6, 24.3 Limited hierarchical context

a ResNet-34 backbone, augmented with Motor Attention
Modules (MAM). The MAM, inspired by the work in, is
designed to emphasize motion-centric regions crucial for
sign language interpretation, such as hands and facial ar-
eas. Unlike traditional attention mechanisms that rely on
global pooling, our MAM utilizes multi-layer 3D convo-
lutions to perform weighted summation of adjacent frame
pixels. This approach allows the model to focus on local
motion distortions, which are particularly important in sign
language where subtle movements can convey significant
meaning. We selected ResNet-34 as the CNNbackbone due
to its established effectiveness in extracting spatial features
from video data, offering a balance of depth (34 layers) and
computational efficiency (e.g., 3.6 billion FLOPs) com-
pared to more recent alternatives like Swin Transformer
( 4.5 billion FLOPs) or EfficientNet (e.g., B0: 0.39 bil-
lion FLOPs, but less suited for temporal tasks). While Swin
Transformer excels in global context modeling, its higher
complexity risks latency in real-time CSLR, and Efficient-
Net, though lightweight, lacks the hierarchical feature ex-
traction critical for motion-centric regions. ResNet-34, en-
hanced with our Motor Attention Modules, aligns with our
goal of robust, efficient CSLR performance.

Figure 2: Structure diagram of the motor attention mecha-
nism (MAM). Unlike standard attention mechanisms that
globally pool features across all dimensions, MAM uses
multi-layer 3D convolutions to generate a localized atten-
tion map (e.g., 3 × ×3 × ×3 kernel) focusing on motion-
centric regions, enhancing spatial-temporal feature weight-
ing.

Figure 2 provides a detailed structure diagram of theMo-
tor Attention Mechanism (MAM). This visual representa-
tion is crucial for understanding how the MAM generates
and applies attention maps to the input feature maps. The
figure illustrates the process of emphasizing motion-centric
regions, which is a key innovation in our approach to CSLR.
Compared to standard attention mechanisms that uniformly
weigh all input features, MAM’s novelty lies in its use of
3D convolutions to prioritize local motion distortions, crit-
ical for CSLR, over global context alone.
TheMAMoperates by generating an attentionmap based

on the input feature maps, which is then applied to the orig-
inal features to highlight regions of high motion activity.
This process can be mathematically expressed as:

Fout = Fin + σ(Conv3D(Fin))⊙ Fin (1)

Here, Fin represents the input feature maps from the
ResNet-34 backbone, Fout denotes the output feature maps
after applying the MAM, Conv3D is a 3D convolutional
operation capturing spatio-temporal features across adja-
cent frames, σ is the sigmoid activation function that nor-
malizes the attention weights to a range of [0, 1], and ⊙
denotes element-wise multiplication, which applies the at-
tention map to emphasize motion-centric regions in Fin.
The resulting features are combined with the original input
through a residual connection, enhancing the model’s abil-
ity to capture dynamic motion information without losing
important static spatial features.
Following the CNN backbone, we employ a series of 3D

convolutional layers to extract short-term spatio-temporal
features, which are further processed by the Adaptive Tem-
poral Pooling mechanism to reduce redundant frames and
focus on informative temporal segments. This component
is crucial for capturing local motion patterns and temporal
dependencies within a small window of frames. The 3D-
CNN layers process the output from the MAM-enhanced
ResNet, allowing the model to learn hierarchical spatio-
temporal representations that are essential for understand-
ing the continuous nature of sign language gestures.
To address the variable length of sign language se-

quences and reduce computational complexity, we intro-
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duce an Adaptive Temporal Pooling mechanism. This in-
novative component dynamically adjusts the temporal res-
olution of the feature sequence based on the input’s tem-
poral characteristics. The Adaptive Temporal Pooling op-
erates by computing the temporal entropy of each frame’s
features, identifying high-entropy frames that likely contain
significant motion information, and applying a learnable
pooling operation that preserves information from these
high-entropy frames while compressing less informative
temporal regions. This process not only helps in manag-
ing the variable length of sign language sequences but also
focuses the model’s attention on the most informative tem-
poral segments, potentially improving recognition accuracy
while reducing computational load. The adaptive nature of
this pooling mechanism allows the model to handle a wide
range of signing speeds and styles, making it more robust
to real-world variations in sign language production.
The core of our temporal modeling is a Transformer en-

coder enhanced with a hierarchical attention mechanism.
This component processes the adaptively pooled features to
capture long-range dependencies and global context, which
are crucial for understanding the overall meaning of sign
language sequences. Our hierarchical attention mechanism
operates at two levels: frame-level attention, which cap-
tures local temporal dependencies within a small window of
frames, and sentence-level attention, which models global
context across the entire sequence. This dual-level atten-
tion approach allows the model to simultaneously focus on
both fine-grained temporal details and overarching seman-
tic structures. The frame-level attention helps in capturing
the nuanced movements and transitions between individual
signs, while the sentence-level attention aids in understand-
ing the broader context and meaning of the entire signed
phrase or sentence. This hierarchical structure is particu-
larly beneficial for CSLR, where both local gestures and
global sentence structure contribute to the overall meaning.
To further refine our temporal modeling, we introduce

learnable temporal gates. These gates act as adaptive fil-
ters, allowing the model to focus on critical motion phases
while suppressing less informative static periods. The gat-
ing mechanism can be expressed as:

Fgated = G(Fin)⊙ Fin (2)

where G(Fin) is the learned gating function, producing
values between 0 and 1 to modulate the input features. This
component enhances the model’s ability to distinguish be-
tween meaningful gestures and transitional or rest periods
in the sign language sequence, potentially improving recog-
nition accuracy and efficiency.
The final component of our architecture is a Bidirectional

Long Short-TermMemory (BiLSTM) network followed by
a Connectionist Temporal Classification (CTC) head. This
decoder is responsible for aligning the frame-level predic-
tions with the target gloss sequences and producing the final
recognition output. The bidirectional nature of the LSTM
allows the model to consider both past and future context
when making predictions, while the CTC mechanism han-

dles the alignment between the input frames and output
glosses, addressing the lack of explicit segmentation in con-
tinuous sign language.

4 Experiments and results

4.1 Dataset and judgment criteria

To evaluate the effectiveness of our proposed CNN-
Transformer with Adaptive Temporal Hierarchical
Attention (CT-ATHA) model, we conducted extensive ex-
periments on three large-scale publicly available datasets:
RWTH-PHOENIX-Weather-2014 (RWTH), RWTH-
PHOENIX-Weather-2014T (RWTH-T), and CSL-Daily.
These datasets provide comprehensive benchmarks for
Continuous Sign Language Recognition (CSLR) across
different languages and contexts. The RWTH-PHOENIX-
Weather-2014 dataset comprises 6,041 sign language
videos recorded by the German weather broadcasting tele-
vision station PHOENIX between 2009 and 2011, featuring
German Sign Language (DGS). Videos are captured at a
frame rate of 25 frames per second (FPS) with a resolution
of 210 × 260 pixels, corresponding to the signer box
overlay in the broadcast. It includes 1,081 unique glosses
(signs) annotated by native DGS speakers and is performed
by nine professional, with varying representation (e.g.,
Signer 1 performs 30% of sequences, others 5–15%).
The dataset is divided into 5,672 videos for training, 540
for validation, and 629 for testing, with splits designed
to ensure signer independent evaluation. In our primary
experiments, we did not apply data augmentation to miti-
gate signer bias, relying on the dataset’s natural variability
and CT-ATHA’s adaptive mechanisms for generalization.
However, supplementary tests with random frame drop-
ping and brightness adjustments reduced WER by 0.2%,
suggesting potential benefits for signer bias mitigation,
though not adopted here for baseline consistency. The
RWTH-T dataset extends RWTH, incorporating 10,000
CSLR tasks. It contains 7,096 videos for training, 519 for
validation, and 642 for testing, maintaining the same frame
rate (25 FPS) and resolution (210 × 260 pixels) as RWTH,
with a similar signer demographic profile but expanded
sequence diversity. The CSL-Daily dataset, a large-scale
Chinese sign language corpus, features an annotation
vocabulary of 2,000 glosses and a Chinese text vocabulary
of 2,343 words. It includes 18,401 samples for training,
1,077 for validation, and 1,176 for testing, recorded at
30 FPS with a higher resolution of 1920 × 1080 pixels,
reflecting daily-life signing scenarios with varied signer
demographics.
For evaluation, we use the widely adopted Word Error

Rate (WER) metric, which measures the sum of the mini-
mum number of insertions (ins), deletions (del), and substi-
tutions (sub) required to convert the recognition sequence
into the reference sequence. The WER is calculated as:



Continuous Sign Language Recognition using CNN-Transformer with… Informatica 49 (2025) 133–144 139

WER = 100%× ins+ del + sub

sum
(3)

where ins represents the number of words to be inserted,
del represents the number of words to be deleted, sub rep-
resents the number of words to be replaced, and sum repre-
sents the total number of words in the label. A lower WER
indicates better recognition performance.

4.2 Implementation details
Our CT-ATHAmodel was implemented using PyTorch. We
used a ResNet-34 backbone enhanced withMotor Attention
Modules (MAM) for feature extraction. The model was
trained using the Adam optimizer with an initial learning
rate of 0.0005 for 50 epochs. The learning rate was reduced
by 80% at the 40th and 50th epochs to ensure stable conver-
gence and fine-tuning of the model weights. This schedule
was determined empirically: initial training with a constant
learning rate showed rapid WER reduction until around
epoch 35, followed by oscillation. Reducing the learning
rate at epoch 40 mitigated this instability, enabling a fur-
ther WER drop of 0.3–0.5% across datasets, while the sec-
ond reduction at epoch 50 refined performance in the final
stages, as evidenced by the steep declines post-adjustment
in Figures 3, 4, and 5 (e.g., RWTH test WER from 18.6%
to 18.1%). For data preprocessing and augmentation, we
employed several techniques. The input data size was ini-
tially 256 × 256, which was then randomly cropped to 224
× 224. Random flipping was applied with a probability of
0.5. Additionally, we performed temporal enhancement by
randomly increasing or shortening the length of the video
sequences within ±20%. These preprocessing steps were
crucial for improving the model’s robustness and general-
ization capabilities.All experiments were conducted on an
NVIDIA A100 GPU with 80GB memory, allowing for a
batch size of 4. This hardware setup provided sufficient
computational power to handle the complex CT-ATHA ar-
chitecture and the large-scale datasets. During the testing
phase, we used only center cropping for data enhancement.
The final CTC decoding stage employed a beam search al-
gorithm with a beam width of 10 to generate the output se-
quences. To assess efficiency for real-time CSLR, we mea-
sured inference time on an NVIDIA A100 GPU. CT-ATHA
achieves 28 FPS (35.7 ms latency per sequence) for RWTH
sequences (avg. 100 frames), compared to MAM-FSD’s
25 FPS (40 ms latency), a 12% improvement due to Adap-
tive Temporal Pooling reducing frames by 30%. Compu-
tational cost is approximately 4.2 billion FLOPs, slightly
higher than ResNet-34 alone (3.6 billion FLOPs) but justi-
fied by performance gains.

4.3 Experimental results
Table. 2 presents the performance of our CT-ATHA
model compared to state-of-the-art methods on the RWTH,
RWTH-T, and CSL-Daily datasets.

Our CT-ATHA model achieves state-of-the-art perfor-
mance across all three datasets. In the RWTH dataset, we
reduce the test WER to 18.3%, an improvement of 0. 5%
over the best previous result. For RWTH-T, our model
achieves a test WER of 19.0%, outperforming MAM-FSD
by 0.4%. The CSL-Daily dataset shows a similar im-
provement, with CT-ATHA reaching a test WER of 24.
1%, exceeding the previous state of the art by 0. 4%.
CT-ATHA achieves lower WERs on RWTH (18.1%) and
RWTH-T (18.8%) compared to CSL-Daily (23.9%) due
to differences in the complexity of dataset, as described
in Section 4.1. RWTH and RWTH-T, with 1,081 glosses
and controlled broadcast settings, benefit from CT-ATHA’s
precise motion capture (MAM, LTG), while CSL-Daily’s
larger vocabulary (2,000 glosses), diverse daily-life sign-
ing styles, and higher resolution (1920×1080 vs. 210×260)
increase recognition challenges, leading to a higher WER
despite similar relative improvements (0.4–0.5%). While
CT-ATHA’s WER improvements of 0.4–0.5% over SOTA
models (e.g., 18.1% vs. 18.6% on RWTH) appear modest,
they are scientifically meaningful beyond statistical signif-
icance. In CSLR, a 0.5% WER reduction translates into
correctly recognizing approximately 3–5 additional signs
per 1000-frame sequence (based on the average sequence
length of RWTH), significantly improving intelligibility for
continuous real-world communication, especially in chal-
lenging datasets like CSL-Daily with larger vocabularies.
This aligns with previous work [6] which noted cumulative
benefits of small gains in practical implementation. Figures
3, 4 and 5 show the WER variation curves for the valida-
tion and test sets in the RWTH, RWTH-T and CSL-Daily
datasets, respectively. The curves demonstrate consistent
improvement over training epochs, with significant drops
observed after learning rate adjustments at epochs 40 and
50, validating the decay schedule’s role in optimizing per-
formance.

Figure 3: WER variation curves for RWTH validation set
and test set
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Table 2: Comparison with state-of-the-art methods on RWTH, RWTH-T, and CSL-Daily datasets. ”Full” indicates that
only the full RGB image is used for recognition, while ”Extra clues” indicates that other cues are used for recognition (:
indicates that they are used, and - indicates that they are not used).
Methods Full Extra clues RWTH RWTH-T CSL-Daily

Dev (%) Test (%) Dev (%) Test (%) Dev (%) Test (%)
LS-HAN [27] - : - - - - 38.7 39.0
Re-Sign [28] : - 27.3 26.5 25.5 26.4 - -
DNF [29] - : 23.5 24.1 - - 32.6 32.1
Joint-SLRT [30] : - - - 24.4 24.3 32.9 33.0
FCN [31] : - 23.5 23.7 23.1 24.8 33.0 33.2
VAC [32] : - - 21.0 22.1 - - -
SEN [33] : - 19.3 20.8 19.1 20.5 30.9 30.5
STMC [26] - : 20.9 20.5 19.4 20.8 - -
C2SLR [34] - : 20.3 20.2 20.0 20.2 31.7 30.8
STENet [35] : - 19.1 20.1 19.2 20.9 28.7 28.7
HST-GNN [36] - : 19.3 19.6 19.9 20.1 - -
CorrNet [37] : - 18.6 19.2 18.7 20.3 30.4 29.9
CorrNet+ACDR [38] : - 18.4 18.8 18.1 19.7 29.4 28.8
TwoStream-SLR [21] - : 18.2 18.6 17.5 19.1 25.2 25.1
MAM-FSD [6] : - 19.0 18.6 18.0 19.2 25.6 24.3
CT-ATHA : - 18.5 18.1 17.6 18.8 25.1 23.9

Figure 4: WER variation curves for RWTH-T validation set
and test set

4.4 Ablation studies

To assess each component’s contribution in the CT-ATHA
architecture, we conducted ablation studies on the RWTH
dataset by incrementally adding components to a baseline
model (ResNet-34 + BiLSTM), followed by Motor Atten-
tion Module (MAM, WER 19.3%, p < 0.01), Adaptive
Temporal Pooling (ATP, WER 18.9%, p < 0.05), Trans-
former with Hierarchical Attention (WER 18.5%, p < 0.01),
and Learnable Temporal Gates (LTG, WER 18.3%, p <
0.05). Each configuration was trained for 50 epochs across
five runs with different random seeds, and average test
WERs were computed, with paired t-tests confirming sta-

Figure 5: WER variation curves for CSL-Daily validation
set and test set

tistical significance of each addition, as shown in Table 3.
The first addition, the Motor Attention Module (MAM),

resulted in a significant improvement, reducing the test
WER to 19.3%. This 0.5% reduction underscores the im-
portance of focusing on motion-centric regions in sign lan-
guage videos. The MAM’s ability to dynamically allocate
computational resources to areas exhibiting significant mo-
tion enhances the model’s capacity to capture subtle ges-
tures and movements, which are crucial for accurate sign
language interpretation.
Building upon the MAM-enhanced model, we incorpo-

rated the Adaptive Temporal Pooling (ATP) mechanism,
which further reduced the test WER to 18.9%. This 0.4%
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Model Configuration Dev WER (%) Test WER (%)

Baseline (ResNet-34 + BiLSTM) 20.1 19.8

Motor Attention Module (MAM) 19.6 19.3

Adaptive Temporal Pooling (ATP) 19.2 18.9

Transformer with Hierarchical Attention 18.8 18.5

Learnable Temporal Gates (LTG) 18.7 18.3

Table 3: Ablation Study of CT-ATHA Components on the
RWTH Dataset

improvement demonstrates the effectiveness of our ap-
proach in handling variable-length sequences, a common
challenge in CSLR tasks. The ATP allows the model to ef-
ficiently process sign language videos of different durations
while preserving critical temporal information.
The subsequent addition of the Transformer with Hier-

archical Attention led to another significant performance
boost, bringing the testWER down to 18.5%. This 0.4% re-
duction highlights the transformer’s ability to capture long-
range dependencies within sign language sequences, a cru-
cial aspect for understanding the context and meaning of
complex signs and phrases.
The final component, Learnable Temporal Gates (LTG),

provided the ultimate refinement to our CT-ATHA model,
achieving a test WER of 18.3%. This represents a cumu-
lative improvement of 1.5% over the baseline model and
demonstrates the power of our fully integrated architecture.
The LTG plays a crucial role in identifying and emphasiz-
ing critical motion phases within sign language sequences,
allowing the model to focus its computational resources on
the most informative segments of the input.
To further validate the effectiveness of our approach, we

conducted additional ablation studies on key hyperparam-
eters. Table 4 shows the impact of varying the number of
dynamic attention modules in the CT-ATHA architecture.

Table 4: Ablation Study on the Number of Dynamic Atten-
tion Modules

Modules Dev WER (%) Test WER (%)
1 19.5 19.2
2 19.1 18.8
3 18.9 18.6
4 18.7 18.3
5 18.8 18.5

As shown in Table 4, performance improves with in-
creasing dynamic attention modules up to four (test WER
18.3%), with a slight degradation at five modules (test
WER 18.5%), indicating an optimal balance at four mod-
ules; additional modules marginally reduce performance
due to increased model complexity and potential overfit-
ting. This suggests that four modules provide an optimal
balance between model complexity and performance for
our CT-ATHA architecture.
Figure 6 illustrates the WER variation curves for both

the validation and test sets during the training process of
our final CT-ATHA model.

Figure 6: WER variation curves for validation and test sets
during training

The curves in Figure 6 show a consistent improvement in
performance in the training epochs, with significant drops
observed after adjustment of the learning rate in epochs 40
and 50. This trend highlights the effectiveness of our learn-
ing rate schedule and the model’s ability to refine its feature
extraction and temporal modeling capabilities throughout
the training process.

4.5 Discussion

In this subsection, we compare CT-ATHA’s performance
(WER of 18.1% on RWTH, 18.8% on RWTH-T, 23.9%
on CSL-Daily) with SOTA models, such as MAM-FSD
(18.6%, 19.2%, 24.3%) and TwoStream-SLR (18.6%,
19.1%, 25.1%), noting improvements of 0.4 to 0.5% on
RWTH and RWTH-T, and 0.4 to 1.2% on CSL-Daily. We
attribute these gains to: (1) Adaptive Temporal Pooling,
which reduces redundant frames (e.g., static periods) by
up to 30% (based on entropy analysis), enhancing effi-
ciency; (2) Learnable Temporal Gates, which prioritize
high-entropy motion phases, improving focus on key ges-
tures; and (3) Hierarchical Attention in the Transformer en-
coder, which captures both local (frame-level) and global
(sentence-level) dependencies, unlikeMAM-FSD’s limited
context. Ablation studies (Table 2) support these contribu-
tions, with each component reducing WER by 0.4 to 0.5%.
However, limitations include struggles with fast-paced ges-
tures (e.g., rapid finger-spelling in CSL-Daily, increasing
WER by 2% in such cases) due to temporal resolution con-
straints, and reduced accuracy under occlusion (e.g., hand-
over-hand signs) or noise (e.g., low-light conditions), where
WER rises by 1 to 3% in synthetic tests.
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5 Conclusion

In this paper, we presented CT-ATHA (CNN-Transformer
with Adaptive Temporal Hierarchical Attention), a novel
hybrid architecture for Continuous Sign Language Recog-
nition (CSLR) that effectively addresses the challenges of
capturing both local motion patterns and long-range de-
pendencies in sign language sequences. Our comprehen-
sive experimental results, with WERs of 18.1% on RWTH,
18.8% on RWTH-T, and 23.9% on CSL-Daily, demonstrate
CT-ATHA’s state-of-the-art performance, supported by ab-
lation studies on RWTH that validate the contributions of
MAM, ATP, Transformer, and LTG components.
The key innovations of CT-ATHA, including the Mo-

tor Attention Module (MAM), Adaptive Temporal Pool-
ing (ATP), and Learnable Temporal Gates (LTG), work
synergistically to enhance the model’s ability to focus on
motion-centric regions like hands and facial expressions,
handle variable-length sequences, and identify critical mo-
tion phases, thereby addressing the challenges of non-
manual signals and variability in signing styles through
MAM’s emphasis on dynamic regions and multi-task learn-
ing’s adaptation to diverse patterns.
The integration of these components with a ResNet-

34 backbone, 3D-CNN layers, and a Transformer encoder
with hierarchical attention results in a robust and efficient
framework for CSLR, effectively capturing local motion
patterns like hand gestures and long-range dependencies
for sentence-level semantics. Our ablation studies pro-
vide strong empirical evidence for the effectiveness of each
component within the CT-ATHA architecture. The pro-
gressive reduction in the word error raterate (WER) from
19.8% to 18.3%on the Rdata seta set demonstrates that each
element contributes significantly tooverall performance of
the model.the model. These results underscore the impor-
tance of carefully designed attention mechanisms, adaptive
temporal processing, and hierarchical feature extraction in
achieving state-of-the-art performance in CSLR tasks.
The superior performance of the CT-ATHA model, with

improvements of 0.5%, 0.4%, and 0.4% in WER on the
RWTH, RWTH-T, and CSL-Daily datasets, respectively,
establishes it as a powerful and versatile solution for con-
tinuous sign language recognition challenges. These WER
reductions enhance the potential for communication acces-
sibility, educational opportunities, and social inclusion for
the deaf and hard-of-hearing community by enabling more
accurate CSLR applications, such as real-time translation
and accessible learning tools, though direct evaluation of
these societal impacts is not conducted in this study.
For real-world deployment, CT-ATHA’s feasibility

hinges on its memory requirements, hardware constraints,
and adaptability to diverse sign languages. Trained and
tested on an NVIDIA A100 GPU with 80GB memory,
the model’s memory footprint is approximately 1.2 GB for
weights and 2–3 GB during inference (batch size 4, RWTH
sequence length 100 frames), making it deployable onmid-
range GPUs like an NVIDIA RTX 3090 (24GB) or even

edge devices with optimization (e.g., quantization to 500
MB). Inference at 28 FPS (Section 4.2) supports real-time
CSLR on high-end hardware, though latency increases to
15 FPS on a GTX 1080 Ti (11GB), indicating a trade-off be-
tween hardware capability and performance. Adaptability
to different sign languages is promising: while evaluated
on German (RWTH, RWTH-T) and Chinese (CSL-Daily)
datasets, CT-ATHA’s architecture relying onmotion-centric
MAM and language-agnostic temporal modeling can gen-
eralize to other sign languages (e.g., ASL, BSL) with re-
training on respective datasets, as its feature extraction does
not depend on language-specific glosses. However, de-
ployment in low-resource settings or for underrepresented
sign languages may require further data collection and fine-
tuning to address signer variability and vocabulary differ-
ences.
Future work could focus on further improving the

model’s efficiency for real-time applications, expanding its
capabilities to handle a wider range of sign languages, and
exploring its potential in multi-modal sign language trans-
lation tasks. Additionally, investigating the model’s perfor-
mance in real-world scenarios and its adaptability to differ-
ent signing styles and environments would be valuable for
practical applications.
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