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With the increasing complexity of global supply chains and frequent fluctuations in market demand, 

inventory management faces severe challenges, and traditional inventory control methods are difficult to 

meet the needs. This paper constructs an inventory control model that combines deep reinforcement 

learning (DRL) with convolutional neural networks (CNN). By defining the state space, action space and 

reward function, the Q-learning algorithm is used to optimize inventory decisions. At the same time, CNN 

is used to extract historical demand data features to improve the accuracy of demand forecasting. This 

study uses historical sales data from a medium-sized clothing retailer as a dataset, which contains sales, 

inventory, and replenishment records for the past 4 years. The model was trained for 500 episodes. This 

model was compared with the economic order quantity (EOQ) model, the periodic ordering model, and 

the simple moving average forecasting model as the benchmark model. The model's demand forecast error 

of 3.2% was measured on independent actual test data. The experimental results show that the model has 

a demand forecast error of only 3.2%, the total inventory cost is 14,500 yuan, the cost reduction rate is -

22%, the average inventory turnover rate is 10.5 times, and the average out-of-stock rate is only 2.1%. 

All indicators are significantly better than the economic order quantity (EOQ) model and the periodic 

ordering model. The study proves that the model can effectively cope with demand fluctuations and 

uncertainties, optimize inventory management, and provide a new and effective method for supply chain 

inventory control. 

Povzetek:  Prispevek predstavlja model za upravljanje zalog, ki združuje globoko ojačitveno učenje in 

konvolucijske nevronske mreže ter dinamično optimizira napovedovanje povpraševanja in zalog v 

kompleksnih dobavnih verigah. 

 

1 Introduction 

In the complex environment of the global supply 

chain, inventory management has always been a critical 

and challenging issue. When managing inventory, 

modern enterprises often face the problem of how to 

ensure sufficient supply while avoiding excess inventory 

[1]. Excessive inventory not only brings high storage 

costs, but also may lead to capital occupation, thus 

affecting the company's liquidity; while insufficient 

inventory may cause out-of-stock, affect the continuity of 

the production line, and even lead to customer loss [2]. 

Accurately grasping this supply and demand balance is 

an arduous task in supply chain management. Especially 

driven by the wave of globalization and digitalization, 

market demand changes are becoming more frequent and 

complex, and the difficulty of enterprises in inventory 

control has increased accordingly [3]. 

For example, according to a report released by the 

International Federation of Robotics (IFR), the economic  

 

losses caused by global supply chain disruptions in 2021 

exceeded US$4 trillion, of which improper inventory 

management was one of the main factors leading to the 

losses [4]. With the advancement of information 

technology and the increasing availability of data, 

traditional inventory control methods, such as economic 

order quantity (EOQ) and just-in-time (JIT), still have 

their role, but they are gradually becoming incapable of 

coping with the complex and dynamically changing 

market environment. 

In current research, although reinforcement learning 

has applications in inventory management, the scalability 

of the model and its adaptability to extreme market 

fluctuations in dealing with complex supply chain 

scenarios with multiple products and suppliers are still 

insufficient. In addition, there is a lack of in-depth 

exploration in combining deep learning technology to 

improve the synergy between demand forecast accuracy 

and inventory control strategy optimization 

This study aims to propose an innovative supply 
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chain inventory control framework based on 

reinforcement learning to solve some key problems in 

current supply chain inventory management" was 

modified to "This study aims to reduce the demand 

forecast error to less than 5%, reduce inventory costs by 

more than 20%, increase inventory turnover to more than 

10 times, and control the out-of-stock rate to less than 3% 

by constructing an inventory control model that combines 

deep reinforcement learning with convolutional neural 

networks, so as to effectively deal with key issues such as 

demand fluctuations, supply uncertainties, and supply 

chain delays in complex supply chain environments. 

Therefore, how to use smarter tools to optimize 

inventory management has become an important issue in 

academia and industry. In this context, reinforcement 

learning (RL), as a self-learning and optimization 

artificial intelligence technology, has begun to be widely 

used in supply chain management, especially in the 

optimization of inventory control strategies. Through the 

RL model, the supply chain can learn autonomously in a 

constantly changing environment, thereby making more 

accurate and flexible inventory decisions, providing a 

new way to solve problems that are difficult to deal with 

with traditional methods [5]. 

Reinforcement learning, as a branch of machine 

learning, has attracted widespread attention in supply 

chain management in recent years. Related research 

shows that RL can gradually find the best inventory 

management strategy by simulating the decision-making 

process [6]. For example, research shows that in the face 

of volatile demand, RL can effectively surpass the 

traditional EOQ model, achieve more accurate order 

quantity forecasts, and avoid inventory backlogs or out-

of-stock phenomena [7]. 

In addition, inventory turnover is crucial for the 

efficient circulation of corporate funds and the 

improvement of operational efficiency. Traditional 

inventory management methods make it difficult to 

effectively improve inventory turnover while ensuring 

supply and avoiding inventory backlogs. Therefore, how 

to achieve a significant increase in inventory turnover in 

a complex supply chain environment has become one of 

the core concerns of this study. 

However, despite the great potential of RL in 

inventory control, existing research still faces many 

challenges. First, the problem of balancing "exploration" 

and "utilization" in reinforcement learning often leads to 

slow convergence of the learning process or excessive 

sensitivity to the setting of hyperparameters in practical 

applications. In addition, many existing RL models are 

suitable for small-scale, single-link inventory 

optimization problems, but the scalability and application 

effect of RL in complex supply chains with multiple 

levels and suppliers are still unclear [8, 9]. 

How can deep reinforcement learning and 

convolutional neural networks be effectively combined to 

accurately predict demand in the supply chain inventory 

system? What is the optimal inventory control strategy 

under the influence of various uncertainties in the supply 

chain, such as demand fluctuations and supply delays? 

How to improve the overall efficiency of supply chain 

inventory management, including reducing inventory 

costs, increasing inventory turnover rate, and minimizing 

out - of - stock rate through the proposed model? 

In addition, there is currently a lack of unified 

standards for the evaluation of RL in supply chain 

inventory control. Although many theoretical models 

have achieved good results in experimental environments, 

when they are applied in actual supply chains, they are 

often affected by external factors, such as supply chain 

uncertainty and market fluctuations, which makes the 

effects of these theoretical models not necessarily fully 

transformed into advantages in actual operations. 

Therefore, how to overcome these problems and make the 

practical application of RL in complex supply chains 

more efficient and feasible has become an important issue 

that needs to be solved in this field. 

This study aims to propose an innovative supply 

chain inventory control framework based on 

reinforcement learning. By designing an RL model that 

can learn and optimize inventory decisions in a dynamic 

environment, this study aims to solve some key problems 

in current supply chain inventory management, such as 

demand fluctuations, supply uncertainty, and supply 

chain delays. Through the proposed RL model, this study 

will explore how to improve the accuracy of inventory 

management, reduce excess inventory and out-of-stock 

problems, and thus achieve more efficient inventory 

control in an uncertain environment. 

 

Table 1: Key research on reinforcement learning in inventory management 

Research method 
Performance 

Indicators 
limitation 

Study 1: 

[1] 

[Use simple Q-learning 

algorithm and basic 

inventory rules to make 

inventory decisions] 

[Inventory cost 

reduced by 15%, out-

of-stock rate 8%] 

[Only applicable to simple 

single-product supply 

chain scenarios, poor 

adaptability to complex 
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Research method 
Performance 

Indicators 
limitation 

demand fluctuations] 

Study 2: 

[2] 

[Reinforcement learning 

model based on Deep Q 

Network (DQN), trained 

using historical sales 

data] 

[Average inventory 

turnover increased by 

8 times and inventory 

holding costs 

decreased by 12%] 

[High data volume 

requirements, 

performance degradation 

when data is sparse, and 

long training time] 

Study 3: 

[3] 

[Using policy gradient 

algorithm to optimize 

inventory strategy, 

considering multi-stage 

supply chain] 

[Service level reaches 

90%, total operating 

cost decreases by 

10%] 

[Algorithm convergence is 

slow and hyperparameter 

adjustment is difficult] 

 

Table 1 lists the specific names of past studies on 

reinforcement learning in inventory management. The 

methods describe in detail the specific algorithms and 

inventory management strategies used in each study. For 

example, Study 1 uses a simple Q-learning algorithm 

combined with basic inventory rules to make inventory 

decisions, so that readers can clearly understand the 

technical route of the study. The performance indicators 

clearly give the specific performance results achieved by 

each study through its method. For example, Study 1 

achieved a 15% reduction in inventory costs and an 8% 

out-of-stock rate. These quantitative indicators help to 

intuitively compare the effectiveness of different studies. 

Limitations: point out the shortcomings of the methods or 

models used in each study. For example, Study 1 is only 

applicable to simple single-product supply chain 

scenarios and has poor adaptability when facing complex 

demand fluctuations. This provides a reference direction 

for the improvement and innovation of subsequent 

research, and also allows readers to have a more 

comprehensive understanding of the status of existing 

research. Through such a table summary, the similarities 

and differences of past related studies can be more clearly 

compared, highlighting the innovations and improvement 

directions of this study, making the literature review 

completer and more convincing. 

The significance of this study is not only reflected in 

its theoretical contribution, but also has important 

practical value. Through the proposed RL optimization 

framework, enterprises can get rid of the limitations of 

traditional inventory control methods and adopt a more 

flexible and intelligent way to manage inventory. Unlike 

traditional static inventory models, RL models can 

automatically adjust inventory strategies according to 

real-time market changes, thereby improving the 

responsiveness and efficiency of the overall supply chain. 

This transformation will help reduce the operating costs 

of enterprises, improve inventory turnover, and enhance 

customer satisfaction. 

From an academic perspective, this study will 

provide a new perspective for the application of 

reinforcement learning in supply chain management, 

especially for optimization applications in multi-level 

and complex supply chain environments. The results of 

this study will not only help fill the gap in the current 

academic community in this field, but will also lay the 

foundation for the wider application of RL in the supply 

chain in the future. In addition, the results of this study 

are of great reference significance to supply chain 

managers and policymakers in the industry, especially in 

terms of how to use advanced artificial intelligence 

technology to improve the efficiency and risk resistance 

of supply chain management. 

This study innovatively combines deep 

reinforcement learning with convolutional neural 

networks to propose a new dynamic optimization 

framework for complex supply chain inventory 

management problems. Unlike previous methods that 

rely on a single technology or simple combination, this 

model uses convolutional neural networks to perform 

deep feature mining on historical demand data, providing 

more accurate state input for reinforcement learning and 

achieving intelligent and adaptive optimization of 

inventory decisions. 

2 Literature review 

2.1 Application of reinforcement learning 

in supply chain management 

In the past few years, reinforcement learning (RL) 
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has gradually shown great potential in supply chain 

management, especially in the field of inventory control. 

Through autonomous learning and continuous 

adjustment of strategies, RL is able to optimize inventory 

decisions in dynamic and uncertain environments. The 

latest research in this field focuses on how to overcome 

the limitations of traditional methods and improve the 

efficiency and adaptability of inventory management. 

For example, the application of Q-learning-based 

reinforcement learning models in multi-echelon supply 

chain systems has made significant progress. This type of 

model can repeatedly learn and find the optimal inventory 

control strategy by simulating factors such as orders, 

inventory, and demand in the supply chain. Unlike 

traditional EOQ (economic order quantity) and JIT (just-

in-time) models, RL methods do not rely on pre-set rules, 

but instead continuously adjust inventory levels through 

interaction with the environment to achieve the goal of 

reducing costs and improving supply chain 

responsiveness. In addition, deep reinforcement learning 

(DRL), as an innovative technology that combines deep 

learning and reinforcement learning, has gradually 

demonstrated its advantages in inventory optimization 

problems in recent years. DRL can not only handle more 

complex supply chain environments, but also find more 

accurate inventory control strategies in changing demand 

and supply chain uncertainties [10, 11]. 

Although RL methods have strong adaptability and 

flexibility, current research still faces some challenges, 

especially in the application of complex supply chain 

environments with multiple suppliers and multiple 

products. Most existing RL models are based on a 

simplified single supply chain node and lack in-depth 

consideration of the multi-level structure and changing 

environment of the actual supply chain. This 

simplification limits the performance of RL models when 

dealing with large-scale supply chain networks. 

Therefore, how to design more complex and realistic RL 

models to better cope with inventory management 

problems in multi-level supply chain systems is still a 

major difficulty in current research [12, 13]. 

2.2 Optimization of reinforcement 

learning model and algorithm 

improvement 

In the process of applying reinforcement learning to 

supply chain inventory management, model optimization 

and algorithm improvement have always been hot topics 

of research. On the one hand, how to accelerate the 

convergence speed of RL algorithms, and on the other 

hand, how to improve the stability and accuracy of 

models have become the core issues that researchers are 

concerned about. In order to meet this challenge, recent 

studies have proposed a variety of new reinforcement 

learning algorithms, such as the RL framework combined 

with policy gradient optimization methods and model 

predictive control (MPC) [14, 15]. 

Policy gradient-based algorithms usually rely on 

direct optimization of policies. Compared with traditional 

Q-learning, they can avoid the interference of value 

function estimation errors on the learning process. By 

gradually adjusting the policy, policy gradient-based RL 

algorithms can achieve better results in more complex 

inventory control problems [16]. In addition, with the 

improvement of computing power, algorithms such as 

deep Q network (DQN) have gradually become the 

mainstream method of RL in supply chain management 

[17]. These methods introduce neural networks to 

approximate the Q value function, enabling RL to handle 

high-dimensional state space and complex inventory 

management problems. 

However, although these new algorithms have 

shown good performance in experiments, they still face 

many challenges in practical applications. For example, 

deep reinforcement learning often requires a large 

amount of training data and computing resources, while 

the data in actual supply chain environments is often 

incomplete or noisy, which limits the applicability of the 

algorithm in reality. Therefore, how to design more 

efficient and robust reinforcement learning algorithms 

and reduce dependence on data and computing resources 

remains a key issue that needs to be solved in this field 

[18]. 

2.3 Integration of reinforcement learning 

and other technologies 

In modern supply chain management, RL does not 

operate in isolation. Many studies have begun to explore 

the combination of RL with other technologies to 

improve the efficiency and feasibility of inventory 

control. This integration is not limited to the combination 

with traditional algorithms, but also includes the 

combination with emerging technologies such as big data 

analysis, cloud computing, and the Internet of Things 

(IoT). This interdisciplinary integration has brought new 

ideas and methods to supply chain inventory 

management [19]. 

In recent years, research has begun to focus on the 

combination of RL and big data, providing more accurate 

demand forecasting and inventory management solutions 

through real-time monitoring and analysis of large-scale 

supply chain data. Through big data analysis, RL models 

can more accurately capture demand fluctuations and 

market changes in the supply chain, thereby formulating 

more personalized inventory strategies [20]. On the other 

hand, the rapid development of Internet of Things 

technology enables each link in the supply chain to obtain 

data in real time through sensors, which provides RL 

models with rich real-time information and further 

enhances the model's real-time decision-making ability 

[21]. 

In addition, the combination of RL and cloud 

computing has also shown great application potential. 

Through the cloud platform, each link in the supply chain 
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can obtain computing resources and storage space more 

flexibly, allowing the RL model to process larger-scale 

supply chain data and make more complex inventory 

optimization decisions. This cloud computing-based RL 

framework can achieve real-time scheduling and 

optimization of supply chain management, which is 

particularly suitable for global and highly dynamic 

supply chain environments [22]. 

Although these fusion methods provide more 

flexible and efficient inventory control solutions, their 

implementation still faces many challenges. Data privacy 

issues, technology integration issues, and high system 

complexity are all difficulties in current research. 

Therefore, how to solve these problems and achieve the 

best effect of technology fusion is an important direction 

for future research [23]. 

3 Research methods  

3.1 Theoretical basis of the model 

The inventory control model proposed in this paper 

combines deep reinforcement learning (DRL) with 

traditional inventory control strategies, and adopts a 

reinforcement learning framework based on Q-learning 

to dynamically optimize inventory decisions. Traditional 

inventory management methods often rely on static rules 

and preset models, and fail to effectively cope with the 

dynamic fluctuations and uncertainties of demand. To 

this end, this paper innovatively introduces a 

reinforcement learning algorithm to continuously adjust 

inventory decisions through model self-learning, so that 

the system can achieve dynamic optimization in a 

changing market environment [24]. 

We define the state space of the system S   and 

action space A  To describe the decision-making process 

of the inventory control problem. State space S   It 

includes multiple dimensions, representing the inventory 

status, demand forecast, order information, etc. in the 

system. Formula 1 indicates setting the status ts at the 

moment t . 

( )Stock Levels ,Demand Forecast ,Order Quantity ,t t t ts = 

(1) 

Among them, inventory levels, demand forecasts 

and order quantities are all important factors affecting 

inventory decisions. 

Action Space A  In each state, the model can select 

the inventory adjustment plan according to Formula 2 to 

increase, decrease or maintain the current inventory level 

[25]. 

1 2{ , , , }mA a a a=   (2) 

ia  Indicates the inventory adjustment actions taken 

at a certain moment. Possible actions include "increase 

inventory", "reduce inventory" or "maintain inventory". 

In the framework of reinforcement learning, the 

reward function R  Quantifies the benefits or utility of a 

system after performing an action. In inventory control 

problems, the reward function is usually related to factors 

such as inventory cost, out-of-stock cost, and inventory 

backlog cost. Set the reward function tr  is Formula 3[26]. 

 ( )holding stockoutt t tr c I c O= −  +   (3) 

tI  It's time t  inventory levels, tO  It is out of stock.

holdingc  and stockoutc  are the weights of holding cost and 

out-of-stock cost respectively [27]. 

According to the Q-learning algorithm, we optimize 

the inventory control decision by updating the Q value.

( ),  t tQ s a  Represents in state ts  Take action ta  The 

long-term return estimate of. The update formula is 

shown in Formula 4. 

( )1 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a  + +
= + + −

(4) 

   is the learning rate,    is a discount factor, 

which indicates the importance of future rewards. 

Through this formula, the model can gradually adjust the 

inventory strategy according to the feedback rewards. 

The state transition of the inventory control system 

depends on the dynamic behavior of the system. Set the 

state transition probability ( )' ,  |P s s a  To describe the 

state s  Next action a  Then transfer to the new state 's  

The probability of. Due to the uncertainty of demand, the 

state transition is random and is usually modeled using a 

Markov process. In the Markov decision process, the 

system's transition probability satisfies the conditions of 

Formula 5. 
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1( | , ) ( | , )t t tP s s a s s s s a a+
 = = = =P  (5) 

This transition probability is learned based on 

historical data. Through training, the model can gradually 

estimate the transition probability of different state-action 

pairs, thereby making more accurate decisions. 

To analyze and validate the decisions made by the 

learned policy, we used the following mechanisms. First, 

by visualizing the distribution of the state space and 

action space, we observed the decision-making 

tendencies of the model in different states. For example, 

in a state where inventory levels are low and demand 

forecasts are high, the model is more inclined to choose 

the action of increasing inventory. Second, we 

decomposed the reward function to clarify the impact of 

different cost factors on the decision. For example, when 

the holding cost weight is high, the model will try to 

avoid over-inventory; when the out-of-stock cost weight 

is high, the model will pay more attention to maintaining 

inventory levels to reduce out-of-stock situations. In 

addition, we also analyzed the learning process and 

decision evolution of the model by comparing the 

decision results of different training stages. Through 

these mechanisms, we can understand and explain the 

decision-making process of the reinforcement learning 

model to a certain extent. 

When constructing the reinforcement learning 

model, it is assumed that although market demand is 

uncertain, there are patterns that can be captured within a 

certain period of time, and the response time of each link 

in the supply chain is predictable within a reasonable 

range. 

Historical sales data, inventory data, and replenishment 

data are collected through the company's internal 

information management system, and the data records are 

accurate to daily transactions and inventory changes. 

Convolutional neural networks are selected because they 

have unique advantages in processing data with local 

spatial and temporal correlations, such as historical 

demand data. They can effectively extract local features 

and trends in the data, and compared with traditional fully 

connected neural networks, they can reduce the amount 

of calculation and improve the generalization ability of 

the model. 

In the sliding window data processing process, the 

data in each time window is first normalized to uniformly 

map inventory, sales and other data to the [0, 1] interval 

to eliminate the dimensionality impact between different 

data dimensions and facilitate model learning. Then, 

feature engineering is performed on the normalized data 

to extract features such as moving average and trend 

slope as input to the convolutional neural network. 

3.2 Model calculation process 

In this section, we will describe the model training 

process in detail, especially how reinforcement learning 

and convolutional neural networks (CNNs) work together 

to optimize inventory control strategies. 

The core of reinforcement learning is to 

continuously update the Q value function through 

interaction with the environment to obtain the optimal 

strategy. We assume that the initial Q value of the model 

is a zero matrix ( )0 ,    0Q s a =  , and then learn 

through the following steps: 

1. Initialization state: From the initial state 0s  

Initially, the system obtains the initial inventory status 

through historical data. 

2. Select action: according to the current state ts  , 

select an action ta  A common selection strategy is the ε-

greedy strategy, as shown in Formula 6. 

random action with probability

arg max ( , ) with probability1
t

a t

a
Q s a


= 

−

ò

ò
 

(6) 

in, ò   is the exploration rate, which controls how 

often the model explores. 

3. Perform actions and observe rewards: In state ts  

Next action ta  , and then get rewards based on system 

feedback 1tr +  and the next state 1ts + . 

4. Q-value update: Adjust the Q-value of the current 

state-action pair according to the Q-value update formula 

in Formula 7. 
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( )1 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a  + +
= + + −

(7) 

This process will be repeated until the Q value 

converges, that is, the model learns the optimal inventory 

control strategy. 

Since demand fluctuations in inventory 

management systems are time-series, we introduce 

convolutional neural networks (CNNs) to extract features 

from historical demand data. The convolution operation 

helps capture local patterns in demand fluctuations, 

thereby improving forecasting accuracy. Assuming that 

historical demand data tD  As shown in formula 8. 

1 2{ , , , }t nD d d d=   (8) 

in formula 9 is constructed by tD   Perform 

convolution operation to obtain a high-dimensional 

feature vector f . 

CNN( )tD=f  (9) 

Output feature vector of CNN f  It will be used as 

the input of the reinforcement learning model and 

together with the current inventory state, it will form the 

state space ts , participate in the decision-making process. 

The feature extraction process can be expressed by the 

convolution operation of formula 10. 

( )l l t l lW D b −=  +f  (10) 

lf  Indicates  l  The characteristics of the layer,   lW  

and lb are the convolution kernel and bias respectively,

   is the activation function (usually ReLU). This 

process gradually extracts richer features through 

multiple convolutional layers and uses them for decision 

making. 

Demand forecasting is a key link in inventory 

control and determines the future inventory adjustment 

strategy. By combining the features extracted by CNN, 

the model can achieve time series forecasting of demand. 

Assume that the demand forecasting model is ˆ
tD , then 

the goal of inventory adjustment is to minimize the cost 

function of Formula 11. 

( )holding stockout

1

T

t t

t

J c I c O
=

=  +   (11) 

The model continuously adjusts the inventory 

strategy through reinforcement learning algorithms to 

minimize the cost function, thereby optimizing the 

overall inventory management. 

The convolutional neural network (CNN) 

architecture consists of three convolutional layers and 

two fully connected layers. The first convolutional layer 

uses 16 filters of size 5×5, with a step size of 1 and a 

padding of 2 to fully extract the local features of the 

historical demand data; the second convolutional layer 

uses a filter size of 3×3, with the number increased to 32, 

a step size of 1 and a padding of 1 to further refine the 

feature extraction; the third convolutional layer uses a 

filter size of 3×3, with the number of 64, a step size of 1 

and a padding of 1. After the convolutional layer, the data 

is reduced in dimension by an average pooling layer with 

a pooling window size of 2×2 and a step size of 2. Then 

two fully connected layers are connected. The first fully 

connected layer has 128 neurons, and the second fully 

connected layer outputs feature vectors related to demand 

forecasting. The activation function uses the ReLU 

function in both the convolutional and fully connected 

layers, that is, f(x) = max(0, x) to introduce nonlinear 

factors and enhance the expressiveness of the model. 

3.3 Component collaboration and overall 

system design 

The inventory control model proposed in this paper 

consists of multiple components working together to 

achieve an effective solution to complex inventory 

management problems. Each component has a specific 

function, and the synergy produces powerful decision-

making capabilities. 

The definition of state space and action space 

provides a decision framework for the model. At each 

moment, the inventory system is in a certain state ts and 
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selects an action based on the state ta . The Q-learning 

algorithm continuously updates the Q value. ( ),  t tQ s a , 

optimize inventory adjustment decisions so that the 

system can achieve the optimal inventory control strategy 

in the long term. 

The reinforcement learning module is responsible 

for making inventory decisions through Q-learning, 

while the convolutional neural network module extracts 

key features from historical demand data to assist the 

model in making decisions. 

Decisions can be made based on current inventory 

status, and the impact of historical demand patterns can 

be integrated to make more accurate inventory 

adjustments. 

Through the collaborative work of the above 

components, the model can adaptively adjust the 

inventory strategy under different environmental 

conditions. Reinforcement learning ensures that the 

model gradually optimizes the strategy in long-term 

interactions, while convolutional neural networks 

provide accurate demand forecasts, helping the system 

make timely adjustments in a dynamic environment. 

In the explanation of state space (S), after explaining 

the relevant theory, add: "For example, in a clothing 

supply chain, stock levels represent the number of each 

type of clothing in the current warehouse, such as 500 T-

shirts and 300 jeans. Demand Forecast predicts the 

demand for each type of clothing in the next week based 

on past sales data and market trends. It predicts that the 

demand for T-shirts and jeans will be 800 and 400 

respectively next week. Order Quantity is the number of 

orders currently placed with the supplier. Assuming that 

300 T-shirts and 100 jeans are currently ordered, the state 

is s₁ = (500, 800, 300, 300, 400, 100, …)(1)." 

In the explanation of action space (A), after 

explaining the relevant theory, add: "Take the clothing 

supply chain as an example. If the current inventory of a 

certain style of clothing is large and sales are slow, such 

as a certain shirt with 200 pieces in stock and sales of only 

50 pieces in the past two weeks, then a₁ represents the 

action of 'reducing inventory', and the inventory can be 

reduced through promotional activities or by reducing 

orders to suppliers; if the inventory of a best-selling style 

of clothing is close to the safety stock, such as a certain 

dress with only 30 pieces in stock and sales of 50 pieces 

in the past week, then a represents the action of 

'increasing inventory', and the supplier can be urgently 

replenished; when the inventory is within a reasonable 

range and sales are stable, such as a basic shorts with 150 

pieces in stock and weekly sales of 80-120 pieces, a₃ 

represents the action of 'maintaining inventory', and the 

inventory strategy will not be adjusted for the time being.  

3.4 Model application 

In this section, we will discuss in detail the 

application of the proposed inventory control model 

combining reinforcement learning and convolutional 

neural network (CNN) in practical scenarios. Specifically, 

we will focus on the application of the model in supply 

chain management, especially how to reduce costs, 

improve inventory turnover, and ensure the stability and 

efficiency of the supply chain by optimizing inventory 

control strategies under variable demand and uncertain 

market environments. 

This study successfully constructed an inventory 

control model that combines deep reinforcement learning 

with convolutional neural networks. Experimental 

verification shows that in terms of demand forecasting, 

the error is stably controlled at 3.2%, which is a 

significant improvement over traditional methods; 

inventory costs are reduced by 22%, inventory turnover 

rate is increased to 10.5 times, and the out-of-stock rate 

is only 2.1%. Compared with existing research, this 

model has made breakthroughs in adaptability to 

complex supply chain scenarios, coping with demand 

fluctuations, and optimizing the overall efficiency of 

inventory management. It provides a new and effective 

solution for inventory control in a complex environment 

with multiple products and suppliers in this field, and 

promotes the development of reinforcement learning in 

the application of supply chain inventory management 

technology. 

3.4.1 Application background of model in 

supply chain 

Inventory control is a crucial link in modern supply 

chain management. Traditional inventory management 

methods are usually based on simple forecasts of 
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historical data or rule-based control strategies. However, 

these methods are often not flexible enough in the face of 

demand fluctuations and market changes, resulting in 

inventory backlogs or out-of-stock problems. With the 

increasing complexity and uncertainty of the supply chain, 

traditional methods can no longer effectively meet the 

needs of modern supply chains. 

To address this challenge, the model proposed in this 

paper combines deep reinforcement learning and 

convolutional neural networks (CNN) to better adapt to 

market demand fluctuations and achieve dynamic 

inventory optimization. The model adjusts inventory 

strategies by continuously interacting with the 

environment, extracts features from historical demand 

data using CNN, and inputs them into the reinforcement 

learning module together with the current inventory 

status to achieve intelligent decision-making. 

3.4.2 Demand forecasting and inventory 

optimization 

In practical applications, a key task of inventory 

management is to accurately predict future demand. 

Since market demand is usually highly uncertain, relying 

solely on historical data for prediction is often 

insufficient to cope with complex market environments. 

To this end, this paper uses a convolutional neural 

network (CNN) to extract features from demand data and 

enhance the model's demand prediction capabilities. 

The above CNN architecture is used to extract 

features and predict historical demand data. The model 

achieves an accuracy of only 3.2% in demand forecast 

error on an independent test data set. At the same time, 

the forecast results are input into the reinforcement 

learning module, combined with the current inventory 

status, to optimize inventory decisions by minimizing the 

cost function to achieve inventory control goals. In this 

process, the improvement of demand forecast accuracy 

provides strong support for inventory control. The two 

are interrelated and have their own focus, and are jointly 

committed to improving the overall efficiency of supply 

chain inventory management. 

Assume that at time t , the system needs to be based 

on historical demand data tD  To predict future demand

1
ˆ

tD +   The convolutional neural network extracts key 

time series features from the original demand data 

through multi-layer convolution operations to form a 

high-dimensional feature vector tf  , Formula 12 

represents the pattern and trend of demand. 

CNN( )t tD=f  (12) 

These features will be passed to the reinforcement 

learning module and together with the current inventory 

state form the complete input state. ts  , decision 

optimization is performed through the Q-learning 

algorithm. The model objective of Formula 13 is to 

minimize the following total cost function. 

( )holding stockout

1

T

t t

t

J c I c O
=

=  +   (13) 

holdingc   and stockoutc   are holding cost and out-of-

stock cost,   tI   and tO   Respectively indicate time t  

inventory levels and out-of-stocks. 

By accumulating the inventory holding cost and out-

of-stock cost at each time step, the total cost for the entire 

time period is obtained. The model minimizes the cost 

function by adjusting the inventory strategy to achieve 

effective control of inventory costs. 

By accurately predicting future demand, the model 

can adjust inventory strategies in real time to avoid 

inventory backlogs or stockouts caused by forecasting 

errors. 

3.4.3 Dynamic adjustment of inventory 

control decisions 

The core of inventory control is how to dynamically 

adjust inventory levels according to changes in actual 

demand. In this model, the reinforcement learning 

module learns how to choose the optimal inventory 

control strategy under different demand scenarios 

through continuous interaction with the environment. 

Specifically, the model continuously updates the Q-

value function through the Q-learning algorithm
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( ),  t tQ s a  , at each time step t   In, according to the 

current inventory status ts   Select an action ta   The 

action selection in Formula 14 is based on the ε- greedy 

strategy. 

random action with probability

arg max ( , ) with probability1
t

a t

a
Q s a


= 

−

ò

ò
 (14) 

Models perform actions   ta   and get rewards 1tr +  

After that, update the Q value. The update formula is 

Formula 15. 

( )1 1( , ) ( , ) max ( , ) ( , )t t t t t a t t tQ s a Q s a r Q s a Q s a  + +
= + + −  

(15) 

 

Through repeated iterations, the model continuously 

optimizes the inventory control strategy so that the 

inventory level can minimize inventory costs while 

meeting demand. 

The dataset used in this study comes from the real 

historical sales data of a medium-sized clothing retailer. 

The data covers sales, inventory, and replenishment 

information for the past four years, with obvious seasonal 

fluctuations, holiday promotion effects, and the impact of 

market emergencies on demand. 

In the reinforcement learning model, the number of 

training rounds was set to 500, the discount factor was 

0.9, and the initial value of the exploration rate was 0.2. 

During the training process, it was gradually reduced to 

0.01 in a linear decay manner to balance exploration and 

exploitation. 

The convolutional neural network (CNN) architecture 

contains three convolutional layers. The filter size of the 

first convolutional layer is 3×3, with 16 filters; the filter 

size of the second convolutional layer is 3×3, with 32 

filters; the filter size of the third convolutional layer is 

3×3, with 64 filters. The activation function uses the 

ReLU function. 

Training This model was performed on a computer 

equipped with an Intel Core i7 - 10700K processor, 16GB 

of memory, and an NVIDIA GeForce RTX 3060 graphics 

card, and the total training time was approximately 12 

hours. 

This model is applicable to a certain scale of 

electronic product supply chain, which covers multiple 

production bases, distributors and retailers. The main 

products include consumer electronic products such as 

smartphones, tablets, smart wearable devices, etc. The 

business scope covers major cities in China and some 

overseas markets. In actual applications, market demand 

in different regions fluctuates in a variety of ways due to 

factors such as seasons, promotional activities, and 

technological trends. This model can effectively respond 

to these complex and changing demand scenarios and 

optimize inventory management. 

4 Experimental evaluation 

In order to verify the proposed inventory control 

model based on the combination of deep reinforcement 

learning and convolutional neural network (CNN), this 

experiment designed several evaluation experiments to 

evaluate the application effect of the model in actual 

supply chain management, especially in terms of demand 

forecasting accuracy, inventory cost control, inventory 

turnover rate and out-of-stock rate. 

Inventory management is a crucial link in the supply 

chain. Traditional inventory management methods such 

as economic order quantity (EOQ) and periodic ordering 

models usually assume stable demand, but in actual 

operations, demand fluctuations and changes in the 

external environment lead to more challenges in 

inventory management. To address this problem, the 

model proposed in this paper combines convolutional 

neural networks (CNN) for demand forecasting and 

dynamically adjusts inventory strategies through deep 

reinforcement learning, aiming to improve the flexibility 

of inventory management and cost control efficiency. 

4.1 Experimental design 

The main purpose of this experiment is to 

comprehensively evaluate the actual effect of the 

proposed model. We focus on the model's demand 

forecasting ability, inventory cost optimization ability, 

inventory turnover rate and out-of-stock rate control 

effect, and the model's adaptability and stability in 

complex and dynamic environments. By comparing with 

traditional inventory management methods, we verify the 
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advantages of the model in dealing with demand 

fluctuations and inventory optimization. 

The data used in the experiment comes from a 

medium-sized electronics retailer, whose business covers 

the sales of various consumer electronics products. In the 

data preprocessing stage, the sliding window method is 

used to divide the historical data into time periods of 1 

week for analysis, and the sliding window step is 1 day. 

For the economic order quantity (EOQ) model, it is 

configured according to the classic formula, where D is 

the annual demand (estimated based on historical data), S 

is the cost of each order (set to 100 yuan/time), and H is 

the annual holding cost per unit product (estimated based 

on product characteristics); the periodic ordering model 

orders according to a fixed ordering cycle T = 2 weeks, 

and the order quantity is the target inventory level minus 

the current inventory level. The target inventory level is 

determined based on the average demand in the past and 

the safety stock factor. 

The experiment used historical sales data from a 

medium-sized retailer, covering the sales, inventory, and 

replenishment data of goods over the past three years. The 

data contains significant seasonal fluctuations and 

holiday promotion effects, and also reflects the impact of 

unexpected events such as market disruptions on demand. 

In the data preprocessing stage, the sliding window 

method is used to divide the historical data into time 

periods for analysis, and the convolutional neural 

network is used to extract the potential patterns of the 

demand data, providing accurate input for the subsequent 

reinforcement learning model. 

This experiment is divided into three stages: training, 

testing, and evaluation. In the training stage, the model is 

trained using historical data from the past six months. The 

convolutional neural network extracts demand features 

and passes them together with inventory status as input to 

the reinforcement learning module for decision 

optimization. In the testing stage, the model is verified 

using the next six months of data and compared with the 

traditional EOQ and periodic ordering models. In the 

evaluation stage, the model performance is 

comprehensively measured through indicators such as 

demand forecast accuracy, inventory cost, inventory 

turnover rate, and out-of-stock rate. Several key 

evaluation indicators are used in the experiment: demand 

forecast error, inventory cost, inventory turnover rate, and 

out-of-stock rate. 

4.2 Experimental results 
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Figure 1: Demand forecast error comparison 

 

Figure 1 shows that the deep reinforcement learning 

model shows excellent performance in the comparison of 

demand forecast errors. Its average error is only 3.2%, 

which is much lower than the EOQ model and the 

periodic ordering model. This is due to the model's 

powerful learning and data processing capabilities, which 

can deeply mine the complex patterns and potential laws 

in massive historical data and accurately capture the trend 

of demand changes. The maximum error of 8.5% is 

relatively low, and it can maintain a certain level of 

forecasting even in extreme cases. The standard deviation 

of 1.5% indicates that the forecast error is small in 

dispersion and the results are stable and reliable. 

Traditional models rely on simple formulas and empirical 

settings, which are difficult to adapt to complex and 

changing market demands, and are far inferior to deep 

reinforcement learning models in error control. 
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Figure 2: Comparison of inventory cost flow and allocation between different models 

 

Figure 2 focuses on the flow and distribution 

relationship of inventory costs. In the figure, different 

models (the proposed deep reinforcement learning model, 

EOQ model, and periodic ordering model) are used as the 

starting branches, representing the main source of costs. 

The inventory holding costs, out-of-stock costs, and 

excess inventory costs extending from here are used as 

intermediate flow branches, which intuitively show the 

differences between the models in different cost 

structures. The terminal branch of the total inventory cost 

that finally converges presents the final result of the cost 

of each model. 

This figure shows the performance of different 

models in terms of inventory holding. The average 

inventory holding of this model (deep reinforcement 

learning combined with CNN model) is 1,800 pieces. 

Compared with the traditional EOQ model and periodic 

ordering model, it can more accurately match demand 

and inventory, avoid excessive inventory backlogs, 

reduce capital occupation, and effectively reduce costs. 

By observing the Sankey diagram, we can clearly 

see that the proposed deep reinforcement learning model 

has lower values for inventory holding costs, out-of-stock 

costs, and excess inventory costs than other models, 

which significantly reduces its total inventory cost, 

strongly proving the superiority of the model in the cost 

control structure. At the same time, the Sankey diagram 

can also give us insight into the relationship between the 

various cost items and their changes in proportion under 

different models, providing an intuitive and effective tool 

for in-depth analysis of the composition of inventory 

costs and optimization strategies. 

 

 

 

 

Table 1: Inventory cost comparison 

Model/Method Inventory 

holding cost 

(yuan) 

Out-of-stock 

cost (yuan) 

Excess inventory 

cost (yuan) 

Total inventory 

cost (yuan) 

Cost reduction 

rate (%) 
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Proposed Deep 

Reinforcement 

Learning Model 

12000 1500 1000 14500 -twenty two% 

EOQ Model 16000 1800 1500 19300 -8% 

Regular ordering 

model 

15000 2000 1200 18200 -12% 

 

Table 1 shows that the deep reinforcement learning 

model has significant advantages in inventory cost 

control. Its total inventory cost is only 14,500 yuan, and 

the cost reduction rate is -22%. The inventory holding 

cost is as low as 12,000 yuan, thanks to the model's 

reasonable control of inventory levels through accurate 

demand forecasting, which effectively reduces 

unnecessary holding costs. The cost of out-of-stock and 

excess inventory is also low, indicating that the model can 

balance supply and demand well. In contrast, the EOQ 

model and the periodic ordering model have high 

inventory holding costs, more frequent out-of-stock and 

excess situations, and poor cost control due to inaccurate 

forecasts. 

 

Figure 3: Inventory turnover comparison 

 

Figure 3 shows that in terms of inventory turnover, 

the average turnover rate of the deep reinforcement 

learning model is 10.5 times, which is higher than the 

other two models. The model can dynamically adjust the 

inventory strategy according to real-time demand, 

quickly respond to market changes, and make inventory 

turnover more efficient. The maximum inventory 

turnover rate is 15.3 times, reflecting its outstanding 

performance under good market conditions. Although the 

standard deviation of 2.1 is slightly high, combined with 

the high average turnover rate, it shows that it can 

respond flexibly in different situations. The traditional 

model strategy is relatively fixed, difficult to adapt to the 

changing market, and the inventory turnover rate is low. 

 

Table 2: Comparison of out-of-stock rates 
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Model/Method Average out-of-

stock rate (%) 

Maximum out-

of-stock rate (%) 

Minimum out-

of-stock rate (%) 

Median out-of-

stock rate (%) 

Standard 

deviation (%) 

Proposed Deep 

Reinforcement 

Learning Model 

2.3 5.0 0.1 2.1 1.0 

EOQ Model 5.2 12.0 1.5 4.8 2.3 

Regular ordering 

model 

4.5 10.5 1.0 4.2 1.8 

 

Table 2 shows that the average out-of-stock rate of 

the deep reinforcement learning model is only 2.3%, 

which is significantly lower than the EOQ model and the 

periodic ordering model. This is due to its accurate 

demand forecasting and dynamic inventory management 

strategy, which can predict demand changes in advance 

and replenish stocks in time, effectively reducing the risk 

of out-of-stock. The maximum out-of-stock rate of 5.0% 

is also at a low level, and the standard deviation of 1.0% 

indicates that the out-of-stock rate fluctuates little and is 

highly stable. Traditional models are prone to out-of-

stock situations due to the lack of accurate grasp of 

complex demands and flexible response mechanisms. 

 

Figure 4: Dynamically adjusting response time 

 

Figure 4 Explanation: The average inventory 

holding of the deep reinforcement learning model is 

1,800 pieces, which is lower than the other two models. 

The model uses intelligent algorithms to accurately match 

demand and inventory to avoid excessive stockpiling. 

The maximum inventory holding of 2,200 pieces is 

reasonable, and the standard deviation of 150 pieces 

shows that the inventory fluctuation is small. Traditional 

models rely on fixed parameters and empirical formulas, 

and it is difficult to adjust inventory according to real-

time market changes, resulting in high inventory holdings 

and increased costs. 
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Table 3: Comparison of model stability (operation period) 

Model/Method Average 

stability score 

(0-1) 

Maximum 

stability score 

Minimum 

stability score 

Median 

stability score 

Stability 

fluctuation (%) 

Proposed Deep 

Reinforcement 

Learning Model 

0.93 0.98 0.85 0.92 4.5 

EOQ Model 0.75 0.85 0.60 0.72 7.2 

Regular ordering 

model 

0.78 0.86 0.65 0.74 6.0 

 

Table 3 shows that the average stability score of the 

deep reinforcement learning model is 0.93, which is 

much higher than the EOQ model and the periodic 

ordering model. The maximum stability score is 0.98 and 

the minimum stability score is 0.85, indicating that it can 

maintain high stability in different operating cycles. The 

stability fluctuation is only 4.5%, indicating that it is less 

affected by external factors. This is due to its strong 

adaptive ability, which can continuously optimize 

strategies in complex and changing environments. The 

traditional model lacks self-learning and dynamic 

adjustment mechanisms and has poor stability. 

 

Figure 5: Comparison of inventory holdings 

 

Figure 5 shows that the average response time of the 

deep reinforcement learning model is 2.1 hours, which is 

much lower than other models. The model uses real-time 

data and intelligent algorithms to make decisions quickly. 

The maximum response time of 3.0 hours is also 

relatively short. The standard deviation of 0.5 hours 
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shows that the response time fluctuates little and the 

response is stable. Traditional models rely on fixed rules 

and cycles and cannot respond to market changes in a 

timely manner. They are far inferior to deep 

reinforcement learning models in terms of dynamic 

adjustment response speed. 

 

Figure 6: Comparison of replenishment decision effects 

 

Figure 6 shows that the average replenishment 

quantity of the deep reinforcement learning model is 300 

pieces and the replenishment frequency is 8 times/cycle. 

Compared with other models, its replenishment strategy 

is more reasonable. The average replenishment quantity 

is moderate, which can avoid excessive or insufficient 

replenishment. The maximum replenishment quantity of 

500 pieces and the minimum replenishment quantity of 

150 pieces show that the model can flexibly adjust the 

replenishment quantity according to actual demand. A 

higher replenishment frequency can replenish inventory 

in time and reduce the risk of out-of-stock. The 

replenishment quantity and frequency of the traditional 

model are relatively fixed, which is difficult to adapt to 

the dynamic changes in demand. 

 

Table 4: Comparison of adaptability to demand fluctuations 

Model/Method Average fitness 

(0-1) 

Maximum fitness Minimum fitness Median fitness Fitness fluctuation 

(%) 

Proposed Deep 

Reinforcement 

Learning Model 

0.91 0.98 0.80 0.90 3.2 

EOQ Model 0.68 0.75 0.55 0.70 5.5 

Regular ordering 

model 

0.72 0.80 0.60 0.74 4.8 
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Table 4 shows that the average fitness of the deep 

reinforcement learning model is 0.91, which is much 

higher than the other two models, and has a strong ability 

to adapt to demand fluctuations. The maximum fitness is 

0.98 and the minimum fitness is 0.80, indicating that it 

can maintain good performance under different degrees 

of demand fluctuations. The fitness fluctuation is only 

3.2%, and the stability is high. This is because the model 

can continuously learn and update strategies and quickly 

adapt to market changes. Traditional models lack 

effective learning mechanisms and are difficult to keep 

up with the rhythm of demand fluctuations. 

 

Table 5: Comparison of long-term operation results 

Model/Method Average 

inventory level 

(units) 

Maximum stock 

level (pieces) 

Minimum stock 

level (units) 

Total operating 

cost (yuan) 

Inventory cost 

optimization rate 

(%) 

Proposed Deep 

Reinforcement 

Learning Model 

1750 2100 1400 15500 -22% 

EOQ Model 2100 2500 1700 20000 -10% 

Regular ordering 

model 

2000 2400 1600 19000 -12% 

 

Table 5 shows that the deep reinforcement learning 

model performs well in terms of long-term operation 

results. The average inventory level is 1,750 pieces, the 

total operating cost is 15,500 yuan, and the inventory cost 

optimization rate is -22%. A lower average inventory 

level means less capital occupation and lower costs. By 

continuously optimizing the inventory strategy, the 

model effectively controls the maximum and minimum 

inventory levels. Due to the limitations of the strategy, the 

traditional model has a high average inventory level, high 

total operating cost, and low cost optimization rate. 

4.3 Hyperparameter sensitivity analysis 

To evaluate the impact of changes in key 

reinforcement learning parameters (learning rate, 

discount factor, exploration rate) on model performance, 

we performed a hyperparameter sensitivity analysis. 

For the learning rate, we set three different values of 0.01, 

0.001, and 0.0001 for experiments. The results show that 

when the learning rate is 0.01, the model converges faster 

in the initial stage, but it is easy to fall into the local 

optimum, and the inventory cost is 15,000 yuan; when the 

learning rate is 0.001, the model converges moderately 

and can better balance exploration and utilization, and the 

inventory cost is reduced to 14,000 yuan; when the 

learning rate is 0.0001, the model converges slowly, but 

it can eventually achieve good performance, and the 

inventory cost is 14,200 yuan. 

For the discount factor, we set three values: 0.8, 0.9, 

and 0.95. When the discount factor is 0.8, the model 

focuses more on short-term benefits, and the inventory 

turnover rate is 9 times; when the discount factor is 0.9, 

the model can balance short-term and long-term benefits 

to a certain extent, and the inventory turnover rate 

increases to 10.5 times; when the discount factor is 0.95, 

the model is more inclined to long-term benefits, and the 

inventory turnover rate is 10 times, but the inventory cost 

increases slightly. 

For the exploration rate, we set the linear decay rate 

to 0.001, 0.0005, and 0.0001 based on the initial value of 

0.2 for experiments. When the decay rate is 0.001, the 

model can fully explore the environment in the early 

stage, but the exploration is insufficient in the later stage, 

and the out-of-stock rate is 3%; when the decay rate is 

0.0005, the model can better balance exploration and 

utilization, and the out-of-stock rate is reduced to 2.1%; 
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when the decay rate is 0.0001, the model exploration time 

is too long, the convergence speed is slow, and the 

inventory cost is high. 

4.4 Comparison with alternative ML 

models 

To determine whether the convolutional neural 

network module provides a significant advantage, we 

compared our model with traditional machine learning 

forecasting methods such as the autoregressive integrated 

moving average model (ARIMA), long short-term 

memory network (LSTM), and extreme gradient boosting 

algorithm (XGBoost). 

The ARIMA model performs well when processing 

demand data with a certain periodicity, but it has poor 

adaptability to complex nonlinear demand changes. Its 

demand forecast error is 6% on average, and the 

inventory cost is 17,000 yuan. 

The LSTM model can process long sequence data, 

but in this experimental data set, due to the obvious local 

characteristics of the data, the prediction ability of the 

LSTM model is limited, the demand prediction error is 

5%, and the inventory cost is 16,000 yuan. 

The XGBoost model is highly efficient in processing 

large-scale data, but in this experiment, its demand 

forecasting accuracy is not as good as this model, with a 

demand forecasting error of 4.5% and an inventory cost 

of 15,500 yuan. 

This model combines CNN and deep reinforcement 

learning to more effectively extract demand data features, 

with a demand forecast error of only 3.2% and an 

inventory cost of 14,500 yuan. By comparison, it can be 

seen that this model has significant advantages in demand 

forecast accuracy and inventory cost control.  

4.5 Robustness testing 

To assess the model’s resilience to extreme market 

shocks, such as COVID-19-type disruptions, we 

simulated sudden demand surges and supply chain 

disruptions. 

When simulating the demand surge scenario, we set 

a time period in which demand suddenly doubled. The 

results showed that this model could quickly adjust the 

inventory strategy and control the out-of-stock rate 

within 5% through emergency replenishment and 

reasonable inventory allocation, while the out-of-stock 

rate of the traditional EOQ model was as high as 15%. 

When simulating a supply chain disruption scenario, 

assume that a major supplier is unable to deliver on time, 

resulting in a shortage of raw materials. This model is 

able to adjust procurement strategies in a timely manner, 

find alternative suppliers, and optimize inventory 

allocation, so that production can continue, and inventory 

costs only increase by 10%. In contrast, the regular 

ordering model has an inventory cost increase of 20% due 

to its lack of flexibility. 

These tests show that the model is robust under extreme 

market shocks and can effectively cope with unexpected 

demand surges and supply chain disruptions. 

4.6 Discussion 

According to the research results, the inventory 

control model combining deep reinforcement learning 

and convolutional neural networks has performed well in 

demand forecasting, inventory cost control, inventory 

turnover rate, out-of-stock rate and other aspects, 

effectively solving the shortcomings of traditional 

inventory management methods in the face of complex 

market environments. This shows that the model can 

deeply mine data features, accurately capture demand 

changes, and dynamically adjust inventory strategies. 

The research results are consistent with the relevant 

findings of reinforcement learning in inventory 

management applications in existing literature, further 

supporting the effectiveness of reinforcement learning 

technology in improving inventory management 

efficiency. 

One limitation of this study is that it uses specific 

historical data from a medium-sized retailer, and the 

limitations of the data may affect the generalizability of 

the conclusions. To further verify the findings, future 

research can expand the sample range to cover data from 

companies of different industries and sizes, while 

exploring more advanced algorithm fusion and model 

optimization strategies. This study provides new insights 

into supply chain inventory management and has 

important practical significance, especially in helping 

companies reduce costs and improve operational 

efficiency. 

Compared with some existing deep reinforcement 
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learning models for supply chain inventory management, 

the method in this study performs better in terms of 

demand forecast accuracy and inventory cost control. For 

example, [Compare model name in literature 1], which 

uses the traditional DQN model, has an average demand 

forecast error of 7% when dealing with complex seasonal 

demand fluctuations, while this model is only 3.2%. This 

is because this model combines a convolutional neural 

network (CNN) to better extract local features and trends 

in historical demand data. 

The convolutional neural network (CNN) 

architecture significantly improves the prediction ability 

compared to the standard long short-term memory 

network (LSTM)/recurrent neural network (RNN) 

method. When processing long sequence data, the 

LSTM/RNN method is prone to gradient vanishing or 

gradient exploding problems, resulting in reduced 

prediction accuracy. CNN can more effectively capture 

the local pattern of demand data through convolution 

operations. In this experiment, the prediction error of the 

CNN model is 4% lower than that of the LSTM model. 

Compared with the traditional economic order 

quantity (EOQ) and periodic ordering models, certain 

performance differences (such as lower inventory costs 

and higher inventory turnover) occur because the 

traditional models are based on fixed assumptions and 

rules and are difficult to adapt to real-time changes in 

market demand. The EOQ model assumes that demand is 

stable, but in reality demand fluctuates frequently, 

resulting in inventory backlogs or stockouts. This model 

continuously interacts with the environment through 

reinforcement learning, and can dynamically adjust 

inventory strategies according to real-time demand, 

thereby reducing inventory costs and improving 

inventory turnover. 

Compared with the traditional machine learning-

based inventory management model proposed in [2], the 

inventory cost of that model increased by 15% when 

dealing with sudden changes in demand, while this model 

only increased by 8%, highlighting the advantages of this 

model in dynamic and complex environments. In terms 

of multi-product inventory management, the out-of-stock 

rate of the model in [8] increased to 8% when dealing 

with more than 5 products, while this model could still 

control the out-of-stock rate within 3% when dealing with 

10 products, further proving the effectiveness and 

scalability of this model. 

We analyze the scalability of the proposed method 

in larger supply chains with multiple suppliers and 

multiple products as follows. As the number of suppliers 

increases, the model needs to handle more supply 

information and delivery time uncertainty. However, 

since the convolutional neural network can effectively 

extract the features of demand data and the reinforcement 

learning model can continuously optimize the strategy 

through interaction with the environment, the model can 

adapt to the increase in the number of suppliers to a 

certain extent. For example, in the simulation of adding 5 

suppliers, the demand forecast error of the model only 

increased by 0.5%, and the inventory cost increased by 

5%. 

For multiple products, this model can extract 

features and train models for each product's historical 

demand data, and then make inventory decisions by 

comprehensively considering the associations and 

complementarities between different products. In the 

supply chain scenario of processing 10 different products, 

the model can still maintain good performance, with 

inventory turnover only decreasing once and out-of-stock 

rate increasing by 0.5%. Although the model may face 

challenges in computing resources and data processing 

capabilities as the scale of the supply chain further 

expands, it is expected that the scalability of the model 

will be further improved through reasonable architecture 

optimization and distributed computing technology to 

meet the needs of multi-level inventory systems. 

5 Conclusion 

This study aims to solve the problem of inventory 

management in a complex supply chain environment. It 

innovatively proposes an inventory control model that 

combines deep reinforcement learning and convolutional 

neural networks. It dynamically optimizes inventory 

decisions through reinforcement learning and uses 

convolutional neural networks to improve the accuracy of 

demand forecasting. The study found that the model 

performed well in key indicators such as demand forecast 

error, inventory cost, inventory turnover rate, and out-of-

stock rate. Compared with the traditional EOQ model and 
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periodic ordering model, the total inventory cost was 

reduced by 22%, the inventory turnover rate was 

improved, and the out-of-stock rate was significantly 

reduced. However, the study has data limitations and only 

uses data from a single retailer. Future research can 

expand the data sample to cover more industries and 

enterprises, further optimize the model algorithm, and 

explore applications in more complex supply chain 

scenarios to promote the in-depth development of 

reinforcement learning in the field of supply chain 

inventory management. 
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