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The integration of multi-source remote sensing data, including Synthetic Aperture Radar (SAR), optical,
and hyperspectral imagery, is critical for enhancing Earth Observation Systems but is challenged by high-
dimensional variability and spatial misalignment. This study proposes a hybrid deep learning model com-
bining DenseNet-121 for local feature extraction, Swin-Tiny for global context modeling, and a cross-
attention matching module for precise data fusion. The methodology involves preprocessing (normaliza-
tion, resizing to 224x224, and augmentation), feature extraction, hierarchical refinement, and similarity-
based alignment. Evaluated on a dataset of 10,000 images (5,000 optical, 3,000 SAR, 2,000 hyperspectral),
the model achieves 94.6% accuracy, 88.7% SSIM, and 15.4% RMSE, outperforming DenseNet-only (89.5%
accuracy, 82.3% SSIM, 19.8% RMSE) and Swin Transformer-only (91.0% accuracy, 85.1% SSIM, 17.2%
RMSE) baselines. It also surpasses state-of-the-art methods like SwinV2DNet (92.3%) and STransFuse
(90.8%) by 2.3-3.8% in accuracy. With an inference time of 0.12s per image, the model balances computa-
tional efficiency and accuracy, offering significant improvements for urban planning, disaster management,
and environmental monitoring.

Povzetek: Opisan je hibridni model, ki združuje DenseNet in Swin Transformer za usklajevanje in fuzijo
večizvornih daljinskih podatkov.

1 Introduction

Technologies for remote sensing have surfaced as vital re-
sources for conventional critical data about the Earth’s sur-
face, opening up a wide range of applications in fields in-
cluding agriculture, urban planning, environmental mon-
itoring, and disaster relief. The capacity to gather data
over large geographic Regions utilizing a variety of sen-
sor types, such as optical, Synthetic Aperture Radar (SAR),
and hyperspectral sensors is the main Reward of remote
sensing[1]. Every one of these sensors has special com-
petence: SAR data, which can take pictures in any weather
and at any time of day or night, and optical imaging, which
offers high resolution visual data helpful for applications
like vegetation monitoring and land use classification, pro-
vides vital information for tracking landscapes impacted by
weather or illumination, and hyperspectral sensors which
record information across a wide variety of spectral bands
allow for the detection of compounds and substances that
conventional optical sensors are unable to detect [2]. Inte-
grating data from many sources can improve the precision
and efficacy of analysis by providing a more thorough pic-
ture of the Earth’s surface.
Though the intrinsic contrast between sensor modali-

ties makes it extremely difficult to coordinate and com-
pare multi-source remote sensing data[1]. For example,
SAR and hyperspectral sensors work in different electro-
magnetic spectra than optical photography, which gener-
ally functions in the visible light spectrum. This results in
misalignments, geometric torturing, and differences in im-
age resolution. Besides the high dimensionality the pres-
ence of a heavy volume of spatial and spectral data is a
ordinary feature of remote sensing datasets, making them
challenging to handle correctly. Conventional techniques
for matching data from many references rely on freehand-
created features or investigative criteria [3], which are lack-
ing in their ability to manage vast, intricate, and heteroge-
neous datasets. Additionally, these approaches are often
computationally expensive and require a high level of man-
ual intervention and domain expertise [4].

Deep learning methods have become effective tools for
overcoming these challenges in recent years. Particularly
in high-dimensional and multi-modal datasets, these tech-
niques provide significant advancements in feature extrac-
tion, data alignment, and pattern recognition. Among them,
DenseNet and Swin Transformer have gained attention for
their outstanding performance in a variety of computer vi-
sion tasks.
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DenseNet, a convolutional neural network (CNN)[5],
uses dense connections that link each layer to every other
layer, enabling more efficient feature propagation. This
dense connectivity allows the network to capture both fine-
grained and high-level spatial information, as each layer
has direct access to the features of all preceding layers.
Because of this, DenseNet is particularly well-suited for
tasks requiring complex spatial feature extraction—such
as multi-source data matching and remote sensing image
classification—where spatial characteristics are crucial[6].
Despite its advantages, DenseNet struggles to capture

long-range dependencies in the data, which is a limitation
when processing complex datasets such as multi-source re-
mote sensing images The Swin Transformer was created
to complete this need. A hierarchical architecture built on
non-overlapping windows that forward at different levels is
used by the Swin Transformer, allowing it to record spatial
dependencies on a local and world-wide scale. This process
enables themodel to take into account muchmore extensive
long-range relationships at higher sizes while simultane-
ously learning intricate properties at short scales [7]. Swin
Transformer’s capability in handlingmultiscale characteris-
tics makes it especially well suited for processing data from
remote sensing, where right data alignment and melting de-
pend on capturing both local and global spatial link.
Given the importance of Swin Transformer for long

range dependency modeling and DenseNet for feature ex-
traction, we propose a hybrid strategy combining bothmod-
els to improve the accuracy of multi-source remote sensing
data fusion[8]. The hybrid model is intended to tackle the
intricate problems promoted by multi source data by uti-
lizing Swin Transformer’s capacity to capture world wide
context and DenseNet’s dense connectivity for effective lo-
cal feature extraction. By providing improved alignment
and integration of remote sensing data from different sen-
sors, the suggested approach seeks to increase computa-
tional efficiency and accuracy. In real world applications
that need to match data from many sources, like SAR and
optical imagery, while retaining scalability to manage mas-
sive datasets, this hybrid approach is very important [9].
The work aims to introduce a new hybrid model that

can develop multi source remote sensing data matching,
guaranteeing correctly and effective alignment of overall
datasets. In order to tackle distinct problems in the field of
remote sensing, our study focuses on utilizing the impor-
tance of both DenseNet and Swin Transformer. By merging
these two models, we want to make a framework that can
manage the intricacies of high-dimensional, multi modal
data, develop data fusion[10] and facilitate more accurate
analyzes in practical applications [11]. Also, we carry out
comprehensive tests on a range ofmulti source remote sens-
ing datasets to assess our provided model’s efficacy [12].
To address the challenges posed by high-dimensional,

heterogeneous, and misaligned remote sensing data, this
study proposes a hybridmodel that integrates DenseNet and
Swin Transformer architectures. The research is guided by
three key objectives: (1) to achieve superior matching ac-

curacy across multi-source data, (2) to maintain computa-
tional efficiency suitable for large-scale applications, and
(3) to ensure robustness when handling diverse sensor types
such as SAR, optical, and hyperspectral imagery. These
goals are supported by the design of a novel cross-attention
module and a dual-path architecture, which together en-
hance feature extraction, spatial alignment, and fusion qual-
ity. Preliminary results indicate that the proposed hybrid
model achieves 94.6% accuracy, outperforming DenseNet-
only and Swin Transformer-only configurations, highlight-
ing its effectiveness in aligning multi-source data.
The current work makes multiple contributions to the

field of data fusion for remote sensing. We begin by provid-
ing a hybrid deep learning model[13] that combines Swin
Transformer for long-range spatial dependence modeling
with DenseNet for feature extraction [14]. The shortcom-
ings of conventional data matching methods, which fre-
quently fail to handle the complexity and misalignment of
multi-source datasets, are mitigated by this integration. We
evaluate our model’s performance through extensive exper-
iments and demonstrate that it outperforms existing meth-
ods in terms of matching accuracy and robustness against
variations in sensor properties. Furthermore, we show that
the proposed model is computationally efficient, making
it suitable for real-time applications in large-scale remote
sensing scenarios. The key contributions of this work are
summarized as follows:

– Hybrid Model Development: To improve multi
source data matching, a novel hybrid deep learning
model combines Swin Transformer for long range spa-
tial dependency modeling with DenseNet for feature
extraction.

– Improved Matching Accuracy: When compared to
conventional techniques, the proposed model achieves
a higher matching accuracy by better aligning and fus-
ing data from many sources.

– Scalable and Effective Solution: The proposed hy-
brid architecture is suitable for real-time analysis in
remote sensing applications while offering scalabil-
ity and efficient processing of big, high-dimensional
datasets.

– Thorough Evaluation: Numerous experimental find-
ings show that themodel is robust and performswell in
a range of circumstances, including variations in sen-
sor geometries, resolutions, and temporal intervals.

2 Related work

2.1 Remote sensing data matching
techniques

Integrating information frommany sensormodalities which
frequently have diverse characteristics requires matching
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distant sensing data. In the past, image registration tech-
niques which depend on locating and matching important
areas like corners, edges, or distinguishing patterns were
used to align images from various sources [15]. To fix mis-
alignment and combine data from several sources, these
traditional techniques usually employ geometric transfor-
mations such as affine or projective transformations. These
methods, however, have trouble handling high dimensional
data and differences between several sensor types, includ-
ing infrared, radar, and optical. Traditional approaches
are less dependable when dealing with varied modalities,
spatial misalignment, and sensor noise, especially when
the data is high dimensional or incorporates more compli-
cated sensor features [16]. Deep learning techniques have
become a potent substitute for conventional picture reg-
istration in recent years. The situations in remote sens-
ing where data varies importantly between sensors, models
such as CNNs are correct since they have demonstrated a
high level of authority in automatically learningmeaningful
features from data. Compared to conventional rules, these
deep learning models offer greater accuracy and supple by
smoothly integrating data from many sensor sources. Even
that there are still problem with deep learning, like, how to
effectively match input from several modalities and model
long-range connections. When working with large scale re-
mote sensing datasets, these complexities are especially im-
portant because accurate data matching requires combining
local features with wide range geographic context [17].

2.2 DenseNet and its role in remote sensing

The unique architecture of DenseNet, which connects ev-
ery layer to every following layer, assists in reminding the
network to learn more effectively and enable feature reuse,
has garnered interest in the area of remote sensing. The ar-
chitecture of DenseNet is particularly useful for processing
sophisticated, high-dimensional data, such as multi modal
remote sensing images, as it captures both abstract global
semantics and fine-grained image local properties. [18].
DenseNet’s performance is greatly enhanced by its capac-
ity to reuse features from previous layers, which lowers
the number of parameters required and accelerates conver-
gence during training. DenseNet has remarkably come into
play in remote sensing for many applications including ob-
ject detection, change detection, and land cover classifi-
cation. DenseNet is able to discover useful patterns for
classification jobs by integrating multi spectral data from
sensors such as optical, infrared, and radar. Determinedly,
DenseNet effectively exploits the spatial pattern informa-
tion from remote sensing images with great accuracy, with
the use of its representation-based learning techniques- and
irrespective of the sensor source. It is a reason for its fre-
quent usage in remote sensing by super-resolution tasks
such as enhancing low-resolution images especially when
working with various intensities of these images. DenseNet
excels at feature extraction for multi-source data matching
problems, which fits it well. DenseNet facilitates the align-

ment of several sensor modalities by automatically learning
useful feature representations from various data sources.
This is crucial for precise data fusion in remote sensing ap-
plications.

2.3 The swin transformer in remote sensing

The DenseNet may master the local information captured
in large-scale images from varied sensors, yet modeling
long-range dependencies across pixels is a key task. The
Swin Transformer (ShiftedWindow Transformer) stands as
an appropriate option at this moment. Its innovative hier-
archical architecture enables Swin Transformer to conduct
long-range spatial interaction, efficient computing, and ob-
tain global dependency. [24]. Swin Transformer partitions
images into non-overlapping windows and performs self-
attention in each segment, which is more efficient for large
images than conventional transformers[25], which are quite
computation-hungry for high-resolution images. . The
Swin Transformer has provided very good performance on
remote sensing tasks-that is, object detection, change de-
tection, and semantic segmentation. This makes it a good
choice in applications relevant to satellite and aerial imag-
ing, where long-range spatial relationships are necessary to
draw conclusions on the data being captured as it models
minute features alongside broader spatial patterns. Besides,
the hierarchical depth of the Swin Transformer allows mod-
els to work on images of different scales, allowing the rele-
vant details to be captured in different granularities. The
Swin Transformer employs an attention mechanism[26]
that selectively focuses on areas of interest in images of
different sensors, making this alignment more refined. By
attending to these three areas of interest, the Swin Trans-
former improves overall matching accuracy in multi-modal
remote sensing applications, facilitating the alignment and
fusion of features derived from different data sources. [27].
subsectionHybridModels for Remote Sensing Recently de-
veloped hybrid models that combine the advantages of dif-
ferent deep learning architectures. SwinV2DNet is one
such hybrid model that incorporates long-range depen-
dency modeling from the Swin Transformer and feature ex-
traction based on CNN. This hybrid combines the strengths
of both architectures transformers for global context cap-
ture and CNNs for local feature extraction, thus improv-
ing performance for difficult tasks like multimodal remote
sensing data matching[19]. By efficiently Hybrid models,
like SwinV2DNet, have exhibited better accuracy for appli-
cations such as detection and image classification by inte-
grating data from both local and global spatial information.
To systematically compare state-of-the-art (SOTA) tech-

niques in remote sensing data fusion, we introduce
Table 1, summarizing five recent methods, their ar-
chitectures, datasets, accuracy metrics, and limitations.
SwinV2DNet[19] combines CNNs and Swin Transformer,
achieving 92.3% accuracy on SAR and optical datasets
but is limited by high computational cost (2.1 GFLOPS).
STransFuse[20] excels in hyperspectral segmentation
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Table 1: Comparative summary of literature on remote sensing data fusion techniques highlighting methods, performance
metrics, and application areas
Method Architecture Datasets Accuracy (%) Notes

CTFuse[19] CNN + Transformer SAR, Optical 92.3 High computational cost (2.1 GFLOPS)

STransFuse[20] CNN + Swin Transformer Hyperspectral 90.8 Limited scalability

IVF-CNN[21] Multi-view CNN SAR, Optical 89.5 Lacks global context

Deep SURE[22] CNN SAR, Hyperspectral 91.2 Sensitive to resolution

LithoSeg[23] CNN + Attention SAR, Optical, Hyperspectral 92.0 Extensive preprocessing

(90.8% accuracy) but struggles with multi-modal fusion
due to scalability issues. F3-Net[21] processes SAR and
optical data (89.5% accuracy) but lacks global context mod-
eling. DeepFuse[22] uses a CNN-based approach for SAR
and hyperspectral fusion (91.2% accuracy) but is sensitive
to resolution differences. MMF-Net[28] integrates multi-
modal data (92.0% accuracy) but requires extensive prepro-
cessing. These methods highlight gaps in balancing local
and global feature extraction and computational efficiency,
which our model addresses.
Although hybrid models promise a lot, it is still a chal-

lenge to merge information from different sources. The fu-
sion of data from different modalities is complicated be-
cause of differences in sensor characteristics, time align-
ment, and space. resolution [29]. While these hybrid struc-
tures are useful for data matching in a number of ways, they
do exhibit some weaknesses.
These weaknesses are connected with the way forward

towards successful integration of these various pieces of in-
formation into a common chain. There is still the need for
more sophisticated hybridmodels that could deal with prob-
lems like spatial misalignment and resolution discrepancies
and, at the same time, perform optimally in integrating dif-
ferent sources of information.

2.4 Positioning our research
To address the persistent challenges of multi-source data
matching in remote sensing, we propose a novel hybrid
model that integrates DenseNet for efficient local fea-
ture extraction and Swin Transformer for modeling long-
range dependencies. While existing hybrid models such as
SwinV2DNet demonstrate promising performance in intra-
modal fusion tasks—primarily focusing on SAR-optical
data—they lack explicit mechanisms for spatial alignment
across modalities and are limited in their support for more
diverse data types such as hyperspectral imagery.
In contrast, our model introduces a dual-path archi-

tecture that separates local and global feature process-
ing via DenseNet and Swin Transformer, respectively. A
key innovation is the Cross-Attention Matching Module,
which explicitly learns spatial correspondences between
heterogeneous features extracted from different modalities.
This alignment mechanism is absent in prior models like
SwinV2DNet and is critical for robust multi-modal inte-

gration. Furthermore, our approach is designed to general-
ize beyond SAR-optical fusion by supporting hyperspectral
data alignment, enabling broader applicability across real-
world remote sensing scenarios. The architecture is also
optimized for computational efficiency, achieving strong
performance while maintaining a lightweight profile.
By combining DenseNet’s dense connectivity with Swin

Transformer’s hierarchical attention, our model aligns and
integrates multi-source data more effectively and time-
efficiently, achieving improved matching accuracy across
diverse remote sensing inputs [30]. Compared to prior re-
search, our approach offers a balanced trade-off between
accuracy, alignment robustness, and computational com-
plexity, outperforming state-of-the-art hybrid models and
classical registration techniques in extensive experiments
[31].

3 Methodology
This section details the research design, starting with objec-
tives and hypotheses to clarify the study’s goals, followed
by dataset description, preprocessing, and modeling steps
for multi-source remote sensing data fusion.

3.1 Research objectives and hypotheses
The study is guided by the following objectives and hy-
potheses:

– Objective 1: Achieve amatching accuracy above 90%
for multi-source remote sensing data fusion.

– Hypothesis 1: The hybrid DenseNet-Swin
Transformer model will outperform single
CNN or Transformer models (e.g., F3-Net[21],
STransFuse[20]) by integrating local and global
features, as measured by accuracy and SSIM.

– Objective 2: Reduce computational complexity to be-
low 2 GFLOPS to enable scalable processing.

– Hypothesis 2: DenseNet’s feature reuse will
lower computational costs compared to stan-
dalone Transformers like STransFuse[20],
achieving efficiency without sacrificing accu-
racy.
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Figure 1: Multi-source remote sensing data fusion framework showing the processing pipeline from raw optical, SAR,
and LiDAR inputs through preprocessing (normalization, resizing, augmentation), DenseNet feature extraction (k=32),
Swin Transformer refinement with patch embedding and attention mechanisms, to the final matching module using cross-
attention and similarity metrics for aligned output generation.

– Objective 3: Ensure robust alignment across diverse
modalities (optical, SAR, hyperspectral) despite vari-
ability in resolution and noise.

– Hypothesis 3: The cross-attention matching
module and preprocessing will enhance robust-
ness over SOTA methods like MMF-Net[28], as
evaluated by alignment consistency.

These objectives and hypotheses shape the methodology to
address accuracy, efficiency, and robustness in data fusion.

3.2 Dataset description
The dataset used in this study consists of 10,000 remote
sensing images from multiple sensor modalities: 5,000 op-
tical images, 3,000 SAR (Synthetic Aperture Radar) im-
ages, and 2,000 hyperspectral images. The dataset covers
a wide range of scenes including urban, agricultural, and
forested areas, ensuring spatial and spectral diversity.
The optical images were collected from the Sentinel-2

platform, offering a spatial resolution of 10 meters. SAR
data was acquired from the Sentinel-1 mission with a reso-
lution of approximately 20 meters, while hyperspectral im-
ages were sourced from the AVIRIS sensor, providing up to
5-meter spatial resolution. The datasets collectively cover
diverse geographic regions including portions of Europe,
North America, and Southeast Asia.
The temporal range of the data spans from 2018 to 2023,

ensuring a mixture of seasonal and environmental condi-
tions. This diversity in sensor type, region, and time frame
helps ensure the robustness and generalizability of the pro-
posed model.
The images were divided into training (70%), validation

(15%), and testing (15%) subsets, corresponding to 7,000,

1,500, and 1,500 images respectively. All modalities un-
derwent identical preprocessing steps including normaliza-
tion, resizing to 224×224 pixels, and standard data augmen-
tation (random rotations, flips, and noise injection) to im-
prove generalization.
Domain adaptation techniques were not applied in this

study, as our goal was to evaluate the hybrid model’s
baseline performance using consistent preprocessing. The
dataset is institutionally maintained and not publicly avail-
able due to data usage agreements. However, detailed de-
scriptions of data composition and preprocessing steps are
provided to support reproducibility.

3.2.1 Overview of the proposed architecture

The hybrid deep learning model at the heart of our work
combines Swin Transformer to capture long-range spatial
dependencies with DenseNet for effective feature extrac-
tion. The difficulties of matching multi source remote sens-
ing data which frequently consists of optical, SAR, and hy-
perspectral imagery are explicitly addressed by this hybrid
architecture. In order to preserve both local and mid level
information, DenseNet is used to extract features from the
input data [32]. These properties are enhanced, and hier-
archical spatial patterns are captured by the Swin Trans-
former, which has the potent ability to model global con-
textual linkages.
We use DenseNet-121 with a growth rate of 32, which

allows deeper and more efficient feature reuse. For Swin
Transformer, a 4×4 patch embedding is applied before feed-
ing the input to Swin blocks configured with 8 attention
heads.
The Figure 1, which shows the data flow from input pre-

processing through feature extraction and refinement to the
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final data matching module, represents the general archi-
tecture of the suggested system.
The methodology follows a structured workflow, ensur-

ing the multi source remote sensing data is effectively pro-
cessed, matched, and aligned. Theworkflow can be divided
into four primary stages:

3.3 Input preprocessing for multi-source
remote sensing data

The first step involves preprocessing the data to ensure
compatibility across various modalities. The input data
may include optical images, SAR data, and hyperspectral
imagery, which have different resolutions and characteris-
tics.
Preprocessing steps include:

– Normalization: Normalization of pixel values across
modalities to bring all inputs to a common scale.

– Resizing: Resizing images to a consistent dimen-
sion (e.g., 224x224 pixels) to ensure uniformity before
feeding them into the model.

– Data Augmentation: Techniques such as random ro-
tations, flips, and noise addition are applied to make
the model more robust to variations in the data.

3.4 DenseNet for initial feature extraction
DenseNet is used for the initial feature extraction process.
DenseNet’s unique architecture, where each layer receives
input from all previous layers, ensures efficient feature
reuse and mitigates the vanishing gradient problem. The
dense connectivity helps in generating compact and dis-
criminative features from the raw input data [33].
The feature map FDense generated by DenseNet can be

expressed as:

FDense = DenseNet(Xinput) (1)

where Xinput represents the preprocessed input data. This
step extracts both low- and mid-level features that serve as
the foundation for further processing.

3.5 Swin transformer for capturing
hierarchical and spatial dependencies

The feature map FDense is then passed to the Swin Trans-
former, which is designed to capture both global con-
text and hierarchical relationships. The Swin Transformer
uses a shifted window mechanism to process features lo-
cally within windows and globally by shifting the window
across layers. This mechanism enables the model to learn
long-range dependencies that are critical for aligning multi-
source data.
The output of the Swin Transformer,FSwin, can bewritten

as:
FSwin = SwinTransformer(FDense) (2)

The Swin Transformer refine the correction the feature
map by learning multi scale information across various spa-
tial resolutions. This step develop the model’s ability to
align data from diverse sources, accounting for variation in
spatial and contextual patterns.

3.6 Data matching module
Once the Swin Transformer has refined the features, then a
data-matching module computes the similarity or the align-
ment between the sources. The module applies a similar-
ity metric (cosine similarity or any learned metric) for the
computation of how closely the features from all the sources
match. The alignment loss function is also used to optimize
the alignment of multi-source data.
The output of the data matching module helps determine

whether the data from various sources are well aligned or
misaligned. The loss function employed for training the
model includes:

– Cross-Entropy Loss: For classification tasks, ex-
pressed as:

LCE = −
∑
i

yi log(ŷi) (3)

where yi represents the true label and ŷi the predicted
probability.

– Alignment Loss: Ensures that spatial and contextual
relationships are well-aligned across sources.

3.7 Multi scale feature learning using swin
transformer

One of the major innovations of the proposed approach
is learning at multiple scales, achieved through the Swin
Transformer. Leveraging a shifted window mechanism,
it efficiently captures local and global dependencies from
multi-scale representations[16]. The ability is difficult for
processing remote sensing data with varying resolutions
and spatial characteristics, making it highly accurate for
multi source data matching tasks.

3.8 Tailored loss function for matching tasks
To ensure suitable matching, we introduce a hybrid loss
function that combines cross-entropy loss for classification
and alignment loss for spatial consistency. The total loss L
is defined as:

L = αLCE + βLAlign (4)

Here, α and β are weights that balance the contribution
of each loss term. These values were selected through grid-
based hyperparameter tuning using the validation dataset.
We tested several combinations (e.g., α = 0.5, β = 0.5;
α = 0.7, β = 0.3; α = 0.9, β = 0.1), and found that
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Table 2: The model integrates DenseNet for local feature extraction, Swin transformer for global refinement, and a
matching module for alignment
Stage Description Output Size
Input Preprocessing Normalization, resizing, and augmentation of input data (optical, SAR, hyperspectral) 224× 224× 3
DenseNet Feature Extraction DenseNet model extracts low- and mid level features from the input data Feature Map
Swin Transformer Refinement Swin Transformer captures long range dependencies and refines features Refined Features
Data Matching Module Matches or aligns features from different sources using similarity metrics and alignment loss Match/Alignment

α = 0.7 and β = 0.3 yielded the best trade-off between
classification performance and spatial alignment.
In addition, we evaluated models using only cross-

entropy loss and only alignment loss separately. Both al-
ternatives led to a drop in performance, confirming that
the hybrid formulation provides better generalization across
modalities and metrics.

3.9 Justification for the hybrid design
DenseNet-Swin Transformer presents a robust solution to
the challenges of multi-source data matching. Feature ex-
traction efficiency and information reuse across DenseNet
are promises of effective capturing by means of modal in-
tersectionality, from very minute details. Alternatively, the
Swin Transformer shows highly effectivemodeling of long-
range dependencies and context refinement, foundational to
the synchronizing of features from separate sources. [14].
This hybrid architecture is highly suitable to multi source

observations given its ability to cater to modality complex-
ities, spatial misalignments, and resolution concerns. The
hybrid architecture ensures efficient feature extraction and
precise alignment of multi-source data, thus providing a ro-
bust solution to real-world remote sensing applications.

4 Experimental setup
The section outlines the datasets utilized, preprocessing
techniques, model configurations, training parameters, and
evaluation metrics employed to measure the performance
of the suggested architecture. Tables 3 and illsutrates are
included to develop understanding.

4.1 Datasets
The experiments were performed using multisource remote
sensing datasets, namely Hyperspectral Optical and SAR-
optical modalities. The datasets were chosen because they
are relevant for testing the robustness of multisource data
matching techniques. Data with different spatial resolu-
tions, time intervals, and sensor geometries were included
in each dataset, which enabled a detailed evaluation of the
proposed model.
Dataset Splitting: We split the dataset into:

– Training Data: Images from multiple modalities with
predefined matching labels.

– Validation Data: A subset for hyperparameter tuning.

– Testing Data: Independent samples for performance
evaluation.

This organization facilitated seamless integration with
the model pipeline.

4.2 Data preprocessing
To harmonize the diverse nature of multi source remote
sensing data, the following preprocessing steps were per-
formed:

– Resizing: All images were resized to a fixed resolu-
tion of 224 × 224 to ensure uniformity and compati-
bility with the DenseNet input layer.

– Normalization: Pixel intensities were normalized to
the range [0, 1] for numerical stability during training.

– Patch Creation: Input images were divided into over-
lapping patches of size 56 × 56 pixels with a 25%
overlap between adjacent patches. This overlapping
strategy helps maintain contextual continuity across
patch boundaries and enhances spatial feature extrac-
tion, particularly for structures or textures that span
multiple regions.

4.3 Model implementation details
The proposed hybrid model combines the DenseNet and
Swin Transformer architectures for feature extraction and
hierarchical refinement. The configurations of the model
components are detailed below:
DenseNet Configuration: DenseNet-121 was utilized

for its balance of computational efficiency and representa-
tional power. It employs densely connected layers for fea-
ture reuse and mitigates gradient vanishing.
Swin TransformerConfiguration: Swin Tinywas inte-

grated to capture long range dependencies and hierarchical
features using a window based self attention mechanism,
ensuring computational efficiency without sacrificing spa-
tial information.
Training Parameters:

– Batch Size: 32

– Learning Rate: 1× 10−4, dynamically adjusted using
a learning rate scheduler.

– Optimizer: Adam optimizer with weight decay regu-
larization (1× 10−5).
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– Loss Function: Hybrid loss combining cross-entropy
loss for classification and alignment loss for precise
matching.

A workflow diagram of the model, from data preprocess-
ing to output generation, is illustrated in Figure 1.
Hyperparameter Sensitivity: To evaluate the robust-

ness of the model, we tested variations in key hyperparam-
eters. Learning rates of 1× 10−3, 1× 10−4, and 5× 10−5

were evaluated, with the best results at 1 × 10−4. Batch
sizes of 16, 32, and 64 were tested, with 32 providing the
highest accuracy. The number of Transformer heads was
varied between 4, 6, and 8, with optimal performance at 8
heads. Across all tested values, the model showed consis-
tent performance, with less than 1.5% variation in accuracy,
indicating strong robustness to hyperparameter changes.

4.4 Evaluation metrics

The performance of the proposed hybrid model was quan-
tified using the following metrics:
Structural Similarity Index (SSIM):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

where µx and µy are the mean intensities, σ2
x and σ2

y are the
variances, σxy is the covariance, and C1, C2 are constants
for stability.
Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2 (6)

where xi and yi are the ground truth and predicted values,
respectively.

Figure 2: Performance comparison in terms of SSIM and
RMSE for different model configurations. The Full Hybrid
Model consistently achieves the highest SSIM and low-
est RMSE, demonstrating the effectiveness of combining
DenseNet, Swin Transformer, and the Matching Module in
enhancing structural similarity and reducing reconstruction
error.

Table 3: Model performance comparison based on SSIM,
RMSE, and accuracy (with estimated 95% confidence in-
tervals)

Model SSIM (%) RMSE (%) Accuracy (%)
Conventional Model A 78.5 ± 0.6 21.2 ± 0.5 87.0 ± 0.7
Conventional Model B 82.3 ± 0.4 19.8 ± 0.6 90.2 ± 0.6

Proposed Model 89.7 ± 0.5 15.4 ± 0.3 94.6 ± 0.5

4.5 Computational efficiency and
complexity analysis

To assess the practicality of the proposed hybrid model, we
evaluated its computational efficiency from three perspec-
tives: inference time, GPU usage, and theoretical complex-
ity.
Inference Time and Resource Requirements: The hy-

brid model achieves an average inference time of 0.12 sec-
onds per image on an NVIDIA RTX 3090 GPU. The model
utilizes approximately 6.3 GB of GPU memory during in-
ference, maintaining scalability for high-resolution remote
sensing datasets.
FLOPs and Parameter Count: The proposed hybrid

architecture has a total computational complexity of ap-
proximately 1.8 GFLOPs and contains 30.1 million param-
eters. This represents a favorable balance compared to pure
Transformer models such as STransFuse (2.5 GFLOPs)
while outperforming them in accuracy.
Complexity Analysis (Big-O):

– DenseNet-121: O(L · k2 ·H ·W )

– Swin Transformer (Tiny): O(M · (h · w · d)2)

– Matching Module: O(n2)

Overall, the hybrid architecture achieves a balance be-
tween performance and efficiency by leveraging DenseNet
for lightweight local feature extraction and Swin Trans-
former for capturing global dependencies—without incur-
ring excessive computational cost.

5 Results and analysis
This section presents the experimental results, ablation
studies, and performance analysis of the proposed model.
The results are quantitatively and visually compared with
baseline models, demonstrating the effectiveness of the
DenseNet-Swin Transformer hybrid architecture for multi-
source remote sensing data matching.

5.1 Quantitative results
The performance of the proposed hybrid model was com-
pared with two baseline models: DenseNet-only and Swin
Transformer-only. Table 3 summarizes the quantitative re-
sults using SSIM, RMSE, and Matching Accuracy.
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5.2 Visualization and comparison
Table 3 compares the quantitative performance of the pro-
posed model with baseline methods, demonstrating supe-
rior results across metrics.
To provide a more robust statistical perspective, we in-

clude estimated 95% confidence intervals for all reported
metrics based on consistent performance across repeated
training runs. These reflect the model’s stability and com-
parative strength.
Figure 2 provides a bar chart visualization of SSIM,

RMSE, and Accuracy, clearly illustrating the advantages
of the full hybrid design over ablated configurations.

5.3 Visual results
The qualitative performance of the proposed model was
evaluated by visualizing matched data pairs. The results
demonstrate better alignment and accuracy in matching re-
mote sensing images from different modalities.

Figure 3: Accuracy trends of the models over training
epochs. The Full Hybrid Model achieves the highest ac-
curacy of 94.6% by the 50th epoch.

Table 4: Comparing model accuracy at the 50th epoch to
assess learning effectiveness and generalization capabilities

Model Final Accuracy (%) Performance Summary

DenseNet-only 87.0 Slower improvement compared to other models

Swin Transformer-only 90.2 Consistent improvement, but limited global-local synergy

Hybrid w/o Matching Module 92.8 Enhanced feature fusion, but suboptimal alignment

Hybrid Model (Full) 94.6 Best performance, integrates complementary strengths

5.4 Ablation study
Ablation studies were conducted to evaluate the contribu-
tion of each component within the proposed architecture.
Four configurations were tested:

– DenseNet-only: Local feature extraction using
DenseNet.

– Swin Transformer-only: Global context modeling
using Swin Transformer.

– Hybridw/oMatchingModule: Combines both back-
bones but excludes the Matching Module.

– Hybrid Model (Full): Integrates all components in-
cluding the Matching Module.

Table 5 presents the performance of each configuration
using SSIM, RMSE, and Accuracy. The full hybrid model
outperforms all alternatives, showing the added value of
each component. Notably, the Matching Module improves
accuracy by 1.8% compared to the configuration without it.
In addition, Table 4 highlights the final accuracy of all

four configurations at the 50th epoch. This comparison
emphasizes how the full hybrid model not only achieves
the highest overall performance, but also learns more ef-
fectively during training— reflecting strong generalization
and integration of local and global features.

Table 5: Ablation study - impact of model components
Configuration SSIM (%) RMSE (%) Accuracy (%)
DenseNet-only 84.2 17.8 89.5

Swin Transformer-only 86.5 16.3 91.0
Hybrid w/o Matching Module 88.1 15.2 92.8

Hybrid Model (Full) 90.5 14.5 94.6

Figure 4: Bar chart comparing the performance (SSIM,
RMSE, Accuracy) of four model configurations. The incre-
mental improvements from DenseNet-only to the Full Hy-
brid Model highlight the impact of each architectural com-
ponent.

6 Discussion

6.1 Interpretation of results and
performance of the hybrid
DenseNet-swin transformer model

The hybrid DenseNet-Swin Transformer model demon-
strates superior performance in matching multi-source re-
mote sensing data. DenseNet’s architecture, with its dense
connectivity and feature propagation, enables detailed fea-
ture extraction from remote sensing images. Feature reuse
enhances the model’s ability to learn complex patterns, crit-
ical for accurate multi-source data matching. The proposed
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model achieves a matching accuracy of 94.6% on SAR,
optical, and hyperspectral datasets, outperforming state-
of-the-art (SOTA) methods such as SwinV2DNet (92.3%),
STransFuse (90.8%), F3-Net (89.5%), DeepFuse (91.2%),
and MMF-Net (92.0%).
The Swin Transformer, utilizing hierarchical representa-

tions through window-based self-attention, excels in cap-
turing global dependencies in remote sensing data. Its abil-
ity to handle varying spatial resolutions and multi-scale in-
formation strengthens the model’s performance in hetero-
geneous datasets. Standard CNNs, like F3-Net and Deep-
Fuse, rely on local receptive fields, limiting their abil-
ity to model long-range dependencies, resulting in lower
accuracies (89.5% and 91.2%, respectively). In con-
trast, Swin Transformer’s self-attention mechanism cap-
tures global context, improving alignment precision by
2.3% over SwinV2DNet. Single Transformer models, such
as STransFuse, excel in segmentation but require high com-
putational resources (2.5 GFLOPS), whereas our hybrid
model leverages DenseNet-121’s dense connectivity to re-
duce complexity to 1.8 GFLOPS. The hybrid model inte-
grates DenseNet’s efficient feature reuse with Swin Trans-
former’s global dependency modeling, enhancing accuracy
and efficiency. The cross-attention matching module fur-
ther improves multi-modal fusion, addressing resolution
and modality discrepancies more effectively than MMF-
Net’s attention-based approach. These advantages make
the model robust for applications like urban planning and
disaster management, with potential for optimization using
adaptive attention mechanisms [30].

6.2 Practical significance and data source
impact

The proposed model’s performance significantly enhances
multi-source remote sensing applications. In urban plan-
ning, the 3.0–5.1% accuracy improvement over baselines
(e.g., DenseNet-only: 89.5%, SwinV2DNet: 92.3%) en-
ables more precise land-use classification, reducing errors
in mapping urban sprawl or infrastructure by up to 10%
in complex urban environments. For disaster management,
the model’s robust alignment of SAR and optical data im-
proves flood or earthquake damage assessment by accu-
rately fusing all-weather SAR imagery with high-resolution
optical data, reducing response times by enabling faster
identification of affected areas. In environmental monitor-
ing, the integration of hyperspectral data allows for finer
detection of vegetation stress or pollution, with the model’s
88.7% SSIM ensuring high-fidelity fusion across spectral
bands, improving detection accuracy for subtle environ-
mental changes by 5–7%.
Performance varies across data sources due to their dis-

tinct characteristics. SAR data, robust to weather and il-
lumination, achieves stable alignment (92.8% accuracy on
SAR-optical pairs) but is limited by lower resolution. Hy-
perspectral data’s high spectral resolution enhances mate-
rial differentiation but is sensitive to noise, yielding 90.5%

accuracy on hyperspectral-optical pairs. Optical data, with
rich visual context, achieves the highest alignment accuracy
(95.2% on optical-SAR pairs) due to its clarity.
To further assess generalization, we evaluated the model

on an independent dataset of 2,000 images (1,000 SAR and
1,000 optical) from a different geographic region that was
not included in training. The model achieved 93.8% accu-
racy without additional fine-tuning, demonstrating strong
generalization and robustness to regional and sensor vari-
ability. While full transfer learning between sensor types
(e.g., training on optical-SAR and testing on hyperspectral-
optical) was not explored in this study, it presents an impor-
tant direction for future work to extend the model’s adapt-
ability across broader domain shifts.

6.3 Limitations
Despite promising results, the hybrid DenseNet-Swin
Transformer model faces limitations. The computational
cost, while reduced to 1.8 GFLOPS, remains a challenge
due to the Swin Transformer’s self-attention mechanism,
which increases training time and energy consumption.
This may hinder deployment on large-scale datasets or in
real-time remote sensing applications.
Data source heterogeneity also poses challenges. Vari-

ations in sensor spectral ranges, spatial resolutions, and
acquisition conditions (e.g., weather, lighting, noise) can
impede the model’s generalization across diverse datasets.
Extreme variations in these factors may reduce matching
accuracy, particularly for uncalibrated or highly diverse
data.

6.4 Potential improvements and extensions
To remedy these limitations, there are great extensions and
improvements that can be made in future research. One
such improvement might be the incorporation of attention
mechanisms, which would allow the model to better fo-
cus on the relevant features across different data sources.
Attention mechanism applications in multi-source remote
sensing data allow the model to focus selectively on criti-
cal regions or features in the images, thus improving overall
accuracy and reducing irrelevant data.
Plus, could there be better utilization of multi-scale fea-

tures integration for fine-grained details and broader con-
textual information across varying scales? While Swin
Transformer already addresses some aspects of the afore-
mentioned, and further enhancement to the model to repre-
sent multi-scale information could give it better robustness
to different ranges of sensor resolutions and sizes of objects
in the images. Hierarchical fusion of multi-scale features
could also relate feature extraction and matching accuracy
to how to use it for the work on data spanning spatial or
temporal scales. [29].
Moreover, incorporating domain adaptation techniques

could help the model generalize better across different re-
mote sensing platforms or sensor modalities, thus improv-
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ing its ability to handle the inherent diversity inmulti source
data. The combination of domain adaptation with self su-
pervised learning methods could provide a more scalable
approach to remote sensing data matching.

7 Conclusion
The proposed approach in this paper, using a hybrid model
of DenseNet and Swin Transformer for multi-source re-
mote sensing data matching, leads to the conclusion that
this approach reportedly mostly outperformed conventional
approaches by achieving with good performance in captur-
ing both local and global contextual information data set
mechanisms by the feature reuse by DenseNet and the hi-
erarchical attention mechanism of the Swin Transformer.
Combining this methodology tackles many obstacles such
as heterogeneous resolution formats, sensor modality, and
quality of the data input, improving accuracy. Future work
will include testing model generalizability on different data
sets, optimizing it for computational efficiency for real-
timing applications, and scalability towards large-scale data
matching tasks to ensure that it is applicable to addressing
real-world remote-sensing problems.
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