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Many production industries are increasingly dependent on intelligent electronic devices. However, 

traditional methods for recognizing and detecting electronic devices are inefficient and consume a large 

amount of production resources. This study introduces a hybrid DL-SORT model for automatic 

recognition and grasping of electronic devices, integrating deep learning with Simple Online and 

Realtime Tracking (SORT) to enhance object detection performance. In the model, Recursive labeling and 

Binary Robust Independent Elementary Features are also employed for key point detection and domain 

selection. Experimental results show that the hybrid algorithm outperforms Single Shot MultiBox Detector 

and Discriminative Correlation Filter with Channel and Spatial Reliability in terms of object detection 

performance, with loss values of 0.15, 0.24, and 0.23, respectively. Additionally, empirical analysis of the 

constructed hybrid model reveals that the proposed automatic recognition and grasping model for 

electronic devices achieves an accuracy of 0.95 in tape recognition, demonstrating good recognition 

accuracy. Testing in obstructed environments shows that the success rate of part detection remains above 

80%, with minimal performance degradation. These results suggest that the hybrid model can detect 

multiple targets and improve production efficiency. This study contributes to the future development of 

drones and industrial robots in the automation field, enabling the acquisition of precise target location 

information. 

Povzetek: Raziskava uvaja hibridni model DL-SORT za večciljno vizualno zaznavo in prijem elektronskih 

naprav, s čimer bistveno izboljša natančnost prepoznavanja, sledenja in učinkovitost industrijskih 

robotov. 

 

1 Introduction 
In recent years, scientific and technological 

innovations have significantly contributed to urban 

construction, with applications in smart transportation, 

smart logistics, and smart healthcare [1, 2]. However, 

with the rapid development of technology, traditional 

electronic technologies can no longer meet people's 

needs. For example, traditional automated robotic 

sorting is costly, and unmanned aerial vehicle vision 

detection is inefficient [3]. As a result, many experts 

have improved the characteristics of robots for different 

environments. Among these improvements are waste 

grabbing robots that search and plan global roadways, 

and robots used in power control to identify risk 

vulnerabilities, enhancing global infrastructure in the 

transportation sector [4]. Despite their contributions, 

these robots still face practical challenges such as 

unclear recognition and poor object grasping 

capabilities. As a result, many experts have also 

conducted research on the object vision detection 

algorithms used in these systems. Object vision 

detection algorithms can recognize and locate images or 

moving objects, with strong computational power [5]. 

The most widely used algorithms currently are those 

based on traditional machine learning, which can  

 

accurately judge image edges and lines and are often 

applied in facial recognition access control systems and  

intelligent transportation systems [6]. However, traditional 

object detection algorithms cannot detect multiple targets 

and fail to make visual judgments when there are 

obstructions. Therefore, this study proposes a hybrid 

model for automatic recognition and grasping of electronic 

devices, combining Deep Learning (DL) with the Simple 

Online and Realtime Tracking (SORT) to enhance object 

tracking and vision detection capabilities. DL is applied in 

electronic device recognition and mesh damage image 

detection to extract features such as device contours and 

textures using convolutional networks, so as to accelerate 

the convergence speed and accuracy of feature extraction. 

In the construction of this model, Recursive labeling and 

Binary Robust Independent Elementary Features (BRIEF) 

are also used for key point detection. The research 

innovation lies in the integration of DL-SORT and BRIEF 

to form continuous motion planning for target detection, 

tracking and grasping, and improve the grasping accuracy 

and efficiency of electronic devices. The research aims to 

improve the degree of completion of automatic 

identification and grasping tasks of electronic devices, 

meet the needs for grasping small targets and ensuring 

realtime responsiveness, and promote the evaluation 
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standardization of automatic detection in the electronic 

manufacturing industry. 

2 Related works 
To enhance the safety and performance of 

electronic devices during automatic identification and 

detection processes, research on automatic 

identification and grasping of electronic components is 

essential. Zhang et al. raised an enhanced pose 

estimation algorithm to address issues such as slow pose 

estimation speed and poor robustness during robot 

sorting and feeding processes. Experimental results 

showed that the method achieved an average distance 

error of 2.04 mm, an average angle error of 2.72 

degrees, and an average robot grasping success rate of 

97.08% [7]. Lin et al. proposed a robot grasping method 

based on object shape approximation and LightGBM to 

solve the challenge of heavy dependence on datasets for 

object grasping planning. Experimental results 

indicated that the method achieved a classification 

accuracy of 94.5%, with a detection time of 0.0003 s, 

and an average success rate of 91.81% in grasping new 

objects [8]. Wang et al. put forward a multi-modal 

dynamic collaborative fusion network to improve the 

robot’s capability of detecting flat-surface object 

grasping. Experimental results demonstrated that the 

network achieved a grasping success rate of 98.8% in 

single-object scenarios [9]. Liu et al. introduced an 

industrial robot-based transplant workstation to 

overcome limitations in handling the root systems of 

mature old and young seedlings in transplanting 

machines. Experimental results showed that the method 

achieved a recognition accuracy exceeding 97.68%, and 

the success rate of transplanting and replanting reached 

95% [10]. Yan et al. proposed a new lightweight 

grasping detection model to address issues such as low 

detection accuracy and large model parameters. 

Experimental results showed that the convolutional 

block attention module in the model could recognize 

multiple attributes of objects, achieving a detection 

accuracy of 98.44% in Image-wise segmentation [11]. 

The continuous improvement of electronic devices 

also indicates an increasing demand for advanced 

technological intelligence. It is not only required that 

electronic devices automatically recognize and grasp 

objects, but image acquisition must also be more precise. 

Therefore, object vision detection algorithms have been 

the focus of related studies. Li et al., to address the issues 

of multiple fabric defect types and small defect sizes, 

proposed an improved fabric defect detection algorithm. 

The experimental results showed that the mean Average 

Precision (mAP) of the improved algorithm was 65.1%, 

which was an increase of 8.3% and 3.2% compared to the 

original model [12]. Wang et al., to solve the problems of 

false positives and missed detections of small targets in the 

detection of aircraft skin defects under complex 

backgrounds, proposed an aircraft skin defect detection 

model, which achieved a detection accuracy of 97.9%, 

which was 7.3% higher than the baseline model, and the 

detection speed reached 139 FPS [13]. Ji et al., to enhance 

the stability of power systems, proposed an engineering 

machinery risk management intelligent detection 

algorithm based on visual perception for intrusion into 

transmission lines. The results showed that the model's 

average accuracy improved by 6.3%, its precision 

increased by 3.7%, and its recall rate increased by 3.1% 

[14]. Xiong et al., in order to solve the problem of low 

target recognition ability, researched and proposed a 

method for small dynamic target detection by combining 

YOLO and background subtraction. The accuracy of this 

method was improved by 2.3% and the recall rate 

increased by 3.5% [15]. 

In summary, both domestic and international scholars 

have conducted detailed studies on electronic device target 

recognition, and have made significant progress in object 

recognition and grasping for electronic devices. However, 

there are few studies on the combination of electronic 

devices and object vision detection algorithms. Therefore, 

a DL-SORT electronic device automatic recognition and 

grasping hybrid model is constructed, which can detect 

targets in complex scenes. The model also adopts a 

recursive labeling method for semantic analysis, 

effectively labeling images and further improving the 

model’s recognition performance. The relevant worksheets 

are shown in Table 1. 

Table 1: Related literature worksheet 

Domain Technology Advantage 
Performance 

index 
Shortcoming Author 

Automatic 

recognition 

Enhanced 

attitude 

estimation 

algorithm 

Grasp objects 

with good 

accuracy 

Mean distance 

error 2.04 mm, 

Average Angle 

error 2.72, 

Average 

grasping 

success 97.08% 

Sensitive to 

occlusion 

Zhang et al. 

[7] 

Robot 

grasping 

Robot grasping 

method based on 

object shape 

approximation 

and LightGBM 

Fast detection 

time and high 

grasping 

accuracy 

Classification 

accuracy 

94.5%, Time 

0.0003 s, ASR 

91.81% 

Parameter tuning 

is complex, 

Limited 

adaptability 

Lin et al. [8] 
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Robot 

grasping 

Multi-mode 

dynamic 

collaborative 

fusion network 

The capture 

success rate of 

single scene is 

high 

Grasp success 

rate 98.8% 

Mode 

synchronization is 

difficult 

Wang et al. 

[9] 

Robot 

recognition 

Transplanting 

workstation 

based on UR5 

industrial robot 

lifts restrictions 

High 

recognition 

accuracy 

Recognition 

accuracy 

97.68% 

Positioning 

accuracy decline 

Liu et al. 

[10] 

Automatic 

recognition 

Lightweight 

grab detection 

model 

Multifaceted 

recognition 

Detection 

accuracy 

98.44% 

Feature extraction 

ability is limited 

Yan et al. 

[11] 

Target visual 

detection 

FD-YOLOv5 

algorithm for 

fabric defect 

detection 

High detection 

accuracy 
mAP 65.1% 

Limited 

adaptability to 

complex defect 

scenarios 

Li et al. [12] 

Target visual 

detection 

Aircraft skin 

defect detection 

model based on 

YOLOv8n 

High detection 

accuracy 

Detection 

accuracy 97.9% 

Small target 

detection is not 

high 

Wang et al. 

[13] 

Target visual 

detection 

Intelligent 

detection 

algorithm for 

risk management 

of construction 

machinery 

intrusion 

transmission line 

based on visual 

perception 

High detection 

accuracy 

The average 

accuracy is 

improved by 

6.3%, The 

recall rate 

increased by 

3.7% 

High requirements 

on hardware 
Ji et al. [14] 

Target visual 

detection 

A method for 

detecting small 

dynamic targets 

using YOLO and 

background 

subtraction 

High detection 

accuracy 

Accuracy 

improved by 

2.3%, Recall 

rate increased 

by 3.5% 

Lack of detail 
Xiong et al. 

[15] 

3 DL-SORT optimized electronic 

device recognition and grasping 

strategy 

3.1 Design of DL-SORT multi-target 

vision detection algorithm 

With the continuous development of information 

technology, devices such as city cameras and drone 

detection are increasingly applied in public life, 

contributing to the development of smart cities [16]. 

However, these electronic devices face issues such as 

large amounts of missed detections and errors when 

processing vast amounts of image and video data, 

reducing the realtime performance of practical 

applications [17]. Therefore, the study proposes a DL- 

 

 

 

 

SORT multi-target vision detection algorithm to address 

problems such as low execution efficiency and inaccurate 

target detection in electronic devices, improving the 

accuracy of the detection system. Among them, DL 

algorithm captures target details at different scales and 

effectively detects tiny electronic components and 

mechanical parts [18]. Therefore, the study uses DL for 

target detection and classification, with the prediction error 

minimized as shown in Equation (1). 

 

 H W x b=  +  (1) 

 

In Equation (1), iy   and iy  represent the predicted 

results and actual targets, W  is the weight matrix, and x  

and b  represent the input values and bias values, 

respectively. In order to enable electronic mobile devices 

to promptly identify intruders during target search, the 

study also improves the grid image damage detection in 

DL, with the improved framework shown in Figure 1. 
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Figure 1: Grid image damage detection framework based on DL 

As shown in Figure 1, the grid image damage 

detection framework based on DL is divided into three 

parts: image data preprocessing, feature data extraction, 

and damage detection. In the preprocessing part, the 

original image is first transformed to grayscale, 

followed by spatial projection using Radon transform 

for easier detection of light and dark spots. Gaussian 

filtering is then applied for noise reduction. After 

preprocessing, the data undergoes feature extraction, 

during which Harris corner detection is performed. 

Finally, the damage area is calculated. The Gaussian 

function for filtering and denoising is expressed in 

Equation (2) [19]. 

 ( )
2 2/2x zg x e−=  (2) 

In Equation (2), z  represents the Gaussian 

distribution parameter of filter denoising, while ( )g x  

is the one-dimensional mean Gaussian function. 

Furthermore, to further improve the accuracy of the DL 

detection algorithm, depthwise separable convolution is 

used to reduce computational load and model parameters. 

The computational dimensions of depthwise separable 

convolution are shown in Equation (3) [20]. 

,K K F F K KD D D D M N D D M N         (3) 

In Equation (3), K KD D  represents the standard 

convolution, ,M N  denotes the thickness input of the 

output feature map, FD  refers to the length and width of 

the feature map to be extracted, and F FD D M   and 

F FD D N   represent the dimensions of the feature map 

input and output, respectively. The performance of the 

depthwise separable convolution is shown in Figure 2. 

3 Channel 
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Fiters*3 Maps*3 Fiters*4 Maps*3

Depthwise 

Conv

Pointwise 

Conv

 

Figure 2 Schematic diagram of depth-wise separable convolution 

As shown in Figure 2, the depthwise separable 

convolution combines 1×1 point convolution and depth 

convolution with the same kernel size, then delivers 

each convolution kernel to the channel. The number of 

output convolution kernels corresponds to the number 

of convolution channels. When the number of 2D 

convolution kernels in each group is equal to the 

number of channels, it indicates that the input channels 

and the number of convolution kernels match. Two-

dimensional convolution is mainly used for feature 

extraction, and its kernel operation is shown in Equation 

(4). 

 
2 2 2

DWConv k f fT PWConv D channel D N M D+ =   +   (4) 

 

In Equation (4), DWConvT  stands for depth-separable 

convolution computation, PWConv  represents the 
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computation of a point-by-point convolution, M  

indicates the parameter between the number of 

channels, kD  and fD  represent the width and height of 

the convolution kernel and input, respectively. N  

represents the number of convolution kernels, and FF 

denotes the number of channels. Although the improved 

DL can perform certain detections on specific targets, it 

still has some computational limitations when the 

number of targets increases or the state of moving 

targets becomes unstable. Therefore, based on the 

improved DL, SORT is integrated to complete multi-

target prediction and tracking. SORT is simple and 

efficient, capable of updating the target state in realtime 

[21]. The target state model updated by SORT is 

expressed in Equation (5). 

 ( )  , , , , , ,x t u v s r u v s=     (5) 

In Equation (5), u  represents the position of the target 

in the horizontal direction in the image, v  represents the 

vertical position, and s  and r  are the scale range and 

aspect ratio of the target's bounding box, respectively. To 

enhance the brightness of the captured target image, the 

study also integrates brightness detection into DL-SORT. 

The processed grayscale image is shown in Equation (6). 

( ) ( ) ( ) ( ), 0.299 , 0.578 , 0.114 ,Gray i j R i j G i j B i j=  +  +  (6) 

In Equation (6), ( ),Gray i j  represents the grayscale 

image, and ( ),R i j  is the red channel coordinates of the 

color image, with ( ),G i j  and ( ),B i j  representing the 

green and blue channel coordinates, respectively. The 

specific process of the DL-SORT multi-target visual 

detection algorithm is shown in Figure 3. 
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Figure 3: DL-SORT-based multi-target visual detection algorithm flow chat 

As shown in Figure 3, the DL-SORT-based multi-

target visual detection algorithm process is divided into 

three sections. The visual detection module requires the 

input of video sequences, followed by scene 

preprocessing. Then, the target detection model 

optimized by the network structure is used to obtain the 

detection results. These results are then passed to the 

motion appearance feature extraction module, where the 

target features are extracted by detecting different 

image blocks and pre-trained. Finally, the obtained deep 

appearance features are tracked and associated using 

SORT. The matched targets are compared with the deep 

appearance feature library, and during the matching 

process, the Kalman filter state is used for prediction. 

The final trajectory update is made by combining the 

predicted and detected results. In addition, this 

algorithm is suitable for processing single images as 

well. Compared with video sequences, the algorithm 

uses DL to automatically learn features such as image 

edges and textures during feature extraction, and low-

dimensional feature vectors are generated from the target 

for subsequent frame judgment. 

3.2 DL-SORT electronic device recognition 

and grasping model optimization 

Currently, traditional intelligent robots not only have 

low production efficiency but also lack sufficient 

recognition ability. Therefore, researchers urgently need to 

optimize the automatic recognition and grasping of robots 

and other electronic devices [22]. Although the DL-SORT 

multi-target visual detection algorithm can detect multiple 

target parameters, there are still some shortcomings in the 

automatic recognition and grasping of electronic devices. 

To address the inaccuracy in automatic recognition and 

grasping of electronic devices, a hybrid method based on 

DL-SORT and recursive labeling is proposed. The 

recursive labeling method performs semantic analysis and 



98 Informatica 49 (2025) 93–106 H. Wang 

labels images effectively during the search process. The 

image centroid feature in the connected domain pixel 

detection based on recursive labeling is shown in Equation 

(7) [23].

( )
( )

( )

( )

( )

( )

( )

( )

( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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In Equation (7),   represents the labeled image, 

and ( ),x y  denotes the infrared image coordinates 

marked using the recursive labeling method, ( ),f x y  

represents the pixel value of the grayscale image. To 

allow electronic devices to perform fine-grained 

calculations of the surrounding areas during the 

automatic recognition process, the study also applies 

BRIEF on top of the recursive labeling method for local 

feature representation calculation. BRIEF can perform 

keypoint detection and domain selection. The improved 

feature descriptor formula is shown in Equation (8). 

 ( )
( ) ( )1,

; ,
0,

P x P y
p x y

other


 
= 


 (8) 

In Equation (8), xP  and yP  represent the grayscale 

values of randomly selected pixels, while x  and y  denote 

the feature coordinates. The transformation matrix form of 

the rotated descriptor is shown in Equation (9). 

 
1 2

1 2

...cos , sin

sin ,cos ...

n

r

n

x x x
S R S

y y y


 

 

−   
= =   

   
 (9) 

In Equation (9), rS  represents the rotated matrix, and 

n  refers to the corresponding points around the extracted 

feature points. The specific process of the visual feature 

recognition method based on the recursive labeling and 

BRIEF improvement is shown in Figure 4. 
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Figure 4: Process of visual feature recognition based on recursive labeling and BRIEF 

As shown in Figure 4, the visual system process for 

electronic devices first captures the image, then detects 

and evaluates images for potential quality degradation. 

After the evaluation, the system determines whether the 

image requires further recognition and checks for any 

blur anomalies. If no anomalies are detected, the image 

undergoes preprocessing. Once preprocessing is 

complete, the image is subjected to target detection, and 

the system checks whether the targets are correctly 

identified. If no target is detected, the process returns to 

the image capture step. If the target is successfully 

detected, pose estimation is performed, and finally, 

autonomous decision-making is implemented. The 

grayscale morphological correction of the electronic 

device parameter image is shown in Equation (10). 

 ( )A B A B B =    (10) 

In Equation (10), A  represents the image, and B  

refers to the structural element. By performing an erosion 

operation on image A , removing small bright noise and 

shrinking object boundaries, and then performing 

expansion operation to fill dark holes and expand 

boundaries, the final result is an image modified by A B  

gray scale morphology processing. By defining the 

structural element, grayscale morphological correction can 

be performed, enhancing the edge features of the electronic 

device and eliminating influences generated during 

subsequent recognition. The feature extraction model for 

electronic devices is shown in Figure 5. 
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Figure 5: Workflow diagram of the electronic device feature extraction model 

As shown in Figure 5, the feature extraction model 

for electronic devices uses time series data for rule 

iteration. By applying the rule iteration method, spatial 

data transformation is performed, extracting 

corresponding features from sequences 1 to n, forming 

a new feature sequence. Finally, the target change rule 

is recorded in detail through the time series, the grasping 

trajectory of different object shapes is generated, and 

the grasping path of the robot arm is predicted. This 

completes the entire process from time sequence data 

encoding to robot action decision mapping and realtime 

control. The distance calculation formula for object or 

image recognition and grasping in electronic devices is 

shown in Equation (11). 
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  (11) 

In Equation (11), d  represents the average distance 

mean,   is the standard deviation, Q  denotes the point 

cloud after removing certain boundary points, and   is the 

scaling factor. The specific calculation formula for target 

search in electronic devices is shown in Equation (12). 

 

 ( ) ( ) ( )f n g n h n  = +  (12) 

In Equation (12), n  represents the electronic device's 

status, ( )f n
 is the minimal cost estimate from the initial 

state to the target state during the search process, and 

( )h n
 and ( )g n

 are the minimal estimated cost for the 

path and the state, respectively. In conclusion, the 

electronic device automatic recognition and grasping 

method based on recursive labeling and BRIEF 

improvements is capable of detecting and locating targets. 

Therefore, the study combines this method and proposes a 

hybrid model for electronic device automatic recognition 

and grasping based on the DL-SORT multi-target visual 

detection algorithm to improve realtime multi-target 

detection and evaluation. The specific recognition and 

grasping process flow diagram for robots using this hybrid 

model is shown in Figure 6. 
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Figure 6: Robot recognition and grasping flow chart 
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As shown in Figure 6, the robot uses the DL-SORT 

automatic recognition and grasping model for 

workpiece handling. The system needs to be initialized, 

and the camera parameters must be adjusted 

accordingly. Then, DL-SORT is used for image 

acquisition, and the recursive labeling and BRIEF-

improved visual feature recognition method strengthens 

the vision system, processing information such as the 

type and position of the workpiece. This information is 

then transmitted to the control system. When a static 

image or realtime video stream is input, the key 

component SORT mainly predicts the target motion 

trajectory based on Kalman filter and associates the 

detection frame of adjacent frames. Recursive marking 

is mainly used for hierarchical marking of the 

segmented work area to distinguish overlapping targets. 

BRIEF generates binary feature descriptors for objects 

to quickly match similar artifacts. The control system 

determines the shape of the workpiece and selects the 

appropriate tool based on the type of workpiece. For 

slender workpieces, the distance needs to be adjusted 

and a dual-suction cup tool is used. For small 

workpieces, the tool posture is adjusted to use a single 

suction cup. For flat workpieces, both dual-suction and 

single-suction cups are adjusted together. If the 

workpiece is successfully grasped, it is placed in the 

designated position, if unsuccessful, the system will 

return and attempt to grasp again. 

4 Performance validation of DL-

SORT 

4.1 DL-SORT hybrid algorithm 

performance comparison 

To demonstrate the superior performance of the 

DL-SORT hybrid algorithm, the study compared it with 

Single Shot MultiBox Detector (SSD),Discriminative 

Correlation Filter with Channel and Spatial Reliability 

(CSR-DCF), and the lightweight version of YOLOv4 (You 

Only Look Once v4, YOLOv4-tiny). The experimental 

setup used Ubuntu 18.04 LTS as the operating system, 16 

GB of memory, STM32F405RGT6 as the controller 

module, and an AMD Ryzen R7 5700U CPU@1.80GHz. 

The experiments were conducted using the Keras deep 

learning framework. Among them, the DL learning rate is 

set to 0.01, Dropout is set to 0.3, batch size is set to [16, 

22], and the number of iterations is set to within 500 times. 

The optimal parameters are obtained through Bayesian 

optimization. The SORT momentum is set to 0.3 and the 

IOU threshold to 0.3. In order to ensure the reliability and 

effectiveness of the experiment, the experimental data set 

is trained and tested using VOC and COCO data sets, both 

of which are suitable for target detection, classification and 

segmentation to improve the detection clarity of the 

algorithm. The total number of images in VOC and COCO 

data sets is 11500 and 330000 respectively, the number of 

training and test images is 5717 and 20288 respectively, 

and the image size is normalized to 512×512. In this study, 

four target detection algorithms were tested for the loss 

value of different targets, and the loss value was the 

quantified error index between the predicted results of the 

target detection algorithm and the real labeling during the 

training process. The loss value of the test algorithm was 

the sum of classification loss, positioning loss and 

confidence loss. The data sets used for this test were VOC 

and COCO data sets, and the test results were shown in 

Figure 7. 
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Figure 7: Loss function test result diagram 

As shown in Figure 7(a), when the DL-SORT 

hybrid algorithm was tested on the VOC dataset, the 

loss value reached 0.15 after 170 iterations. The loss 

value gradually stabilized between 100 and 150 

iterations. In contrast, YOLOv4-tiny achieved a loss 

value of 0.35 after 70 iterations, while the DL-SORT 

hybrid algorithm's loss value was 0.27. As shown in Figure 

7(b), the loss curve of YOLOv4-tiny fluctuated 

significantly before 50 iterations, and the loss value was 

0.45 at 70 iterations. SSD reached a loss value of 0.20 after 

170 iterations, and its loss value increased after 250 

iterations. The loss value of each algorithm on the VOC 
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and COCO data sets vary significantly, because the test 

image scale of these two data sets is different. To 

highlight the accuracy performance of the DL-SORT 

hybrid algorithm, the study compared it with YOLOv4-

tiny in terms of accuracy error and precision variation. 

Since YOLOv4-tiny involved significant optimizations in 

its network structure and training strategy, this algorithm 

was considered a representative model in terms of 

detection accuracy. The comparison results are shown in 

Figure 8.
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Figure 8: Accuracy error and precision variation test results 

As shown in Figure 8(a), in the error variation test, 

the DL-SORT hybrid algorithm's error increased as the 

number of target detections increased. In Figure 8(b), 

DL-SORT achieved a detection accuracy of 0.91 on the 

COCO dataset when the number of target detections 

was 15. In Figure 8(c), when the number of target 

detections was 35, YOLOv4-tiny showed an error value 

of 0.80 on the VOC dataset, which was relatively higher 

compared to DL-SORT. In Figure 8(d), YOLOv4-tiny's 

detection accuracy fluctuated significantly when the 

number of target detections ranged from 20 to 25. These 

results indicate that DL-SORT demonstrated smaller 

changes in accuracy during target detection. To further 

enhance the comparison, the study also included Fully 

Convolutional You Only Look Once (FC-YOLO) and 

Feature Pyramid Network (FPN). The selected train test 

images are respectively from 1200 train images in VOC 

data set and 1300 train images in COCO data set. The 

comparison results for detection and recognition accuracy, 

and average precision for different targets are shown in 

Table 2. 

Table 2: Comparison results of detection and recognition accuracy and average precision (%) 

Dataset Algorithm Person Bicycle 
Electric 

vehicle 
Train Truck 

Mean 

Average 
Precision 

Mean 

response 
time/ms 

VOC 

DL-SORT 92.6 91.8 93.4 95.8 94.2 93.5 15 

SSD 90.0 89.2 88.3 87.6 84.3 87.8 20 

CSR-DCF 78.2 78.6 79.1 74.6 71.3 76.3 35 

YOLOv4-tiny 84.5 88.7 86.1 84.2 86.3 85.9 32 

FC-YOLO 78.3 80.5 81.4 85.6 84.1 81.9 19 

FPN 79.2 78.4 79.6 80.2 81.3 79.7 37 

COCO 

DL-SORT mix 92.8 95.6 96.5 90.1 92.3 93.4 17 

SSD 88.8 89.4 90.1 84.3 83.6 87.2 26 

CSR-DCF 78.7 78.6 74.1 76.3 75.5 76.6 39 

YOLOv4-tiny 85.2 84.3 84.6 84.7 87.9 85.3 34 

FC-YOLO 79.3 80.1 83.6 82.5 87.4 82.5 24 

FPN 75.6 79.8 77.4 81.2 78.6 78.5 29 
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As shown in Table 2, when tested on the VOC 

dataset, the DL-SORT hybrid algorithm achieved a 

detection accuracy of 92.6% for people, 95.8% for 

trains, and an average detection accuracy of 93.5% for 

five different categories of targets. SSD achieved a 

detection accuracy of 88.3% for electric vehicles, with 

an overall average detection accuracy of 87.8%. The 

average image processing response time of DL-SORT 

hybrid algorithm is 15ms, while the average image 

processing response time of YOLOv4-tiny and SSD 

target detection algorithms is 32 ms and 20 ms 

respectively. The proposed algorithm is faster in image 

processing. When tested on the COCO dataset, FC-

YOLO achieved a detection accuracy of 87.4% for 

trucks, 82.5% for trains, with an overall average 

detection accuracy of 82.5%. In summary, DL-SORT 

hybrid algorithm has strong multi-object processing 

capability and meets the realtime requirements of 

industrial detection. 

4.2 Performance analysis of the hybrid 

model for electronic device 

recognition and grasping 

After verifying the DL-SORT hybrid algorithm, in 

order to demonstrate the advantages of automatic 

recognition accuracy and robustness of the hybrid model 

for automatic recognition of electronic devices based on 

DL-SORT hybrid algorithm, it is also compared with the 

electronic device automatic recognition grasping model 

composed of SSD, CSR-DCF and YOLOv4-tiny target 

detection algorithms. The experimental environment used 

Visual Studio to create a visual platform for target 

recognition, equipped with a Cortex M7 chip and the 

STM32F103C8T microcontroller as the main controller. 

The image of the accuracy of the research test is mainly 

from the custom data set, which contains 1000 images and 

supports multi-tasks such as detection, segmentation and 

key points. The accuracy index of the test synthesizes the 

classification accuracy and positioning accuracy of the 

model electronic devices, and mainly calculates the 

intersection ratio between the sample prediction frame and 

the real frame. The study performed parts recognition and 

grasping tests with the four electronic device automatic 

recognition and grasping models, and the test results are 

shown in Figure 9. 

Utility knife 0.61

Film 0.58

(a) The test effect of traditional 

recognition grasping model

Utility knife 0.97

Film 0.95

(b) DL-SORT mixed model 

test effect

Utility knife 0.91

Film 0.88

(c) SSD model test effect

Utility knife 0.89

Film 0.84

(d) CSR-DCF model test effect

Utility knife 0.84

Film 0.79

(e) YOLOv4-tiny model test effect  

Figure 9: Parts recognition and grasping test results 

From Figure 9(a), it can be seen that the traditional 

recognition and grasping model achieved an accuracy of 

0.61 for tool identification and 0.38 for tape recognition 

and grasping. In Figure 9(b), the DL-SORT model 

demonstrated recognition accuracy above 0.90 for both 

tool and tape, demonstrating superior recognition and 

grasping performance overall. As shown in Figure 9(c), 

SSD achieved an accuracy of 0.88 for tape recognition, 

with a 0.07 difference in accuracy compared to DL-SORT. 

In Figure 9(d), CSR-DCF achieved recognition accuracy 

above 0.83 for both tape and tool. Figure 9(e) shows that 

YOLOv4-tiny achieved an accuracy below 0.80 for tape 
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recognition. Overall, the DL-SORT model 

demonstrated superior recognition and grasping 

performance, with better part recognition capability. 

Additionally, the study compared the prediction 

performance of the four models—DL-SORT, SSD, 

CSR-DCF, and YOLOv4-tiny. The average absolute 

error was selected as the evaluation index because it can 

directly quantify the average absolute deviation 

between the grasping position predicted by the model and 

the real position. The average absolute error can directly 

reflect the small deviation of the electronic device and 

capture the center of the device, avoiding the limitation of 

IoU only focusing on the overlap area of the frame. The 

results of Mean Absolute Error (MAE) value of prediction 

accuracy are shown in Figure 10. 
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Figure 10: Prediction accuracy MAE value result diagram 

As shown in Figure 10(a), as the number of targets 

increased, the error of the DL-SORT model also 

increased proportionally. When the target count reached 

70, the MAE value was 2.12, this meets the grasping 

accuracy requirements for electronic devices. The 

average absolute error of prediction of the model 

constructed by SSD, CSR-DCF and YOLOv4-tiny is 

3.12, 2.82 and 3.01, which are inferior to the fusion 

model. The overall MAE value of SSD was higher, with 

its accuracy lower than that of DL-SORT. In Figure 

10(b), when the target number ranged from 40 to 50, the 

MAE value of DL-SORT ranged from 1.72 to 1.84. 

YOLOv4-tiny showed an MAE value of 2.23 to 2.41 when 

the target count was between 20 and 30. The overall MAE 

value of CSR-DCF was higher than that of DL-SORT, with 

its MAE value ranging from 2.71 to 2.98 when the target 

count was between 50 and 60. To further showcase the 

grasping performance of the DL-SORT model under 

different environments, the study conducted target 

grasping experiments with targets numbered 0 to 7. The 

results of these experiments are presented in Table 3. 

Table 3: Target grabbing experiment test results 

Evaluation index 0 1 2 3 4 5 6 7 

Number of successful attempts 

without occlusion 
49 48 49 45 49 47 48 49 

Average grab period without 

occlusion/s 
11.5 11.2 11.8 11.2 11.4 12.1 11.1 11.2 

Success rate without occlusion 98% 96% 98% 90% 98% 94% 96% 98% 

Number of successful attempts 

under occlusion 
42 43 41 42 41 40 43 42 

Average grab period under 

occlusion/s 
12.8 12.4 12.1 12.6 12.4 11.9 12.6 12.4 

Success rate under occlusion 84% 86% 82% 84% 82% 80% 86% 84% 

As shown in Table 2, when the DL-SORT model 

performed grasping detection on part 0, the success rate 

under the non-obstructed condition was 98%, with 49 

successful attempts. For part 5, the average grasping 

cycle time under the non-obstructed condition was 11.5 

s, which was the longest among all test parts. Overall, 

the success rate for grasping in the non-obstructed 

environment remained above 90%. When tested on part 1 

in an obstructed environment, the DL-SORT model 

achieved 43 successful attempts, with a success rate of 

84%, a 14% decrease compared to the non-obstructed 

environment. For part 5, the success rate dropped to 80%, 
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with an average grasping cycle time of 11.9 s. In 

conclusion, the DL-SORT-based electronic device 

automatic recognition and grasping hybrid model 

demonstrated a high success rate and better time control 

when grasping different parts. In order to better 

demonstrate the electronic device target recognition 

accuracy of DL-SORT electronic device automatic 

recognition and grasp hybrid model, the ablation 

experiment was conducted with six electronic device 

automatic recognition and grasp models, namely 

YOLOv4, SSD, CSR-DCF, DL(no SORT), SORT(no DL) 

and BRIEF. The experimental results are shown in Table 

4. 

Table 4: Comparison results of device recognition accuracy of different models (mAP±Standard deviation, %) 

Model 
Class A 

device 

Class B 

device 

Class C 

device 
mAP t P 

DL-SORT 92.6±0.5 91.8±0.4 93.4±0.3 93.5±0.3 / / 

DL(no 

SORT) 
89.1±0.6 88.3±0.5 90.2±0.4 89.9±0.4 4.72 <0.001** 

SORT(no 

DL) 
75.3±1.2 74.8±1.1 76.5±1.0 75.4±1.1 8.92 <0.001** 

BRIEF 74.1±0.8 71.6±1.1 72.3±1.3 74.2±1.3 3.89 0.002** 

YOLOv4 84.5±0.8 88.7±0.7 86.1±0.6 85.9±0.8 8.91 <0.001** 

SSD 90.0±0.7 89.2±0.6 88.3±0.5 87.8±0.7 5.34 <0.001** 

CSR-DCF 78.2±1.2 78.6±0.9 79.1±0.8 76.3±1.2 7.36 <0.001** 

Note: ** represents a significant difference from the research model. 

 
As can be seen from Table 4, mAP of the 

DL(without SORT) electronic device automatic 

recognition capture model decreased by 3.6% compared 

with the research construction model, indicating that 

SORT contributed significantly to the tracking stability 

(p<0.001**). The mAP of the SORT (without DL) 

model for electronic device automatic recognition and 

grasping is 75.4%±1.1%. The mAP of the BRIEF 

electronic device automatic recognition capturing 

model is 74.2%±1.3%, and the accuracy of the 

recognition capturing device is significantly lower than 

that of the constructed model. Compared with the mAP 

model of YOLOv4 electronic device automatic 

recognition and capture, the constructed model has 

improved by 7.6%, especially for Class A devices. In 

summary, DL-SORT demonstrates the best overall 

performance among the hybrid model for automatic 

recognition and grasp of electronic devices, and SORT 

module and DL contribute the most to the accuracy of 

device recognition. 

5 Discussion 
The proposed DL-SORT algorithm shows 

significant advantages in performance comparison 

experiments. From multiple dimensions such as target 

detection accuracy, average recognition accuracy and 

average response time, DL-SORT hybrid algorithm is 

superior to SSD, CSR-DCF, YOLOv4-tiny, FC-YOLO 

and FPN target detection algorithms. The five baseline 

algorithms were chosen for comparison because they 

offer fast computation speed and low resource 

consumption, which meet the high realtime 

requirements and the scenarios with limited hardware 

resources. However, the traditional Faster Region-based 

Convolutional Neural Network (Faster R-CNN) object 

detection algorithm has high computational cost and 

cannot meet the realtime requirements, so it is not 

selected to compare with the proposed algorithm. In the 

test of target detection and recognition accuracy and 

average accuracy, DL-SORT hybrid algorithm conducts 

target detection for five types of images including people, 

bicycles, electric vehicles, trains and trucks, and the 

accuracy is above 90%. However, the accuracy of 

YOLOv4-tiny object detection algorithm for these five 

types of images is below 90%, and the overall accuracy of 

SSD and CSR-DCF object detection algorithms is not high. 

Moreover, the mAP value of the proposed model is higher 

than that of SSD, CSR-DCF and YOLOv4-tiny. The reason 

is that the DL-SORT hybrid algorithm in the research and 

construction model deeply integrates DL and SORT, and 

improves the target tracking ability. Moreover, the applied 

SORT predicts the moving trajectory through Kalman 

filter, which is more stable for tracking the uniformly 

moving target. However, YOLOv4-tiny, SSD and CSR-

DCF lack a tracking module and rely on post-processing 

based on multi-frame association. Their feature extraction 

capabilities are also relatively weak, so they are not 

superior to the model detection devices proposed in the 

research. In addition, when DL-SORT, SSD, CSR-DCF, 

YOLOv4-tiny, FC-YOLO and FPN were tested in VOC 

data set, the average image processing response time was 

15 ms, 20 ms, 35 ms, 32 ms, 19 ms and 37 ms, respectively. 

The research algorithm has the fastest processing time. 

This is due to the excellent dynamic parallel computing 

capability of DL-SORT hybrid algorithm for target 

detection and tracking. Although the DL-SORT algorithm 

excels in target tracking, the hybrid model may 

underperform in highly dynamic scenes, such as car racing 

or drone-captured football matches captured by drones. 

When DL and SORT are processed jointly in this model, 

the frame rate will be affected by the high-speed target, and 

the computation extension will gradually increase. 
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6 Conclusion 
To address the precision issues in component 

detection, this study developed a DL-SORT-based 

hybrid model for automatic recognition and grasping of 

electronic components. In the construction of the model, 

an improved visual feature recognition method, 

combining recursive labeling and BRIEF, was used to 

optimize image acquisition and enhance the target 

recognition capability of the electronic component 

model. Experimental results showed that the DL-SORT 

hybrid algorithm achieved a recognition accuracy of 

92.6% for human detection, while the SSD, CSR-DCF, 

and YOLOv4-tiny target detection algorithms had 

recognition accuracies of 90.0%, 78.2%, and 84.5%, 

respectively, all of which were lower than the proposed 

algorithm. Furthermore, empirical analysis of the 

constructed electronic component automatic 

recognition and grasping hybrid model revealed an 

MAE of 2.12 when the target count reached 70, meeting 

the accuracy requirements for electronic device 

grasping. While models constructed using SSD, CSR-

DCF, and YOLOv4-tiny target detection algorithms had 

MAE values of 3.12, 2.82, and 3.01, respectively, all of 

which were higher than that of DL-SORT. In 

conclusion, the electronic component automatic 

recognition and grasping hybrid model based on the 

DL-SORT multi-target visual detection algorithm 

enhances the intelligent recognition capability of 

electronic components and significantly improves 

production efficiency. However, the current 

experiments still have limitations, such as 

computational resource consumption and data 

recognition constraints. Therefore, future work could 

expand the target recognition range and enhance the 

experimental validity. 
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