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Accurate power forecasting is critical for electrical automation within smart grids, enabling intelligent en-
ergy management to balance demand and supply. We propose a dual-stream hybrid model that processes
multivariate time series data from the DKASC (solar generation) and IHEPC (household consumption)
datasets through parallel Convolutional Neural Networks (CNNs) with spatial attention and Gated Re-
current Units (GRUs) with self-attention. This unified model captures cross-variable correlations (e.g.,
weather, power output) and long-term temporal dependencies to predict both generation and consumption,
enhancing grid stability. Evaluated using RMSE, MAE, and MSE, our model achieves a 32–93% reduction
in RMSE compared to baseline methods like RCC-LSTM and CNN-LSTM hybrids on DKASC and IHEPC
datasets. Designed for integration with electrical automation systems, it offers superior accuracy, robust-
ness, and efficiency, advancing smart grid operations.

Povzetek: Članek predstavi dvojni tok CNN-GRU model z vgrajenima prostorsko in samo-pazljivostjo za
napovedovanje proizvodnje in porabe elektrike. Model izboljšuje robustnost in učinkovitost pametnih om-
režij.

1 Introduction

The evolution of traditional power grids into smart grids
(SGs) has been boosted by advancements in information
and communication technologies [1]. SGs are designed
to deliver energy that is economical, reliable, secure, and
sustainable, while simultaneously optimizing load distribu-
tion, monitoring grid performance, and balancing demand
and supply. Accurate forecasting of both energy genera-
tion and consumption is fundamental for ensuring grid sta-
bility and effective scheduling [2]. Power data, a critical
component in this process, is inherently a multivariate time
series, comprising sequentially ordered data points across
multiple interrelated variables. This data reveals two dis-
tinct types of patterns: local patterns that capture short-term
variations and anomalies, and global patterns that highlight
overarching trends in energy generation and consumption.
These patterns serve as the foundation for reliable forecast-
ing by encapsulating critical insights into the dynamics of
the power grid for electrical automation.
Forecasting energy generation and consumption pro-

vides significant advantages for energy providers. By ana-
lyzing historical data, providers can predict future trends,
enabling the seamless supply of energy to meet demand
[3]. This involves not only identifying local and global pat-
terns within time series data but also deciphering the com-
plex inter-dependencies between them. Such insights fa-
cilitate proactive decision-making, allowing power suppli-

ers to optimize energy production, minimize costs, and pro-
mote environmentally sustainable practices. For instance,
a deeper understanding of power generation and consump-
tion patterns supports utility companies in efficiently al-
locating resources and managing energy systems in smart
cities. The interdependence between generation and con-
sumption underscores the importance of unified models for
electrical automation, which we define as models capable
of jointly predicting both processes to capture their mu-
tual influences. Our proposed dual-stream hybrid model,
which integrates Convolutional Neural Networks (CNNs)
with spatial attention and Gated Recurrent Units (GRUs)
with self-attention, is designed to enhance forecasting ac-
curacy for both power generation and consumption within
smart grid automation systems. Accurate power genera-
tion forecasts enable grid operators to anticipate energy sup-
ply requirements, while precise power consumption predic-
tions assist in managing demand. By integrating predic-
tions for both power generation and power consumption,
a comprehensive perspective on electricity grid dynamics
emerges, empowering stakeholders to make informed deci-
sions and enhance the overall efficiency of grid operations.
This holistic approach ensures that smart grids achieve their
goal of delivering sustainable and efficient energy solutions
for modern communities [4]. Highly accurate and efficient
forecastingmethods are essential for effective grid manage-
ment, enabling electricity companies to make critical deci-
sions [5]. Even a modest improvement, such as reducing
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forecasting errors by 1%—can result in savings amount-
ing to tens of millions of pounds [6]. The core objective
of forecasting power generation and consumption is to en-
sure a steady power supply while minimizing operational
expenses.
The remainder of this paper is organized as follows: Sec-

tion 2 reviews the existing literature on the topic, Sec-
tion 3 provides a brief description of the proposed method,
Section 4 presentation of the experimental results, where
the performance of the proposed method is evaluated in
terms of power generation and consumption forecasting,
Section 5 discusses the model’s performance compared to
state-of-the-art methods and its practical implications, and
Section 6 concludes the paper.

2 Related work

Despite its importance, accurately predicting power gen-
eration and consumption remains a significant challenge.
Power generation data is often chaotic, random, and inter-
mittent, making it difficult to predict with precision. Simi-
larly, fluctuations in power consumption arise from the di-
verse behaviors of consumers, influenced by factors such as
special occasions, increased adoption of smart devices, and
the growing use of electric vehicles [7]. To address these
challenges, accurate forecasting methods are considered as
a key strategy for maintaining a reliable power supply. It
plays a pivotal role in achieving an equilibrium between
power generation and consumption, ultimately ensuring the
continuous operation of modern electricity grids. Given
the critical role of power generation and consumption fore-
casting, several models are proposed in the literature, that
are categorized into short-, long-, and medium-term fore-
casting horizons. However, short-term forecasting is cru-
cial for balancing the power. On the other hand, medium-
and long-term forecasts are primarily used for settling en-
ergy prices, planning load dispatch, and scheduling main-
tenance behavior. Short-term forecasting finds extensive
applications, making it a focal point for researchers aim-
ing to enhance accuracy. The smooth operation of smart
grids, particularly through electrical automation, heavily
depends on precise short-term forecasts, prompting the de-
velopment of advanced, data-driven methodologies. These
methods are broadly classified into statistical techniques,
AI approaches, deep learning models, and hybrid frame-
works that combine multiple methodologies to maximize
performance. This diversity in approaches reflects ongoing
efforts to optimize forecasting techniques and ensure the
reliable operation of modern energy systems.
In the early stages of load and demand forecasting, sta-

tistical methods were predominantly employed, leading to
the development of various models. These include ap-
proaches based on Bayesian analysis [8], autoregressive
techniques and moving averages [9], Hammerstein frame-
works [10], Kalman filters [11], and multiple kernel meth-
ods [12]. While these techniques offered valuable insights,

their effectiveness diminishes when dealing with nonlin-
ear and complex datasets. To address these limitations, re-
searchers have shifted their focus toward AI-assisted meth-
ods. These advanced approaches leverage the strengths of
artificial intelligence to overcome the challenges posed by
nonlinear data, providing more accurate and robust fore-
casting solutions. This transition highlights the evolving
nature of forecasting techniques as they adapt to the increas-
ing complexity of modern energy systems. These include
methods utilizing support vector machines, artificial neural
networks, extreme learning machines, and fuzzy networks
[13, 14, 15, 16]. While these approaches have demon-
strated improved accuracy compared to traditional tech-
niques, they often rely on manual features which limit their
ability to generalize across diverse datasets.
A significant limitation of these shallow models lies in

their tendency to experience parameter non-convergence
and instability when dealing with the vast historical datasets
inherent in power data. Recognizing these challenges, re-
searchers and domain experts have increasingly turned to
deep learning methodologies. Deep learning offers a ro-
bust alternative, leveraging its capacity to learn hierarchi-
cal representations directly from raw data, thus addressing
the shortcomings of earlier AI-based models and paving the
way formore stable and generalizable forecasting solutions.
Deep learning-based models have revolutionized forecast-
ing by offering end-to-end feature extraction capabilities
and the ability to learn from extensive datasets while main-
taining high generalizability. Recent advancements have
extended their application to power forecasting, utilizing
architectures such as RNNs [31], ESNs [32], LSTM net-
works [33], GRUs [34], and CNNs [35, 36]. Compared to
traditional statistical and shallow learning methods, deep
learning models offer significant advantages in handling
complex datasets. However, developing effective models
requires a deep understanding of the underlying data. In
the context of power generation and consumption forecast-
ing, historical data often exhibits time series patterns with
spatiotemporal dependencies. While deep learning models
excel in learning specific features, their ability to process
multiple feature types simultaneously is limited. To address
this, hybrid models have emerged, combining the strengths
of various architectures to effectively capture the intricate
spatiotemporal representations inherent in such datasets.
Hybrid models that integrate multiple techniques have

proven highly effective in achieving accurate power gen-
eration and consumption forecasting. Notable hybrid ap-
proaches include combinations such as CNN-RNN [37],
autoencoders with BiLSTM [38], CNN-LSTM [39], CNN-
GRU [40], ConvLSTM (CLSTM) [41], and ESN-CNN.
Among these, models that pair CNNs with RNN variants,
such as LSTM, GRU, and ESN, have consistently demon-
strated state-of-the-art performance. These hybrid architec-
tures excel in extracting spatiotemporal features from his-
torical data, enabling precise predictions for power gen-
eration and consumption. Recent advancements in hy-
brid forecasting models have incorporated attention mech-
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Table 1: Summary of related work on power forecasting models
Work Model Dataset Metrics Limitations

Chen et al. [17] RCC-LSTM
(residual CNN +
LSTM)

Solar PV generation
data (5-min resolution)

RMSE & MAE Inflexible selection of RCC
threshold values

Zang et al. [18] Hybrid CNN with
meta-learning

DKASC MAE, RMSE
reported

Computationally heavy; limited
validation; unclear generalizability.

Zhou et al. [19] ELM + genetic
algorithm

PV output (15-min
data)

R2, MAE, nRMSE Needs more diverse data; may
underperform across varied
locations.

Cheng et al.
[20]

Graph-based DL
model

PV plant data (hourly) RMSE, MAPE Requires complex preprocessing;
tested on narrow scope.

Korkmaz [21] SolarNet: CNN +
VMD

Solar PV (hourly) RMSE=0.309,
MAE=0.175

Single-site test; preprocessing adds
overhead; uncertain performance in
extremes.

Wang, Qi, and
Liu [22]

Deep Neural
Networks

1B DKASC RMSE, MAPE
(improvements)

risks overfitting; lacks uncertainty
modeling.

Rajabi and
Estebsari [23]

2D-CNN on
recurrence plots

IHEPC RMSE, MAE (20%
RMSE vs 1D
CNN)

Small-scale test; Limited exploration
of time series to image encoding
methods.

Ullah et al. [24] CNN + Bi-LSTM Residential load dataset RMSE, MAE Short-term focus; smart meter data
required; only deployable on PCs.

Haq et al. [25] ConvLSTM-
BiLSTM

Res. & comm. load
(smart grid)

RMSE, MAPE
(improvements)

complex and resource-heavy; Not
designed for deployment on
resource-constrained devices.

Kim and Cho
[26]

CNN-LSTM hybrid IHEPC RMSE, MAE Limited Dataset diversity

Abdel-Basset
et al. [27]

STLF-Net IHEPC and AEP RMSE, MAE,
MAPE

Data ambiguities/irregularities may
limit real-world
accuracy/confidence. Load data
vulnerability to attacks.

Han et al. [28] Multilayer GRU IoT energy data MSE, RMSE Primarily focused on short-term load
forecasting (STLF). edge device
constraints.

Kim and Cho
[29]

Autoencoder based Household power
consumption

MSE, MRE Limited data;

Khan et al. [30] CNN with
LSTM-AE

UCI Residential &
Korean Commercial
building data

MAE, MSE,
MAPE

complex model; tested on limited
geography.

anisms to further improve accuracy. Examples include
transformer-based networks, multi-attention networks, and
temporal CNNs with channel-attention [42, 43, 44, 45].
These cutting-edge methods effectively capture complex
relationships within the data, leading to significant im-
provements in forecasting performance. To provide a com-
prehensive overview of the state-of-the-art, Table 1 sum-
marizes key prior works on power forecasting, comparing
their model types, datasets, evaluation metrics, and limi-
tations. The table highlights challenges such as computa-
tional complexity, limited dataset diversity, and lack of at-
tention mechanisms in existing models, which often hinder
their ability to effectively capture both spatial and temporal
dependencies.
This paper emphasizes the following key areas that need

further investigation to enhance forecasting accuracy for
power generation and consumption:

1. Previous research involving stacked methods has
shown better performance; however, these models pri-
marily use previous data that represents power gener-
ation or consumption over one or two hours as input.
These models typically generate forecasts for the fol-
lowing hour using the sliding window technique. Un-
like video and image analysis, power data often lacks
the rich feature dimensions necessary for capturing
both spatial-temporal relationships efficiently within
this architecture.

2. Many existing models process features through their
architectures without adequately refining the extracted
spatial and temporal representations, often routing
unoptimized feature vectors directly to dense layers.
While some studies have incorporated attention mech-
anisms to improve results, these are typically limited
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to either spatial or temporal attention, failing to ad-
dress the combined spatiotemporal nature of power
data. Thus, a comprehensive attention mechanism that
refines both spatial and temporal features across the
network is essential for more accurate forecasting.

3. Another main challenge is the evaluation of the mod-
els on specific types of datasets. The lack of varied and
high-resolution datasets in evaluations limits the gen-
eralization and robustness of these forecasting models.

Addressing these gaps is crucial for advancing the field
of power generation and consumption forecasting and im-
proving the accuracy, applicability, and scalability of pre-
dictive models. To guide this study, we pose the following
research questions:

1. Can our dual-stream hybrid model, as a unified ap-
proach for power generation and consumption fore-
casting, improve accuracy over single-stream deep
learning models?

2. How does incorporating spatial and self-attention
mechanisms improve forecasting performance?

These questions evaluate the effectiveness of the proposed
dual-stream hybrid model, which processes both generation
and consumption data to capture their inter-dependencies,
and the role of attention mechanisms in enhancing fore-
casting accuracy. This paper presents several key contri-
butions:

1. A dual-stream architecture is developed for power
forecasting, processing multivariate time series data
in parallel through CNN and GRU streams. This
approach efficiently captures spatiotemporal depen-
dencies, addressing the limitations of stacked models
that struggle with limited feature dimensions in power
data.

2. To enhance feature refinement across the network, we
integrate a Spatial Attention Module (SAM) in the
CNN stream to prioritize critical spatial features and a
Self-Attention Module (SEAM) in the GRU stream to
refine temporal dependencies. These modules dynam-
ically select and emphasize relevant features, over-
coming the shortcomings of models that lack compre-
hensive feature refinement.

3. The proposed model undergoes rigorous evaluation
across multiple datasets. The results consistently
demonstrate that our model outperforms previous
baseline approaches in both power generation and con-
sumption forecasting, showcasing its versatility and
reliability across different contexts.

3 Proposed solution
The choice of CNNs for spatial feature extraction and
GRUs for temporal dependency modeling in the proposed

dual-stream architecture is motivated by their complemen-
tary strengths in handling the complex spatiotemporal char-
acteristics of power data. CNNs are highly effective in cap-
turing spatial patterns due to their ability to apply convolu-
tional filters that identify local correlations and hierarchi-
cal features within multivariate time series data, such as
weather-related variables (e.g., temperature, humidity) in-
fluencing power generation. This makes CNNs particularly
suitable for extracting spatial dependencies in power data,
which often exhibit localized patterns driven by environ-
mental factors. In contrast, GRUs are designed to model
sequential data by maintaining memory of previous time
steps through update and reset gates. Compared to LSTM
networks, GRUs offer a simpler architecture with fewer pa-
rameters, making them computationally efficient while still
effectively capturing long-term temporal dependencies in
time series data. The decision to use GRUs over other RNN
variants is driven by their balance of performance and com-
putational efficiency, which is critical for real-time fore-
casting applications in electrical automation systems. This
dual-stream approach leverages the strengths of both archi-
tectures to address the limitations of single-stream models,
which often struggle to simultaneously capture spatial and
temporal features.

Likewise, the selection of a dual-stream CNN-GRU ar-
chitecture over other alternatives such as transformer-based
models or hybrid BiLSTM-attention models is driven by
several key considerations. Transformer-based models,
while powerful for capturing long-range dependencies, re-
quire significant computational resources and large datasets
for effective training, which may not be ideal for real-time
forecasting in resource-constrained environments like mi-
crogrids. Additionally, transformers primarily focus on
temporal relationships and may not efficiently capture spa-
tial dependencies in multivariate power data without com-
plex modifications. The dual-stream approach allows par-
allel processing of spatial and temporal features, enhancing
the model’s ability to capture the interdependence between
power generation and consumption. This design choice
aligns with the need for a unified model that jointly predicts
both processes while maintaining computational efficiency.

The core framework of the proposed Dual-Stream Net-
work is illustrated in Figure 1. In this architecture, the in-
put data is processed in parallel through the two streams.
These architectures are designed to extract spatiotemporal
features from the input data. The outputs of both the CNN
and GRU streams are then merged into a single feature
vector, which is used for further processing. To optimize
the feature selection, a SAM is incorporated to identify the
most representative features, which are then utilized for the
final forecasting task. The following subsections provide
an in-depth description of the internal components of the
proposed model.
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Figure 1: Flow diagram of proposed model

3.1 Dual stream network

The proposed Dual-Stream Network (DSN) architecture
consists of two parallel streams, one using CNN layers for
extracting cross-variable correlations and the other employ-
ing GRU layers for capturing temporal dependencies. To-
gether, these streams are designed to handle the complex
spatiotemporal characteristics of power data, which is ma-
nipulated by different weather-related factors such as tem-
perature, humidity, and rain. The CNN stream processes
a multivariate input sequence of PV power and weather-
related variables, structured as a 2D matrix (time steps ×
variables, e.g., PV power, temperature, humidity). In this
context, the variables represent a pseudo-spatial dimen-
sion, where the CNN captures correlations among them,
such as the influence of temperature and humidity on PV
power output. These cross-variable relationships are anal-
ogous to spatial patterns in image processing, enabling the
CNN to extract meaningful features for power forecast-
ing. The input to the CNN consists of a feature vector
X0

i = X1, X2, X3….Xn where each element corresponds
to a variable, and the data is passed through different CNN
layers and pooling layers. The CNN applies convolutional
filters to produce feature maps that encode these cross-

variable correlations, which are subsequently refined by
SAM to prioritize the most relevant features (e.g., empha-
sizing temperature over less impactful variables). The con-
volution operation is used to extract cross-variable patterns
in the data by applying filters to the input sequence. The
output feature vector from the convolution layer Y 1

i,j is cal-
culated as:

Y 1
i,j = α(B1

j +

M∑
m=1

W 1
m,jX

0
i+m−1,j (1)

Here, B1
j represents the bias term,W 1

m,j is the weight ma-
trix, and α is the activation function. The convolutional
layers are followed by max pooling to reduce the dimen-
sionality of the output and retain the most important fea-
tures:

Y l
i,j = α(Bl

j +

M∑
m=1

W l
m,jX

0
i+m−1,j (2)

The GRU stream is designed to handle temporal dependen-
cies by using GRU layers, which are lighter and more ef-
ficient compared to traditional RNNs. The GRU processes
the same multivariate time series input, but focuses on the
temporal dimension, modeling sequential patterns across
time steps (e.g., daily or seasonal trends in power consump-
tion). The GRU outputs a sequence of hidden states cap-
turing these temporal dependencies, which are refined by
SEAM to focus on significant time steps. The GRU archi-
tecture consists of two main gates: the Reset Gate and the
Update Gate. The update gate ut is calculated as:

ut = α[(w1 × it) + (w2 × it−1)] (3)

The reset-gate rt find out the degree to which the previous
hidden state is remembered, and is calculated as:

rt = α[(w1 × it) + (w2 × it−1)] (4)

The memory contentm‘
r captures the past information and

is computed as:

m‘
r = tanh[(w1 × it) + (rt · it−1)] (5)

Finally, the output memory combines previous hidden state
and the memory content:

mt = (ut · it−1 + (1− ut) ·m‘
r) (6)

Spatial Attention: The extracted feature vector is passed
to the 1D-SAM, which refines feature representation by
emphasizing the most important elements. SAM operates
on the CNN output, which consists of feature maps rep-
resenting spatial correlations among input variables (e.g.,
weather-related features like temperature and humidity)
across time steps. It creates a spatial attention map by an-
alyzing these inter-variable relationships, prioritizing fea-
tures that are most relevant to power forecasting. This mod-
ule creates a spatial attention map by analyzing the inter-
spatial relationshipswithin the feature data. To achieve this,
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it applies avg-pooling and max-pooling along the channel-
dimension, producing two distinct feature maps: Ms(F) ∈
Rt×c, where t represents the time steps and c indicates the
number of channels. These pooled feature maps are then
concatenated and processed through a 1D convolutional
layer with a kernel size 3 × 3, resulting in the final spatial
attention map Ms(F) ∈ Rt×c. This attention map assigns
importance to specific regions in the feature space, effec-
tively determining which features should be enhanced or
suppressed as given below:

Ms(F) = σ(f3×3([AvgP(l5),MaxP(l5)])) (7)

Ms(F) = σ(f3×3(ls5avg, Fl
s
5max)) (8)

Here, σ denotes the sigmoid activation function, f (3×3) is
the convolutional operation with a kernel size of 3 × 3),
and AvgP and MaxP refer to the average-pooling and max-
pooling operations, respectively. This process ensures that
SAM enhances the model’s focus on critical spatial fea-
tures, such as weather variables strongly correlated with
power generation, while suppressing less relevant ones,
thereby improving forecasting accuracy.
Self-Attention: The SEAM processes the output of the
GRU stream, which consists of a sequence of hidden states
capturing temporal dependencies across time steps. Unlike
SAM, which focuses on spatial correlations among vari-
ables, SEAM dynamically selects the most relevant tempo-
ral features by assigning weights to significant time steps
in the sequence. The attention scores for each feature in the
J th timestamp in the dth dimension is calculated as:

SJ,d = fsco(WJ,d[h1,d, h2,d, h3,d, . . . , hn,d]) (9)

where d = 1, 2, 3, . . . , n and J = 1, 2, 3, . . . , o. Here, hJ,d

represents the hidden state at the J th timestamp and the
dth dimension, while fsco is a function (implemented with
fully connected layers) to score the importance of each fea-
ture. This mechanism allows SEAM to emphasize critical
temporal patterns, such as peak consumption periods, while
down-weighting less significant time steps, complementing
SAM’s spatial refinement.
Finally, the output from the SAM and SEAM is merged

and forwarded to Dense layers, where the final power fore-
cast is generated. The fully connected layers use the fol-
lowing operation to calculate the output dli:

dli =
∑
j

W l−1
ji (α(X l−1

i ) +Bl−1
j ) (10)

WhereW l−1
ji is the weight matrix, α is the activation func-

tion, and Bl−1
j is the bias term. This architecture ensures

effective extraction of both spatial and temporal features
while utilizing attention mechanisms to improve feature se-
lection for more accurate forecasting. The model is capable
of handling complex, irregular patterns in PV power gener-
ation, resulting in a robust and accurate forecasting system.

3.2 Network architecture
The network of the model is proposed to efficiently capture
spatiotemporal features for precise forecasting of power.
The network consists of convolutional, GRU, spatial at-
tention, Self-attention, and fully connected layers. The
model’s parameters are adjusted through extensive exper-
imentation to achieve optimal performance. This cus-
tomization ensures that the architecture is fine-tuned for ac-
curate forecasting. The input to the model is 12 × 10 (for
power generation) data matrix, which contains the neces-
sary weather-related variables (e.g., temperature, humidity,
rain, etc.) and power generation or consumption. This data
is passed through both streams in parallel to learn spatial-
temporal features. The first stream utilized two convolu-
tional layers and a pooling layer. This setup allows for spa-
tial feature extraction from the input data with Filter sizes:
16 and 32, 3 Kernel size, and ReLU activation-function.
Themax pooling operation is used to reduce dimensionality
and retain important features. The output of CNN is then
passed through SAM to select optimal features in spatial
dimension. The GRU stream consists of two stacked GRU
layers to capture temporal dependencies from the input data
with Cell sizes: 32 and 16 (for each GRU layer). GRU
layers are particularly effective at learning sequential pat-
terns and trends in time series data. The output of GRU is
then passed through the SEAM, which dynamically selects
the most important features from the fused vector by as-
signing different weights to different features. The SEAM
helps highlight critical temporal and spatial features while
down-weighting less important ones. Finally, the output
of spatial attention send self-attention is fused and passed
through fully connected layers to generate the final power
forecast. Extensive experimentation is conducted to final-
ize the model’s internal parameters. The experiments en-
sure that the model’s performance is optimized for accurate
and reliable forecasting. The parameters, including the fil-
ter sizes, kernel sizes, GRU cell sizes, and other network
settings, are selected based on their ability to extract mean-
ingful features and make accurate predictions. A flow dia-
gram of the proposed model is illustrated in Figure 1.

3.2.1 Hyperparameter selection and tuning

To ensure optimal performance of the proposed dual-stream
CNN-GRU model, a systematic hyperparameter selection
and tuning process was employed. The CNN stream con-
sists of two convolutional layers with 16 and 32 filters, re-
spectively, each using a kernel size of 3 and ReLU activa-
tion, followed by a max-pooling layer with a pool size of 2.
The GRU stream comprises two stacked GRU layers with
32 and 16 cells, respectively, using tanh activation for the
recurrent steps. The fully connected layers include a hid-
den layer with 64 neurons (ReLU activation) and an output
layer with 1 neuron (linear activation). The Spatial Atten-
tion Module (SAM) uses a 1D convolutional layer with a
3×3 kernel, and the Self-Attention Module (SEAM) em-
ploys a fully connected layer to compute attention scores.



Dual-Stream CNN-GRU Model with Spatial… Informatica 49 (2025) 213–228 219

Hyperparameter tuning was conducted using a grid
search over the following ranges: CNN filter sizes ([8, 16],
[16, 32], [32, 64]), GRU cell sizes ([16, 8], [32, 16], [64,
32]), learning rates ([0.0001, 0.001, 0.01]), and batch sizes
([32, 64, 128]). The Adam optimization algorithm was se-
lected for its robustness in training deep neural networks,
with a default beta1 of 0.9 and beta2 of 0.999. The model
was trained for 100 epochs with early stopping (patience
of 10 epochs) to prevent overfitting. The tuning process
utilized 5-fold cross-validation on the DKASC dataset to
evaluate performance, with the root mean squared error
(RMSE) on the validation set as the primary metric. This
configuration was further validated on the IHEPC dataset to
ensure generalizability. The systematic tuning process en-
sures transparency and reproducibility, providing a robust
foundation for the model’s performance in power forecast-
ing applications.

4 Results
The experimental results are presented for power genera-
tion and consumption prediction. We utilized datasets con-
taining time series data on factors such as weather and time
of day for solar power generation and electricity consump-
tion. An ablation study was also conducted to examine the
contributions of different components of the model. The re-
sults are further analyzed and compared with state-of-the-
art methods in the Discussion section.

4.1 Datasets
The electricity generation and consumption datasets used
in this study include data for both renewable power genera-
tion and household electricity consumption. For renewable
power generation, the DKASC datasets are utilized, which
includes daily data recorded at a five-minute resolution
from multiple active solar power plants in Alice Springs,
Australia. The three datasets used are Trina-23.4-kW,
Trina-10.5-kW, and Eco-Kinetics-26.5-kW. These datasets
contain both renewable power generation and weather-
related variables like humidity, rainfall, and temperature.
For electricity consumption prediction, the IHEPC dataset
is used, which includes one-minute resolution data from
2006 to 2010. This dataset records information on active
and reactive power, voltage, intensity, and submetering,
along with time and date information.
While the DKASC and IHEPC datasets provide valu-

able insights into renewable power generation and house-
hold electricity consumption, they have certain limitations
that impact their representativeness of real-world power
grids. The DKASC datasets, collected from solar power
plants in Alice Springs, Australia, primarily reflect the cli-
matic and operational conditions of a single geographi-
cal region with a arid climate, which may not fully cap-
ture the variability of solar generation in regions with dif-
ferent weather patterns, such as tropical or temperate cli-
mates. Similarly, the IHEPC dataset, derived from a sin-

gle household in France, may not adequately represent the
diverse consumption patterns observed in larger, industrial,
or multi-household grid configurations. These datasets also
lack significant variability in grid infrastructure, such as
differences in energy storage systems or hybrid renewable
sources, which are common in modern smart grids. Despite
these constraints, the datasets’ high temporal resolution (5-
minute for DKASC, 1-minute for IHEPC) and inclusion of
relevant variables (e.g., weather, voltage) make them suit-
able for developing and testing forecasting models, though
broader applicability requires further validation across di-
verse datasets.

4.2 Data preprocessing
To ensure the quality and consistency of the DKASC and
IHEPC datasets for model training and evaluation, several
preprocessing steps were applied. First, data normalization
was performed using min-max scaling to transform all fea-
tures (e.g., power generation, consumption, temperature,
humidity) into a [0, 1] range. This step mitigates the impact
of varying scales across different variables, ensuring stable
training of the neural network. The normalization formula
used is given by:

x′ =
x− xmin

xmax − xmin
(11)

where x is the original value, and xmin and xmax are the
minimum and maximum values of the feature across the
dataset. Missing data, which accounted for less than 2% of
the records in both datasets, were handled using linear inter-
polation for time-series continuity, leveraging neighboring
data points to estimate missing values. This approach was
chosen to preserve temporal patterns critical for forecasting.
Outliers, identified as values exceeding three standard de-
viations from the mean, were capped at the 99th percentile
to reduce their influence without removing data points. The
datasets were partitioned into training, validation, and test
sets using a 70:15:15 split, respectively. To maintain tem-
poral order, the data was split sequentially, with earlier data
used for training and later data for validation and testing.
This partitioning ensures that the model is evaluated on un-
seen data, simulating real-world forecasting scenarios.

4.3 Evaluation metrics
The performance of the proposed model is evaluated us-
ing Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Normalized Root Mean Squared Error (nRMSE),
and Mean Absolute Error (MAE), as these metrics are
widely adopted in time-series forecasting, particularly for
power generation and consumption. MSE and RMSE are
selected because they emphasize larger errors, which is crit-
ical in power forecasting where significant deviations can
lead to costly grid imbalances. RMSE provides an inter-
pretable measure in the same units as the forecasted vari-
able, making it suitable for assessing the magnitude of pre-
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Figure 2: Predicted vs actual values where a, b, c show
power generation and d show power consumption results

diction errors. However, both MSE and RMSE are sen-
sitive to outliers, which can skew results in datasets with
extreme values, such as those caused by sudden weather
changes. nRMSE normalizes RMSE by the range of the tar-
get variable, enabling fair comparisons across datasets with
different scales, which is essential for evaluatingmodel per-
formance across diverse power generation and consump-
tion datasets. MAE, on the other hand, measures the av-
erage absolute error, offering robustness to outliers and a
straightforward interpretation of average prediction accu-
racy. While MAE is less sensitive to large errors compared
to RMSE, it complements the other metrics by providing
a balanced perspective on model performance. Together,
these metrics provide a comprehensive evaluation of the
model’s accuracy and robustness, aligning with the require-
ments of power forecasting applications where both small
and large errors impact grid reliability. The equations for
these metrics are given below:

RMSE =

√∑m
i=1(αi − pi)2

N
(12)

MSE =

∑m
i=1(αi − pi)

2

N
(13)

nRMSE = RMSE/(αmax − αmin) (14)

MAE =

∑n
i=1 |αi − pi|

N
(15)

where α and p show the actual and model prediction.

4.4 Ablation study
The performance of the proposed model is evaluated by
comparing it with several predictive modeling techniques,
including traditional regression methods (SVR, Decision
Tree, Linear Regression), deep models (MLP, LSTM,
CNN), a transformer-based model, and a hybrid BiLSTM-
attention model during the ablation study. The transformer-
based model employs a multi-head self-attention mecha-
nism to capture temporal dependencies, while the BiLSTM-
attention model combines bidirectional LSTM layers with
an attention mechanism to focus on relevant temporal fea-
tures. Experimental results presented in Figures 3 to 6
demonstrate that traditional regression models perform
worse than deep learning-based models. In particular, hy-
brid ones perform better comparatively. Among the hy-
brid models, the proposed model achieved the lowest er-
ror rates. For instance, on the Tarina 10.5 kW dataset,
the proposed model achieved an RMSE of 0.0985, com-
pared to 0.124 for the transformer-based model and 0.109
for the BiLSTM-attention model, highlighting the dual-
stream architecture’s superior ability to capture spatiotem-
poral dependencies. Similar trends were observed across
other datasets, with the transformermodel exhibiting higher
computational costs (e.g., 2.15 seconds inference time on
GPU) and the BiLSTM-attention model showing slightly
higher errors due to its focus on temporal rather than spatial
features. For example, on the Tarina 10.5 kW dataset, the
proposed model achieved RMSE,MSE, nRMSE, andMAE
values of 0.0985, 0.0097, 0.1198, and 0.0490, respectively.
For the Tarina 23.4 kW dataset, the values were 0.0574
RMSE, 0.0033 MSE, 0.1512 nRMSE, and 0.0430 MAE,
while for the Eco-Kinetics 26.5 kW dataset, the model
achieved 0.0346 RMSE, 0.0012 MSE, 0.2393 nRMSE, and
0.0128 (MAE). The proposedmodel also outperformed oth-
ers on the IHEPC data, with RMSE, MSE, nRMSE, and
MAE values of 0.0300, 0.0009, 0.1158, and 0.0166, respec-
tively. All experiments were conducted for one-hour-ahead
predictions, and the proposed model consistently showed
the lowest error rates, as evidenced by the close alignment
between predicted and actual values in Figure 2. This con-
firms the model’s applicability for both renewable power
generation and electricity consumption prediction.

5 Discussion
The performance of the proposed dual-stream CNN-GRU
model is analyzed compared to state-of-the-art (SOTA)
methods, exploring the reasons behind its superior perfor-
mance, and the practical implications of the results for elec-
trical automation and smart grid applications. Additionally,
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Figure 3: Comparative analysis of different models developed during ablation study over Tarina 10.5 kW

Figure 4: Comparative analysis of different models developed during ablation study over IHEPC

we discuss its scalability and deployment feasibility to ad-
dress real-world constraints.

5.1 Comparative analysis of the proposed
model with state-of-the-art models

The effectiveness of the proposed model is evaluated on the
mentioned datasets, and its performance is compared with
several baselinemethods. ForDKASC, the proposedmodel
demonstrates significant improvements over the baseline
methods, as summarized in Table 2. The RMSE, MSE, and
MAE values achieved by the proposed model are 0.0635,
0.0047, and 0.0349, respectively. These results indicate a
substantial reduction in prediction error compared to other
state-of-the-art models. For instance, Chen et al. [17] re-
ported an RMSE of 0.94 and an MAE of 0.587, while
Zang et al. [18] achieved an MSE of 0.081 and an MAE
of 0.152. The proposed model’s superior performance can
be attributed to its dual-stream architecture unlike single-
stream models like Chen et al. [17] that rely on stacked
layers. The integration of spatial and self-attention mecha-
nisms further refines feature selection, enabling the model
to prioritize relevant patterns, unlike Zang et al. [18], which
lacks such mechanisms and suffers from computational

complexity. However, on datasets with high variability
(e.g., Eco-Kinetics 26.5 kW, nRMSE=0.2393), the model’s
performance, while still superior, shows a slightly higher
normalized error, possibly due to the influence of extreme
weather conditions that challenge even advanced feature
extraction.

To validate the statistical significance of these improve-
ments, we conducted Wilcoxon signed-rank tests across
multiple runs on DKASC and IHEPC datasets. The
tests yielded p-values < 0.05, indicating that the proposed
model’s improvements are statistically significant. Addi-
tionally, 95% confidence intervals for the proposed model’s
RMSE on the DKASC dataset (0.059–0.068) and IHEPC
dataset (0.027–0.033) confirm the reliability of the reported
metrics, with narrow intervals reflecting consistent perfor-
mance across runs. These statistical analyses strengthen the
claim that the dual-stream architecture and attention mech-
anisms contribute to robust forecasting improvements over
SOTA methods.

On the IHEPC dataset, the proposed model also outper-
forms existing techniques, achieving an RMSE of 0.0300,
an MSE of 0.0009, and an MAE of 0.0166, as shown in
Table 3. These metrics are significantly better than those
of the competing methods, such as Rajabi and Estebsari



222 Informatica 49 (2025) 213–228 C. Tang

Figure 5: Comparative analysis of different models developed during ablation study over Tarina 26.5 kW

Figure 6: Comparative analysis of different models developed during ablation study over Tarina 23.4 kW

[23], who reported an RMSE of 0.79 and an MAE of 0.59,
and Haq et al. [25], with an RMSE of 0.32 and an MAE of
0.31. The model’s success on the IHEPC dataset is driven
by the GRU stream’s ability to capture long-term tempo-
ral dependencies in high-resolution (1-minute) consump-
tion data, complemented by the CNN stream’s extraction
of spatial patterns from correlated variables like voltage and
intensity. In contrast, models like Rajabi and Estebsari [23]
rely on 2D-CNNs with limited temporal modeling, leading
to higher errors. The attention mechanisms mitigate the im-
pact of data irregularities noted in Abdel-Basset et al. [27],
enhancing robustness. However, the model’s performance
advantage is less pronounced on datasets with significant
noise, suggesting a potential area for improvement in han-
dling data ambiguities.

5.2 Time complexity analysis
To ensure the proposed model is suitable for real-time
power forecasting, we evaluate its computational efficiency
by measuring inference time, defined as the time required
for a single forward pass to generate a prediction. Infer-
ence time is critical for real-time applications in electri-
cal automation, where rapid predictions are necessary to
maintain grid stability. We compare the inference time

of the proposed model against baseline models on three
platforms-CPU, GPU, and Raspberry Pi (RPI)—to demon-
strate its efficiency across diverse computational environ-
ments, including edge devices like Raspberry Pi commonly
used in microgrids. All times are reported in seconds, en-
suring consistency and clarity. This comparison highlights
the model’s lightweight design, which minimizes computa-
tional costs and response delays, thereby enhancing its ap-
plicability in real-time energy management systems.

To address this, we conduct a time complexity analysis
of the model using 3 settings: CPU, GPU, and RPI as given
in Table 4, whereas the results are given in Table 5. From
the analysis, it is evident that our model has lower infer-
ence time than others across all platforms. Specifically, the
proposed model achieves an inference time of 0.4354 sec-
onds on GPU, 0.9874 seconds on CPU, and 1.674 seconds
on RPI. This efficiency stems from the streamlined dual-
stream architecture and the use of GRUs, which are com-
putationally lighter than LSTMs used in models like Haq
et al. [25]. In contrast, models like Han et al. [28] exhibit
significantly higher inference times (e.g., 20.36 seconds on
RPI), limiting their suitability for edge devices.

Comparing this with the performance of other models,
such as those from Chen et al. [17] and Wang, Qi, and
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Table 2: Comparative analysis of the model over the solar
dataset

Method MSE RMSE MAE
Chen et al. [17] - 0.94 0.587
Zang et al. [18] 0.081 - 0.152
Li et al. [46] - - 0.2805
Zhou et al. [19] - - 0.2367
Cheng et al. [20] - 0.336 0.177
Li et al. [47] - 0.2357 -
Korkmaz [21] - 0.309 0.175
Wang, Qi, and
Liu [22]

- 0.343 0.126

Wang, Qi, and
Liu [48]

- 0.621 0.221

Ours 0.0047 0.0635 0.0349

Table 3: Comparative analysis of themodel over the IHEPC
dataset

Paper MAE RMSE MSE
Rajabi and Esteb-
sari [23]

0.59 0.79 -

Ullah et al. [24] 0.3469 0.5650 0.3193
Haq et al. [25] 0.31 0.32 0.10
Kim and Cho [26] 0.3317 0.5957 0.3549
Khan et al. [30] 0.31 0.47 0.19
Han et al. [28] 0.19 0.22 0.17
Abdel-Basset et al.
[27]

0.2674 0.4386 0.1924

Kim and Cho [29] 0.3953 - 0.3840
Khan et al. [49] 0.29 0.42 0.18
Khan et al. [50] 0.0038 0.0614 0.0537
Ours 0.0009 0.0300 0.0166

Table 4: Hardware configuration
Setting Model Memory

GPU GeForce-RTX-3090 24GB
RPI RPI 4 B+ 8GB
CPU Intel Core i5-6600 32GB

Liu [48], the proposed model’s lower inference times (e.g.,
0.4354 seconds on GPU vs. 0.72 seconds for Haq et
al. [25]) highlight its suitability for real-time applications.
The model’s efficiency makes it viable for deployment on
resource-constrained devices, unlike Haq et al. [25], which
is resource-heavy.
In the context of real-world smart grid environments, the

proposed model’s inference time of 1.674 seconds on RPI
is well within the requirements for one-hour-ahead fore-
casting, where predictions are typically needed every few
minutes to support grid operations. This efficiency enables
real-time deployment in decentralized microgrids, allow-

Method Remarks CPU GPU RPI

Chen et al. [17] Intel-Core-i5,
8GB-RAM

6.387 - -

Cheng et al. [20] GTX-1080-GPU - 3.5 -
Wang, Qi, and
Liu [22]

Intel-Core-i5 8-
GB-RAM

0.6217 - -

Wang, Qi, and
Liu [48]

Intel-Core-i5 8-
GB-RAM

7.196 - -

Haq et al. [25] GeForce-RTX-
2070

1.44 0.72 -

Han et al. [28] Intel-Core-i9
RPI- Cortex-
A53

6.38 - 20.36

Ours Table 3 0.9874 0.4354 1.674

Table 5: Inference time (seconds) comparison with baseline
models

ing rapid adjustments to energy production and consump-
tion, thereby enhancing grid reliability and reducing oper-
ational delays. However, for applications requiring sub-
second predictions, further optimization of the model’s ar-
chitecture may be necessary.

5.3 Scalability and deployment
considerations

The scalability and deployment feasibility of the proposed
dual-stream CNN-GRU model are critical for its adoption
in large-scale electrical automation systems and resource-
constrained environments, such as embedded systems in
microgrids. The model’s memory footprint is approxi-
mately 120 MB, calculated based on the parameters of the
CNN (16 and 32 filters), GRU (32 and 16 cells), and fully
connected layers. This compact size makes it suitable for
deployment on edge devices like the Raspberry Pi 4 B+
(8GBRAM), as demonstrated by its inference time of 1.674
seconds on this platform (Table 5). In large-scale sys-
tems, where thousands of nodes may require simultaneous
forecasting, the model’s parallel dual-stream architecture
allows efficient batch processing, reducing computational
overhead compared to sequential models like Chen et al.
[17].
However, there are trade-offs between accuracy and

computational efficiency. The proposed model achieves
high accuracy (e.g., RMSE=0.0635 on DKASC) by lever-
aging spatial and self-attention mechanisms, which in-
crease computational complexity compared to simpler
models like linear regression or single-layer MLPs. In
resource-constrained environments, such as embedded sys-
tems with limited memory (e.g., <2GB RAM), this com-
plexitymay necessitatemodel pruning or quantization to re-
duce the memory footprint and inference time further. For
instance, reducing the number of filters in the CNN stream
or GRU cells could lower thememory requirement to below
80 MB, at the cost of a potential 5–10% increase in RMSE,
based on preliminary ablation studies. Alternatively, de-
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ploying the model on cloud-based infrastructure with GPUs
(e.g., GeForce RTX-3090, Table 4) ensures high accuracy
and low inference time (0.4354 seconds) for large-scale sys-
tems, but this increases operational costs and latency in re-
mote areas with limited connectivity.
To enhance scalability, the model supports distributed

deployment, where multiple instances can run on edge de-
vices for local forecasting, with periodic synchronization
to a central server for global grid optimization. This ap-
proach mitigates bottlenecks in large-scale smart grids. Fu-
ture work could explore techniques like knowledge distilla-
tion to create lighter models for ultra-constrained devices or
federated learning to improve scalability across distributed
grid networks, ensuring both accuracy and efficiency in di-
verse deployment scenarios.

5.4 Practical implications

The proposed model’s high accuracy (e.g., RMSE=0.0635
on the DKASC dataset) and low inference time (e.g., 1.674
seconds on Raspberry Pi) have significant implications for
electrical automation and smart grid management. By pro-
viding precise one-hour-ahead forecasts, the model enables
grid operators to optimize energy production and distribu-
tion, reducing operational costs and enhancing grid stabil-
ity. For instance, accurate solar power predictions allow for
better integration of renewable energy, minimizing reliance
on fossil fuel backups. Themodel’s compatibility with edge
devices like RPI supports decentralized energy manage-
ment in microgrids, enabling real-time decision-making in
smart cities. However, challenges such as handling extreme
weather-induced data variability suggest the need for future
enhancements, such as incorporating uncertainty modeling
to further improve robustness.

6 Conclusion
The primary goal of the smart grid is to maintain equi-
librium between power, enabling effective and dependable
energy management. Predictive modeling plays a crucial
role in achieving this balance, providing insights into future
electricity generation and consumption patterns. While nu-
merous predictive models have been developed in the liter-
ature, there remains a need for further improvement in pre-
diction accuracy to enhance the energy sector with lower
computation. This study introduces a robust and efficient
hybridmodel designed to forecast electricity generation and
consumption effectively. The proposed model integrates
CNN with spatial attention and GRU with self-attention in
dual stream mechanism, achieving high prediction accu-
racy while maintaining low computational complexity. Af-
ter conducting a comprehensive study of various models,
the results confirm that the proposed model outperforms
baselines in terms of performance and execution time. In
the future, the focus will shift towards investigating cutting-
edge technologies like reinforcement learning, explainable

AI, active learning, and lifelong learning methods to en-
hance the accuracy and effectiveness of forecasting models.
These innovations will play a crucial role in creating more
efficient and flexible systems, enhancing the adaptability
of smart grid applications for future energy management
needs.
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