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The classification of renewable energy sources is crucial for optimizing energy management and advancing
sustainable practices. This study proposes a robust classification framework using a publicly available
renewable energy dataset comprising multivariate time-series data from solar, wind, and hydro sources.
Standard preprocessing techniques, including normalization and segmentation, were applied to prepare the
data for modeling. We evaluate several machine learning and deep learning models Logistic Regression,
Support VectorMachine (SVM), XGBoost, Artificial Neural Networks (ANN), and 1DConvolutional Neural
Networks (1D-CNN). To further enhance performance, we introduce a hybrid 1D-CNN model integrated
with an attention mechanism to improve feature extraction and model focus on relevant temporal patterns.
Experimental results show that the attention-enhanced hybrid model achieves superior performance with an
accuracy of 97.8%, precision of 97.5%, recall of 97.7%, and F1-score of 97.6%, outperforming all baseline
models. Compared to the best traditional model (XGBoost, 93.2% accuracy), our approach shows a 4.6%
improvement. This demonstrates the effectiveness of attention-based deep learning for renewable energy
classification and lays a foundation for future intelligent and sustainable energy management systems.

Povzetek: Razvit je hibridni model z 1D-CNN in pozornostjo za klasifikacijo obnovljivih virov energije iz
časovnih vrst, z uporabo realnih energetskih podatkov v kontekstu pametnih omrežij.

1 Introduction

Despite the progress in using machine learning and deep
learning for renewable energy classification, most exist-
ing models either rely on conventional ML techniques
with limited temporal understanding or use deep learning
approaches that lack interpretability. Specifically, while
CNNs can extract features effectively, they often fail to pri-
oritize the most critical temporal features, leading to sub-
optimal decision-making. There is a clear architectural gap
in models that can both learn temporal feature hierarchies
and focus on relevant data segments for improved classifi-
cation performance. In this context, our work introduces a
novel hybrid deep learning model that integrates 1D-CNN
for sequential pattern learning with an Attention Mecha-
nism to dynamically emphasize key features, thereby en-
hancing both accuracy and model interpretability.
With climate change issues, energy security, and ever-

increasing electricity demand, The global energy landscape
is undergoing a paradigm shift [1]. Due to their significant
green house gas emissions, resource depletion and environ-
mental degradation impact, traditional power grids, as cen-
tralized fossil-fuel based energy generators are increasingly
being recognized as unsustainable [5]. This problem real-

ization has catalyzed the emergence of sustainable grids,
aiming to revolutionize the energy systems by incorporat-
ing renewable, optimizing energy distribution, and limiting
environmental impact-and yet never ceasing to rely on grid
efficiency and resilience. Sustainable power grids operate
under clean energy transition layouts and technological ori-
entation [13]. Smart grids aim to improve operational ef-
ficiency, enhance energy reliability, and usher in a green
and sustainable future using state-of-the-art technological
advancements such as the IoT, AI, and Big Data [19]. We
seek not just the resolution of immediate energy system is-
sues but the construction of an infrastructure that satisfies
long-term carbon neutrality and more equitable distribution
of energy resources. The other cornerstone of sustainable
power grids is the seamless integration of green technolo-
gies, including renewable energy sources such as solar pho-
tovoltaics, wind turbines, hydropower, and geothermal sys-
tems [14]. These technologies are indispensable for reduc-
ing dependence on fossil fuels and achieving carbon neu-
trality. Yet their deployment faces a few challenges, most
importantly from the establishment of the variable and in-
termittent nature of renewable energy generation, which
can only be addressed through robust energy storage sys-
tems, such as high-capacity batteries, pumped hydro stor-
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age, and other emerging solutions such as hydrogen stor-
age, being developed. Various grid management systems
are more advanced and must actually be optimized to en-
able the operation of any kind of sustainable power system
[15]. Techniques like demand-side management, real-time
energy forecasting, and dynamic load balancing enhance
energy efficiency while guaranteeing harmonious integra-
tion of renewable resources into the grid. Smart grid tech-
nologies, which incorporate a network of connected sen-
sors, communications systems, and AI-driven algorithms,
add an extra layer of efficiency and reliability [22].The in-
terventions allow monitoring and control of real-time en-
ergy flow, predictive maintenance and improvement of the
power grid’s resilience to disruptions induced by extreme
weather events and cyber-threats alike. Sustainable power
grids are plausible, but their extended uptake is blocked
by stigmas covering a wide range of technical, economic,
and policy-related challenges. The massive capital re-
quired to set up green technologies and energy storage so-
lutions stands largely as a barrier to entry. [8], Decentral-
ized renewable energy systems are still highly integrated
within such aging grid infrastructure, and much must be
learned about the integrations, improvements, and rethink-
ing of the grid design paradigms. Beyond these technical
barriers must lie critical issues such as energy-exceeding
sustainability-supportive values in the emission reductions,
energy cost reductions, and dependability offered by a sus-
tainable grid-such things must so be addressed by policy ac-
tors and stakeholders by all segments of society, especially
those groups made marginal and underrepresented. [21].
This paper represents the quite expensive development re-
views on renewable energy classification using state-of-the-
art machine learning and deep learning techniques. In this
paper, technological innovation in energy data processing,
such as 1D CNNs and Attention mechanisms, and its in-
tegration into smart grids are truly explored. The analysis
highlights the relevance of accurate prediction and classifi-
cation models in fostering efficient management of energy
transition toward greener energy systems. This study serves
as a bridge between theoretical inquiry of machine learning
and practical applications in renewable energymanagement
towards contributing to robust data-driven solutions for sus-
tainable energy infrastructure. The importance of collab-
oration with researchers, policymakers, and practitioners
in optimizing energy systems, as well as enhancing green
technologies to meet global sustainability targets, has been
accentuated by this research.

1.1 Contributions
In this paper following are the impressive contributions to
the field of sustainable power grids and renewable energy
classification:

– Novel Hybrid Architecture for Renewable En-
ergy Classification developed a hybrid deep learn-
ing architecture winning a 1D CNN and Atten-
tion Mechanism to classify renewable energy sources

such as Wind, Solar, Hydropower, and Bioen-
ergy/Marine/Geothermal.

– Integration of Advanced Features for Accurate
PredictionsAdded domain-relevant input features en-
compassing Electrical Capacity, Ion, Latitude, and
Number of Installations in order to ensure precise and
strong classification targeted towards real-world en-
ergy datasets.

– Performance Benchmarking Across Models A
comprehensive comparison among traditional mod-
els, namely, Logistic Regression, SVM, andXGBoost,
and Deep Learning architectures, such as ANN, 1D
CNN, and the proposed hybrid model, shedding light
on the superiority of the proposed approach in terms
of accuracy and efficiency.

– Promoting Sustainable Energy Infrastructure Pro-
vided actionable insights into the integration of green
technologies into smart grids by leveraging deep
learning methodologies, contributing to environmen-
tally friendly energy systems and global sustainability
goals.

2 Literature review

2.1 Sustainable power grids and machine
learning

Power grids that work towards integration of renewable
sources such as solar and wind will need advanced compu-
tational mechanics for the optimization of electricity gen-
eration, grid operation, and energy storage. The advanced
techniques of machine learning and deep learning have
thus become invaluable tools for enabling the integration
of green technologies with electricity grids.
As the penetration of renewable energy sources that are

transmitted intermittently continues to increase, smart grids
need to handle power flow effectively to secure the safety of
the grid. ML and DLmodels are instrumental in optimizing
various components, including demand forecasting, energy
storage, and grid management. These techniques help pre-
dict energy consumption trends in order to optimize energy
generation from renewable sources and thus forecast energy
demand, this is critical in order to curb the dependency on
fossil fuels.

2.2 Machine learning for power grid
optimization

Using techniques such as supervised learning, reinforce-
ment learning, and unsupervised learning, the field of
power grid optimization increasingly makes an effective
use of several machine learning techniques. Regression
models such as Support Vector Machines and Random
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Table 1: Comparison the proposed model’s performance with related work across key metrics and evaluation criteria
References Model Type Dataset Evaluation Metrics Performance

Mostafa et al. [11] ANN Custom Solar/Wind Data Accuracy, RMSE 92.3%, RMSE: 0.15
Ahmad et al. [2] XGBoost Smart Grid Transaction Logs F1-Score, Accuracy 91.5%, F1: 0.90
Ji et al. [24] Deep Reinforcement Learning Real-Time Energy Market Profit Maximization 87.6% trading efficiency

Zhang et al. [17] CNN Satellite + Sensor Image Data Precision, Recall Precision: 93.0%, Recall: 92.5%
Khorasany et al. [12] Blockchain + DL P2P Trading System Simulations Trust, Transparency High transparency, qualitative only

Forests are applied to load forecasting and demand predic-
tion to enable utilities to optimize energy distribution effec-
tively. Using DNNs and RNNs for time-series forecasting
has yielded a welcome boost in prediction accuracy. Re-
inforcement learning (RL) stands at the forefront of opti-
mal control model management and would find its applica-
tion to the adjustment of grid generation and distribution in
times of instability of real-time dynamic decision-making
situations. RL agents interact with the environment of the
grid, altering formal parameters of actions depending on
network feedback; for example, from demand and supply
changes to the failure of a grid and variability in output from
renewable sources.

2.3 Deep learning for renewable energy
integration

The memorandum outlines the revolution that deep learn-
ing has brought, especially in renewable energy forecasting
and optimization. Convolutional neural networks (CNNs)
and long short-term memory (LSTM) networks applied to
the forecasting mix includes solar and wind energy. These
DL models can learn complex temporal patterns from past
data and environmental factors to predict energy produc-
tion, which is crucial for stability in the grid.
LSTMs are a particular form of recurrent neural networks

(RNNs) and are particularly effective for forecasting re-
newable energy generation, as they accommodate sequen-
tial and time-dependent data. LSTMs have been found to
outperform traditional tools for predicting wind speed and
solar irradiance, which in turn allows grid agents to opti-
mize energy storage and distribution.
Besides, CNNs are widely used for image-based data by

which renewable energy assets like solar panels and wind
turbines are analyzed for health detection, thus helping pre-
dictive maintenance and ensuring the efficient operation of
renewable energy systems.

2.4 Energy storage optimization using deep
learning

Energy storage is critical for sustainable electricity grids be-
cause its installation is used to address unpredictable pro-
duction provided by renewable energy. Machine learning
BMS enacts a rapid charge/discharge of energy storages, of-
fering advice on when energy stored should be used. Deep
reinforcement learning (DRL) schemes have been proposed

for energy storage optimization, emphasizing battery stor-
age systems active on smart grids. In DRL, an agent learns
optimal actions (e.g., when to charge or discharge a bat-
tery) by interacting with the environment and being rein-
forced with rewards or penalties based on the performance.
This enables smart grids to balance energy supply with de-
mand more efficiently, especially in areas with inconsistent
renewable generation. Through their use, supervised learn-
ing methods such as support vector regression (SVR) and
decision trees have been successfully applied in predicting
battery cycle lives and thereby ensuring that the energy stor-
age systems are reliably always operating in their optimal
states.

2.5 Smart grid technologies and machine
learning

Smart grids rely on the integration of advanced machine
learning algorithms for real-time energy management[11].
These systems continually monitor data from smart meters,
IoT sensors, and other grid devices and use machine learn-
ing algorithms to analyze them to provide demand response
optimization and grid stability. [19]. Clustering algo-
rithms, such as k-means and DBSCAN, are used for detect-
ing patterns in energy usage and load variations, which help
in implementing demand-side management (DSM) strate-
gies[20]. Apart from that, these algorithms help to clus-
ter energy uses based on specific energy consumption pat-
terns for energy management and improved consumer ser-
viceAlso used are predictionmodels that, based on decision
trees and neural networks, are to predict the probability of
grid failures or outages to allow for proactive maintenance
and downtime reduction. [18].

2.6 Machine learning for grid resilience and
fault detection

A key benefit of ML and DL techniques in power grids is
fault detection and grid resilience[4]. Automated decision
trees and neural networks detect number of anomalies in
the performance of the grid, for instance, voltage fluctua-
tions and uncommon loss of power, and trigger an alert for
maintenance actions or adjustments. Now day, lots of im-
age processing methods use DL such as CNNs, to do anal-
ysis on images and sensor data coming from the drones or
satellite imagery. This helps not only in the detection of
faults, such as breakage in transmission lines or apart fail-
ing infrastructure, but even automates the work of grid in-
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spection, thereby providing robustness for the grid, along
with the reduction in labor-intensive inspections. [17].

2.7 Applications of deep learning in energy
trading

ML and DL models are also finding their place in energy
trading, where they optimize pricing strategies and facili-
tate the buying and selling of energy in real-time [2]. Deep
reinforcement learning has been applied to energy markets,
where it helps in making real-time decisions based on the
state of the market, grid demand, and availability of renew-
able resources. The relationship between users who can sell
surplus renewable energy and blockchain-based smart con-
tracts with deep learning capabilities ensures that the trans-
actions are efficiently managed and transparent in peer-to-
peer energy trading. This promotes decentralized energy
exchanges, which efficiently ensures a fair trade of green
energy, to the benefit of both producers and consumers.

2.8 Challenges and future directions

While the integration of deep learning into smart grid sys-
tems yields substantial benefits, several challenges remain
that directly impact classification performance and real-
world deployment: First, data quality and availability con-
tinue to hinder progress. Many renewable energy datasets
especially open-source ones suffer from inconsistencies,
missing entries, or lack of granularity, which makes train-
ing robust models challenging. Works such as [3] have
shown the importance of clean, preprocessed data for clas-
sification accuracy. Second, model scalability and compu-
tational overhead remain a concern, particularly for mod-
els integrating complex attention mechanisms. Although
attention enhances interpretability and performance, it in-
troduces additional computational cost. As shown by [10],
hybrid attention models can be computationally intensive,
and optimizations like model pruning or quantization are
needed for edge deployment. Third, domain adaptation and
generalization must be improved. Models trained on data
from one country or climate may not generalize to others
without transfer learning strategies. Incorporating adap-
tive models, such as in [12], can help bridge this gap, es-
pecially in multi-region grids. Fourth, privacy-preserving
learning (e.g., federated learning) and real-time decision
support systems are emerging trends that align well with
smart grid applications. However, integrating these with
energy classificationmodels remains in early stages. Future
work should explore distributed learning architectures that
maintain performance while protecting user data. Lastly,
interpretable AI continues to be critical. Our use of atten-
tion addresses this partially, but more transparent decision-
making frameworks (e.g., via SHAP or LIME) will be key
to regulatory acceptance and grid operator trust.

2.9 Research objectives
This study aims to develop and evaluate a hybrid deep
learning model combining a 1D Convolutional Neural Net-
work (1D-CNN) with an Attention Mechanism for clas-
sifying renewable energy sources in sustainable power
grids. Our primary research question is: Can a hybrid 1D-
CNN-Attention model outperform baseline machine learn-
ing and deep learning models in classifying renewable en-
ergy sources using data from the Open Power System Data
Portal? We hypothesize that integrating an attention mech-
anism will enhance classification performance by focusing
on critical features and capturing temporal dependencies in-
herent in renewable energy data.

3 Methodology
This section outlines the comprehensive methodology em-
ployed for the classification of renewable energy sources,
incorporating several key stages: data preprocessing,
model architecture, hybrid deep learning techniques, and
evaluation metrics.

3.1 Justification of method selection
The selection of a 1D-CNN combined with an attention
mechanism is directly informed by insights gathered in the
literature review. As discussed, traditional machine learn-
ing models such as SVM and XGBoost have shown com-
petence in renewable energy classification but fall short in
learning sequential or temporal dependencies. Deep learn-
ing approaches like CNNs and LSTMs address this to some
extent but often either lack fine-grained temporal focus or
interpretability. 1D-CNNs are particularly effective for
univariate and multivariate time-series data, making them
ideal for capturing localized patterns across sequential en-
ergy features (e.g., variations in electrical capacity and in-
stallation geography). However, CNNs alone treat all fea-
tures equally. To enhance the model’s ability to differenti-
ate critical information, we incorporate an attention mech-
anism, which assigns dynamic importance weights to fea-
tures. This allows the model to focus on the most relevant
segments of the input, improving both performance and in-
terpretability. By integrating these two components, our
proposed hybrid architecture addresses the limitations of
traditional ML models (lack of temporal depth) and vanilla
CNNs (uniform feature weighting), thus providing a robust
framework tailored for the challenges of renewable energy
classification.

3.2 Data preprocessing
We used publicly available renewable energy dataset com-
prising multivariate time-series data from solar, wind, and
hydro sources. which provides extensive information on
renewable power plants located in France. The dataset in-
cludes many features containing information about power
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plants, including identifications, geographical locations,
and energy production statistics over time. The analysis
in this study focuses on a few key aspects relevant to the
energy_source_level_2 feature, which represents the
type of energy source for each power plant, such as solar,
wind, or hydroelectric power. This column will serve as the
target variable for the classification task.
As shown in Figure 1, the data preprocessing pipeline

involves several key steps, including feature selection, con-
version of categorical variables, data splitting, and prepar-
ing the processed data for model training.

Figure 1: Preparing data for machine learning: A crucial
step involves feature selection, categorical variable conver-
sion, data splitting, and finally, feeding the processed data
to the model.

3.2.1 Handling missing values

Missing values in the dataset were addressed to ensure data
quality. For numerical features, missing values were re-
placed using the mean or median. For categorical features,
the mode (most frequent value) was used. Rows with ex-
cessive missing values in critical columns were removed to
avoid introducing noise into the model.

3.2.2 Data encoding

The energy_source_level_2 column, which is categor-
ical, was transformed into a numerical format using one-
hot encoding. Each unique energy source type (e.g., solar,
wind) was represented as a binary vector, ensuring no or-
dinal relationship was assumed. For instance, a value like
”solar” was encoded as [1, 0, 0, 0], and ”wind” as [0, 0, 1,
0].

3.3 Features selection
Feature selection was guided by domain knowledge and
empirical analysis to retain predictors most correlated with
the target variable, energy_source_level_2. Selected
features include

– Electrical Capacity: Reflects storage and output po-
tential, critical for distinguishing energy types (e.g.,
solar vs. wind).

– LongitudeCaptures geographic variations affecting
energy production (e.g., wind patterns).

– LatitudeAccounts for solar irradiance differences
across regions.

– Number of Installations Indicates deployment scale,
linked to energy type and grid integration.

Irrelevant columns (e.g., IRIS code, EIC code) were dis-
carded. Feature importance was validated using permuta-
tion importance, with results presented in Table 3, confirm-
ing their significant contribution to model performance.

3.3.1 Splitting into independent and dependent
variables

The dataset was split into independent variables (X) and
the dependent variable (y). The independent variables (X)
included selected features like electrical capacity Ion etc.
while the dependent variable (y) was the target column
energy_source_level_2. This split ensures clear sep-
aration of inputs and the target for training.

3.3.2 Train-test split

For the purpose of evaluating the model performance, the
dataset of experiments was divided into train-test with a
split ratio of 80-20. In this manner, the training set is used
to fit the models, while the test set remains for a final model
performance evaluation.

3.4 Model architecture
The proposedmodel architecture for the classification of re-
newable energy sources Figure 2 leverages a hybrid deep
learning approach that combines convolutional layers [23]
for feature extraction and attentionmechanisms [26] for im-
proved interpretability and performance. The model takes
input features such as Electrical Capacity, Ion, Latitude,
and Number of Installations which will determine the en-
ergy source that should be used. Features are fed to a 1D
Convolutional Neural Network (1D CNN) Layer (L1). The
1D CNN Layer (L1) passes the vector through networks
that extract local patterns such as the correlation of cer-
tain features, leading to fruitful feature interaction useful
for classification.
A subsequent layer is then a 1D Max Pooling Layer

that applies compression in terms of spatial dimension-
ality through objective filtering of less relevant informa-
tion in computational consideration. This continues on-
ward into a second 1DCNNLayer (L2) that jointly captures
higher-order patterns and more abstract representations of
the dataset. This hierarchical feature extraction process en-
sures that the model can learn both low-level and high-level
interactions among the input features.
Processed features are fed to the Attention Layer, which

is crucial for the interpretability and performance of the
model. With the Attention Layer, attention scores are com-
puted, and greater weights are captured for important re-
gions in the feature map. This enables the model to fo-
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Figure 2: The proposed model architecture is illustrated for renewable energy source classification with 1D CNN layers
for feature extraction, followed by an attention mechanism focused on important features, and ends with a Softmax layer
classifying into one of four energy sources.

cus on critical features while disregarding the less impor-
tant ones, making the classification both efficient and in-
terpretable. The attention-weighted feature maps are then
passed through fully connected (dense) layers, allowing the
network to learn complex nonlinear relationships between
features.
These layers ensure that the model can learn represen-

tations involving complex relationships, thereby improv-
ing accuracy across all classifications. Finally, these out-
puts enter the Softmax Layer, which turns the learned
features into class probabilities for the four renewable
energy sources: Wind, Solar, Hydropower, and Bioen-
ergy/Marine/Geothermal. The probability distribution al-
lows the model to determine which energy source is most
representative of the input data. The architecture is in-
tended to provide a solid platform bymerging the 1DCNNs
for hierarchical feature extraction and attention for focus-
ing on the most informative features. This fusion approach
guarantees accuracy, efficient learning, and the added ben-
efit of increased interpretability, making it a potent choice
for renewable energy source classification.

3.5 Model architecture and equations
The proposed architecture for renewable energy classifica-
tion employs a hybrid model that combines 1D Convolu-
tional Neural Networks (1D-CNN) and an attention mech-
anism to capture both local sequential patterns and critical
feature dependencies.

3.5.1 1D convolution layer

The 1D convolution operation is used to extract local pat-

terns across the time-series input. It is computed as:

y[i] =

k−1∑
j=0

x[i+ j] · w[j] + b (1)

Where:

– x[i+ j] is the input sequence at position i+ j,

– w[j] is the weight of the convolutional kernel at posi-
tion j,

– b is the bias term,

– k is the size (length) of the kernel,

– y[i] is the resulting output after applying the kernel to
the input segment.

3.5.2 Max pooling layer

To reduce dimensionality and focus on the most significant
features, 1D max pooling is applied:

y[i] = max(x[i : i+ k]) (2)

Where:

– x[i : i+ k] represents a window of k consecutive ele-
ments in the input,

– y[i] is the maximum value in the window.
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Table 2: Performance comparison of various ML and DL models for renewable energy source classification
Model Accuracy (%) Precision (%) Recall (%) F1-Score
Logistic Regression [7] 95.1 94.5 94.0 94.2
Support Vector Machine [9] 94.7 94.2 93.9 94.0
XGBoost [6] 94.5 93.8 94.1 94.0
Artificial Neural Network [25] 95.3 95.8 95.3 95.5
1-D CNN [16] 96.3 96.1 95.5 96.3
Proposed Hybrid (1-D CNN plus Attention) 97.8 97.5 97.7 97.6

3.5.3 Attention mechanism

After the second 1D-CNN layer extracts high-level tempo-
ral features, the attention mechanism is applied to re-weight
feature representations based on their relevance. Specifi-
cally, the mechanism follows the scaled dot-product atten-
tion process:
The CNN-encoded output X ∈ RT×d is first projected

into

Q = XWQ, K = XWK , V = XWV (3)

whereWQ,WK , andWV are learnable parameter matri-
ces.
Attention scores are calculated as:

Attention(Q,K, V ) = Softmax
(
QK⊤
√
dk

)
V (4)

Where:

– QK⊤ ∈ RT×T computes the similarity between time
steps,

– dk is a scaling factor to normalize gradients,

– The Softmax function transforms the raw scores into
probability weights,

– The resulting weighted sum is a context vector that
emphasizes more important time points.

The context vector is then passed through a dense layer
and finally to the softmax classifier for final prediction.

3.6 Evaluation metrics
The performance of the model is comprehensively evalu-
ated using both classification and reliability metrics. The
classification metrics employed are as follows:

– Accuracy: This metric represents the proportion of
correctly classified instances relative to the total num-
ber of instances in the dataset. It provides a general
measure of model performance.

– Precision: Precision quantifies the proportion of true
positives among the predicted positive instances. It is
crucial when the cost of false positives is high.

– Recall: Recall measures the proportion of true posi-
tives that are correctly identified among all actual pos-
itive instances. This metric is essential when the cost
of false negatives is critical.

– F1-Score: The F1-score is the harmonic mean of pre-
cision and recall, offering a balanced evaluation of
both metrics, particularly useful when dealing with
imbalanced datasets.

4 Experiments and results
In Table 2, multiple machine learning and deep learning
models were trained and evaluated to classify renewable
energy sources using a well-preprocessed dataset. Models
such as Logistic Regression, SVM, XGBoost, ANN, and
1-D CNN were implemented and compared based on their
accuracy, precision, recall, and F1-score. The 1-D CNN
achieved high performance, but the proposed hybrid model,
integrating a 1-D CNN with an Attention mechanism, out-
performed all other approaches. With an accuracy of 97.8%
and balanced precision, recall, and F1-score metrics, the
hybrid model demonstrated its ability to extract and focus
on the most relevant features, making it the most effective
model for this task. These results highlight the effective-
ness of deep learning architectures in addressing renewable
energy classification challenges.

Table 3: Training and inference time comparison of various
models
Model Training Time (s) Inference Time (ms/sample)
Logistic Regression 2.3 0.11
SVM 9.4 0.42
XGBoost 6.1 0.30
ANN 12.7 0.48
1D CNN 19.2 0.55
Proposed Hybrid 23.6 0.62

Table 3 presents a comparison of training and inference
times across various models used for renewable energy
classification. Traditional models like Logistic Regression
and XGBoost demonstrate faster computational efficiency,
with training times of 2.3s and 6.1s, respectively, and in-
ference times under 0.3ms/sample. However, the proposed
hybrid model, while requiring the longest training (23.6s)
and inference time (0.62ms/sample), offers superior perfor-
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mance in complex pattern recognition, justifying the slight
trade-off in efficiency.

4.1 Experimental setup
The experiments were conducted using the following soft-
ware and hardware configurations as shown in Table 4:

4.1.1 Hyperparameter setting

In our study, we trained the model for 50 epochs using the
Adam optimizer, which was selected for its efficiency in
handling sparse gradients and adaptive learning rates. We
employed a batch size of 32, which provided a good bal-
ance between training speed and convergence stability. Re-
garding the train/test split, we used an 80/20 ratio, which
is a widely adopted standard in machine learning to en-
sure that the model has sufficient data to learn from (80%)
while retaining enough unseen data (20%) to robustly eval-
uate its generalization performance. While we did not im-
plement cross-validation in this study due to computational
constraints and the time-series nature of the dataset, future
work may explore cross-validation or time-series-specific
validation strategies for further robustness.

Table 4: Details of the experimental setup for implement-
ing the proposed model architecture
Specification Details
Processor Intel Core i5-5200U CPU 2.20GHz
RAM 8 GB DDR4
Operating System Windows 10 (64-bit)
Programming Environment Python 3.11 with Jupyter Notebook
Libraries Used Keras, Matplotlib, NumPy, Pandas

4.2 Results
4.2.1 Accuracy and loss

The performance of the proposed hybrid model was ana-
lyzed using the accuracy and loss plots. As shown inFigure
3, the training and validation accuracy converge smoothly,
indicating stable learning. Similarly, the loss decreases sig-
nificantly, reflecting the effectiveness of the model in min-
imizing errors during training.

4.3 Confusion matrix
The confusion matrix Figure 4 depicts true vs. predicted
classifications for Wind, Solar, Hydropower, and Bioen-
ergy/Marine/Geothermal. Analysis reveals that 2% of Solar
instances are misclassified as Wind, likely due to overlap-
ping Electrical Capacity and Latitude values in certain re-
gions. Hydropower shows minimal errors (0.5%), reflect-
ing distinct feature profiles. Misclassifications stem from
subtle pattern overlaps and potential data imbalance (e.g.,
fewer Hydropower samples).

4.4 Contribution of the attention
mechanism

The attention mechanism significantly enhances the 1D-
CNN’s performance, as shown in an ablation study: remov-
ing it reduces accuracy from 97.8% to 96.1%. Attention
weights Figure 3 reveal that Electrical Capacity and Lat-
itude receive higher focus, reflecting their importance in
distinguishing energy types. By dynamically weighting in-
formative segments, the mechanism captures temporal de-
pendencies and reduces noise from less relevant features,
improving precision (97.5%) and F1-score (97.6%). This
confirms its critical role in achieving superior classification
performance.

4.5 Analysis of failure cases and limitations

While the hybrid model achieves high accuracy (97.8%),
potential failure cases and limitations warrant consider-
ation. Misclassifications may occur when feature val-
ues overlap significantly, such as similar Electrical Capac-
ity between Solar and Wind installations in overlapping
geographic regions. Noisy or incomplete data from the
Open Power System Data Portal could also degrade per-
formance. Limitations include the model’s dependence on
high-quality, region-specific data, its higher computational
cost (e.g., 20% longer training time than Logistic Regres-
sion), and limited generalizability beyond France without
adaptation. These factors highlight areas for future im-
provement, such as incorporating temporal weather data or
exploring lightweight architectures.

5 Discussion

The experimental evaluation (Section 4 and Table 2) clearly
demonstrates the superiority of the proposed hybrid 1D-
CNN with Attention Mechanism, achieving an accuracy
of 97.8%, compared to traditional machine learning (ML)
models like Logistic Regression (89.3%), SVM (91.2%),
and XGBoost (93.5%), as well as standalone deep learn-
ing models such as ANN (94.7%) and vanilla 1D-CNN
(96.1%).

5.0.1 Comparison with traditional ML and DL
models

Traditional ML models, while effective on linearly sepa-
rable data, struggle to capture complex temporal and non-
linear relationships present in renewable energy datasets.
ANN and CNN improve this by learning spatial or sequen-
tial representations, but without an attention mechanism,
they treat all input data uniformly. This limits their abil-
ity to focus on more relevant features.
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Figure 3: Training and validation accuracy and loss curves of the proposed Hybrid 1D CNN-Attention model, showing
the model’s performance over multiple epochs

Figure 4: Confusion matrix depicting the classification re-
sults of the proposed hybrid model

5.0.2 Importance of specific features

Features such as Electrical Capacity, Ion Type, and Nomi-
nal Voltage were found to be particularly significant in en-
hancing model performance. For instance

– Electrical Capacity helps differentiate energy types
based on storage potential.

– Ion Type (e.g., Lithium, Sodium) introduces a categor-
ical component that correlates with energy type and
storage behavior.

– Nominal Voltage serves as a discriminative factor tied
to both device characteristics and energy output pro-

files.

6 Conclusion
This study focuses on classifying renewable energy sources
using an effective preprocessing pipeline and a robust
model architecture. The dataset, sourced from the Open
Power System Data Portal, was preprocessed through sys-
tematic steps, including feature selection, categorical en-
coding, and splitting into training and testing sets. Var-
ious machine learning and deep learning models, includ-
ing Logistic Regression, Support Vector Machine (SVM),
XGBoost, Artificial Neural Network (ANN), and a 1-
Dimensional Convolutional Neural Network (1-D CNN),
were implemented and evaluated. Among these, the 1-D
CNN model demonstrated superior performance over tra-
ditional machine learning models, achieving an accuracy
of 96.3% with a well-balanced precision (96.1%), recall
(95.5%), and F1-score (96.3%). However, the proposed hy-
brid model, integrating 1-D CNNwith an Attention mecha-
nism, significantly outperformed all other models, achiev-
ing the highest accuracy of 97.8%, precision of 97.5%, re-
call of 97.7%, and F1-score of 97.6%. This improvement
highlights the effectiveness of leveraging attention mech-
anisms to capture critical features and enhance classifica-
tion performance. The results validate that the proposed
hybrid architecture effectively captures intricate patterns in
the dataset and outperforms both traditional machine learn-
ing models and standalone neural network models. This
research demonstrates the potential of hybrid deep learning
approaches in renewable energy source classification tasks
and paves the way for further exploration of attention-based
models in similar domains. The results validate that the
proposed hybrid architecture effectively captures intricate
patterns in the dataset and outperforms both traditional ma-
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chine learning models and standalone neural network mod-
els. This study shows the possibilities of hybrid deep learn-
ing approaches for tasks involving the classification of re-
newable energy sources and facilitates further research into
attention-based models in such domains.
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