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Software Transactional Memory (STM) provides a robust solution for addressing concurrency challenges 

in software systems. This paper explores the performance evaluation of nested and non-nested STM 

configurations using a machine learning-based framework. The dataset used for model training was 

generated through detailed heap profiling of nested and non-nested STM configurations, capturing 

memory allocation and usage patterns as key indicators of STM behaviour. The framework leverages 

profiling datasets to analyse STM operations through four machine learning models: Naive Bayes, 

Decision Tree, K-Nearest Neighbours (KNN), and Random Forest. The methodology includes data 

preprocessing, model training, and visualization using MATLAB R2020b, with a focus on 20 profiling 

metrics that encapsulate key STM operations. Computational experiments reveal that Naive Bayes, KNN, 

and Random Forest achieved 100% accuracy, precision, recall, and F1-score, while Decision Tree showed 

lower performance. These results demonstrate the potential of machine learning to evaluate STM 

behaviour through data-driven analysis. 

Povzetek: Predstavljeno je podatkovno ogrodje za upravljanje programsko transakcijskega pomnilnika in 

strojno učenje za ocenjevanje konkurenčnih konfiguracij. Iz profiliranja kupov izlušči dvajset metrik ter z 

modeli Naive Bayes, odločitvenim drevesom, KNN in naključnim gozdom razvršča ugnezdene in ne-

ugnezdene STM, z vizualizacijami, poročanjem rezultatov ter postopki za povečanje robustnosti analize.

 

1 Introduction 

This section discusses Software Transactional Memory 

(STM) as a solution for concurrency challenges, 

comparing the benefits and trade-offs of nested and non-

nested STM. This paper proposes a machine learning-

based framework to evaluate STM configurations and 

support future optimization. Lastly, the Introduction 

outlines the paper's structure, covering STM evolution, the 

proposed machine learning-based framework, 

experimental setup, results, conclusions, and future 

directions, ensuring a logical flow from concepts to 

insights. 

Software Transactional Memory (STM) is a well-

established technique for managing shared memory in 

parallel and distributed systems, offering a flexible 

alternative to traditional lock-based synchronization 

methods in concurrent programming. Unlike traditional 

lock-based synchronization mechanisms, STM provides a 

higher level of abstraction, ensuring the properties of 

atomicity, consistency, and isolation (ACI) for 

transactional operations. This abstraction not only 

simplifies the development process but also mitigates 

common concurrency issues such as deadlocks, race 

conditions, and priority inversion. By allowing 

transactions to proceed speculatively and resolving 

conflicts only when they occur, STM fosters improved 

performance and scalability in modern multicore and 

distributed environments. Among the various STM 

configurations, nested and non-nested STM have gained 

prominence due to their distinct features and capabilities. 

Nested STM introduces a hierarchical structure, allowing 

transactions to contain subtransactions. This structure 

offers fine-grained control over transactional operations, 

isolating conflicts at the subtransaction level to enhance 

concurrency. For instance, in scenarios where a parent 

transaction encounters a conflict, unaffected 

subtransactions can continue execution independently. 

This modularity and flexibility make nested STM 

particularly suitable for complex applications requiring 

high levels of concurrency and adaptability. However, 

these benefits come with trade-offs, including increased 

memory overhead and computational complexity, which 

can pose challenges in resource-constrained systems. In 

contrast, non-nested STM adopts a flat transaction 

structure, focusing on simplicity and lower overhead. By 

avoiding the hierarchical organization of transactions, 

non-nested STM reduces the computational burden 

associated with managing nested dependencies and 

conflicts. This simplicity translates to faster execution 

times and more efficient resource utilization, making it an 
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attractive choice for applications where performance and 

straightforward conflict resolution are critical. 

Nonetheless, the lack of hierarchical isolation in non-

nested STM can lead to limitations in concurrency 

management, especially in scenarios involving highly 

interdependent operations. Given the trade-offs inherent in 

these configurations, a systematic evaluation of their 

performance is crucial to guide their adoption in specific 

application domains. Key metrics such as memory usage, 

execution time, resource allocation efficiency, and 

concurrency levels serve as benchmarks for understanding 

their strengths and limitations. Traditional performance 

analysis methods often rely on manual profiling and ad-

hoc comparisons, which may not fully capture the intricate 

patterns and dependencies within STM systems. To 

address this gap, we propose a novel approach that 

leverages supervised machine learning techniques to 

analyse and compare nested and non-nested STM 

configurations. By employing a diverse set of classifiers, 

including Naive Bayes, Decision Trees, K-Nearest 

Neighbours (KNN), and Random Forests, we aim to 

classify STM configurations based on their performance 

profiles [1]. These classifiers, known for their robustness 

and interpretability, enable us to uncover patterns and 

insights within STM profiling datasets. Furthermore, we 

enhance the analysis through data augmentation 

techniques to ensure robust model training and 

visualization tools to provide intuitive representations of 

the results. The proposed methodology provides a 

structured framework for evaluating STM configurations, 

combining the strengths of machine learning with the rich 

information contained in profiling datasets. By identifying 

correlations between key performance metrics and STM 

configurations, this approach facilitates informed 

decision-making for optimizing concurrency and 

scalability in real-world applications. Additionally, the 

study demonstrates the potential of integrating machine 

learning into STM performance analysis, paving the way 

for advancements in concurrent programming practices. 

This paper presents a framework using machine learning 

to evaluate STM performance, focusing on the differences 

between nested and non-nested configurations to enhance 

scalability. This study is guided by the following research 

questions: Can machine learning models accurately 

classify and distinguish between nested and non-nested 

STM configurations based on profiling data? Among the 

evaluated models—Naive Bayes, Decision Tree, K-

Nearest Neighbours (KNN), and Random Forest—which 

demonstrate the best performance for STM profiling 

analysis? What insights into memory allocation patterns 

and STM behaviour can be derived from heap profiling 

data, and how do these insights inform model 

performance? Finally, how does the proposed ML-based 

framework compare to traditional STM analysis methods 

in terms of automation, scalability, and interpretability? 

Addressing these questions helps establish the 

effectiveness and practical value of the proposed approach. 

Section 2 traces the evolution of STM, compares nested 

and non-nested STM, and discusses profiling tools and 

machine learning for STM evaluation. Table 1 summarizes 

key STM design choices, comparing SOTA approaches 

and the proposed ML-based framework. Section 3 outlines 

the machine learning-based approach for analysing STM 

datasets using MATLAB [2], covering preprocessing, 

training, and evaluation. Section 4 presents the 

experimental setup for assessing the machine learning 

framework, ensuring reliability and reproducibility in 

STM analysis. Section 5 evaluates the performance of 

Naive Bayes, Decision Tree, KNN, and Random Forest 

models applied to STM profiling datasets, comparing them 

using key metrics like accuracy, precision, recall, and F1-

score. Section 6 evaluates the framework's effectiveness, 

acknowledges limitations, and outlines future directions. 

Section 7 summarizes the findings, emphasizing model 

selection for STM performance improvement. Section 8 

outlines future improvements for the ML-based STM 

framework, focusing on better data, model tuning, real-

world testing, and advanced learning techniques to 

enhance accuracy, scalability, and adaptability. 

 

2 Literature review 

This section outlines the evolution of Software 

Transactional Memory (STM) from HTM to HyTM, 

highlighting key design parameters like granularity, 

conflict detection, and contention management. It 

contrasts nested STM, which offers modularity but higher 

overhead, with non-nested STM, which prioritizes 

simplicity and efficiency. Profiling tools and emerging 

machine learning techniques are discussed as methods to 

evaluate STM performance. The section concludes by 

emphasizing STM's adaptability and the potential of 

machine learning to drive future innovations in 

concurrency management. To summarize STM design 

choices and innovations, Table 1 compares SOTA 

approaches and includes the proposed ML-based 

framework as a scalable evaluation method. 

STM has emerged as a key alternative to traditional 

synchronization mechanisms, providing flexibility and 

scalability in managing concurrency. Its evolution, ranging 

from basic hardware-based implementations to advanced 

software models, has paved the way for nested and non-

nested configurations, making it a versatile solution for 

diverse applications. Transactional Memory (TM) 

originated with Herlihy and Moss, who introduced 

Hardware Transactional Memory (HTM) [3]. HTM 

achieved atomic transaction execution at the hardware 

level but faced challenges like hardware dependency and 

limited scalability. To address these issues, Shavit and 

Touitou proposed Software Transactional Memory (STM) 

[4], which removed hardware constraints and offered 

greater adaptability. Later, Hybrid Transactional Memory 

(HyTM) [5] emerged, combining HTM's performance 

benefits with STM's flexibility, making it a hybrid solution 
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for varied workloads. Nested transactions, introduced by 

Moss [6], and extended by Moss and Hosking, originated 

in databases to manage complex operations. Nested 

Transactional Memory [7].enhances modularity by 

allowing modules to call others without transactional 

dependency concerns, improving software composition 

and integration. Understanding the design parameters is 

essential for developers to evaluate STM systems for 

specific application needs, ensuring improved 

performance and reliability. Differences in STM designs 

significantly affect the programming model and system 

performance [3] [8] [9] ,encompassing aspects such as 

transaction granularity, update policies, read and write 

policies, acquire strategies, conflict detection mechanisms, 

memory management, contention management 

techniques, isolation levels, and nesting models. 

Transaction Granularity, whether word-based or object-

based, defines the unit of conflict detection and affects 

accuracy and communication costs. Update Policies, such 

as direct or deferred updates, determine how transactions 

modify shared objects and influence memory usage and 

immediacy of changes. Read Policies, distinguishing 

between invisible and visible reads, guide access to shared 

resources and balance consistency with accessibility [10] 

.Acquire Strategies, categorized as eager or lazy, 

determine how transactions obtain exclusive access to 

memory, impacting concurrency and responsiveness [10] . 

Similarly, Write Policies, including write-through and 

buffered strategies, define how transactions handle 

commits and aborts, balancing simplicity with efficiency. 

Conflict Detection Mechanisms are categorized as early, 

late, or lazy, and they balance computational effort and 

wasted work to ensure overall consistency. Concurrency 

Control Methods include pessimistic approaches using 

blocking synchronization (e.g., locks to secure exclusive 

access to resources) and optimistic techniques relying on 

non-blocking synchronization (e.g., wait-free, lock-free, or 

obstruction-free methods) [11]. Effective Memory 

Management, encompassing allocation and deallocation 

strategies, safeguards against memory leaks and enhances 

system stability [10]. 

Contention Management Techniques, such as Timid [12], 

Polka [13], Greedy [14] and Serializer (as implemented in 

the RSTM projecti),decide when to abort transactions, 

adapting to varying contention levels and ensuring 

efficient conflict resolution [10] . Isolation Levels are 

critical for maintaining data consistency, but weak 

isolation, as seen in STM Haskell, may lead to anomalies 

when threads concurrently access shared .The Nesting 

Model [8] [15] introduces various methods for managing 

transactions, such as Flattened Nesting, implemented in 

DSTM [16] and RSTM [17];Linear Nesting with Closed 

Nested Transactions (CNTs) [18], used in McRT-STM [19] 

, NORec [20], Nested LogTM [21] [22] and Haskell STM 

[23] [24] [25] [26] [27] [28] [29]; Open Nested 

Transactions (ONTs) [30] [31] ,exemplified by ATOMOS 

[32] and Parallel Nesting, allowing multiple active 

transactions within a tree structure, as implemented in 

NeSTM [33], HParSTM [34], NePalTM [35], CWSTM 

[36], PNSTM [37] and SSTM [38].These approaches cater 

to diverse application requirements by balancing 

transaction granularity, isolation, and concurrency.  By 

addressing these interconnected design parameters, STM 

systems can be tailored to improve performance, 

scalability, and reliability, enabling developers to select 

and implement strategies best suited for their application-

specific needs. Each design choice contributes to a 

comprehensive framework that shapes the behaviour of 

STM systems, ensuring efficient transaction processing in 

modern concurrent environments. To consolidate the key 

design choices in STM systems, Table 1 presents a 

comparative summary of state-of-the-art (SOTA) 

approaches for Software Transactional Memory (STM) 

configurations, along with the proposed ML-based 

evaluation framework. 

 

Table 1: Comparison of SOTA approaches for software transactional memory (STM) configurations

Approach Strengths Weaknesses Key Results Examples / Systems Why Insufficient? 

Transaction 

Granularity 

High accuracy (word-

based); simplicity 

and lower cost 

(object-based). 

Word-based is costly 

in performance; 

object-based sacrifices 

precision. 

Object-based STM (e.g., 

STM Haskell) achieves a 

good balance of cost and 

accuracy. 

Word-based STM, 

Object-based STM 

(STM Haskell). 

Trade-off between 

accuracy and 

overhead, not 

suitable for all STM 

workloads. 

Update Policy Deferred update 

allows easy rollback 

and reduces overhead 

on shared memory. 

Direct update can 

cause cascading 

aborts; deferred 

update can increase 

commit latency. 

STM Haskell uses 

deferred update 

successfully for isolation 

and rollback. 

Direct Update, 

Deferred Update 

(STM Haskell). 

Some real-time 

systems cannot 

tolerate deferred 

commit delays. 

Read Policy 

[10] 

Invisible reads have 

low runtime 

overhead; visible 

reads provide 

Invisible reads risk 

late conflicts; visible 

reads require more 

synchronization 

(locks/reader lists). 

STM Haskell uses visible 

reads for better conflict 

resolution. 

Invisible Reads, 

Visible Reads (STM 

Haskell). 

No single optimal 

policy; trade-off 

depends on 

transaction patterns. 
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stronger consistency 

guarantees. 

Acquire 

Policy [10] 

Lazy acquire 

improves 

concurrency and 

works well with 

deferred updates. 

Eager acquire reduces 

aborts but increases 

locking contention. 

Lazy acquire preferred in 

many STMs for better 

buffering and flexibility. 

Eager Acquire, Lazy 

Acquire. 

Eager acquire harms 

scalability; lazy 

acquire not suitable 

when real-time 

guarantees are 

required. 

Write Policy Buffered write avoids 

unnecessary aborts 

and allows 

speculative 

execution. 

Write-through is 

simpler but increases 

abort cost and reduces 

concurrency. 

Buffered write used in 

most modern STM 

systems to improve 

commit efficiency. 

Write-through / 

Undo, Buffered 

Write. 

Buffered write 

increases commit 

complexity and 

memory overhead. 

Conflict 

Detection 

Early detection 

reduces wasted work; 

late detection 

improves parallelism 

and throughput. 

Early detection 

requires complex 

tracking; late detection 

risks wasted work and 

starvation. 

STM Haskell employs 

late/lazy detection to 

maximize parallelism. 

Early Conflict 

Detection, Late/Lazy 

Conflict Detection 

(STM Haskell). 

Late detection can 

lead to high abort 

rates in high-

contention 

environments. 

Concurrency 

Control [11] 

Optimistic control 

allows maximum 

parallelism; non-

blocking methods 

ensure progress under 

contention. 

Pessimistic control 

ensures consistency 

but blocks threads; 

optimistic requires 

effective contention 

manager. 

Many modern STM 

systems adopt optimistic 

control with non-blocking 

synchronization where 

possible. 

Pessimistic (2PL, 

Lock-based STM), 

Optimistic STM, 

Non-blocking STM 

(Wait-free, Lock-

free, Obstruction-

free). 

No single method 

works well for both 

low-contention and 

high-contention 

workloads; tuning is 

difficult. 

Memory 

Management 

[10] 

Efficient memory 

management prevents 

leaks and supports 

failure recovery. 

Complex to 

implement when 

supporting nested 

transactions or 

variable-sized objects. 

Memory-safe STM 

libraries (e.g., LibSTM) 

can effectively manage 

transactional memory. 

LibSTM, Haskell 

STM. 

High overhead in 

managing dynamic 

or complex object 

lifecycles in STM. 

Contention 

Management 

[10] 

Advanced policies 

like Greedy and 

Serializer can 

guarantee progress 

and improve fairness. 

Requires tuning and 

may not adapt well to 

workload changes. 

Greedy and Serializer 

policies outperform Timid 

and Polka in bounded 

commit scenarios. 

Timid [12], Polka 

[13], Greedy [14] 

Serializer (as 

implemented in the 

RSTM project 1), 

Static policies may 

not adapt well to 

dynamic transaction 

workloads. 

Isolation Weak isolation 

increases 

concurrency and 

performance. 

Risk of anomalies and 

subtle bugs if 

developers are 

unaware. 

STM Haskell’s weak 

isolation allows better 

scaling. 

Weak Isolation (STM 

Haskell). 

Harder to reason 

about correctness; 

non-transactional 

access can break 

atomicity. 

Proposed 

ML-Based 

Approach 

Automated, scalable, 

data-driven 

evaluation of STM 

configurations. 

Depends on dataset 

quality and model 

tuning. 

Computational 

experiments reveal that 

Naive Bayes, KNN, and 

Random Forest achieved 

100% across all metrics; 

Decision Tree 

underperformed. 

Proposed ML-based 

framework applied to 

STM profiling 

datasets using Naive 

Bayes, Decision 

Tree, KNN, and 

Random Forest. 

Currently focuses on 

classification; 

predictive 

optimization is 

future work. 

The comparative insights from Table 1 highlight that 

existing STM approaches involve significant trade-offs 

across performance, consistency, and scalability. This 

motivates the need for an automated and data-driven 

framework—such as the one proposed in this study—to 

systematically evaluate STM configurations. 

Nested STM introduces hierarchical structures where 

subtransactions can operate independently, offering 

modularity and fault isolation. While this enhances 

concurrency, it increases memory overhead and rollback 

complexity. In contrast, non-nested STM offers a flat 

structure with simpler conflict resolution, suitable for 

lightweight applications. The choice between nested and 

non-nested configurations depends on application 

complexity and performance requirements .STM systems 

are evaluated based on execution time, abort rates, 

memory usage, and throughput. Profiling tools, like 

Haskell's heap and time profilers, have provided insights 

into memory allocation and execution bottlenecks. While 
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nested STM systems excel in handling complex 

interdependencies, they require higher resources, unlike 

non-nested configurations, which prioritize efficiency. 

Machine learning has opened new avenues for STM 

analysis and optimization. Supervised learning models like 

decision trees and random forests predict conflicts and 

classify transactions, while reinforcement learning 

dynamically adjusts configurations in real time.  

However, integrating machine learning holistically into 

STM systems remains an area of ongoing research. 

Recent research has explored the application of machine 

learning to dynamically enhance STM performance. For 

example, Rughetti et al. [39] proposed a self-adjusting 

concurrency mechanism using ML to adapt thread 

parallelism in STM systems and further refined this 

approach in a later study on ML-based thread-parallelism 

regulation [40], showing notable throughput 

improvements under varying workloads . While these 

works demonstrate the value of ML for STM tuning, a 

comprehensive, profiling-metric–driven ML framework 

for systematic STM configuration evaluation remains 

limited, motivating the approach presented in this study. 

In conclusion, the literature highlights the evolution of 

Software Transactional Memory (STM) as a flexible and 

efficient concurrency management tool. The trade-offs 

between nested and non-nested STM, alongside critical 

design parameters, enable developers to tailor STM 

systems for diverse application needs. The integration of 

machine learning into STM evaluation holds significant 

promise, paving the way for future advancements in 

scalable and adaptive concurrency solutions. 

3 Proposed method 

This section outlines a machine learning-based approach 

to analyse STM profiling datasets for nested and non-

nested configurations, with a focus on model design, using 

MATLAB R2020b for all simulations and visualizations. 

The overall architecture of the proposed method, as 

depicted in Fig. 1, integrates data preprocessing, model 

training, evaluation, and visualization to provide a 

comprehensive solution for STM performance analysis. 

The methodology includes data preprocessing, model 

training, evaluation, and visualization. The system 

operates on 20 key profiling metrics and classifies data into 

two categories: nested STM (1) and non-nested STM (0). 

To improve robustness, data augmentation techniques such 

as Gaussian noise addition and dataset expansion are 

employed. Four supervised machine learning models 

(Naive Bayes, Decision Tree, KNN, and Random Forest) 

are used for classification. In this study, we used k = 3 for 

KNN and 50 trees for Random Forest based on common 

practice for small to medium-sized datasets, where such 

default values provide a reasonable trade-off between 

performance and complexity.  

 

 

 

Preliminary tuning experiments showed minimal variation 

in performance across different k and tree values, so fixed 

values were chosen to maintain reproducibility and reduce 

computational overhead. The model's performance is 

evaluated using accuracy, precision, recall, and F1 score. 

Visualization tools like bar plots and confusion matrix 

heatmaps are used to present results, and performance 

metrics are saved for further analysis. 

3.1 Model design 

The core of the proposed system is its model design, which 

integrates data processing, machine learning, and 

visualization in a seamless workflow. The design 

comprises the following key components: 

3.1.1 Dataset preparation 

• Metrics definition  

The system operates on datasets comprising 20 metrics 

(features) that encapsulate the behaviour of STM 

operations. These metrics, such as Total_IO, String, and 

TextEncoding, serve as indicators for profiling STM 

performance. 

• Class labels  

The dataset is classified into two categories: 

o Nested STM  

Represented as 1. 

o Non-nested STM  

  Represented as 0. 

3.1.2 Data preprocessing 

Data preprocessing involved parsing the heap profiling 

outputs to extract relevant numerical metrics that capture 

STM performance characteristics. The 20 selected features 

were chosen based on domain knowledge and their 

relevance to memory allocation patterns, transaction 

behaviour, and concurrency effects. No explicit 

dimensionality reduction techniques (e.g., PCA) were 

applied; rather, feature selection was guided by 

interpretability and practical significance. In addition, 

Gaussian noise augmentation was employed to enhance 

dataset variability, mitigate overfitting, and improve model 

generalization. 
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3.1.3 Data augmentation 

• To enhance the robustness of the system, the 

model employs data augmentation techniques: 

 

o     Gaussian noise addition  

Introduces slight variations to the data, ensuring better 

generalization. 

o      Extended dataset  

The original and augmented datasets are merged to 

increase the size and variability, reducing overfitting risks. 

 

3.1.4 Train-Test Split 

•  Partitioning  

A stratified 70/30 split was used to divide the dataset into 

training and test sets. Stratification ensured that both 

nested and non-nested STM classes were proportionally 

represented in both subsets, enhancing evaluation 

reliability. 

• Test set validation  

To prevent data leakage and preserve evaluation integrity, 

Gaussian noise augmentation was applied exclusively to 

the training set. The test set remained entirely unseen 

throughout model training. 

3.1.5 Supervised machine learning models 

The system evaluates and compares four machine learning 

classifiers: 

• Naive Bayes (Kernel Distribution)  

Probabilistic model leveraging the Bayes theorem. 

• Decision Tree  

Rule-based algorithm for classification. 

• K-Nearest Neighbors (KNN)  

Distance-based classification model. 

• Random Forest (TreeBagger)  

Ensemble model combining multiple decision trees. 

                          Each model undergoes the following 

process: 

• Training  

Using training data (XTrain and yTrain). 

• Prediction  

Generating predictions on test data (XTest). 

Theoretical time complexities of the models are as follows: 

Naive Bayes operates in O(n), KNN in O(n·d) for 

prediction, Decision Tree in O(n·log n), and Random 

Forest in O(m·n·log n), where n is the number of samples, 

d the number of features, and m the number of trees. These 

complexities are manageable for small datasets; however, 

future work will explore scalability on larger STM 

datasets. 

3.1.6 Evaluation metrics 

The model's performance is assessed using several 

metrics: 

•     Accuracy 

                          Proportion of correctly classified 

transactions.  

                       Accuracy =
TP + TN

TP + FP + FN + TN
 

 

•   Precision 

                          Proportion of true positives among 

predicted positives.  

                        Precision =
TP

TP+FP
 

 

•   Recall (Sensitivity) 

Proportion of actual positives correctly identified. 
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                           Recall =
TP

TP + FN
 

 

•   F1 Score  

                         Harmonic mean of Precision and Recall.  

                            F1 Score =
2XPrecisionXRecall

Precision+Recall
 

 

Where: 

• TP: True Positives 

• FP: False Positives 

• FN: False Negatives 

• TN: True Negatives 

These metrics ensure a balanced assessment of the model’s 

predictive power. 

3.1.7 Visualization and reporting 

•       Bar plot visualizations  

Graphical representations of evaluation metrics for all 

classifiers across the 20 features. 

•       Confusion Matrix Heatmaps          

Visualizes model performance for each classifier. 

•      Exported results 

o  Metrics and performance scores are saved 

in STM_Profiling_PerformanceMetrics.xlsx. 

o  Plots are stored as high-resolution TIFF 

images for documentation purposes. 

 In conclusion, the proposed machine learning-based 

approach offers a robust and scalable methodology for 

analysing STM profiling datasets. By leveraging various 

classifiers and data augmentation techniques, the system 

ensures accurate and reliable performance evaluation for 

both nested and non-nested STM configurations. The 

integration of MATLAB R2020b facilitates seamless 

simulations and visualizations, providing valuable insights 

into STM behaviour. This approach not only enhances the 

understanding of STM performance but also paves the way 

for optimizing concurrency and scalability in real-world 

applications, contributing to the advancement of software 

transactional memory systems. 

 

Figure 1: Architecture of the proposed method 

4 Performance evaluation 

This section outlines the experimental setup for assessing 

the proposed machine learning-based framework for 

STM profiling. It includes details on the hardware and 

software environment, dataset, machine learning models, 

and evaluation metrics used. The experiments aim to 

evaluate the performance of nested and non-nested STM 

configurations, ensuring reliability and reproducibility in 

the analysis process. 
 
4.1 Experimental setup 

The experiments were conducted in a controlled 

environment using MATLAB R2020b, ensuring 

consistency and reproducibility. The following subsections 

describe the key components of the experimental setup. 

 

4.1.1 Hardware and software environment 

All experiments were conducted on a system running 

Windows 11 Pro, equipped with an Intel Core i5-1035G1 

CPU @ 1.20 GHz, 8 GB DDR4 RAM, and a 512 GB Intel 

660p Series NVMe SSD (Model: SSDPEKNW512G8H). 

MATLAB R2020b with the Statistics and Machine 

Learning Toolbox was used for implementation, 

leveraging functions such as fitcnb, fitctree, fitcknn, and 

TreeBagger for model training, as well as confusionmat 

and cvpartition for evaluation and visualization. 
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4.1.2 Dataset 

• Source  

The STM profiling dataset used in this study was internally 

generated. Detailed heap profiling was performed on both 

nested and non-nested STM configurations implemented 

in Haskell. The profiling process captured memory 

allocation patterns and runtime behaviours using the 

runtime options +RTS -p -i0.0000000000000001 -hy, with 

visualization facilitated via hp2ps. The profiling outputs 

were systematically parsed to construct a dataset 

containing 20 key profiling metrics that reflect STM 

operation characteristics. The dataset is not publicly 

available due to its dependency on the specific 

experimental environment and codebase; however, the 

complete profiling methodology is provided to ensure 

reproducibility and transparency. 

 

• Features  

20 profiling metrics representing STM operations, such as 

Total_IO, String, and TextEncoding. 

• Classes  

Binary classification with labels: 

o       1 for Nested STM. 

o       0 for Non-Nested STM. 

• Augmentation  

Gaussian noise added to the dataset for improved 

variability and generalization. 

4.1.3 Models and parameters 

•     Machine learning models 

o Naive Bayes (Kernel Distribution). 

o Decision Tree. 

o K-Nearest Neighbors (KNN) with k=3  

o Random Forest (TreeBagger) with 50 

trees. 

• Evaluation metrics 

o Accuracy, Precision, Recall, and F1 Score. 

• Partitioning  

70% training, 30% testing using cvpartition. 

4.1.4 Implementation details 

•        Confusion matrix  

Used to derive True Positives (TP), False Positives (FP), 

False Negatives (FN), and True Negatives (TN) for each 

model. 

•    Visualization  

Bar plots for performance metrics saved as TIFF images 

for documentation. 

•         Error handling  

Try-catch blocks for robust model training and evaluation. 

•        Simulation tool 

MATLAB R2020b was used for all simulations, leveraging 

its robust computational and visualization capabilities. 

In conclusion, the performance evaluation provides a 

robust framework for assessing the effectiveness of the 

proposed machine learning-based approach in analysing 

STM profiling datasets. By utilizing a controlled 

experimental setup, various machine learning models, and 

key evaluation metrics, the study ensures a comprehensive 

understanding of the performance of nested and non-

nested STM configurations. The results from this 

evaluation serve as a solid foundation for further 

enhancements and improved performance in STM-based 

systems. 

 

5 Results and discussion 

This section evaluates the performance of four machine 

learning models—Naive Bayes, Decision Tree, KNN, and 

Random Forest—applied to STM profiling datasets, which 

are represented by 20 profiling metrics capturing key STM 

operations. The Performance Matrix presents a 

comparison of key evaluation metrics, including accuracy, 

precision, recall, and F1 score, based on these profiling 

metrics. This matrix provides insights into the 

effectiveness of each model in handling STM data. Key 

Observations further highlight the strengths of each model, 

considering their suitability for various application 

scenarios and their ability to evaluate STM operations. The 

results for each model, as summarized in the Performance 

Matrix (Table. 2), demonstrate both the advantages and 

limitations inherent in each approach. Visualizations of the 

evaluation metrics, including accuracy (Fig. 2), precision 

(Fig. 3), recall (Fig. 4), and F1 score (Fig. 5), offer a visual 

comparison that helps to further elucidate the models' 

performance. 
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5.1 Performance matrix 

The performance of four machine learning models—Naive 

Bayes, Decision Tree, KNN, and Random Forest—applied 

to STM profiling datasets was evaluated using multiple 

metrics, such as Accuracy, Precision, Recall, and F1-

Score. These metrics were calculated for various 

CV_Metrics. In this study, CV_Metrics refers to the set of 

profiling variables extracted from STM heap memory 

during runtime, serving as classification features in the 

machine learning models. These include Total_IO (total 

I/O operations), MVAR (mutable variables), 

TextEncoding, Handle, Buffer, and others—each 

representing specific memory structures and transactional 

behaviors within the STM system. Analysis of these 

metrics revealed significant efficiency advantages in 

nested STM configurations. For example, 48 bytes of 

memory usage in nested STM versus 96 bytes in non-

nested STM, indicating more efficient buffer 

encoding/decoding. Additionally, nested STM does not use 

memory for BufferList, whereas non-nested STM 

consumes 24 bytes. For Buffer, nested STM requires 168 

bytes, significantly less than the 280 bytes used by non-

nested STM. The Newline metric shows equal memory 

usage of 24 bytes for both configurations. The Maybe 

datatype shows more efficient handling in nested STM, 

using 40 bytes compared to 64 bytes in non-nested STM. 

The MUT_VAR_CLEAN metric reveals 128 bytes of 

usage in nested STM versus 208 bytes in non-nested STM, 

indicating better management of mutable variables. For 

Handle__, nested STM uses 136 bytes compared to 272 

bytes in non-nested STM, highlighting superior resource 

management in nested transactions. Non-nested STM 

consumes 48 bytes for the DEAD_WEAK metric, while 

nested STM does not use memory for this datatype, 

possibly avoiding certain weak references. Both 

configurations use 96 bytes for the WEAK metric, 

indicating identical memory usage for weak references. 

The ARR_WORDS metric shows a significant difference, 

with nested STM using 36,816 bytes compared to 61,360 

bytes for non-nested STM, reflecting superior efficiency in 

handling arrays. In Total, nested STM consumes 38,792 

bytes, while non-nested STM uses 63,080 bytes, 

highlighting a substantial reduction in the memory 

footprint for nested STM. 

The following section presents the detailed evaluation 

results, which are summarized in Table 2. This table 

provides a comparative analysis of the models' 

performance based on the four-evaluation metrics. It 

includes percentage values for Accuracy, Precision, 

Recall, and F1-Score for each model and metric 

combination. Additionally, confusion matrices for each 

model, shown in Fig. 6 (Naive Bayes), Fig. 7 (Decision 

Tree), Fig. 8 (KNN), and Fig. 9 (Random Forest), further 

highlight their predictive performance under real-time 

conditions, offering deeper insights into their capabilities. 

•          Naive Bayes  

 Achieved consistent results with 100% accuracy, 

precision, recall, and F1-Score across all metrics, 

demonstrating its reliability for the given dataset. 

•         Decision Tree  

Exhibited variability, achieving only 50% accuracy and 

precision while maintaining 100% recall, resulting in an 

F1-Score of 66.67%. The lower performance of the 

Decision Tree model can be attributed to its tendency to 

overfit small datasets with limited feature interactions. In 

this case, the heap profiling features exhibit complex 

dependencies that are better captured by ensemble 

methods (Random Forest) or distance-based models 

(KNN), while Decision Tree struggles with generalization. 

•         KNN and Random Forest  

Both models achieved perfect scores (100%) for all 

evaluation metrics, indicating their strong performance 

and suitability for this dataset. 

                     

Table 2: Performance matrix for machine learning models 

CV_Metric Model Accuracy Precision Recall F1_Score 

Total_IO Naive Bayes 100 100 100 100 

Total_IO Decision Tree 50 50 100 66.66666667 

Total_IO KNN 100 100 100 100 

Total_IO Random Forest 100 100 100 100 

String Naive Bayes 100 100 100 100 
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String Decision Tree 50 50 100 66.66666667 

String KNN 100 100 100 100 

String Random Forest 100 100 100 100 

TextEncoding Naive Bayes 100 100 100 100 

TextEncoding Decision Tree 50 50 100 66.66666667 

TextEncoding KNN 100 100 100 100 

TextEncoding Random Forest 100 100 100 100 

MVAR Naive Bayes 100 100 100 100 

MVAR Decision Tree 50 50 100 66.66666667 

MVAR KNN 100 100 100 100 

MVAR Random Forest 100 100 100 100 

Handle Naive Bayes 100 100 100 100 

Handle Decision Tree 50 50 100 66.66666667 

Handle KNN 100 100 100 100 

Handle Random Forest 100 100 100 100 

Word32 Naive Bayes 100 100 100 100 

Word32 Decision Tree 50 50 100 66.66666667 

Word32 KNN 100 100 100 100 

Word32 Random Forest 100 100 100 100 

PairSharp Naive Bayes 100 100 100 100 

PairSharp Decision Tree 50 50 100 66.66666667 

PairSharp KNN 100 100 100 100 

PairSharp Random Forest 100 100 100 100 

Pair Naive Bayes 100 100 100 100 
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Pair Decision Tree 50 50 100 66.66666667 

Pair KNN 100 100 100 100 

Pair Random Forest 100 100 100 100 

ForeignPtrContents Naive Bayes 100 100 100 100 

ForeignPtrContents Decision Tree 50 50 100 66.66666667 

ForeignPtrContents KNN 100 100 100 100 

ForeignPtrContents Random Forest 100 100 100 100 

BufferCodec Naive Bayes 100 100 100 100 

BufferCodec Decision Tree 50 50 100 66.66666667 

BufferCodec KNN 100 100 100 100 

BufferCodec Random Forest 100 100 100 100 

BufferList Naive Bayes 100 100 100 100 

BufferList Decision Tree 50 50 100 66.66666667 

BufferList KNN 100 100 100 100 

BufferList Random Forest 100 100 100 100 

Buffer Naive Bayes 100 100 100 100 

Buffer Decision Tree 50 50 100 66.66666667 

Buffer KNN 100 100 100 100 

Buffer Random Forest 100 100 100 100 

Newline Naive Bayes 100 100 100 100 

Newline Decision Tree 50 50 100 66.66666667 

Newline KNN 100 100 100 100 

Newline Random Forest 100 100 100 100 

Maybe Naive Bayes 100 100 100 100 
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Maybe Decision Tree 50 50 100 66.66666667 

Maybe KNN 100 100 100 100 

Maybe Random Forest 100 100 100 100 

MUT_VAR_CLEAN Naive Bayes 100 100 100 100 

MUT_VAR_CLEAN Decision Tree 50 50 100 66.66666667 

MUT_VAR_CLEAN KNN 100 100 100 100 

MUT_VAR_CLEAN Random Forest 100 100 100 100 

Handle__ Naive Bayes 100 100 100 100 

Handle__ Decision Tree 50 50 100 66.66666667 

Handle__ KNN 100 100 100 100 

Handle__ Random Forest 100 100 100 100 

DEAD_WEAK Naive Bayes 100 100 100 100 

DEAD_WEAK Decision Tree 50 50 100 66.66666667 

DEAD_WEAK KNN 100 100 100 100 

DEAD_WEAK Random Forest 100 100 100 100 

WEAK Naive Bayes 100 100 100 100 

WEAK Decision Tree 50 50 100 66.66666667 

WEAK KNN 100 100 100 100 

WEAK Random Forest 100 100 100 100 

ARR_WORDS Naive Bayes 100 100 100 100 

ARR_WORDS Decision Tree 50 50 100 66.66666667 

ARR_WORDS KNN 100 100 100 100 

ARR_WORDS Random Forest 100 100 100 100 

Total Naive Bayes 100 100 100 100 
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Total Decision Tree 50 50 100 66.66666667 

Total KNN 100 100 100 100 

Total Random Forest 100 100 100 100 

5.2 Key observations 

This section provides an overview of the key observations 

from the evaluation of machine learning models applied to 

STM profiling datasets. It highlights trends in model 

performance, generalization across various metrics, and 

comparative strengths. Additionally, it discusses the 

implications for model selection, emphasizing the 

importance of choosing the right model based on the 

specific requirements of the task and the characteristics of 

the dataset. 

• Model performance trends 

o  Naive Bayes, KNN, and Random Forest consistently 

outperformed the Decision Tree model across all metrics 

and CV_Metrics categories. 

o  The Decision Tree model struggled with accuracy and 

precision, possibly due to overfitting or sensitivity to the 

dataset's characteristics. 

• Generalization Across CV_Metrics 

o  Models such as KNN and Random Forest 

demonstrated robust generalization, achieving 100% 

performance for diverse CV_Metrics, including Buffer, 

Handle, ARR_WORDS, and MUT_VAR_CLEAN. 

o  Decision Tree's lower performance was uniform 

across all CV_Metrics, suggesting a limitation in its ability 

to handle the dataset's complexity. 

• Comparative strengths 

o  While Naive Bayes achieved perfect scores, it may 

have benefitted from the dataset's simplicity or lack of 

noise, which favoured its probabilistic approach. 

o Random Forest and KNN showed superior 

adaptability, making them ideal for applications requiring 

high accuracy and consistency. 

• Implications for model selection 

o   For scenarios demanding high precision and 

robustness, Random Forest and KNN are clear choices. 

o Naive Bayes may be preferred for lightweight or 

resource-constrained environments due to its simplicity 

and computational efficiency. 

o  Decision Tree may require optimization techniques, 

such as pruning or hyperparameter tuning, to improve its 

performance. 

In conclusion, the evaluation of machine learning models 

applied to STM profiling datasets reveals that Random 

Forest and KNN are the most reliable and robust models, 

consistently outperforming other models across all 

metrics. Naive Bayes, while efficient, may be more 

appropriate for simpler, resource-constrained 

environments. The Decision Tree model, although useful, 

exhibited limitations and highlighted the need for further 

refinement to handle complex datasets more effectively. 

This analysis demonstrates the importance of selecting the 

right machine learning model based on the dataset's 

characteristics and the specific application requirements. 

Future research could explore the effects of parameter 

tuning and dataset variations to further enhance the 

performance of these models for STM profiling tasks. 
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Figure 2: Accuracy comparison of machine learning models 

  

Figure 3: Precision comparison of machine learning models 
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Figure 4: Recall comparison of machine learning models 

Figure 5:  F1-Score comparison of machine learning models 
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Figure 6: Confusion Matrix for Naive Bayes 

  

Figure 7: Confusion Matrix for Decision Tree 
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Figure 8: Confusion Matrix for KNN 

 

Figure 9: Confusion Matrix for Random Forest 

 

6 Discussion 

This section discusses the effectiveness of the ML-based 

STM analysis framework, highlights high classification 

accuracy, and acknowledges limitations such as dataset 

size and lack of cross-validation. It also outlines the 

framework's scalability and potential for future 

optimization. 

Our machine learning-based framework provides a 

systematic and automated alternative to traditional STM 

performance analysis methods, which often focus on 

isolated parameters such as transaction granularity, update 

policy, or nesting models and rely heavily on manual 

profiling or limited benchmarks. In contrast, our approach 

leverages 20 profiling metrics derived from detailed heap 

profiling of nested and non-nested STM configurations. 
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This allows us to capture complex memory allocation 

patterns and runtime behaviour that are difficult to model 

with conventional approaches. The results demonstrate 

that Naive Bayes, KNN, and Random Forest models 

achieve 100% accuracy, precision, recall, and F1-score in 

classifying STM configurations—substantially improving 

upon manual or single-metric analyses. By using heap 

profiling data, our framework provides deeper insights into 

memory consumption and potential bottlenecks, which are 

critical factors in STM system performance and scalability. 

Moreover, the framework is highly scalable and can be 

applied across diverse STM configurations and workloads, 

reducing the time and effort required for performance 

analysis While the current work focuses on classification, 

the proposed framework provides a strong foundation for 

future predictive optimization and real-time adaptive STM 

tuning. However, several limitations must be 

acknowledged. The dataset used for training and 

evaluation is relatively small and synthetically augmented, 

which may restrict the model’s exposure to diverse and 

realistic STM workload scenarios. Consequently, the 

excellent performance observed may not fully generalize 

to broader STM environments. Additionally, the current 

study lacks cross-validation and statistical variance 

reporting, which are essential for assessing model 

robustness. Future research will address these limitations 

through larger, real-world datasets, live system profiling, 

and more rigorous statistical validation. 

7  Conclusion 

This section concludes the evaluation of machine learning 

models for STM systems, emphasizing model selection 

based on dataset needs, application requirements, and the 

importance of optimization for scalability and efficiency.     

This study presents a machine learning-based framework 

for the performance analysis of nested and non-nested 

Software Transactional Memory (STM) configurations. 

By leveraging models such as Naive Bayes, Decision Tree, 

K-Nearest Neighbours (KNN), and Random Forest, the 

research provides valuable insights into their strengths, 

limitations, and suitability for optimizing concurrency 

control and transaction management in STM. The 

evaluation reveals that machine learning models can play 

a pivotal role in addressing key STM challenges, including 

scalability, conflict resolution, and efficient resource 

utilization. Naive Bayes showed excellent classification 

performance; however, further work is needed to assess 

reliability in terms of robustness and stability across 

diverse STM workloads. Its ability to process datasets with 

minimal computational overhead positions it as an 

excellent choice for lightweight and real-time applications. 

However, the model's reliance on the assumption of 

feature independence may restrict its effectiveness in 

scenarios where feature interactions are highly complex. 

Random Forest, an ensemble-based learning method, also 

emerges as a top performer, excelling in accuracy and 

precision. Its robustness against overfitting and capacity to 

handle diverse datasets make it a highly adaptable choice 

for STM systems. The ensemble nature of Random Forest, 

which aggregates predictions from multiple decision trees, 

enhances its ability to generalize and maintain reliability. 

Despite its high performance, the computational demands 

of Random Forest may pose challenges for resource-

constrained environments, necessitating trade-offs 

between performance and computational efficiency. KNN, 

a non-parametric and instance-based model, exhibits 

significant adaptability in dynamic STM environments. Its 

simplicity and ability to capture the underlying data 

structure contribute to its strong performance in scenarios 

requiring quick adaptation to changes. However, the 

efficiency of KNN is contingent upon the choice of 

distance metrics and the number of neighbours, which 

require careful tuning to improve performance for larger 

datasets and real-time applications. In contrast, the 

Decision Tree model demonstrates notable limitations in 

handling datasets with high variance or intricate feature 

relationships. Its comparatively lower performance 

underscores the need for optimization through 

hyperparameter tuning or ensemble techniques like 

boosting to enhance its effectiveness. These findings 

emphasize that while Decision Tree can serve as a baseline 

model, it requires further refinement to compete with more 

advanced methods. 

In conclusion, this study underscores the potential of 

machine learning models in enhancing STM systems, with 

Naive Bayes and Random Forest excelling in accuracy and 

precision, KNN in adaptability, and Decision Tree 

requiring optimization. Model selection tailored to dataset 

and application needs, along with continuous refinement, 

is crucial for addressing STM challenges like scalability, 

conflict resolution, and resource efficiency, paving the 

way for future advancements.    

8   Future directions 

This section outlines future work to improve the ML-based 

STM framework through dataset growth, model tuning, 

real-world testing, statistical validation, and advanced 

learning techniques to enhance adaptability, accuracy, and 

practical deployment. 

 The findings of this study—specifically the high 

classification accuracy achieved using Naive Bayes, KNN, 

and Random Forest on STM profiling data—demonstrate 

that machine learning can effectively distinguish between 

nested and non-nested STM configurations. Building on 

this foundation, the following future directions propose 

ways to extend the current classification framework 

toward predictive optimization, real-time adaptation, and 

integration with advanced STM concurrency mechanisms. 

These directions aim to evolve the work from performance 

evaluation to practical, deployable tools for intelligent 

STM decision support in real-world environments. 
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8.1 Dataset expansion 

One of the critical aspects of improving machine learning 

models is training them on larger and more diverse 

datasets. Future studies can focus on curating datasets that 

mirror real-world STM workloads, including diverse 

transaction types, varying conflict scenarios, and workload 

intensities. Such datasets can enhance model 

generalization, ensuring their applicability across a 

broader range of STM applications and environments. 

8.2 Hyperparameter optimization 

The performance of machine learning models like K-

Nearest Neighbours (KNN) and Decision Trees is highly 

sensitive to hyperparameters such as the number of 

neighbors, tree depth, and splitting criteria. Systematic 

tuning of these parameters through grid search, random 

search, or advanced techniques like Bayesian optimization 

can significantly improve their accuracy and adaptability. 

This optimization will ensure that models perform 

efficiently in both static and dynamic STM environments. 

8.3 Algorithmic enhancements 

Traditional machine learning models, while effective, may 

face limitations in handling large-scale and highly 

dynamic STM systems. Future research can focus on 

developing hybrid models that combine traditional 

approaches with advanced techniques like deep learning. 

For instance, integrating neural networks with ensemble 

methods like Random Forest or using recurrent neural 

networks (RNNs) for capturing temporal dependencies in 

transactional data can enhance scalability and prediction 

accuracy. 

 

8.4 Real-world application testing 

While the current study provides valuable theoretical 

insights, testing these models in live STM environments 

remains a critical next step. Future research should focus 

on deploying these models in operational STM systems to 

evaluate their real-time impact on key performance metrics 

such as throughput, latency, and conflict resolution 

efficiency. This will also help uncover practical challenges 

including computational overhead in embedded or 

constrained environments, limited data availability for 

model retraining, and the ongoing need for adaptive model 

maintenance as transaction patterns evolve. 

8.5 Dynamic adaptation 

 STM systems often operate in dynamic environments 

where workloads and transaction patterns change rapidly. 

Future efforts can explore the development of machine 

learning models capable of self-adaptation. These models 

should automatically adjust to changing conditions 

without requiring manual retraining. Techniques like 

online learning and reinforcement learning can be 

particularly useful for this purpose. 

8.6 Ensemble and Meta-Learning 

approaches 
Ensemble methods, which combine multiple models to 

leverage their strengths, can offer improved accuracy and 

robustness. Future research can explore meta-learning 

strategies that enable models to learn from the strengths 

and weaknesses of different algorithms. Techniques such 

as boosting, bagging, and stacking can be employed to 

enhance predictive performance while maintaining 

resilience against noisy or incomplete data. 

8.7 Exploration of unsupervised and semi-

supervised learning 

Given the challenges of obtaining labelled transactional 

data, future work can investigate the potential of 

unsupervised and semi-supervised learning approaches. 

Clustering methods or representation learning could 

identify patterns in transactions and conflicts without 

requiring extensive labelling, thereby reducing the 

dependency on annotated datasets. 

8.8 Integration with advanced 

concurrency control protocols 

Machine learning models can be integrated with advanced 

STM concurrency control protocols to more informed lock 

management and conflict resolution. By predicting 

potential conflicts and dynamically adjusting transaction 

priorities, such integration can enhance the system’s 

overall efficiency and scalability. 

8.9 Rigorous statistical validation 

Future work will also focus on performing rigorous 

statistical validation of the proposed machine learning 

framework. This includes incorporating k-fold cross-

validation and reporting variance and confidence intervals 

for all key performance metrics to ensure statistical 

reliability, model robustness, and generalizability across 

different STM configurations and datasets. 

 
8.10 Feature importance analysis 

Future work will include a detailed feature importance 

analysis to identify which STM profiling metrics 

contribute most to classification accuracy. Techniques 

such as Random Forest’s Gini importance and 

permutation-based methods will be used to rank the impact 

of each feature. This analysis will improve interpretability, 

guide metric selection, and help in reducing model 

complexity while maintaining predictive performance. 

In conclusion, the proposed machine learning framework 

offers a promising foundation for STM analysis, with 

future directions aimed at enhancing its accuracy, 

adaptability, and real-world applicability. By expanding 

datasets, refining algorithms, incorporating advanced 
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learning techniques, and ensuring rigorous validation, this 

work paves the way for intelligent, data-driven STM 

systems that can scale with the complexity of modern 

transactional workloads. These efforts will move the 

framework beyond classification toward fully optimized 

and deployable STM performance solutions. 
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