
https://doi.org/10.31449/inf.v49i6.8359 Informatica 49 (2025) 313–334 313

Evaluating Nested and Non-Nested Software Transactional Memory

Using Machine Learning Classifiers

Meenu

Department of CSE, M. M. M. U. T., Gorakhpur, India

myself_meenu@yahoo.co.in

Keywords: machine learning, software transactional memory, performance analysis, transactional systems, parallel

computing, concurrency control

Received: February 20, 2025

Software Transactional Memory (STM) provides a robust solution for addressing concurrency challenges

in software systems. This paper explores the performance evaluation of nested and non-nested STM

configurations using a machine learning-based framework. The dataset used for model training was

generated through detailed heap profiling of nested and non-nested STM configurations, capturing

memory allocation and usage patterns as key indicators of STM behaviour. The framework leverages

profiling datasets to analyse STM operations through four machine learning models: Naive Bayes,

Decision Tree, K-Nearest Neighbours (KNN), and Random Forest. The methodology includes data

preprocessing, model training, and visualization using MATLAB R2020b, with a focus on 20 profiling

metrics that encapsulate key STM operations. Computational experiments reveal that Naive Bayes, KNN,

and Random Forest achieved 100% accuracy, precision, recall, and F1-score, while Decision Tree showed

lower performance. These results demonstrate the potential of machine learning to evaluate STM

behaviour through data-driven analysis.

Povzetek: Predstavljeno je podatkovno ogrodje za upravljanje programsko transakcijskega pomnilnika in

strojno učenje za ocenjevanje konkurenčnih konfiguracij. Iz profiliranja kupov izlušči dvajset metrik ter z

modeli Naive Bayes, odločitvenim drevesom, KNN in naključnim gozdom razvršča ugnezdene in ne-

ugnezdene STM, z vizualizacijami, poročanjem rezultatov ter postopki za povečanje robustnosti analize.

1 Introduction

This section discusses Software Transactional Memory

(STM) as a solution for concurrency challenges,

comparing the benefits and trade-offs of nested and non-

nested STM. This paper proposes a machine learning-

based framework to evaluate STM configurations and

support future optimization. Lastly, the Introduction

outlines the paper's structure, covering STM evolution, the

proposed machine learning-based framework,

experimental setup, results, conclusions, and future

directions, ensuring a logical flow from concepts to

insights.

Software Transactional Memory (STM) is a well-

established technique for managing shared memory in

parallel and distributed systems, offering a flexible

alternative to traditional lock-based synchronization

methods in concurrent programming. Unlike traditional

lock-based synchronization mechanisms, STM provides a

higher level of abstraction, ensuring the properties of

atomicity, consistency, and isolation (ACI) for

transactional operations. This abstraction not only

simplifies the development process but also mitigates

common concurrency issues such as deadlocks, race

conditions, and priority inversion. By allowing

transactions to proceed speculatively and resolving

conflicts only when they occur, STM fosters improved

performance and scalability in modern multicore and

distributed environments. Among the various STM

configurations, nested and non-nested STM have gained

prominence due to their distinct features and capabilities.

Nested STM introduces a hierarchical structure, allowing

transactions to contain subtransactions. This structure

offers fine-grained control over transactional operations,

isolating conflicts at the subtransaction level to enhance

concurrency. For instance, in scenarios where a parent

transaction encounters a conflict, unaffected

subtransactions can continue execution independently.

This modularity and flexibility make nested STM

particularly suitable for complex applications requiring

high levels of concurrency and adaptability. However,

these benefits come with trade-offs, including increased

memory overhead and computational complexity, which

can pose challenges in resource-constrained systems. In

contrast, non-nested STM adopts a flat transaction

structure, focusing on simplicity and lower overhead. By

avoiding the hierarchical organization of transactions,

non-nested STM reduces the computational burden

associated with managing nested dependencies and

conflicts. This simplicity translates to faster execution

times and more efficient resource utilization, making it an

mailto:myself_meenu@yahoo.co.in

314 Informatica 49 (2025) 313–334 Meenu

attractive choice for applications where performance and

straightforward conflict resolution are critical.

Nonetheless, the lack of hierarchical isolation in non-

nested STM can lead to limitations in concurrency

management, especially in scenarios involving highly

interdependent operations. Given the trade-offs inherent in

these configurations, a systematic evaluation of their

performance is crucial to guide their adoption in specific

application domains. Key metrics such as memory usage,

execution time, resource allocation efficiency, and

concurrency levels serve as benchmarks for understanding

their strengths and limitations. Traditional performance

analysis methods often rely on manual profiling and ad-

hoc comparisons, which may not fully capture the intricate

patterns and dependencies within STM systems. To

address this gap, we propose a novel approach that

leverages supervised machine learning techniques to

analyse and compare nested and non-nested STM

configurations. By employing a diverse set of classifiers,

including Naive Bayes, Decision Trees, K-Nearest

Neighbours (KNN), and Random Forests, we aim to

classify STM configurations based on their performance

profiles [1]. These classifiers, known for their robustness

and interpretability, enable us to uncover patterns and

insights within STM profiling datasets. Furthermore, we

enhance the analysis through data augmentation

techniques to ensure robust model training and

visualization tools to provide intuitive representations of

the results. The proposed methodology provides a

structured framework for evaluating STM configurations,

combining the strengths of machine learning with the rich

information contained in profiling datasets. By identifying

correlations between key performance metrics and STM

configurations, this approach facilitates informed

decision-making for optimizing concurrency and

scalability in real-world applications. Additionally, the

study demonstrates the potential of integrating machine

learning into STM performance analysis, paving the way

for advancements in concurrent programming practices.

This paper presents a framework using machine learning

to evaluate STM performance, focusing on the differences

between nested and non-nested configurations to enhance

scalability. This study is guided by the following research

questions: Can machine learning models accurately

classify and distinguish between nested and non-nested

STM configurations based on profiling data? Among the

evaluated models—Naive Bayes, Decision Tree, K-

Nearest Neighbours (KNN), and Random Forest—which

demonstrate the best performance for STM profiling

analysis? What insights into memory allocation patterns

and STM behaviour can be derived from heap profiling

data, and how do these insights inform model

performance? Finally, how does the proposed ML-based

framework compare to traditional STM analysis methods

in terms of automation, scalability, and interpretability?

Addressing these questions helps establish the

effectiveness and practical value of the proposed approach.

Section 2 traces the evolution of STM, compares nested

and non-nested STM, and discusses profiling tools and

machine learning for STM evaluation. Table 1 summarizes

key STM design choices, comparing SOTA approaches

and the proposed ML-based framework. Section 3 outlines

the machine learning-based approach for analysing STM

datasets using MATLAB [2], covering preprocessing,

training, and evaluation. Section 4 presents the

experimental setup for assessing the machine learning

framework, ensuring reliability and reproducibility in

STM analysis. Section 5 evaluates the performance of

Naive Bayes, Decision Tree, KNN, and Random Forest

models applied to STM profiling datasets, comparing them

using key metrics like accuracy, precision, recall, and F1-

score. Section 6 evaluates the framework's effectiveness,

acknowledges limitations, and outlines future directions.

Section 7 summarizes the findings, emphasizing model

selection for STM performance improvement. Section 8

outlines future improvements for the ML-based STM

framework, focusing on better data, model tuning, real-

world testing, and advanced learning techniques to

enhance accuracy, scalability, and adaptability.

2 Literature review

This section outlines the evolution of Software

Transactional Memory (STM) from HTM to HyTM,

highlighting key design parameters like granularity,

conflict detection, and contention management. It

contrasts nested STM, which offers modularity but higher

overhead, with non-nested STM, which prioritizes

simplicity and efficiency. Profiling tools and emerging

machine learning techniques are discussed as methods to

evaluate STM performance. The section concludes by

emphasizing STM's adaptability and the potential of

machine learning to drive future innovations in

concurrency management. To summarize STM design

choices and innovations, Table 1 compares SOTA

approaches and includes the proposed ML-based

framework as a scalable evaluation method.

STM has emerged as a key alternative to traditional

synchronization mechanisms, providing flexibility and

scalability in managing concurrency. Its evolution, ranging

from basic hardware-based implementations to advanced

software models, has paved the way for nested and non-

nested configurations, making it a versatile solution for

diverse applications. Transactional Memory (TM)

originated with Herlihy and Moss, who introduced

Hardware Transactional Memory (HTM) [3]. HTM

achieved atomic transaction execution at the hardware

level but faced challenges like hardware dependency and

limited scalability. To address these issues, Shavit and

Touitou proposed Software Transactional Memory (STM)

[4], which removed hardware constraints and offered

greater adaptability. Later, Hybrid Transactional Memory

(HyTM) [5] emerged, combining HTM's performance

benefits with STM's flexibility, making it a hybrid solution

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 315

for varied workloads. Nested transactions, introduced by

Moss [6], and extended by Moss and Hosking, originated

in databases to manage complex operations. Nested

Transactional Memory [7].enhances modularity by

allowing modules to call others without transactional

dependency concerns, improving software composition

and integration. Understanding the design parameters is

essential for developers to evaluate STM systems for

specific application needs, ensuring improved

performance and reliability. Differences in STM designs

significantly affect the programming model and system

performance [3] [8] [9] ,encompassing aspects such as

transaction granularity, update policies, read and write

policies, acquire strategies, conflict detection mechanisms,

memory management, contention management

techniques, isolation levels, and nesting models.

Transaction Granularity, whether word-based or object-

based, defines the unit of conflict detection and affects

accuracy and communication costs. Update Policies, such

as direct or deferred updates, determine how transactions

modify shared objects and influence memory usage and

immediacy of changes. Read Policies, distinguishing

between invisible and visible reads, guide access to shared

resources and balance consistency with accessibility [10]

.Acquire Strategies, categorized as eager or lazy,

determine how transactions obtain exclusive access to

memory, impacting concurrency and responsiveness [10] .

Similarly, Write Policies, including write-through and

buffered strategies, define how transactions handle

commits and aborts, balancing simplicity with efficiency.

Conflict Detection Mechanisms are categorized as early,

late, or lazy, and they balance computational effort and

wasted work to ensure overall consistency. Concurrency

Control Methods include pessimistic approaches using

blocking synchronization (e.g., locks to secure exclusive

access to resources) and optimistic techniques relying on

non-blocking synchronization (e.g., wait-free, lock-free, or

obstruction-free methods) [11]. Effective Memory

Management, encompassing allocation and deallocation

strategies, safeguards against memory leaks and enhances

system stability [10].

Contention Management Techniques, such as Timid [12],

Polka [13], Greedy [14] and Serializer (as implemented in

the RSTM projecti),decide when to abort transactions,

adapting to varying contention levels and ensuring

efficient conflict resolution [10] . Isolation Levels are

critical for maintaining data consistency, but weak

isolation, as seen in STM Haskell, may lead to anomalies

when threads concurrently access shared .The Nesting

Model [8] [15] introduces various methods for managing

transactions, such as Flattened Nesting, implemented in

DSTM [16] and RSTM [17];Linear Nesting with Closed

Nested Transactions (CNTs) [18], used in McRT-STM [19]

, NORec [20], Nested LogTM [21] [22] and Haskell STM

[23] [24] [25] [26] [27] [28] [29]; Open Nested

Transactions (ONTs) [30] [31] ,exemplified by ATOMOS

[32] and Parallel Nesting, allowing multiple active

transactions within a tree structure, as implemented in

NeSTM [33], HParSTM [34], NePalTM [35], CWSTM

[36], PNSTM [37] and SSTM [38].These approaches cater

to diverse application requirements by balancing

transaction granularity, isolation, and concurrency. By

addressing these interconnected design parameters, STM

systems can be tailored to improve performance,

scalability, and reliability, enabling developers to select

and implement strategies best suited for their application-

specific needs. Each design choice contributes to a

comprehensive framework that shapes the behaviour of

STM systems, ensuring efficient transaction processing in

modern concurrent environments. To consolidate the key

design choices in STM systems, Table 1 presents a

comparative summary of state-of-the-art (SOTA)

approaches for Software Transactional Memory (STM)

configurations, along with the proposed ML-based

evaluation framework.

Table 1: Comparison of SOTA approaches for software transactional memory (STM) configurations

Approach Strengths Weaknesses Key Results Examples / Systems Why Insufficient?

Transaction

Granularity

High accuracy (word-

based); simplicity

and lower cost

(object-based).

Word-based is costly

in performance;

object-based sacrifices

precision.

Object-based STM (e.g.,

STM Haskell) achieves a

good balance of cost and

accuracy.

Word-based STM,

Object-based STM

(STM Haskell).

Trade-off between

accuracy and

overhead, not

suitable for all STM

workloads.

Update Policy Deferred update

allows easy rollback

and reduces overhead

on shared memory.

Direct update can

cause cascading

aborts; deferred

update can increase

commit latency.

STM Haskell uses

deferred update

successfully for isolation

and rollback.

Direct Update,

Deferred Update

(STM Haskell).

Some real-time

systems cannot

tolerate deferred

commit delays.

Read Policy

[10]

Invisible reads have

low runtime

overhead; visible

reads provide

Invisible reads risk

late conflicts; visible

reads require more

synchronization

(locks/reader lists).

STM Haskell uses visible

reads for better conflict

resolution.

Invisible Reads,

Visible Reads (STM

Haskell).

No single optimal

policy; trade-off

depends on

transaction patterns.

316 Informatica 49 (2025) 313–334 Meenu

stronger consistency

guarantees.

Acquire

Policy [10]

Lazy acquire

improves

concurrency and

works well with

deferred updates.

Eager acquire reduces

aborts but increases

locking contention.

Lazy acquire preferred in

many STMs for better

buffering and flexibility.

Eager Acquire, Lazy

Acquire.

Eager acquire harms

scalability; lazy

acquire not suitable

when real-time

guarantees are

required.

Write Policy Buffered write avoids

unnecessary aborts

and allows

speculative

execution.

Write-through is

simpler but increases

abort cost and reduces

concurrency.

Buffered write used in

most modern STM

systems to improve

commit efficiency.

Write-through /

Undo, Buffered

Write.

Buffered write

increases commit

complexity and

memory overhead.

Conflict

Detection

Early detection

reduces wasted work;

late detection

improves parallelism

and throughput.

Early detection

requires complex

tracking; late detection

risks wasted work and

starvation.

STM Haskell employs

late/lazy detection to

maximize parallelism.

Early Conflict

Detection, Late/Lazy

Conflict Detection

(STM Haskell).

Late detection can

lead to high abort

rates in high-

contention

environments.

Concurrency

Control [11]

Optimistic control

allows maximum

parallelism; non-

blocking methods

ensure progress under

contention.

Pessimistic control

ensures consistency

but blocks threads;

optimistic requires

effective contention

manager.

Many modern STM

systems adopt optimistic

control with non-blocking

synchronization where

possible.

Pessimistic (2PL,

Lock-based STM),

Optimistic STM,

Non-blocking STM

(Wait-free, Lock-

free, Obstruction-

free).

No single method

works well for both

low-contention and

high-contention

workloads; tuning is

difficult.

Memory

Management

[10]

Efficient memory

management prevents

leaks and supports

failure recovery.

Complex to

implement when

supporting nested

transactions or

variable-sized objects.

Memory-safe STM

libraries (e.g., LibSTM)

can effectively manage

transactional memory.

LibSTM, Haskell

STM.

High overhead in

managing dynamic

or complex object

lifecycles in STM.

Contention

Management

[10]

Advanced policies

like Greedy and

Serializer can

guarantee progress

and improve fairness.

Requires tuning and

may not adapt well to

workload changes.

Greedy and Serializer

policies outperform Timid

and Polka in bounded

commit scenarios.

Timid [12], Polka

[13], Greedy [14]

Serializer (as

implemented in the

RSTM project 1),

Static policies may

not adapt well to

dynamic transaction

workloads.

Isolation Weak isolation

increases

concurrency and

performance.

Risk of anomalies and

subtle bugs if

developers are

unaware.

STM Haskell’s weak

isolation allows better

scaling.

Weak Isolation (STM

Haskell).

Harder to reason

about correctness;

non-transactional

access can break

atomicity.

Proposed

ML-Based

Approach

Automated, scalable,

data-driven

evaluation of STM

configurations.

Depends on dataset

quality and model

tuning.

Computational

experiments reveal that

Naive Bayes, KNN, and

Random Forest achieved

100% across all metrics;

Decision Tree

underperformed.

Proposed ML-based

framework applied to

STM profiling

datasets using Naive

Bayes, Decision

Tree, KNN, and

Random Forest.

Currently focuses on

classification;

predictive

optimization is

future work.

The comparative insights from Table 1 highlight that

existing STM approaches involve significant trade-offs

across performance, consistency, and scalability. This

motivates the need for an automated and data-driven

framework—such as the one proposed in this study—to

systematically evaluate STM configurations.

Nested STM introduces hierarchical structures where

subtransactions can operate independently, offering

modularity and fault isolation. While this enhances

concurrency, it increases memory overhead and rollback

complexity. In contrast, non-nested STM offers a flat

structure with simpler conflict resolution, suitable for

lightweight applications. The choice between nested and

non-nested configurations depends on application

complexity and performance requirements .STM systems

are evaluated based on execution time, abort rates,

memory usage, and throughput. Profiling tools, like

Haskell's heap and time profilers, have provided insights

into memory allocation and execution bottlenecks. While

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 317

nested STM systems excel in handling complex

interdependencies, they require higher resources, unlike

non-nested configurations, which prioritize efficiency.

Machine learning has opened new avenues for STM

analysis and optimization. Supervised learning models like

decision trees and random forests predict conflicts and

classify transactions, while reinforcement learning

dynamically adjusts configurations in real time.

However, integrating machine learning holistically into

STM systems remains an area of ongoing research.

Recent research has explored the application of machine

learning to dynamically enhance STM performance. For

example, Rughetti et al. [39] proposed a self-adjusting

concurrency mechanism using ML to adapt thread

parallelism in STM systems and further refined this

approach in a later study on ML-based thread-parallelism

regulation [40], showing notable throughput

improvements under varying workloads . While these

works demonstrate the value of ML for STM tuning, a

comprehensive, profiling-metric–driven ML framework

for systematic STM configuration evaluation remains

limited, motivating the approach presented in this study.

In conclusion, the literature highlights the evolution of

Software Transactional Memory (STM) as a flexible and

efficient concurrency management tool. The trade-offs

between nested and non-nested STM, alongside critical

design parameters, enable developers to tailor STM

systems for diverse application needs. The integration of

machine learning into STM evaluation holds significant

promise, paving the way for future advancements in

scalable and adaptive concurrency solutions.

3 Proposed method

This section outlines a machine learning-based approach

to analyse STM profiling datasets for nested and non-

nested configurations, with a focus on model design, using

MATLAB R2020b for all simulations and visualizations.

The overall architecture of the proposed method, as

depicted in Fig. 1, integrates data preprocessing, model

training, evaluation, and visualization to provide a

comprehensive solution for STM performance analysis.

The methodology includes data preprocessing, model

training, evaluation, and visualization. The system

operates on 20 key profiling metrics and classifies data into

two categories: nested STM (1) and non-nested STM (0).

To improve robustness, data augmentation techniques such

as Gaussian noise addition and dataset expansion are

employed. Four supervised machine learning models

(Naive Bayes, Decision Tree, KNN, and Random Forest)

are used for classification. In this study, we used k = 3 for

KNN and 50 trees for Random Forest based on common

practice for small to medium-sized datasets, where such

default values provide a reasonable trade-off between

performance and complexity.

Preliminary tuning experiments showed minimal variation

in performance across different k and tree values, so fixed

values were chosen to maintain reproducibility and reduce

computational overhead. The model's performance is

evaluated using accuracy, precision, recall, and F1 score.

Visualization tools like bar plots and confusion matrix

heatmaps are used to present results, and performance

metrics are saved for further analysis.

3.1 Model design

The core of the proposed system is its model design, which

integrates data processing, machine learning, and

visualization in a seamless workflow. The design

comprises the following key components:

3.1.1 Dataset preparation

• Metrics definition

The system operates on datasets comprising 20 metrics

(features) that encapsulate the behaviour of STM

operations. These metrics, such as Total_IO, String, and

TextEncoding, serve as indicators for profiling STM

performance.

• Class labels

The dataset is classified into two categories:

o Nested STM

Represented as 1.

o Non-nested STM

 Represented as 0.

3.1.2 Data preprocessing

Data preprocessing involved parsing the heap profiling

outputs to extract relevant numerical metrics that capture

STM performance characteristics. The 20 selected features

were chosen based on domain knowledge and their

relevance to memory allocation patterns, transaction

behaviour, and concurrency effects. No explicit

dimensionality reduction techniques (e.g., PCA) were

applied; rather, feature selection was guided by

interpretability and practical significance. In addition,

Gaussian noise augmentation was employed to enhance

dataset variability, mitigate overfitting, and improve model

generalization.

318 Informatica 49 (2025) 313–334 Meenu

3.1.3 Data augmentation

• To enhance the robustness of the system, the

model employs data augmentation techniques:

o Gaussian noise addition

Introduces slight variations to the data, ensuring better

generalization.

o Extended dataset

The original and augmented datasets are merged to

increase the size and variability, reducing overfitting risks.

3.1.4 Train-Test Split

• Partitioning

A stratified 70/30 split was used to divide the dataset into

training and test sets. Stratification ensured that both

nested and non-nested STM classes were proportionally

represented in both subsets, enhancing evaluation

reliability.

• Test set validation

To prevent data leakage and preserve evaluation integrity,

Gaussian noise augmentation was applied exclusively to

the training set. The test set remained entirely unseen

throughout model training.

3.1.5 Supervised machine learning models

The system evaluates and compares four machine learning

classifiers:

• Naive Bayes (Kernel Distribution)

Probabilistic model leveraging the Bayes theorem.

• Decision Tree

Rule-based algorithm for classification.

• K-Nearest Neighbors (KNN)

Distance-based classification model.

• Random Forest (TreeBagger)

Ensemble model combining multiple decision trees.

 Each model undergoes the following

process:

• Training

Using training data (XTrain and yTrain).

• Prediction

Generating predictions on test data (XTest).

Theoretical time complexities of the models are as follows:

Naive Bayes operates in O(n), KNN in O(n·d) for

prediction, Decision Tree in O(n·log n), and Random

Forest in O(m·n·log n), where n is the number of samples,

d the number of features, and m the number of trees. These

complexities are manageable for small datasets; however,

future work will explore scalability on larger STM

datasets.

3.1.6 Evaluation metrics

The model's performance is assessed using several

metrics:

• Accuracy

 Proportion of correctly classified

transactions.

 Accuracy =
TP + TN

TP + FP + FN + TN

• Precision

 Proportion of true positives among

predicted positives.

 Precision =
TP

TP+FP

• Recall (Sensitivity)

Proportion of actual positives correctly identified.

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 319

 Recall =
TP

TP + FN

• F1 Score

 Harmonic mean of Precision and Recall.

 F1 Score =
2XPrecisionXRecall

Precision+Recall

Where:

• TP: True Positives

• FP: False Positives

• FN: False Negatives

• TN: True Negatives

These metrics ensure a balanced assessment of the model’s

predictive power.

3.1.7 Visualization and reporting

• Bar plot visualizations

Graphical representations of evaluation metrics for all

classifiers across the 20 features.

• Confusion Matrix Heatmaps

Visualizes model performance for each classifier.

• Exported results

o Metrics and performance scores are saved

in STM_Profiling_PerformanceMetrics.xlsx.

o Plots are stored as high-resolution TIFF

images for documentation purposes.

 In conclusion, the proposed machine learning-based

approach offers a robust and scalable methodology for

analysing STM profiling datasets. By leveraging various

classifiers and data augmentation techniques, the system

ensures accurate and reliable performance evaluation for

both nested and non-nested STM configurations. The

integration of MATLAB R2020b facilitates seamless

simulations and visualizations, providing valuable insights

into STM behaviour. This approach not only enhances the

understanding of STM performance but also paves the way

for optimizing concurrency and scalability in real-world

applications, contributing to the advancement of software

transactional memory systems.

Figure 1: Architecture of the proposed method

4 Performance evaluation

This section outlines the experimental setup for assessing

the proposed machine learning-based framework for

STM profiling. It includes details on the hardware and

software environment, dataset, machine learning models,

and evaluation metrics used. The experiments aim to

evaluate the performance of nested and non-nested STM

configurations, ensuring reliability and reproducibility in

the analysis process.

4.1 Experimental setup

The experiments were conducted in a controlled

environment using MATLAB R2020b, ensuring

consistency and reproducibility. The following subsections

describe the key components of the experimental setup.

4.1.1 Hardware and software environment

All experiments were conducted on a system running

Windows 11 Pro, equipped with an Intel Core i5-1035G1

CPU @ 1.20 GHz, 8 GB DDR4 RAM, and a 512 GB Intel

660p Series NVMe SSD (Model: SSDPEKNW512G8H).

MATLAB R2020b with the Statistics and Machine

Learning Toolbox was used for implementation,

leveraging functions such as fitcnb, fitctree, fitcknn, and

TreeBagger for model training, as well as confusionmat

and cvpartition for evaluation and visualization.

320 Informatica 49 (2025) 313–334 Meenu

4.1.2 Dataset

• Source

The STM profiling dataset used in this study was internally

generated. Detailed heap profiling was performed on both

nested and non-nested STM configurations implemented

in Haskell. The profiling process captured memory

allocation patterns and runtime behaviours using the

runtime options +RTS -p -i0.0000000000000001 -hy, with

visualization facilitated via hp2ps. The profiling outputs

were systematically parsed to construct a dataset

containing 20 key profiling metrics that reflect STM

operation characteristics. The dataset is not publicly

available due to its dependency on the specific

experimental environment and codebase; however, the

complete profiling methodology is provided to ensure

reproducibility and transparency.

• Features

20 profiling metrics representing STM operations, such as

Total_IO, String, and TextEncoding.

• Classes

Binary classification with labels:

o 1 for Nested STM.

o 0 for Non-Nested STM.

• Augmentation

Gaussian noise added to the dataset for improved

variability and generalization.

4.1.3 Models and parameters

• Machine learning models

o Naive Bayes (Kernel Distribution).

o Decision Tree.

o K-Nearest Neighbors (KNN) with k=3

o Random Forest (TreeBagger) with 50

trees.

• Evaluation metrics

o Accuracy, Precision, Recall, and F1 Score.

• Partitioning

70% training, 30% testing using cvpartition.

4.1.4 Implementation details

• Confusion matrix

Used to derive True Positives (TP), False Positives (FP),

False Negatives (FN), and True Negatives (TN) for each

model.

• Visualization

Bar plots for performance metrics saved as TIFF images

for documentation.

• Error handling

Try-catch blocks for robust model training and evaluation.

• Simulation tool

MATLAB R2020b was used for all simulations, leveraging

its robust computational and visualization capabilities.

In conclusion, the performance evaluation provides a

robust framework for assessing the effectiveness of the

proposed machine learning-based approach in analysing

STM profiling datasets. By utilizing a controlled

experimental setup, various machine learning models, and

key evaluation metrics, the study ensures a comprehensive

understanding of the performance of nested and non-

nested STM configurations. The results from this

evaluation serve as a solid foundation for further

enhancements and improved performance in STM-based

systems.

5 Results and discussion

This section evaluates the performance of four machine

learning models—Naive Bayes, Decision Tree, KNN, and

Random Forest—applied to STM profiling datasets, which

are represented by 20 profiling metrics capturing key STM

operations. The Performance Matrix presents a

comparison of key evaluation metrics, including accuracy,

precision, recall, and F1 score, based on these profiling

metrics. This matrix provides insights into the

effectiveness of each model in handling STM data. Key

Observations further highlight the strengths of each model,

considering their suitability for various application

scenarios and their ability to evaluate STM operations. The

results for each model, as summarized in the Performance

Matrix (Table. 2), demonstrate both the advantages and

limitations inherent in each approach. Visualizations of the

evaluation metrics, including accuracy (Fig. 2), precision

(Fig. 3), recall (Fig. 4), and F1 score (Fig. 5), offer a visual

comparison that helps to further elucidate the models'

performance.

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 321

5.1 Performance matrix

The performance of four machine learning models—Naive

Bayes, Decision Tree, KNN, and Random Forest—applied

to STM profiling datasets was evaluated using multiple

metrics, such as Accuracy, Precision, Recall, and F1-

Score. These metrics were calculated for various

CV_Metrics. In this study, CV_Metrics refers to the set of

profiling variables extracted from STM heap memory

during runtime, serving as classification features in the

machine learning models. These include Total_IO (total

I/O operations), MVAR (mutable variables),

TextEncoding, Handle, Buffer, and others—each

representing specific memory structures and transactional

behaviors within the STM system. Analysis of these

metrics revealed significant efficiency advantages in

nested STM configurations. For example, 48 bytes of

memory usage in nested STM versus 96 bytes in non-

nested STM, indicating more efficient buffer

encoding/decoding. Additionally, nested STM does not use

memory for BufferList, whereas non-nested STM

consumes 24 bytes. For Buffer, nested STM requires 168

bytes, significantly less than the 280 bytes used by non-

nested STM. The Newline metric shows equal memory

usage of 24 bytes for both configurations. The Maybe

datatype shows more efficient handling in nested STM,

using 40 bytes compared to 64 bytes in non-nested STM.

The MUT_VAR_CLEAN metric reveals 128 bytes of

usage in nested STM versus 208 bytes in non-nested STM,

indicating better management of mutable variables. For

Handle__, nested STM uses 136 bytes compared to 272

bytes in non-nested STM, highlighting superior resource

management in nested transactions. Non-nested STM

consumes 48 bytes for the DEAD_WEAK metric, while

nested STM does not use memory for this datatype,

possibly avoiding certain weak references. Both

configurations use 96 bytes for the WEAK metric,

indicating identical memory usage for weak references.

The ARR_WORDS metric shows a significant difference,

with nested STM using 36,816 bytes compared to 61,360

bytes for non-nested STM, reflecting superior efficiency in

handling arrays. In Total, nested STM consumes 38,792

bytes, while non-nested STM uses 63,080 bytes,

highlighting a substantial reduction in the memory

footprint for nested STM.

The following section presents the detailed evaluation

results, which are summarized in Table 2. This table

provides a comparative analysis of the models'

performance based on the four-evaluation metrics. It

includes percentage values for Accuracy, Precision,

Recall, and F1-Score for each model and metric

combination. Additionally, confusion matrices for each

model, shown in Fig. 6 (Naive Bayes), Fig. 7 (Decision

Tree), Fig. 8 (KNN), and Fig. 9 (Random Forest), further

highlight their predictive performance under real-time

conditions, offering deeper insights into their capabilities.

• Naive Bayes

 Achieved consistent results with 100% accuracy,

precision, recall, and F1-Score across all metrics,

demonstrating its reliability for the given dataset.

• Decision Tree

Exhibited variability, achieving only 50% accuracy and

precision while maintaining 100% recall, resulting in an

F1-Score of 66.67%. The lower performance of the

Decision Tree model can be attributed to its tendency to

overfit small datasets with limited feature interactions. In

this case, the heap profiling features exhibit complex

dependencies that are better captured by ensemble

methods (Random Forest) or distance-based models

(KNN), while Decision Tree struggles with generalization.

• KNN and Random Forest

Both models achieved perfect scores (100%) for all

evaluation metrics, indicating their strong performance

and suitability for this dataset.

Table 2: Performance matrix for machine learning models

CV_Metric Model Accuracy Precision Recall F1_Score

Total_IO Naive Bayes 100 100 100 100

Total_IO Decision Tree 50 50 100 66.66666667

Total_IO KNN 100 100 100 100

Total_IO Random Forest 100 100 100 100

String Naive Bayes 100 100 100 100

322 Informatica 49 (2025) 313–334 Meenu

String Decision Tree 50 50 100 66.66666667

String KNN 100 100 100 100

String Random Forest 100 100 100 100

TextEncoding Naive Bayes 100 100 100 100

TextEncoding Decision Tree 50 50 100 66.66666667

TextEncoding KNN 100 100 100 100

TextEncoding Random Forest 100 100 100 100

MVAR Naive Bayes 100 100 100 100

MVAR Decision Tree 50 50 100 66.66666667

MVAR KNN 100 100 100 100

MVAR Random Forest 100 100 100 100

Handle Naive Bayes 100 100 100 100

Handle Decision Tree 50 50 100 66.66666667

Handle KNN 100 100 100 100

Handle Random Forest 100 100 100 100

Word32 Naive Bayes 100 100 100 100

Word32 Decision Tree 50 50 100 66.66666667

Word32 KNN 100 100 100 100

Word32 Random Forest 100 100 100 100

PairSharp Naive Bayes 100 100 100 100

PairSharp Decision Tree 50 50 100 66.66666667

PairSharp KNN 100 100 100 100

PairSharp Random Forest 100 100 100 100

Pair Naive Bayes 100 100 100 100

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 323

Pair Decision Tree 50 50 100 66.66666667

Pair KNN 100 100 100 100

Pair Random Forest 100 100 100 100

ForeignPtrContents Naive Bayes 100 100 100 100

ForeignPtrContents Decision Tree 50 50 100 66.66666667

ForeignPtrContents KNN 100 100 100 100

ForeignPtrContents Random Forest 100 100 100 100

BufferCodec Naive Bayes 100 100 100 100

BufferCodec Decision Tree 50 50 100 66.66666667

BufferCodec KNN 100 100 100 100

BufferCodec Random Forest 100 100 100 100

BufferList Naive Bayes 100 100 100 100

BufferList Decision Tree 50 50 100 66.66666667

BufferList KNN 100 100 100 100

BufferList Random Forest 100 100 100 100

Buffer Naive Bayes 100 100 100 100

Buffer Decision Tree 50 50 100 66.66666667

Buffer KNN 100 100 100 100

Buffer Random Forest 100 100 100 100

Newline Naive Bayes 100 100 100 100

Newline Decision Tree 50 50 100 66.66666667

Newline KNN 100 100 100 100

Newline Random Forest 100 100 100 100

Maybe Naive Bayes 100 100 100 100

324 Informatica 49 (2025) 313–334 Meenu

Maybe Decision Tree 50 50 100 66.66666667

Maybe KNN 100 100 100 100

Maybe Random Forest 100 100 100 100

MUT_VAR_CLEAN Naive Bayes 100 100 100 100

MUT_VAR_CLEAN Decision Tree 50 50 100 66.66666667

MUT_VAR_CLEAN KNN 100 100 100 100

MUT_VAR_CLEAN Random Forest 100 100 100 100

Handle__ Naive Bayes 100 100 100 100

Handle__ Decision Tree 50 50 100 66.66666667

Handle__ KNN 100 100 100 100

Handle__ Random Forest 100 100 100 100

DEAD_WEAK Naive Bayes 100 100 100 100

DEAD_WEAK Decision Tree 50 50 100 66.66666667

DEAD_WEAK KNN 100 100 100 100

DEAD_WEAK Random Forest 100 100 100 100

WEAK Naive Bayes 100 100 100 100

WEAK Decision Tree 50 50 100 66.66666667

WEAK KNN 100 100 100 100

WEAK Random Forest 100 100 100 100

ARR_WORDS Naive Bayes 100 100 100 100

ARR_WORDS Decision Tree 50 50 100 66.66666667

ARR_WORDS KNN 100 100 100 100

ARR_WORDS Random Forest 100 100 100 100

Total Naive Bayes 100 100 100 100

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 325

Total Decision Tree 50 50 100 66.66666667

Total KNN 100 100 100 100

Total Random Forest 100 100 100 100

5.2 Key observations

This section provides an overview of the key observations

from the evaluation of machine learning models applied to

STM profiling datasets. It highlights trends in model

performance, generalization across various metrics, and

comparative strengths. Additionally, it discusses the

implications for model selection, emphasizing the

importance of choosing the right model based on the

specific requirements of the task and the characteristics of

the dataset.

• Model performance trends

o Naive Bayes, KNN, and Random Forest consistently

outperformed the Decision Tree model across all metrics

and CV_Metrics categories.

o The Decision Tree model struggled with accuracy and

precision, possibly due to overfitting or sensitivity to the

dataset's characteristics.

• Generalization Across CV_Metrics

o Models such as KNN and Random Forest

demonstrated robust generalization, achieving 100%

performance for diverse CV_Metrics, including Buffer,

Handle, ARR_WORDS, and MUT_VAR_CLEAN.

o Decision Tree's lower performance was uniform

across all CV_Metrics, suggesting a limitation in its ability

to handle the dataset's complexity.

• Comparative strengths

o While Naive Bayes achieved perfect scores, it may

have benefitted from the dataset's simplicity or lack of

noise, which favoured its probabilistic approach.

o Random Forest and KNN showed superior

adaptability, making them ideal for applications requiring

high accuracy and consistency.

• Implications for model selection

o For scenarios demanding high precision and

robustness, Random Forest and KNN are clear choices.

o Naive Bayes may be preferred for lightweight or

resource-constrained environments due to its simplicity

and computational efficiency.

o Decision Tree may require optimization techniques,

such as pruning or hyperparameter tuning, to improve its

performance.

In conclusion, the evaluation of machine learning models

applied to STM profiling datasets reveals that Random

Forest and KNN are the most reliable and robust models,

consistently outperforming other models across all

metrics. Naive Bayes, while efficient, may be more

appropriate for simpler, resource-constrained

environments. The Decision Tree model, although useful,

exhibited limitations and highlighted the need for further

refinement to handle complex datasets more effectively.

This analysis demonstrates the importance of selecting the

right machine learning model based on the dataset's

characteristics and the specific application requirements.

Future research could explore the effects of parameter

tuning and dataset variations to further enhance the

performance of these models for STM profiling tasks.

326 Informatica 49 (2025) 313–334 Meenu

Figure 2: Accuracy comparison of machine learning models

Figure 3: Precision comparison of machine learning models

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 327

Figure 4: Recall comparison of machine learning models

Figure 5: F1-Score comparison of machine learning models

328 Informatica 49 (2025) 313–334 Meenu

Figure 6: Confusion Matrix for Naive Bayes

Figure 7: Confusion Matrix for Decision Tree

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 329

Figure 8: Confusion Matrix for KNN

Figure 9: Confusion Matrix for Random Forest

6 Discussion

This section discusses the effectiveness of the ML-based

STM analysis framework, highlights high classification

accuracy, and acknowledges limitations such as dataset

size and lack of cross-validation. It also outlines the

framework's scalability and potential for future

optimization.

Our machine learning-based framework provides a

systematic and automated alternative to traditional STM

performance analysis methods, which often focus on

isolated parameters such as transaction granularity, update

policy, or nesting models and rely heavily on manual

profiling or limited benchmarks. In contrast, our approach

leverages 20 profiling metrics derived from detailed heap

profiling of nested and non-nested STM configurations.

330 Informatica 49 (2025) 313–334 Meenu

This allows us to capture complex memory allocation

patterns and runtime behaviour that are difficult to model

with conventional approaches. The results demonstrate

that Naive Bayes, KNN, and Random Forest models

achieve 100% accuracy, precision, recall, and F1-score in

classifying STM configurations—substantially improving

upon manual or single-metric analyses. By using heap

profiling data, our framework provides deeper insights into

memory consumption and potential bottlenecks, which are

critical factors in STM system performance and scalability.

Moreover, the framework is highly scalable and can be

applied across diverse STM configurations and workloads,

reducing the time and effort required for performance

analysis While the current work focuses on classification,

the proposed framework provides a strong foundation for

future predictive optimization and real-time adaptive STM

tuning. However, several limitations must be

acknowledged. The dataset used for training and

evaluation is relatively small and synthetically augmented,

which may restrict the model’s exposure to diverse and

realistic STM workload scenarios. Consequently, the

excellent performance observed may not fully generalize

to broader STM environments. Additionally, the current

study lacks cross-validation and statistical variance

reporting, which are essential for assessing model

robustness. Future research will address these limitations

through larger, real-world datasets, live system profiling,

and more rigorous statistical validation.

7 Conclusion

This section concludes the evaluation of machine learning

models for STM systems, emphasizing model selection

based on dataset needs, application requirements, and the

importance of optimization for scalability and efficiency.

This study presents a machine learning-based framework

for the performance analysis of nested and non-nested

Software Transactional Memory (STM) configurations.

By leveraging models such as Naive Bayes, Decision Tree,

K-Nearest Neighbours (KNN), and Random Forest, the

research provides valuable insights into their strengths,

limitations, and suitability for optimizing concurrency

control and transaction management in STM. The

evaluation reveals that machine learning models can play

a pivotal role in addressing key STM challenges, including

scalability, conflict resolution, and efficient resource

utilization. Naive Bayes showed excellent classification

performance; however, further work is needed to assess

reliability in terms of robustness and stability across

diverse STM workloads. Its ability to process datasets with

minimal computational overhead positions it as an

excellent choice for lightweight and real-time applications.

However, the model's reliance on the assumption of

feature independence may restrict its effectiveness in

scenarios where feature interactions are highly complex.

Random Forest, an ensemble-based learning method, also

emerges as a top performer, excelling in accuracy and

precision. Its robustness against overfitting and capacity to

handle diverse datasets make it a highly adaptable choice

for STM systems. The ensemble nature of Random Forest,

which aggregates predictions from multiple decision trees,

enhances its ability to generalize and maintain reliability.

Despite its high performance, the computational demands

of Random Forest may pose challenges for resource-

constrained environments, necessitating trade-offs

between performance and computational efficiency. KNN,

a non-parametric and instance-based model, exhibits

significant adaptability in dynamic STM environments. Its

simplicity and ability to capture the underlying data

structure contribute to its strong performance in scenarios

requiring quick adaptation to changes. However, the

efficiency of KNN is contingent upon the choice of

distance metrics and the number of neighbours, which

require careful tuning to improve performance for larger

datasets and real-time applications. In contrast, the

Decision Tree model demonstrates notable limitations in

handling datasets with high variance or intricate feature

relationships. Its comparatively lower performance

underscores the need for optimization through

hyperparameter tuning or ensemble techniques like

boosting to enhance its effectiveness. These findings

emphasize that while Decision Tree can serve as a baseline

model, it requires further refinement to compete with more

advanced methods.

In conclusion, this study underscores the potential of

machine learning models in enhancing STM systems, with

Naive Bayes and Random Forest excelling in accuracy and

precision, KNN in adaptability, and Decision Tree

requiring optimization. Model selection tailored to dataset

and application needs, along with continuous refinement,

is crucial for addressing STM challenges like scalability,

conflict resolution, and resource efficiency, paving the

way for future advancements.

8 Future directions

This section outlines future work to improve the ML-based

STM framework through dataset growth, model tuning,

real-world testing, statistical validation, and advanced

learning techniques to enhance adaptability, accuracy, and

practical deployment.

 The findings of this study—specifically the high

classification accuracy achieved using Naive Bayes, KNN,

and Random Forest on STM profiling data—demonstrate

that machine learning can effectively distinguish between

nested and non-nested STM configurations. Building on

this foundation, the following future directions propose

ways to extend the current classification framework

toward predictive optimization, real-time adaptation, and

integration with advanced STM concurrency mechanisms.

These directions aim to evolve the work from performance

evaluation to practical, deployable tools for intelligent

STM decision support in real-world environments.

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 331

8.1 Dataset expansion

One of the critical aspects of improving machine learning

models is training them on larger and more diverse

datasets. Future studies can focus on curating datasets that

mirror real-world STM workloads, including diverse

transaction types, varying conflict scenarios, and workload

intensities. Such datasets can enhance model

generalization, ensuring their applicability across a

broader range of STM applications and environments.

8.2 Hyperparameter optimization

The performance of machine learning models like K-

Nearest Neighbours (KNN) and Decision Trees is highly

sensitive to hyperparameters such as the number of

neighbors, tree depth, and splitting criteria. Systematic

tuning of these parameters through grid search, random

search, or advanced techniques like Bayesian optimization

can significantly improve their accuracy and adaptability.

This optimization will ensure that models perform

efficiently in both static and dynamic STM environments.

8.3 Algorithmic enhancements

Traditional machine learning models, while effective, may

face limitations in handling large-scale and highly

dynamic STM systems. Future research can focus on

developing hybrid models that combine traditional

approaches with advanced techniques like deep learning.

For instance, integrating neural networks with ensemble

methods like Random Forest or using recurrent neural

networks (RNNs) for capturing temporal dependencies in

transactional data can enhance scalability and prediction

accuracy.

8.4 Real-world application testing

While the current study provides valuable theoretical

insights, testing these models in live STM environments

remains a critical next step. Future research should focus

on deploying these models in operational STM systems to

evaluate their real-time impact on key performance metrics

such as throughput, latency, and conflict resolution

efficiency. This will also help uncover practical challenges

including computational overhead in embedded or

constrained environments, limited data availability for

model retraining, and the ongoing need for adaptive model

maintenance as transaction patterns evolve.

8.5 Dynamic adaptation

 STM systems often operate in dynamic environments

where workloads and transaction patterns change rapidly.

Future efforts can explore the development of machine

learning models capable of self-adaptation. These models

should automatically adjust to changing conditions

without requiring manual retraining. Techniques like

online learning and reinforcement learning can be

particularly useful for this purpose.

8.6 Ensemble and Meta-Learning

approaches
Ensemble methods, which combine multiple models to

leverage their strengths, can offer improved accuracy and

robustness. Future research can explore meta-learning

strategies that enable models to learn from the strengths

and weaknesses of different algorithms. Techniques such

as boosting, bagging, and stacking can be employed to

enhance predictive performance while maintaining

resilience against noisy or incomplete data.

8.7 Exploration of unsupervised and semi-

supervised learning

Given the challenges of obtaining labelled transactional

data, future work can investigate the potential of

unsupervised and semi-supervised learning approaches.

Clustering methods or representation learning could

identify patterns in transactions and conflicts without

requiring extensive labelling, thereby reducing the

dependency on annotated datasets.

8.8 Integration with advanced

concurrency control protocols

Machine learning models can be integrated with advanced

STM concurrency control protocols to more informed lock

management and conflict resolution. By predicting

potential conflicts and dynamically adjusting transaction

priorities, such integration can enhance the system’s

overall efficiency and scalability.

8.9 Rigorous statistical validation

Future work will also focus on performing rigorous

statistical validation of the proposed machine learning

framework. This includes incorporating k-fold cross-

validation and reporting variance and confidence intervals

for all key performance metrics to ensure statistical

reliability, model robustness, and generalizability across

different STM configurations and datasets.

8.10 Feature importance analysis

Future work will include a detailed feature importance

analysis to identify which STM profiling metrics

contribute most to classification accuracy. Techniques

such as Random Forest’s Gini importance and

permutation-based methods will be used to rank the impact

of each feature. This analysis will improve interpretability,

guide metric selection, and help in reducing model

complexity while maintaining predictive performance.

In conclusion, the proposed machine learning framework

offers a promising foundation for STM analysis, with

future directions aimed at enhancing its accuracy,

adaptability, and real-world applicability. By expanding

datasets, refining algorithms, incorporating advanced

332 Informatica 49 (2025) 313–334 Meenu

learning techniques, and ensuring rigorous validation, this

work paves the way for intelligent, data-driven STM

systems that can scale with the complexity of modern

transactional workloads. These efforts will move the

framework beyond classification toward fully optimized

and deployable STM performance solutions.

References

[1] Q. &. Z. J. Li, “A Comparative Analysis of Extreme

Gradient Boosting, Decision Tree, Support Vector

Machines, and Random Forest Algorithm in Data

Analysis of College Students' Psychological

Health,” Informatica (Slovenia), vol. 49, 2025.

https://doi.org/10.31449/inf.v49i15.7004.

[2] I. a. P. O. Awoyelu, “Mathlab Implementation of

Quantum Computation in Searching an

Unstructured Database,” Informatica (Slovenia),

vol. 36, no. 3, pp. 249-254, 2012.

https://www.researchgate.net/publication/2920164

88.

[3] M. H. a. J. E. B. Moss, “Transactional memory:

architectural support for lock-free data structures,”

in Proceedings of the 20th annual international

symposium on Computer architecture (ISCA '93).,

May 1993.https://doi.org/10.1145/165123.165164.

[4] N. &. T. D. Shavit, “Software transactional

memory,” in Proceedings of the 14th Annual ACM

Symposium on Principles of

DistributedComputing, Ottawa, Can,

1995.https://doi.org/10.1145/224964.224987.

[5] A. F. Y. L. V. L. M. M. D. N. Peter Damron, “Hybrid

transactional memory,” in Proceedings of the 12th

ACM International Conference on Architectural

Support for Programming Languages and

Operating Systems, ASPLOS 2006, San Jose, CA,

USA, October 21-25,

2006.https://doi.org/10.1145/1168857.1168900.

[6] J. E. B. Moss, “Nested Transactions: An Approach

to Reliable Distributed Computing,” Ph.D. Thesis,

Technical Report MIT/LCS/TR-260, MIT

Laboratory for Computer Science, Cambridge,

MA, April

1981.https://publications.csail.mit.edu/lcs/pubs/pd

f/MIT-LCS-TR-260.pdf.

[7] A. L. H. J. Eliot B. Moss, “Nested transactional

memory: Model and architecture sketches,”

Science of Computer Programming, vol. 63, no. 2,

pp. 186-201,

2006.https://doi.org/10.1016/j.scico.2006.05.010.

[8] N. C. J. Diegues, “Review of nesting in

transactional memory,” Tech. rep., Technical

Report RT/1/2012, Instituto Superior

Técnico/INESC-ID,

2012.https://scholar.tecnico.ulisboa.pt/records/14a

edc27-91a7-48ec-8b8b-ff750b7934c6.

[9] G. A. Asi, “Performance Tradeoffs in Software

Transactional Memory,” Master Thesis Computer

Science, School of Computing Blekinge Institute of

Technology, No: MCS-2010-28, Sweden, May

2010.https://www.diva-

portal.org/smash/get/diva2:833477/FULLTEXT01

.pdf.

[10] S. Classen, “LibSTM: A fast and flexible STM

Library,” Master's Thesis, Laboratory for Software

Technology, Swiss Federal Institute of Technology,

ETH Zurich, Feb, 2008. https://library.ethz.ch.

[11] D. I. a. M. Raynal, “A Lock-Based STM Protocol

That Satisfies Opacity and Progressiveness,” in

Proceedings of the 12th International Conference

on Principles of Distributed Systems (OPODIS'08,

2008.https://doi.org/10.1007/978-3-540-92221-

6_16.

[12] W. N. S. I. a. M. L. Scott, “Contention Management

in Dynamic Software Transactional Memory,” in

Proceedings of the ACM PODC Workshop on

Concurrency and Synchronization in Java

Programs, Canada, July

2004.https://www.cs.rochester.edu/u/scott/papers/2

004_CSJP_contention_mgmt.pdf.

[13] I. N. S. a. M. L. S. y, “Advanced contention

management for dynamic software transactional

memory,” in Proceedings of the twenty-fourth

annual ACM symposium on Principles of

distributed computing, Las Vegas, NV, USA,

2005.https://doi.org/10.1145/1073814.1073861.

[14] e. a. R. Guerraoui, “Toward a theory of

transactional contention managers,” in Proceedings

of the twenty-fourth annual ACM symposium on

Principles of distributed computing, Las Vegas, NV,

USA,

2005.https://doi.org/10.1145/1073814.1073863.

[15] T. H. a. S. Stipic, “Abstract nested transactions,” in

Second ACM SIGPLAN Workshop on

Transactional Computing,

2007.https://www.cs.rochester.edu/meetings/TRA

NSACT07/papers/harris.pdf.

[16] M. &. L. V. &. M. M. &. S. W. Herlihy, “Software

Transactional Memory for Dynamic-Sized Data

Structures,” in Proceedings of the Annual ACM

Symposium on Principles of Distributed

Computing,

2003.https://doi.org/10.1145/872035.872048.

[17] M. S. C. H. A. A. D. E. W. S. I. a. M. S. V. Marathe,

“Lowering the overhead of Software Transactional

Memory,” in 1st ACM SIGPLAN Workshop on

Evaluating Nested and Non-Nested Software Transactional Memory… Informatica 49 (2025) 313–334 333

Transactional Computing (TRANSACT '06),

2006.https://www.researchgate.net/publication/244

434378.

[18] B. R. a. M. M. S. Alexandru Turcu, “On closed

nesting in distributed transactional memory,” in

Seventh ACM SIGPLAN workshop on

Transactional Computing,

2012.https://transact2012.cse.lehigh.edu/papers/tur

cu.pdf.

[19] A.-R. A.-T. R. H. C. C. M. a. B. H. B. Saha, “McRT-

STM: a high-performance Software Transactional

Memory system for a multi-core runtime,” in

SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP'06),

2006.https://doi.org/10.1145/1122971.1123001.

[20] M. S. a. M. S. L. Dalessandro, “NOrec:

Streamlining STM by abolishing ownership

records,” in Proceedings of the 15th ACM

SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP '10),

2010.https://doi.org/10.1145/1693453.1693464.

[21] J. B. M. M. M. H. a. D. W. K. Moore, “LogTM: log-

based transactional memory,” in Proceedings of the

12th High-Performance Computer Architecture

International Symposium (HPCA '06),

2006.https://doi.org/10.1109/HPCA.2006.1598134

.

[22] J. B. K. E. M. L. Y. M. D. H. B. L. M. M. S. a. D.

M. J. Moravan, “Supporting Nested Transactional

Memory in LogTM,” in 12th International

Conference on Architectural Support for

Programming Languages and Operating Systems in

SIGPLAN Notices (Proceedings of the 2006

ASPLOS Conference),

2006.https://doi.org/10.1145/1168857.1168902.

[23] R. C. Ammlan Ghosh and Haskell, Implementing

Software Transactional Memory using STM, vol.

396, Advanced Computing and Systems for

Security, Springer AISC,

2016.https://doi.org/10.1007/978-81-322-2653-

6_16, pp. 235-248.

[24] M. R. Y. a. M. F. Le, “Revisiting software

transactional memory in Haskell,” ACM SIGPLAN

Notices, vol. 51, no. 12, pp. 105-113,

2016.https://doi.org/10.1145/3241625.2976020.

[25] A. Du Bois, “An Implementation of Composable

Memory Transactions in Haskell,” in Software

Composition, SC 2011, Lecture Notes in Computer

Science, Springer, Berlin, Heidelberg.,

2011.https://doi.org/10.1007/978-3-642-22045-

6_3.

[26] A. H. T. M. S. J. S. S. S. Discolo, “Lock Free Data

Structures Using STM in Haskell,” in Functional

and Logic Programming, FLOPS,

2006.https://doi.org/10.1007/11737414_6.

[27] M. L. V. &. M. M. Herlihy, “A flexible framework

for implementing software transactional memory,”

ACM SIGPLAN Notices, vol. 41, no. 10, pp. 253-

262,

2006.https://doi.org/10.1145/1167515.1167495.

[28] S. M. S. P. J. a. M. H. T. Harris, “Composable

memory transactions,” in Proceedings of the Tenth

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP ’05,

Chicago, IL, USA,

2005.https://doi.org/10.1145/1065944.1065952.

[29] A. G. a. S. F. S. Peyton Jones, “Concurrent

Haskell,” in 23rd ACM Symposium on Principles

of Programming Languages (POPL’96),

1996.https://doi.org/10.1145/237721.237794.

[30] A. T. a. B. Ravindran, “On open nesting in

distributed transactional memory,” in 5th Annual

International Systems and Storage Conference

(SYSTOR) ’12,

2012.https://doi.org/10.1145/2367589.2367601.

[31] V. S. M. A.-R. A.-T. A. L. H. R. L. H. J. E. B. M. S.

a. T. S. Y. Ni, “Open nesting in software

transactional memory,” in PPoPP ’07: Proceedings

of the 12th ACM SIGPLAN symposium on

Principles and Practice of Parallel Programming,

ACM Press, New York, NY, USA,

2007.https://doi.org/10.1145/1229428.1229442.

[32] A. M. H. C. J. C. C. M. C. K. a. K. O. B. Carlstrom,

“The ATOMOS Transactional Programming

Language,” in Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and

Implementation (PLDI'06),

2006.https://doi.org/10.1145/1133981.1133983.

[33] N. B. C. K. a. K. O. W. Baek, “Implementing and

evaluating nested parallel transactions in software

transactional memory,” in Proceedings of the 22nd

ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA’10, Thira, Santorini,

Greece,

2010.https://doi.org/10.1145/1810479.1810528.

[34] R. K. a. K. Vidyasankar, “HParSTM: A Hierarchy-

based STM Protocol for Supporting Nested

Parallelism,” in 6th ACM SIGPLAN Workshop on

Transactional Computing (TRANSACT '11),

2011.https://sss.cs.purdue.edu/projects/transact11/

papers/Kumar.pdf.

[35] A. W. A.-R. A.-T. T. S. X. T. a. R. N. H. Volos,

“NePaLTM: Design and Implementation of Nested

334 Informatica 49 (2025) 313–334 Meenu

Parallelism for Transactional Memory Systems,” in

Proceedings of the 23rd European Conference on

Object-Oriented Programming (ECOOP '09),

2009.https://doi.org/10.1007/978-3-642-03013-

0_7.

[36] J. T. F. a. J. S. K. Agrawal, “Nested parallelism in

transactional memory,” in Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP '08),

2008.https://doi.org/10.1145/1345206.1345232.

[37] A. D. P. F. R. G. a. M. K. J. Barreto, “Leveraging

parallel nesting in transactional memory,” in

Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP '10),

2010.https://doi.org/10.1145/1837853.1693466.

[38] H. R. a. E. Witchel, “The xfork in the road to

coordinated sibling transactions,” in 4th ACM

SIGPLAN Workshop on Transactional Computing

(TRANSACT '09),

2009.https://www.researchgate.net/publication/228

400493.

[39] D. &. D. S. P. &. C. B. &. Q. F. Rughetti, “Machine

Learning-Based Self-Adjusting Concurrency in

Software Transactional Memory Systems,” in IEEE

20th International Symposium on Modeling,

Analysis and Simula,

2012.https://doi.org/10.1109/MASCOTS.2012.40.

[40] P. D. S. B. C. F. Q. Diego Rughetti, “Machine

learning-based thread-parallelism regulation in

software transactional memory,” Journal of Parallel

and Distributed Computing, vol. 109, pp. 208-229,

2017.https://doi.org/10.1016/j.jpdc.2017.06.001.

