https://doi.org/10.31449/inf.v49i6.8359

Eva

luating Nested and Non-Nested Software Transactional Memory

Using Machine Learning Classifiers

Meenu
Depart

ment of CSE, M. M. M. U. T., Gorakhpur, India

myself _meenu@yahoo.co.in

Keywords: machine learning, software transactional memory, performance analysis, transactional systems, parallel

computing, concurrency control

Received: February 20, 2025

1

Software Transactional Memory (STM) provides a robust solution for addressing concurrency challenges
in software systems. This paper explores the performance evaluation of nested and non-nested STM
configurations using a machine learning-based framework. The dataset used for model training was
generated through detailed heap profiling of nested and non-nested STM configurations, capturing
memory allocation and usage patterns as key indicators of STM behaviour. The framework leverages
profiling datasets to analyse STM operations through four machine learning models: Naive Bayes,
Decision Tree, K-Nearest Neighbours (KNN), and Random Forest. The methodology includes data
preprocessing, model training, and visualization using MATLAB R2020b, with a focus on 20 profiling
metrics that encapsulate key STM operations. Computational experiments reveal that Naive Bayes, KNN,
and Random Forest achieved 100% accuracy, precision, recall, and F1-score, while Decision Tree showed
lower performance. These results demonstrate the potential of machine learning to evaluate STM
behaviour through data-driven analysis.

Povzetek: Predstaviljeno je podatkovno ogrodje za upravijanje programsko transakcijskega pomnilnika in
strojno ucenje za ocenjevanje konkurencnih konfiguracij. Iz profiliranja kupov izlusci dvajset metrik ter z
modeli Naive Bayes, odlocitvenim drevesom, KNN in nakljucnim gozdom razvrséa ugnezdene in ne-
ugnezdene STM, z vizualizacijami, porocanjem rezultatov ter postopki za povecanje robustnosti analize.

Introduction transactions to proceed speculatively and

Informatica 49 (2025) 313-334 313

resolving

This section discusses Software Transactional Memory
(STM) as a solution for concurrency challenges,
comparing the benefits and trade-offs of nested and non-
nested STM. This paper proposes a machine learning-
based framework to evaluate STM configurations and
support future optimization. Lastly, the Introduction
outlines the paper's structure, covering STM evolution, the
proposed machine learning-based framework,
experimental setup, results, conclusions, and future
directions, ensuring a logical flow from concepts to
insights.

Software Transactional Memory (STM) is a well-
established technique for managing shared memory in
parallel and distributed systems, offering a flexible
alternative to traditional lock-based synchronization
methods in concurrent programming. Unlike traditional
lock-based synchronization mechanisms, STM provides a
higher level of abstraction, ensuring the properties of
atomicity, consistency, and isolation (ACI) for
transactional operations. This abstraction not only
simplifies the development process but also mitigates
common concurrency issues such as deadlocks, race
conditions, and priority inversion. By allowing

conflicts only when they occur, STM fosters improved
performance and scalability in modern multicore and
distributed environments. Among the various STM
configurations, nested and non-nested STM have gained
prominence due to their distinct features and capabilities.
Nested STM introduces a hierarchical structure, allowing
transactions to contain subtransactions. This structure
offers fine-grained control over transactional operations,
isolating conflicts at the subtransaction level to enhance
concurrency. For instance, in scenarios where a parent
transaction encounters a conflict, unaffected
subtransactions can continue execution independently.
This modularity and flexibility make nested STM
particularly suitable for complex applications requiring
high levels of concurrency and adaptability. However,
these benefits come with trade-offs, including increased
memory overhead and computational complexity, which
can pose challenges in resource-constrained systems. In
contrast, non-nested STM adopts a flat transaction
structure, focusing on simplicity and lower overhead. By
avoiding the hierarchical organization of transactions,
non-nested STM reduces the computational burden
associated with managing nested dependencies and
conflicts. This simplicity translates to faster execution
times and more efficient resource utilization, making it an

mailto:myself_meenu@yahoo.co.in

314 Informatica 49 (2025) 313-334

attractive choice for applications where performance and
straightforward conflict resolution are critical.
Nonetheless, the lack of hierarchical isolation in non-
nested STM can lead to limitations in concurrency
management, especially in scenarios involving highly
interdependent operations. Given the trade-offs inherent in
these configurations, a systematic evaluation of their
performance is crucial to guide their adoption in specific
application domains. Key metrics such as memory usage,
execution time, resource allocation efficiency, and
concurrency levels serve as benchmarks for understanding
their strengths and limitations. Traditional performance
analysis methods often rely on manual profiling and ad-
hoc comparisons, which may not fully capture the intricate
patterns and dependencies within STM systems. To
address this gap, we propose a novel approach that
leverages supervised machine learning techniques to
analyse and compare nested and non-nested STM
configurations. By employing a diverse set of classifiers,
including Naive Bayes, Decision Trees, K-Nearest
Neighbours (KNN), and Random Forests, we aim to
classify STM configurations based on their performance
profiles [1]. These classifiers, known for their robustness
and interpretability, enable us to uncover patterns and
insights within STM profiling datasets. Furthermore, we
enhance the analysis through data augmentation
techniques to ensure robust model training and
visualization tools to provide intuitive representations of
the results. The proposed methodology provides a
structured framework for evaluating STM configurations,
combining the strengths of machine learning with the rich
information contained in profiling datasets. By identifying
correlations between key performance metrics and STM
configurations, this approach facilitates informed
decision-making for optimizing concurrency and
scalability in real-world applications. Additionally, the
study demonstrates the potential of integrating machine
learning into STM performance analysis, paving the way
for advancements in concurrent programming practices.

This paper presents a framework using machine learning
to evaluate STM performance, focusing on the differences
between nested and non-nested configurations to enhance
scalability. This study is guided by the following research
questions: Can machine learning models accurately
classify and distinguish between nested and non-nested
STM configurations based on profiling data? Among the
evaluated models—Naive Bayes, Decision Tree, K-
Nearest Neighbours (KNN), and Random Forest—which
demonstrate the best performance for STM profiling
analysis? What insights into memory allocation patterns
and STM behaviour can be derived from heap profiling
data, and how do these insights inform model
performance? Finally, how does the proposed ML-based
framework compare to traditional STM analysis methods
in terms of automation, scalability, and interpretability?
Addressing these questions helps establish the
effectiveness and practical value of the proposed approach.

Meenu

Section 2 traces the evolution of STM, compares nested
and non-nested STM, and discusses profiling tools and
machine learning for STM evaluation. Table 1 summarizes
key STM design choices, comparing SOTA approaches
and the proposed ML-based framework. Section 3 outlines
the machine learning-based approach for analysing STM
datasets using MATLAB [2], covering preprocessing,
training, and evaluation. Section 4 presents the
experimental setup for assessing the machine learning
framework, ensuring reliability and reproducibility in
STM analysis. Section 5 evaluates the performance of
Naive Bayes, Decision Tree, KNN, and Random Forest
models applied to STM profiling datasets, comparing them
using key metrics like accuracy, precision, recall, and F1-
score. Section 6 evaluates the framework's effectiveness,
acknowledges limitations, and outlines future directions.
Section 7 summarizes the findings, emphasizing model
selection for STM performance improvement. Section 8
outlines future improvements for the ML-based STM
framework, focusing on better data, model tuning, real-
world testing, and advanced learning techniques to
enhance accuracy, scalability, and adaptability.

2 Literature review

This section outlines the evolution of Software
Transactional Memory (STM) from HTM to HyTM,
highlighting key design parameters like granularity,
conflict detection, and contention management. It
contrasts nested STM, which offers modularity but higher
overhead, with non-nested STM, which prioritizes
simplicity and efficiency. Profiling tools and emerging
machine learning techniques are discussed as methods to
evaluate STM performance. The section concludes by
emphasizing STM's adaptability and the potential of
machine learning to drive future innovations in
concurrency management. To summarize STM design
choices and innovations, Table 1 compares SOTA
approaches and includes the proposed ML-based
framework as a scalable evaluation method.

STM has emerged as a key alternative to traditional
synchronization mechanisms, providing flexibility and
scalability in managing concurrency. Its evolution, ranging
from basic hardware-based implementations to advanced
software models, has paved the way for nested and non-
nested configurations, making it a versatile solution for
diverse applications. Transactional Memory (TM)
originated with Herlihy and Moss, who introduced
Hardware Transactional Memory (HTM) [3]. HTM
achieved atomic transaction execution at the hardware
level but faced challenges like hardware dependency and
limited scalability. To address these issues, Shavit and
Touitou proposed Software Transactional Memory (STM)
[4], which removed hardware constraints and offered
greater adaptability. Later, Hybrid Transactional Memory
(HyTM) [5] emerged, combining HTM's performance
benefits with STM's flexibility, making it a hybrid solution

Evaluating Nested and Non-Nested Software Transactional Memory...

for varied workloads. Nested transactions, introduced by
Moss [6], and extended by Moss and Hosking, originated
in databases to manage complex operations. Nested
Transactional Memory [7].enhances modularity by
allowing modules to call others without transactional
dependency concerns, improving software composition
and integration. Understanding the design parameters is
essential for developers to evaluate STM systems for
specific ~ application needs, ensuring improved
performance and reliability. Differences in STM designs
significantly affect the programming model and system
performance [3] [8] [9] ,encompassing aspects such as
transaction granularity, update policies, read and write
policies, acquire strategies, conflict detection mechanisms,
memory management, contention management
techniques, isolation levels, and nesting models.
Transaction Granularity, whether word-based or object-
based, defines the unit of conflict detection and affects
accuracy and communication costs. Update Policies, such
as direct or deferred updates, determine how transactions
modify shared objects and influence memory usage and
immediacy of changes. Read Policies, distinguishing
between invisible and visible reads, guide access to shared
resources and balance consistency with accessibility [10]
Acquire Strategies, categorized as eager or lazy,
determine how transactions obtain exclusive access to
memory, impacting concurrency and responsiveness [10] .
Similarly, Write Policies, including write-through and
buffered strategies, define how transactions handle
commits and aborts, balancing simplicity with efficiency.
Conflict Detection Mechanisms are categorized as early,
late, or lazy, and they balance computational effort and
wasted work to ensure overall consistency. Concurrency
Control Methods include pessimistic approaches using
blocking synchronization (e.g., locks to secure exclusive
access to resources) and optimistic techniques relying on
non-blocking synchronization (e.g., wait-free, lock-free, or
obstruction-free methods) [11]. Effective Memory
Management, encompassing allocation and deallocation

Informatica 49 (2025) 313-334 315

strategies, safeguards against memory leaks and enhances
system stability [10].

Contention Management Techniques, such as Timid [12],
Polka [13], Greedy [14] and Serializer (as implemented in
the RSTM project!),decide when to abort transactions,
adapting to varying contention levels and ensuring
efficient conflict resolution [10] . Isolation Levels are
critical for maintaining data consistency, but weak
isolation, as seen in STM Haskell, may lead to anomalies
when threads concurrently access shared .The Nesting
Model [8] [15] introduces various methods for managing
transactions, such as Flattened Nesting, implemented in
DSTM [16] and RSTM [17];Linear Nesting with Closed
Nested Transactions (CNTs) [18], used in McRT-STM [19]
, NORec [20], Nested LogTM [21] [22] and Haskell STM
[23] [24] [25] [26] [27] [28] [29]; Open Nested
Transactions (ONTs) [30] [31] ,exemplified by ATOMOS
[32] and Parallel Nesting, allowing multiple active
transactions within a tree structure, as implemented in
NeSTM [33], HParSTM [34], NePalTM [35], CWSTM
[36], PNSTM [37] and SSTM [38].These approaches cater
to diverse application requirements by balancing
transaction granularity, isolation, and concurrency. By
addressing these interconnected design parameters, STM
systems can be tailored to improve performance,
scalability, and reliability, enabling developers to select
and implement strategies best suited for their application-
specific needs. Each design choice contributes to a
comprehensive framework that shapes the behaviour of
STM systems, ensuring efficient transaction processing in
modern concurrent environments. To consolidate the key
design choices in STM systems, Table 1 presents a
comparative summary of state-of-the-art (SOTA)
approaches for Software Transactional Memory (STM)
configurations, along with the proposed ML-based
evaluation framework.

Table 1: Comparison of SOTA approaches for software transactional memory (STM) configurations

Approach Strengths Weaknesses Key Results Examples / Systems | Why Insufficient?
Transaction High accuracy (word- | Word-based is costly Object-based STM (e.g., Word-based STM, Trade-off between
Granularity based); simplicity in performance; STM Haskell) achieves a Object-based STM accuracy and
and lower cost object-based sacrifices | good balance of cost and (STM Haskell). overhead, not
(object-based). precision. accuracy. suitable for all STM
workloads.
Update Policy | Deferred update Direct update can STM Haskell uses Direct Update, Some real-time
allows easy rollback cause cascading deferred update Deferred Update systems cannot
and reduces overhead | aborts; deferred successfully for isolation (STM Haskell). tolerate deferred
on shared memory. update can increase and rollback. commit delays.
commit latency.
Read Policy Invisible reads have Invisible reads risk STM Haskell uses visible | Invisible Reads, No single optimal
[10] low runtime late conflicts; visible reads for better conflict Visible Reads (STM policy; trade-off
overhead; visible reads require more resolution. Haskell). depends on
reads provide synchronization transaction patterns.
(locks/reader lists).

316

Informatica 49 (2025) 313-334

Meenu

stronger consistency
guarantees.

Acquire
Policy [10]

Lazy acquire
improves
concurrency and
works well with

Eager acquire reduces
aborts but increases
locking contention.

Lazy acquire preferred in
many STMs for better
buffering and flexibility.

Eager Acquire, Lazy
Acquire.

Eager acquire harms
scalability; lazy
acquire not suitable
when real-time

Control [11]

allows maximum
parallelism; non-
blocking methods
ensure progress under
contention.

ensures consistency
but blocks threads;
optimistic requires
effective contention
manager.

systems adopt optimistic
control with non-blocking
synchronization where
possible.

Lock-based STM),
Optimistic STM,
Non-blocking STM
(Wait-free, Lock-
free, Obstruction-
free).

deferred updates. guarantees are
required.

Write Policy Buffered write avoids | Write-through is Buffered write used in Write-through / Buffered write
unnecessary aborts simpler but increases most modern STM Undo, Buffered increases commit
and allows abort cost and reduces | systems to improve Write. complexity and
speculative concurrency. commit efficiency. memory overhead.
execution.

Conflict Early detection Early detection STM Haskell employs Early Conflict Late detection can

Detection reduces wasted work; | requires complex late/lazy detection to Detection, Late/Lazy | lead to high abort
late detection tracking; late detection | maximize parallelism. Conflict Detection rates in high-
improves parallelism | risks wasted work and (STM Haskell). contention
and throughput. starvation. environments.

Concurrency Optimistic control Pessimistic control Many modern STM Pessimistic (2PL, No single method

works well for both
low-contention and
high-contention
workloads; tuning is
difficult.

underperformed.

Random Forest.

Memory Efficient memory Complex to Memory-safe STM LibSTM, Haskell High overhead in
Management management prevents | implement when libraries (e.g., LibSTM) STM. managing dynamic
[10] leaks and supports supporting nested can effectively manage or complex object
failure recovery. transactions or transactional memory. lifecycles in STM.
variable-sized objects.

Contention Advanced policies Requires tuning and Greedy and Serializer Timid [12], Polka Static policies may

Management like Greedy and may not adapt well to policies outperform Timid | [13], Greedy [14] not adapt well to

[10] Serializer can workload changes. and Polka in bounded Serializer (as dynamic transaction
guarantee progress commit scenarios. implemented in the workloads.
and improve fairness. RSTM project 1),

Isolation Weak isolation Risk of anomalies and | STM Haskell’s weak Weak Isolation (STM | Harder to reason
increases subtle bugs if isolation allows better Haskell). about correctness;
concurrency and developers are scaling. non-transactional
performance. unaware. access can break

atomicity.
Computational Proposed ML-based
Automated. scalable experiments reveal that framework applied to | Currently focuses on

Proposed . | Depends on dataset Naive Bayes, KNN, and STM profiling classification;
data-driven

ML-Based . quality and model Random Forest achieved datasets using Naive predictive
evaluation of STM . . . S

Approach configurations tuning. 100% across all metrics; Bayes, Decision optimization is

' Decision Tree Tree, KNN, and future work.

The comparative insights from Table 1 highlight that
existing STM approaches involve significant trade-offs
across performance, consistency, and scalability. This
motivates the need for an automated and data-driven
framework—such as the one proposed in this study—to
systematically evaluate STM configurations.

Nested STM introduces hierarchical structures where
subtransactions can operate independently, offering
modularity and fault isolation. While this enhances

concurrency, it increases memory overhead and rollback
complexity. In contrast, non-nested STM offers a flat
structure with simpler conflict resolution, suitable for
lightweight applications. The choice between nested and
non-nested configurations depends on application
complexity and performance requirements .STM systems
are evaluated based on execution time, abort rates,
memory usage, and throughput. Profiling tools, like
Haskell's heap and time profilers, have provided insights
into memory allocation and execution bottlenecks. While

Evaluating Nested and Non-Nested Software Transactional Memory...

nested STM systems excel in handling complex
interdependencies, they require higher resources, unlike
non-nested configurations, which prioritize efficiency.
Machine learning has opened new avenues for STM
analysis and optimization. Supervised learning models like
decision trees and random forests predict conflicts and
classify transactions, while reinforcement learning
dynamically adjusts configurations in real time.

However, integrating machine learning holistically into
STM systems remains an area of ongoing research.

Recent research has explored the application of machine
learning to dynamically enhance STM performance. For
example, Rughetti et al. [39] proposed a self-adjusting
concurrency mechanism using ML to adapt thread
parallelism in STM systems and further refined this
approach in a later study on ML-based thread-parallelism
regulation [40], showing notable throughput
improvements under varying workloads . While these
works demonstrate the value of ML for STM tuning, a
comprehensive, profiling-metric—driven ML framework
for systematic STM configuration evaluation remains
limited, motivating the approach presented in this study.

In conclusion, the literature highlights the evolution of
Software Transactional Memory (STM) as a flexible and
efficient concurrency management tool. The trade-offs
between nested and non-nested STM, alongside critical
design parameters, enable developers to tailor STM
systems for diverse application needs. The integration of
machine learning into STM evaluation holds significant
promise, paving the way for future advancements in
scalable and adaptive concurrency solutions.

3 Proposed method

This section outlines a machine learning-based approach
to analyse STM profiling datasets for nested and non-
nested configurations, with a focus on model design, using
MATLAB R2020b for all simulations and visualizations.
The overall architecture of the proposed method, as
depicted in Fig. 1, integrates data preprocessing, model
training, evaluation, and visualization to provide a
comprehensive solution for STM performance analysis.

The methodology includes data preprocessing, model
training, evaluation, and visualization. The system
operates on 20 key profiling metrics and classifies data into
two categories: nested STM (1) and non-nested STM (0).
To improve robustness, data augmentation techniques such
as Gaussian noise addition and dataset expansion are
employed. Four supervised machine learning models
(Naive Bayes, Decision Tree, KNN, and Random Forest)
are used for classification. In this study, we used k = 3 for
KNN and 50 trees for Random Forest based on common
practice for small to medium-sized datasets, where such
default values provide a reasonable trade-off between
performance and complexity.

Informatica 49 (2025) 313-334 317

Preliminary tuning experiments showed minimal variation
in performance across different k and tree values, so fixed
values were chosen to maintain reproducibility and reduce
computational overhead. The model's performance is
evaluated using accuracy, precision, recall, and F1 score.
Visualization tools like bar plots and confusion matrix
heatmaps are used to present results, and performance
metrics are saved for further analysis.

3.1 Model design

The core of the proposed system is its model design, which
integrates data processing, machine learning, and
visualization in a seamless workflow. The design
comprises the following key components:

3.1.1 Dataset preparation
. Metrics definition

The system operates on datasets comprising 20 metrics
(features) that encapsulate the behaviour of STM
operations. These metrics, such as Total 10, String, and
TextEncoding, serve as indicators for profiling STM
performance.

. Class labels

The dataset is classified into two categories:
o Nested STM

Represented as 1.

o Non-nested STM

Represented as 0.

3.1.2 Data preprocessing

Data preprocessing involved parsing the heap profiling
outputs to extract relevant numerical metrics that capture
STM performance characteristics. The 20 selected features
were chosen based on domain knowledge and their
relevance to memory allocation patterns, transaction
behaviour, and concurrency effects. No explicit
dimensionality reduction techniques (e.g., PCA) were
applied; rather, feature selection was guided by
interpretability and practical significance. In addition,
Gaussian noise augmentation was employed to enhance
dataset variability, mitigate overfitting, and improve model
generalization.

318 Informatica 49 (2025) 313-334 Meenu

Distance-based classification model.

. Random Forest (TreeBagger)
3.1.3 Data augmentation Ensemble model combining multiple decision trees.
. To enhance the robustness of the system, the Each model undergoes the following
model employs data augmentation techniques:

process:

. Training

o Gaussian noise addition
] o) Using training data (XTrain and yTrain).
Introduces slight variations to the data, ensuring better

eneralization. . e
& . Prediction

o Extended dataset
Generating predictions on test data (XTest).

The orlglnal. and augmer}tftd datas.ets are mfﬁrg&:{l 0 Theoretical time complexities of the models are as follows:
increase the size and variability, reducing overfitting risks. Naive Bayes operates in O(n), KNN in O(n-d) for

prediction, Decision Tree in O(n-logn), and Random

Forest in O(m-n-log n), where n is the number of samples,
3.1.4 Train-Test Split d the number of features, and m the number of trees. These
complexities are manageable for small datasets; however,
future work will explore scalability on larger STM

o Partitioning datasets

A stratified 70/30 split was used to divide the dataset into 3.1.6 Evaluation metrics
training and test sets. Stratification ensured that both

nested and non-nested STM classes were proportionally The model'
represented in both subsets, enhancing evaluation
reliability.

s performance is assessed using several

metrics:

. Test set validation e Accuracy

To prevent data leakage and preserve evaluation integrity, Proportion of correctly classified
Gaussian noise augmentation was applied exclusively to
the training set. The test set remained entirely unseen
throughout model training.

transactions.

TP + TN

Accuracy = —
y TP + FP + FN + TN

3.1.5 Supervised machine learning models

The system evaluates and compares four machine learning

classifiers: ¢ Precision

. Naive Bayes (Kernel Distribution) Proportion of true positives among

predicted positives.
Probabilistic model leveraging the Bayes theorem.

TP
TP+FP

.. Precision =
. Decision Tree
Rule-based algorithm for classification.

. o Recall (Sensitivity)
. K-Nearest Neighbors (KNN)

Proportion of actual positives correctly identified.

Evaluating Nested and Non-Nested Software Transactional Memory...

TP

Recall = TP-I-—FN

¢ F1 Score
Harmonic mean of Precision and Recall.
2XPrecisionXRecall
F1Score = ———
Precision+Recall
Where:

o TP: True Positives
o FP: False Positives
o FN: False Negatives
o TN: True Negatives

These metrics ensure a balanced assessment of the model’s
predictive power.

3.1.7 Visualization and reporting

. Bar plot visualizations

Graphical representations of evaluation metrics for all
classifiers across the 20 features.

. Confusion Matrix Heatmaps
Visualizes model performance for each classifier.
. Exported results

o Metrics and performance scores are saved
in STM_Profiling PerformanceMetrics.xlIsx.

o Plots are stored as high-resolution TIFF
images for documentation purposes.

In conclusion, the proposed machine learning-based
approach offers a robust and scalable methodology for
analysing STM profiling datasets. By leveraging various
classifiers and data augmentation techniques, the system
ensures accurate and reliable performance evaluation for
both nested and non-nested STM configurations. The
integration of MATLAB R2020b facilitates seamless
simulations and visualizations, providing valuable insights
into STM behaviour. This approach not only enhances the
understanding of STM performance but also paves the way
for optimizing concurrency and scalability in real-world

Informatica 49 (2025) 313-334 319

applications, contributing to the advancement of software
transactional memory systems.

Step 1: Define Dataset - Metrics: 20 features (e.g., Total_10,
String) - Features (X) and Labels (y)

\

Step 2: Data Augmentation - Add Gaussian noise to create
variability - Extend dataset with augmented samples

\

Step 3: Train-Test Split - 70-30 partition using cvpartition -
Validate test set contains both classes

\

Step 4: Train and Evaluate Models - Models: Naive Bayes,
Decision Tree, KNN, Random Forest - Metrics: Accuracy,
Precision, Recall, F1 Score - Store results in an Excel file

|

Step 5: Visualization - Bar plots for metrics - Save plots as TIFF
images

Figure 1: Architecture of the proposed method

4 Performance evaluation

This section outlines the experimental setup for assessing
the proposed machine learning-based framework for
STM profiling. It includes details on the hardware and
software environment, dataset, machine learning models,
and evaluation metrics used. The experiments aim to
evaluate the performance of nested and non-nested STM
configurations, ensuring reliability and reproducibility in
the analysis process.

4.1 Experimental setup

The experiments were conducted in a controlled
environment using MATLAB R2020b, ensuring
consistency and reproducibility. The following subsections
describe the key components of the experimental setup.

4.1.1 Hardware and software environment

All experiments were conducted on a system running
Windows 11 Pro, equipped with an Intel Core i15-1035G1
CPU @ 1.20 GHz, 8 GB DDR4 RAM, and a 512 GB Intel
660p Series NVMe SSD (Model: SSDPEKNW512G8H).
MATLAB R2020b with the Statistics and Machine
Learning Toolbox was used for implementation,
leveraging functions such as fitcnb, fitctree, fitcknn, and
TreeBagger for model training, as well as confusionmat
and cvpartition for evaluation and visualization.

320 Informatica 49 (2025) 313-334

4.1.2 Dataset

. Source

The STM profiling dataset used in this study was internally
generated. Detailed heap profiling was performed on both
nested and non-nested STM configurations implemented
in Haskell. The profiling process captured memory
allocation patterns and runtime behaviours using the
runtime options +RTS -p -10.0000000000000001 -hy, with
visualization facilitated via hp2ps. The profiling outputs
were systematically parsed to construct a dataset
containing 20 key profiling metrics that reflect STM
operation characteristics. The dataset is not publicly
available due to its dependency on the specific
experimental environment and codebase; however, the
complete profiling methodology is provided to ensure
reproducibility and transparency.

. Features

20 profiling metrics representing STM operations, such as
Total 10O, String, and TextEncoding.

. Classes

Binary classification with labels:

o 1 for Nested STM.
o 0 for Non-Nested STM.
. Augmentation

Gaussian noise added to the dataset for improved
variability and generalization.

4.1.3 Models and parameters

. Machine learning models

o Naive Bayes (Kernel Distribution).

o Decision Tree.

o K-Nearest Neighbors (KNN) with k=3

o Random Forest (TreeBagger) with 50
trees

. Evaluation metrics

o Accuracy, Precision, Recall, and F1 Score.
. Partitioning

Meenu

70% training, 30% testing using cvpartition.
4.1.4 Implementation details

. Confusion matrix

Used to derive True Positives (TP), False Positives (FP),
False Negatives (FN), and True Negatives (TN) for each
model.

o Visualization

Bar plots for performance metrics saved as TIFF images
for documentation.

. Error handling
Try-catch blocks for robust model training and evaluation.

° Simulation tool

MATLAB R2020b was used for all simulations, leveraging
its robust computational and visualization capabilities.

In conclusion, the performance evaluation provides a
robust framework for assessing the effectiveness of the
proposed machine learning-based approach in analysing
STM profiling datasets. By utilizing a controlled
experimental setup, various machine learning models, and
key evaluation metrics, the study ensures a comprehensive
understanding of the performance of nested and non-
nested STM configurations. The results from this
evaluation serve as a solid foundation for further
enhancements and improved performance in STM-based
systems.

5 Results and discussion

This section evaluates the performance of four machine
learning models—Naive Bayes, Decision Tree, KNN, and
Random Forest—applied to STM profiling datasets, which
are represented by 20 profiling metrics capturing key STM
operations. The Performance Matrix presents a
comparison of key evaluation metrics, including accuracy,
precision, recall, and F1 score, based on these profiling
metrics. This matrix provides insights into the
effectiveness of each model in handling STM data. Key
Observations further highlight the strengths of each model,
considering their suitability for wvarious application
scenarios and their ability to evaluate STM operations. The
results for each model, as summarized in the Performance
Matrix (Table. 2), demonstrate both the advantages and
limitations inherent in each approach. Visualizations of the
evaluation metrics, including accuracy (Fig. 2), precision
(Fig. 3), recall (Fig. 4), and F1 score (Fig. 5), offer a visual
comparison that helps to further elucidate the models'
performance.

Evaluating Nested and Non-Nested Software Transactional Memory...

5.1 Performance matrix

The performance of four machine learning models—Naive
Bayes, Decision Tree, KNN, and Random Forest—applied
to STM profiling datasets was evaluated using multiple
metrics, such as Accuracy, Precision, Recall, and F1-
Score. These metrics were calculated for various
CV_Metrics. In this study, CV_Metrics refers to the set of
profiling variables extracted from STM heap memory
during runtime, serving as classification features in the
machine learning models. These include Total IO (total
I/O operations)), MVAR (mutable variables),
TextEncoding, Handle, Buffer, and others—each
representing specific memory structures and transactional
behaviors within the STM system. Analysis of these
metrics revealed significant efficiency advantages in
nested STM configurations. For example, 48 bytes of
memory usage in nested STM versus 96 bytes in non-
nested STM, indicating more efficient buffer
encoding/decoding. Additionally, nested STM does not use
memory for BufferList, whereas non-nested STM
consumes 24 bytes. For Buffer, nested STM requires 168
bytes, significantly less than the 280 bytes used by non-
nested STM. The Newline metric shows equal memory
usage of 24 bytes for both configurations. The Maybe
datatype shows more efficient handling in nested STM,
using 40 bytes compared to 64 bytes in non-nested STM.
The MUT VAR CLEAN metric reveals 128 bytes of
usage in nested STM versus 208 bytes in non-nested STM,
indicating better management of mutable variables. For
Handle , nested STM uses 136 bytes compared to 272
bytes in non-nested STM, highlighting superior resource
management in nested transactions. Non-nested STM
consumes 48 bytes for the DEAD WEAK metric, while
nested STM does not use memory for this datatype,
possibly avoiding certain weak references. Both
configurations use 96 bytes for the WEAK metric,
indicating identical memory usage for weak references.
The ARR_WORDS metric shows a significant difference,
with nested STM using 36,816 bytes compared to 61,360

Informatica 49 (2025) 313-334 321

bytes for non-nested STM, reflecting superior efficiency in
handling arrays. In Total, nested STM consumes 38,792
bytes, while non-nested STM uses 63,080 bytes,
highlighting a substantial reduction in the memory
footprint for nested STM.

The following section presents the detailed evaluation
results, which are summarized in Table 2. This table
provides a comparative analysis of the models'
performance based on the four-evaluation metrics. It
includes percentage values for Accuracy, Precision,
Recall, and FI1-Score for each model and metric
combination. Additionally, confusion matrices for each
model, shown in Fig. 6 (Naive Bayes), Fig. 7 (Decision
Tree), Fig. 8 (KNN), and Fig. 9 (Random Forest), further
highlight their predictive performance under real-time
conditions, offering deeper insights into their capabilities.

. Naive Bayes

Achieved consistent results with 100% accuracy,
precision, recall, and FI1-Score across all metrics,
demonstrating its reliability for the given dataset.

o Decision Tree

Exhibited variability, achieving only 50% accuracy and
precision while maintaining 100% recall, resulting in an
F1-Score of 66.67%. The lower performance of the
Decision Tree model can be attributed to its tendency to
overfit small datasets with limited feature interactions. In
this case, the heap profiling features exhibit complex
dependencies that are better captured by ensemble
methods (Random Forest) or distance-based models
(KNN), while Decision Tree struggles with generalization.

. KNN and Random Forest

Both models achieved perfect scores (100%) for all
evaluation metrics, indicating their strong performance
and suitability for this dataset.

Table 2: Performance matrix for machine learning models

CV_Metric Model Accuracy Precision Recall F1_Score
Total IO Naive Bayes 100 100 100 100

Total IO Decision Tree 50 50 100 66.66666667
Total_IO KNN 100 100 100 100

Total IO Random Forest 100 100 100 100

String Naive Bayes 100 100 100 100

322

Informatica 49 (2025) 313-334

Meenu

String Decision Tree 50 50 100 66.66666667
String KNN 100 100 100 100
String Random Forest 100 100 100 100
TextEncoding Naive Bayes 100 100 100 100
TextEncoding Decision Tree 50 50 100 66.66666667
TextEncoding KNN 100 100 100 100
TextEncoding Random Forest 100 100 100 100
MVAR Naive Bayes 100 100 100 100
MVAR Decision Tree 50 50 100 66.66666667
MVAR KNN 100 100 100 100
MVAR Random Forest 100 100 100 100
Handle Naive Bayes 100 100 100 100
Handle Decision Tree 50 50 100 66.66666667
Handle KNN 100 100 100 100
Handle Random Forest 100 100 100 100
Word32 Naive Bayes 100 100 100 100
Word32 Decision Tree 50 50 100 66.66666667
Word32 KNN 100 100 100 100
Word32 Random Forest 100 100 100 100
PairSharp Naive Bayes 100 100 100 100
PairSharp Decision Tree 50 50 100 66.66666667
PairSharp KNN 100 100 100 100
PairSharp Random Forest 100 100 100 100
Pair Naive Bayes 100 100 100 100

Evaluating Nested and Non-Nested Software Transactional Memory... Informatica 49 (2025) 313-334 323

Pair Decision Tree 50 50 100 66.66666667
Pair KNN 100 100 100 100
Pair Random Forest 100 100 100 100
ForeignPtrContents Naive Bayes 100 100 100 100
ForeignPtrContents Decision Tree 50 50 100 66.66666667
ForeignPtrContents KNN 100 100 100 100
ForeignPtrContents Random Forest 100 100 100 100
BufferCodec Naive Bayes 100 100 100 100
BufferCodec Decision Tree 50 50 100 66.66666667
BufferCodec KNN 100 100 100 100
BufferCodec Random Forest 100 100 100 100
BufferList Naive Bayes 100 100 100 100
BufferList Decision Tree 50 50 100 66.66666667
BufferList KNN 100 100 100 100
BufferList Random Forest 100 100 100 100
Buffer Naive Bayes 100 100 100 100
Buffer Decision Tree 50 50 100 66.66666667
Buffer KNN 100 100 100 100
Buffer Random Forest 100 100 100 100
Newline Naive Bayes 100 100 100 100
Newline Decision Tree 50 50 100 66.66666667
Newline KNN 100 100 100 100
Newline Random Forest 100 100 100 100
Maybe Naive Bayes 100 100 100 100

324

Informatica 49 (2025) 313-334

Meenu

Maybe Decision Tree 50 50 100 66.66666667
Maybe KNN 100 100 100 100
Maybe Random Forest 100 100 100 100
MUT_VAR_CLEAN | Naive Bayes 100 100 100 100
MUT_VAR_CLEAN | Decision Tree 50 50 100 66.66666667
MUT_VAR_CLEAN | KNN 100 100 100 100
MUT_VAR_CLEAN | Random Forest 100 100 100 100
Handle Naive Bayes 100 100 100 100
Handle Decision Tree 50 50 100 66.66666667
Handle_ KNN 100 100 100 100
Handle Random Forest 100 100 100 100
DEAD_WEAK Naive Bayes 100 100 100 100
DEAD_WEAK Decision Tree 50 50 100 66.66666667
DEAD_WEAK KNN 100 100 100 100
DEAD_WEAK Random Forest 100 100 100 100
WEAK Naive Bayes 100 100 100 100
WEAK Decision Tree 50 50 100 66.66666667
WEAK KNN 100 100 100 100
WEAK Random Forest 100 100 100 100
ARR_WORDS Naive Bayes 100 100 100 100
ARR_WORDS Decision Tree 50 50 100 66.66666667
ARR_WORDS KNN 100 100 100 100
ARR_WORDS Random Forest 100 100 100 100
Total Naive Bayes 100 100 100 100

Evaluating Nested and Non-Nested Software Transactional Memory...

Informatica 49 (2025) 313-334 325

Total Decision Tree 50 50 100 66.66666667
Total KNN 100 100 100 100
Total Random Forest 100 100 100 100

5.2 Key observations

This section provides an overview of the key observations
from the evaluation of machine learning models applied to
STM profiling datasets. It highlights trends in model
performance, generalization across various metrics, and
comparative strengths. Additionally, it discusses the
implications for model selection, emphasizing the
importance of choosing the right model based on the
specific requirements of the task and the characteristics of
the dataset.

. Model performance trends

o Naive Bayes, KNN, and Random Forest consistently
outperformed the Decision Tree model across all metrics
and CV_Metrics categories.

o The Decision Tree model struggled with accuracy and
precision, possibly due to overfitting or sensitivity to the
dataset's characteristics.

o Generalization Across CV_Metrics

o Models such as KNN and Random Forest
demonstrated robust generalization, achieving 100%
performance for diverse CV_Metrics, including Buffer,
Handle, ARR_WORDS, and MUT_ VAR CLEAN.

o Decision Tree's lower performance was uniform
across all CV_Metrics, suggesting a limitation in its ability
to handle the dataset's complexity.

e Comparative strengths

o While Naive Bayes achieved perfect scores, it may
have benefitted from the dataset's simplicity or lack of
noise, which favoured its probabilistic approach.

o Random Forest and KNN showed superior
adaptability, making them ideal for applications requiring
high accuracy and consistency.

e Implications for model selection

o For scenarios demanding high precision and
robustness, Random Forest and KNN are clear choices.

o Naive Bayes may be preferred for lightweight or
resource-constrained environments due to its simplicity
and computational efficiency.

o Decision Tree may require optimization techniques,
such as pruning or hyperparameter tuning, to improve its
performance.

In conclusion, the evaluation of machine learning models
applied to STM profiling datasets reveals that Random
Forest and KNN are the most reliable and robust models,
consistently outperforming other models across all
metrics. Naive Bayes, while efficient, may be more
appropriate for simpler, resource-constrained
environments. The Decision Tree model, although useful,
exhibited limitations and highlighted the need for further
refinement to handle complex datasets more effectively.
This analysis demonstrates the importance of selecting the
right machine learning model based on the dataset's
characteristics and the specific application requirements.
Future research could explore the effects of parameter
tuning and dataset variations to further enhance the
performance of these models for STM profiling tasks.

Meenu

§(\z’ \P@
S
é\\s& A

I\ %
—)
I

Metrics

Metrics

Accuracy per Model

Q o&@ &
40%\‘}{“"‘

Precision per Model

Figure 2: Accuracy comparison of machine learning models

I Naive Bayes
I Decision Tree
[IKNN

I Random Forest

Figure 3: Precision comparison of machine learning models

100 o I WO T

Informatica 49 (2025) 313-334
80 j

326

7
% % 0 0
) () w0 <
qmuo.\o,.\\ﬁ\ 0, s s
% 2§ §
() 2 _ D
& % 3525
QA.\\&\ ZOY (W
—
[*]
Yot I
5
o
: \@o 4
3 ¥ 8 ° % S 8 8 ¢
(%) Aoeindoy (o) uoisioald

Evaluating Nested and Non-Nested Software Transactional Memory... Informatica 49 (2025) 313-334 327

Recall per Model
100
I Naive Bayes
[N Decision Tree
80 il 1KNN
I Random Forest
& 60
w
D
or 40
20
0
RO
Metrics
Figure 4: Recall comparison of machine learning models
F1 Score per Model
100 |

I Naive Bayes
I Decision Tree
[CIKNN

I Random Forest

F1 Score (%)

Metrics

Figure 5: F1-Score comparison of machine learning models

328

Actual Class

Actual Class

Informatica 49 (2025) 313-334

Confusion Matrix - Naive Bayes

Actual Nested

Actual Non-Nested

Predicted Nested Predicted Non-Nested
Predicted Class

Figure 6: Confusion Matrix for Naive Bayes

Confusion Matrix - Decision Tree

Actual Nested 0]
Actual Non-Nested 0]
Predicted Nested Predicted Non-Nested

Predicted Class

Figure 7: Confusion Matrix for Decision Tree

0.9

0.8

0.4

0.3

0.2

Meenu

Evaluating Nested and Non-Nested Software Transactional Memory...

Informatica 49 (2025) 313-334 329

Confusion Matrix - KNN

Actual Nested

Actual Class

Actual Non-Nested

Predicted Nested

0.9

Predicted Non-Nested

Predicted Class

Figure 8: Confusion Matrix for KNN

Confusion Matrix - Random Forest

Actual Nested

Actual Class

Actual Non-Nested

Predicted Nested

0.9

0.8

Predicted Non-Nested
Predicted Class

Figure 9: Confusion Matrix for Random Forest

6 Discussion

This section discusses the effectiveness of the ML-based
STM analysis framework, highlights high classification
accuracy, and acknowledges limitations such as dataset
size and lack of cross-validation. It also outlines the
framework's scalability and potential for future
optimization.

Our machine learning-based framework provides a
systematic and automated alternative to traditional STM
performance analysis methods, which often focus on
isolated parameters such as transaction granularity, update
policy, or nesting models and rely heavily on manual
profiling or limited benchmarks. In contrast, our approach
leverages 20 profiling metrics derived from detailed heap
profiling of nested and non-nested STM configurations.

330 Informatica 49 (2025) 313-334

This allows us to capture complex memory allocation
patterns and runtime behaviour that are difficult to model
with conventional approaches. The results demonstrate
that Naive Bayes, KNN, and Random Forest models
achieve 100% accuracy, precision, recall, and F1-score in
classifying STM configurations—substantially improving
upon manual or single-metric analyses. By using heap
profiling data, our framework provides deeper insights into
memory consumption and potential bottlenecks, which are
critical factors in STM system performance and scalability.
Moreover, the framework is highly scalable and can be
applied across diverse STM configurations and workloads,
reducing the time and effort required for performance
analysis While the current work focuses on classification,
the proposed framework provides a strong foundation for
future predictive optimization and real-time adaptive STM
tuning. However, several limitations must be
acknowledged. The dataset used for training and
evaluation is relatively small and synthetically augmented,
which may restrict the model’s exposure to diverse and
realistic STM workload scenarios. Consequently, the
excellent performance observed may not fully generalize
to broader STM environments. Additionally, the current
study lacks cross-validation and statistical variance
reporting, which are essential for assessing model
robustness. Future research will address these limitations
through larger, real-world datasets, live system profiling,
and more rigorous statistical validation.

7 Conclusion

This section concludes the evaluation of machine learning
models for STM systems, emphasizing model selection
based on dataset needs, application requirements, and the
importance of optimization for scalability and efficiency.

This study presents a machine learning-based framework
for the performance analysis of nested and non-nested
Software Transactional Memory (STM) configurations.
By leveraging models such as Naive Bayes, Decision Tree,
K-Nearest Neighbours (KNN), and Random Forest, the
research provides valuable insights into their strengths,
limitations, and suitability for optimizing concurrency
control and transaction management in STM. The
evaluation reveals that machine learning models can play
a pivotal role in addressing key STM challenges, including
scalability, conflict resolution, and efficient resource
utilization. Naive Bayes showed excellent classification
performance; however, further work is needed to assess
reliability in terms of robustness and stability across
diverse STM workloads. Its ability to process datasets with
minimal computational overhead positions it as an
excellent choice for lightweight and real-time applications.
However, the model's reliance on the assumption of
feature independence may restrict its effectiveness in
scenarios where feature interactions are highly complex.
Random Forest, an ensemble-based learning method, also
emerges as a top performer, excelling in accuracy and
precision. Its robustness against overfitting and capacity to

Meenu

handle diverse datasets make it a highly adaptable choice
for STM systems. The ensemble nature of Random Forest,
which aggregates predictions from multiple decision trees,
enhances its ability to generalize and maintain reliability.
Despite its high performance, the computational demands
of Random Forest may pose challenges for resource-
constrained environments, necessitating trade-offs
between performance and computational efficiency. KNN,
a non-parametric and instance-based model, exhibits
significant adaptability in dynamic STM environments. Its
simplicity and ability to capture the underlying data
structure contribute to its strong performance in scenarios
requiring quick adaptation to changes. However, the
efficiency of KNN is contingent upon the choice of
distance metrics and the number of neighbours, which
require careful tuning to improve performance for larger
datasets and real-time applications. In contrast, the
Decision Tree model demonstrates notable limitations in
handling datasets with high variance or intricate feature
relationships. Its comparatively lower performance
underscores the need for optimization through
hyperparameter tuning or ensemble techniques like
boosting to enhance its effectiveness. These findings
emphasize that while Decision Tree can serve as a baseline
model, it requires further refinement to compete with more
advanced methods.

In conclusion, this study underscores the potential of
machine learning models in enhancing STM systems, with
Naive Bayes and Random Forest excelling in accuracy and
precision, KNN in adaptability, and Decision Tree
requiring optimization. Model selection tailored to dataset
and application needs, along with continuous refinement,
is crucial for addressing STM challenges like scalability,
conflict resolution, and resource efficiency, paving the
way for future advancements.

8 Future directions

This section outlines future work to improve the ML-based
STM framework through dataset growth, model tuning,
real-world testing, statistical validation, and advanced
learning techniques to enhance adaptability, accuracy, and
practical deployment.

The findings of this study—specifically the high
classification accuracy achieved using Naive Bayes, KNN,
and Random Forest on STM profiling data—demonstrate
that machine learning can effectively distinguish between
nested and non-nested STM configurations. Building on
this foundation, the following future directions propose
ways to extend the current classification framework
toward predictive optimization, real-time adaptation, and
integration with advanced STM concurrency mechanisms.
These directions aim to evolve the work from performance
evaluation to practical, deployable tools for intelligent
STM decision support in real-world environments.

Evaluating Nested and Non-Nested Software Transactional Memory...

8.1 Dataset expansion

One of the critical aspects of improving machine learning
models is training them on larger and more diverse
datasets. Future studies can focus on curating datasets that
mirror real-world STM workloads, including diverse
transaction types, varying conflict scenarios, and workload
intensities. Such datasets can enhance model
generalization, ensuring their applicability across a
broader range of STM applications and environments.

8.2 Hyperparameter optimization

The performance of machine learning models like K-
Nearest Neighbours (KNN) and Decision Trees is highly
sensitive to hyperparameters such as the number of
neighbors, tree depth, and splitting criteria. Systematic
tuning of these parameters through grid search, random
search, or advanced techniques like Bayesian optimization
can significantly improve their accuracy and adaptability.
This optimization will ensure that models perform
efficiently in both static and dynamic STM environments.

8.3 Algorithmic enhancements

Traditional machine learning models, while effective, may
face limitations in handling large-scale and highly
dynamic STM systems. Future research can focus on
developing hybrid models that combine traditional
approaches with advanced techniques like deep learning.
For instance, integrating neural networks with ensemble
methods like Random Forest or using recurrent neural
networks (RNNs) for capturing temporal dependencies in
transactional data can enhance scalability and prediction
accuracy.

8.4 Real-world application testing

While the current study provides valuable theoretical
insights, testing these models in live STM environments
remains a critical next step. Future research should focus
on deploying these models in operational STM systems to
evaluate their real-time impact on key performance metrics
such as throughput, latency, and conflict resolution
efficiency. This will also help uncover practical challenges
including computational overhead in embedded or
constrained environments, limited data availability for
model retraining, and the ongoing need for adaptive model
maintenance as transaction patterns evolve.

8.5 Dynamic adaptation

STM systems often operate in dynamic environments
where workloads and transaction patterns change rapidly.
Future efforts can explore the development of machine
learning models capable of self-adaptation. These models
should automatically adjust to changing conditions
without requiring manual retraining. Techniques like
online learning and reinforcement learning can be
particularly useful for this purpose.

Informatica 49 (2025) 313-334 331

8.6 Ensemble and Meta-Learning

approaches

Ensemble methods, which combine multiple models to
leverage their strengths, can offer improved accuracy and
robustness. Future research can explore meta-learning
strategies that enable models to learn from the strengths
and weaknesses of different algorithms. Techniques such
as boosting, bagging, and stacking can be employed to
enhance predictive performance while maintaining
resilience against noisy or incomplete data.

8.7 Exploration of unsupervised and semi-
supervised learning

Given the challenges of obtaining labelled transactional
data, future work can investigate the potential of
unsupervised and semi-supervised learning approaches.
Clustering methods or representation learning could
identify patterns in transactions and conflicts without
requiring extensive labelling, thereby reducing the
dependency on annotated datasets.

8.8 Integration with advanced
concurrency control protocols

Machine learning models can be integrated with advanced
STM concurrency control protocols to more informed lock
management and conflict resolution. By predicting
potential conflicts and dynamically adjusting transaction
priorities, such integration can enhance the system’s
overall efficiency and scalability.

8.9 Rigorous statistical validation

Future work will also focus on performing rigorous
statistical validation of the proposed machine learning
framework. This includes incorporating k-fold cross-
validation and reporting variance and confidence intervals
for all key performance metrics to ensure statistical
reliability, model robustness, and generalizability across
different STM configurations and datasets.

8.10 Feature importance analysis

Future work will include a detailed feature importance
analysis to identify which STM profiling metrics
contribute most to classification accuracy. Techniques
such as Random Forest’s Gini importance and
permutation-based methods will be used to rank the impact
of each feature. This analysis will improve interpretability,
guide metric selection, and help in reducing model
complexity while maintaining predictive performance.

In conclusion, the proposed machine learning framework
offers a promising foundation for STM analysis, with
future directions aimed at enhancing its accuracy,
adaptability, and real-world applicability. By expanding
datasets, refining algorithms, incorporating advanced

332

Informatica 49 (2025) 313-334

learning techniques, and ensuring rigorous validation, this
work paves the way for intelligent, data-driven STM
systems that can scale with the complexity of modern
transactional workloads. These efforts will move the
framework beyond classification toward fully optimized
and deployable STM performance solutions.

References

(1]

(2]

(3]

(4]

(6]

Q. &.Z.J. Li, “A Comparative Analysis of Extreme
Gradient Boosting, Decision Tree, Support Vector
Machines, and Random Forest Algorithm in Data
Analysis of College Students' Psychological
Health,” Informatica (Slovenia), vol. 49, 2025.
https://doi.org/10.31449/inf.v49115.7004.

I. a. P. O. Awoyelu, “Mathlab Implementation of
Quantum Computation in Searching an
Unstructured Database,” Informatica (Slovenia),
vol. 36, mno. 3, pp. 249-254, 2012.
https://www.researchgate.net/publication/2920164
88.

M. H. a. J. E. B. Moss, “Transactional memory:
architectural support for lock-free data structures,”
in Proceedings of the 20th annual international
symposium on Computer architecture (ISCA '93).,
May 1993.https://doi.org/10.1145/165123.165164.

N. &. T. D. Shavit, “Software transactional
memory,” in Proceedings of the 14th Annual ACM
Symposium on Principles of
DistributedComputing, Ottawa, Can,
1995 https://doi.org/10.1145/224964.224987.

A.F.Y.L.V.L. M. M. D. N. Peter Damron, “Hybrid
transactional memory,” in Proceedings of the 12th
ACM International Conference on Architectural
Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA,
USA, October 21-25,
2006.https://doi.org/10.1145/1168857.1168900.

J. E. B. Moss, “Nested Transactions: An Approach
to Reliable Distributed Computing,” Ph.D. Thesis,
Technical Report MIT/LCS/TR-260, MIT
Laboratory for Computer Science, Cambridge,
MA, April
1981.https://publications.csail.mit.edu/lcs/pubs/pd
f/MIT-LCS-TR-260.pdf.

A. L. H. J. Eliot B. Moss, “Nested transactional
memory: Model and architecture sketches,”
Science of Computer Programming, vol. 63, no. 2,
pp- 186-201,
2006.https://doi.org/10.1016/j.scic0.2006.05.010.

N. C. J. Diegues,
transactional memory,”
Report RT/1/2012,
Técnico/INESC-ID,

“Review of nesting in
Tech. rep., Technical
Instituto Superior

(9]

[10]

[12]

[13]

[14]

[16]

[17]

Meenu

2012.https://scholar.tecnico.ulisboa.pt/records/14a
edc27-91a7-48ec-8b8b-{f750b7934¢6.

G. A. Asi, “Performance Tradeoffs in Software
Transactional Memory,” Master Thesis Computer
Science, School of Computing Blekinge Institute of
Technology, No: MCS-2010-28, Sweden, May
2010.https://www.diva-
portal.org/smash/get/diva2:833477/FULLTEXTO1
.pdf.

S. Classen, “LibSTM: A fast and flexible STM
Library,” Master's Thesis, Laboratory for Software
Technology, Swiss Federal Institute of Technology,
ETH Zurich, Feb, 2008. https://library.ethz.ch.

D. I. a. M. Raynal, “A Lock-Based STM Protocol
That Satisfies Opacity and Progressiveness,” in
Proceedings of the 12th International Conference
on Principles of Distributed Systems (OPODIS'08,
2008.https://doi.org/10.1007/978-3-540-92221-

6 16.

W.N.S.I.a. M. L. Scott, “Contention Management
in Dynamic Software Transactional Memory,” in
Proceedings of the ACM PODC Workshop on
Concurrency and Synchronization in Java
Programs, Canada, July
2004 .https://www.cs.rochester.edu/u/scott/papers/2
004 _CSJP_contention_mgmt.pdf.

I. N. S. a. M. L. S. y, “Advanced contention
management for dynamic software transactional
memory,” in Proceedings of the twenty-fourth
annual ACM symposium on Principles of
distributed computing, Las Vegas, NV, USA,
2005.https://doi.org/10.1145/1073814.1073861.

e. a. R. Guerraoui, “Toward a theory of
transactional contention managers,” in Proceedings
of the twenty-fourth annual ACM symposium on
Principles of distributed computing, Las Vegas, NV,
USA,
2005.https://doi.org/10.1145/1073814.1073863.

T. H. a. S. Stipic, “Abstract nested transactions,” in
Second ACM SIGPLAN Workshop on
Transactional Computing,
2007 .https://www.cs.rochester.edu/meetings/TRA
NSACTO07/papers/harris.pdf.

M. &. L. V. & M. M. &. S. W. Herlihy, “Software
Transactional Memory for Dynamic-Sized Data
Structures,” in Proceedings of the Annual ACM
Symposium on Principles of Distributed
Computing,
2003.https://doi.org/10.1145/872035.872048.

M.S.C.H.A.A.D.E. W.S. I.a. M. S. V. Marathe,
“Lowering the overhead of Software Transactional
Memory,” in 1st ACM SIGPLAN Workshop on

Evaluating Nested and Non-Nested Software Transactional Memory...

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Transactional Computing (TRANSACT '06),
2006.https://www.researchgate.net/publication/244
434378.

B. R. a. M. M. S. Alexandru Turcu, “On closed
nesting in distributed transactional memory,” in
Seventh ACM SIGPLAN workshop on
Transactional Computing,
2012.https://transact2012.cse.lehigh.edu/papers/tur
cu.pdf.

A.-R.A.-T.R.H. C.C. M. a. B. H. B. Saha, “McRT-
STM: a high-performance Software Transactional
Memory system for a multi-core runtime,” in
SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP'06),
2006.https://doi.org/10.1145/1122971.1123001.

M. S. a. M. S. L. Dalessandro, “NOrec:
Streamlining STM by abolishing ownership
records,” in Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP '10),
2010.https://doi.org/10.1145/1693453.1693464.

J.B.M. M. M. H. a. D. W. K. Moore, “LogTM: log-
based transactional memory,” in Proceedings of the
12th High-Performance Computer Architecture
International Symposium (HPCA '06),
2006.https://doi.org/10.1109/HPCA.2006.1598134

JBBK.LEEM.L.YYM.D.H. B.L. M. M. S. a. D.
M. J. Moravan, “Supporting Nested Transactional
Memory in LogTM,” in 12th International
Conference on Architectural Support for
Programming Languages and Operating Systems in
SIGPLAN Notices (Proceedings of the 2006
ASPLOS Conference),
2006.https://doi.org/10.1145/1168857.1168902.

R. C. Ammlan Ghosh and Haskell, Implementing
Software Transactional Memory using STM, vol.
396, Advanced Computing and Systems for
Security, Springer AISC,
2016.https://doi.org/10.1007/978-81-322-2653-

6 16, pp. 235-248.

M. R. Y. a. M. F. Le, “Revisiting software
transactional memory in Haskell,” ACM SIGPLAN
Notices, vol. 51, mno. 12, pp. 105-113,
2016.https://doi.org/10.1145/3241625.2976020.

A. Du Bois, “An Implementation of Composable
Memory Transactions in Haskell,” in Software
Composition, SC 2011, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg.,
2011.https://doi.org/10.1007/978-3-642-22045-
6_3.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[35]

Informatica 49 (2025) 313-334 333

A.H.T.M. S.J. S. S. S. Discolo, “Lock Free Data
Structures Using STM in Haskell,” in Functional
and Logic Programming, FLOPS,
2006.https://doi.org/10.1007/11737414 6.

M. L. V. & M. M. Herlihy, “A flexible framework
for implementing software transactional memory,”
ACM SIGPLAN Notices, vol. 41, no. 10, pp. 253-
262,
2006.https://doi.org/10.1145/1167515.1167495.

S. M. S. P. J. a. M. H. T. Harris, “Composable
memory transactions,” in Proceedings of the Tenth
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’05,
Chicago, 1L, USA,
2005.https://doi.org/10.1145/1065944.1065952.

A. G. a. S. F. S. Peyton Jones, “Concurrent
Haskell,” in 23rd ACM Symposium on Principles
of Programming Languages (POPL’96),
1996.https://doi.org/10.1145/237721.237794.

A. T. a. B. Ravindran, “On open nesting in
distributed transactional memory,” in 5th Annual
International Systems and Storage Conference
(SYSTOR) ’12,
2012.https://doi.org/10.1145/2367589.2367601.

V.S.M.A-R.A-T'A.L.H.R.L.H.J.E.B.M. S.
a. T. S. Y. Ni, “Open nesting in software
transactional memory,” in PPoPP ’07: Proceedings
of the 12th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming,
ACM Press, New York, NY, USA,
2007.https://doi.org/10.1145/1229428.1229442.

A.M.H.C.J.C.C.M. C.K. a.K. O.B. Carlstrom,
“The ATOMOS Transactional Programming
Language,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI'06),
2006.https://doi.org/10.1145/1133981.1133983.

N. B. C. K. a. K. O. W. Baek, “Implementing and
evaluating nested parallel transactions in software
transactional memory,” in Proceedings of the 22nd
ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA’10, Thira, Santorini,
Greece,
2010.https://doi.org/10.1145/1810479.1810528.

R. K. a. K. Vidyasankar, “HParSTM: A Hierarchy-
based STM Protocol for Supporting Nested
Parallelism,” in 6th ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT 'l1),
2011.https://sss.cs.purdue.edu/projects/transact11/

papers/Kumar.pdf.

A. W. A-R.A-T. T. S. X. T. a. R. N. H. Volos,
“NePaLTM: Design and Implementation of Nested

334

[36]

[37]

[38]

[39]

Informatica 49 (2025) 313-334

Parallelism for Transactional Memory Systems,” in
Proceedings of the 23rd European Conference on
Object-Oriented Programming (ECOOP '09),
2009.https://doi.org/10.1007/978-3-642-03013-

0 7.

J. T. F. a. J. S. K. Agrawal, “Nested parallelism in
transactional memory,” in Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP '08),
2008.https://doi.org/10.1145/1345206.1345232.

A.D.P. F. R.G. a. M. K. J. Barreto, “Leveraging
parallel nesting in transactional memory,” in
Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP '10),
2010.https://doi.org/10.1145/1837853.1693466.

H. R. a. E. Witchel, “The xfork in the road to
coordinated sibling transactions,” in 4th ACM
SIGPLAN Workshop on Transactional Computing
(TRANSACT '09),
2009.https://www.researchgate.net/publication/228
400493.

D. &.D.S.P. &. C. B. &. Q. F. Rughetti, “Machine
Learning-Based Self-Adjusting Concurrency in
Software Transactional Memory Systems,” in [IEEE
20th International Symposium on Modeling,
Analysis and Simula,
2012.https://doi.org/10.1109/MASCOTS.2012.40.

P. D. S. B. C. F. Q. Diego Rughetti, “Machine
learning-based thread-parallelism regulation in
software transactional memory,” Journal of Parallel
and Distributed Computing, vol. 109, pp. 208-229,
2017.https://doi.org/10.1016/j.jpdc.2017.06.001.

Meenu

