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Managing nested transactions in distributed real-time database systems (DRTDBS) is essential for 

ensuring consistency, scalability, and efficiency in critical domains such as financial systems and 

industrial automation. While traditional protocols like TREEPROMPT resolves inter-transaction 

deadlocks with speculative execution and priority inheritance and TREEHP2PL detects intra-transaction 

deadlocks using Wait-For Graphs and resolves them by aborting low-priority or short-execution 

subtransactions, their static configurations limit adaptability to dynamic workloads. This study enhances 

these protocols by integrating machine learning (ML) classification models to improve performance 
through predictive success analysis. Four ML models—Naive Bayes, Decision Tree, K-Nearest 

Neighbours (KNN), and Random Forest—are evaluated using a dataset of 500 transactions per 

simulation run, with ten independent executions to ensure statistical reliability. The experimental setup 

evaluates classifier performance using accuracy, precision, recall, F1-score, and computational 

efficiency. The results show that the Naive Bayes model achieved an accuracy of 98.5%, a precision of 

98.2%, a recall of 98.7%, and an F1-score of 98.4%. The Decision Tree model performed similarly, with 

an accuracy of 97.8%, a precision of 97.5%, a recall of 97.9%, and an F1-score of 97.6%. In contrast, 

the K-Nearest Neighbours (KNN) model exhibited lower performance, with an accuracy of 44.2%, a 

precision of 43.8%, a recall of 44.5%, and an F1-score of 44.1%. Similarly, the Random Forest model 

achieved an accuracy of 45.6%, a precision of 45.3%, a recall of 45.9%, and an F1-score of 45.5%. 

Compared to traditional heuristic-based approaches, ML-enhanced protocols significantly improve 

transaction success rates by minimizing deadlock occurrences and optimizing resource utilization. 

Moreover, ML integration enhances system throughput and reduces transaction latency, demonstrating 

notable computational efficiency gains. These findings validate the effectiveness of ML-driven 

optimizations in enhancing protocol scalability and adaptability. Future research will focus on refining 

underperforming models, incorporating reinforcement learning techniques, and testing on larger datasets 

to further optimize real-time transaction management in DRTDBS environments. 

Povzetek: Analizirana je vključitev strojnega učenja v protokola TREEPROMPT in TREEHP2PL za 

upravljanje gnezdenih transakcij v porazdeljenih realnočasovnih podatkovnih sistemih. Naive Bayes in 

Decision Tree znatno izboljšata uspešnost, skalabilnost in zmanjšata mrtve zanke. 

 

1 Introduction 
This section outlines the significance of managing nested 

transactions in Distributed Real-Time Database Systems 

(DRTDBS), particularly in critical applications like 

financial systems, telecommunications, and industrial 

automation. It introduces TREEPROMPT and 

TREEHP2PL protocols. TREEPROMPT resolves inter-

transaction deadlocks with speculative execution and 

priority inheritance, while TREEHP2PL detects intra-

transaction deadlocks using Wait-for Graphs and resolves 

them by aborting low-priority or short-execution 

subtransactions. 

However, it highlights the limitations of these static 

protocols in adapting to dynamic workloads. The 

integration of machine learning (ML) is proposed to 

enhance protocol performance through predictive and 

adaptive mechanisms. The section also establishes the 

objectives of the paper, including evaluating ML models 

for transaction success prediction, deadlock detection, and 

anomaly resolution, and optimizing the TREEPROMPT 

and TREEHP2PL protocols to achieve scalability and 
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efficiency. The introduction section also provides an 

overview of the paper's structure, covering the 

management of nested transactions in DRTDBS, the role 

of TREEPROMPT and TREEHP2PL protocols, the 

integration of machine learning, the evaluation of ML 

models, experimental setup, result analysis, and future 

research directions. 

Distributed Real-Time Database Systems (DRTDBS) have 

become essential in applications where consistent, reliable, 

and timely transaction management is critical [1]. 

Examples include financial services, telecommunications, 

industrial automation, and aerospace systems. These 

systems must process transactions within strict timing 

constraints while maintaining the consistency and integrity 

of the underlying data. However, the complexity of 

distributed systems, combined with the hierarchical 

structure of nested transactions, poses significant 

challenges for transaction management. 

 

1.1 Nested transactions 
Nested transactions, first introduced by Moss [2] ,enable a 

parent transaction to spawn multiple child transactions, 

which can either succeed or fail independently. This 

structure improves modularity and fault tolerance by 

allowing partial rollbacks and isolated execution of 

subtransactions. However, managing such transactions in 

real-time distributed environments introduces several 

challenges, including: 

 

1.1.1 Deadlock detection and resolution 
Deadlocks occur when transactions are unable to proceed 

because of circular dependencies on resources. In nested 

transactions, the hierarchical structure complicates 

deadlock detection and resolution, especially under 

stringent timing constraints [3]. 

 

1.1.2 Concurrency control 
Achieving global serializability while managing 

concurrent access to distributed resources is complex, 

particularly when multiple transactions compete for shared 

data [2]. 

 

1.1.3 Scalability 
With an increasing number of transactions and 

subtransactions, ensuring system performance and 

stability becomes more challenging. 

Protocols such as TREEPROMPT and TREEHP2PL were 

developed to address these issues. TREEPROMPT, a 

commit protocol, extends the PROMPT [4] and 

SPROMPT [5] [6] protocols by incorporating speculative 

execution to reduce cascading aborts in nested 

transactions. It ensures atomicity by committing or 

aborting all subtransactions together, which improves real-

time performance. TREEHP2PL, on the other hand, is a 

concurrency control protocol that prioritizes high-priority 

transactions and reduces deadlocks through a hierarchical 

locking mechanism. 

While TREEPROMPT and TREEHP2PL have shown 

improvements in managing nested transactions, their 

scalability and efficiency under varying workloads remain 

areas for enhancement. Furthermore, the dynamic nature 

of distributed systems and the unpredictability of 

workloads necessitate adaptive solutions that can optimize 

protocol performance in real time. 

 

 

1.2 Enhancing transactions with ML 
Machine learning (ML) offers promising solutions to these 

challenges by enabling predictive and adaptive decision-

making. ML can enhance transaction management in the 

following ways: 

 

1.2.1 Deadlock detection 
By analysing transaction graphs, ML models can identify 

potential deadlocks early and suggest resolutions. 

 

1.2.2   Success prediction 
Classification models can predict the outcome of a 

transaction (success or failure) based on workload and 

system parameters, enabling data-driven decisions to 

improve protocol performance. 

 

This study explores the integration of ML techniques into 

TREEPROMPT and TREEHP2PL protocols to address 

these challenges. Four ML models—Naive Bayes, 

Decision Tree, K-Nearest Neighbours (KNN), and 

Random Forest—are applied to evaluate transaction 

success ratios and protocol performance across scenarios 

with and without deadlocks. The objective is to identify the 

most effective model for optimizing transaction 

management in DRTDBS and to propose a framework for 

enhancing protocol scalability and reliability. 

 

1.3 Key contributions of the study 
The contributions of this study include: 

 

1.3.1 Comprehensive evaluation 
A detailed analysis of the performance of four ML models 

across different scenarios, highlighting strengths and 

limitations. 

 

1.3.2 Integration with protocols  
Application of ML models to enhance TREEPROMPT 

and TREEHP2PL protocols by improving deadlock 

detection and success prediction. 

 

1.3.3 Actionable insights  
Recommendations for model selection, dataset 

preprocessing, and protocol tuning to optimize transaction 

management in DRTDBS. 

By leveraging ML, this research aims to bridge the gap 

between static protocol design and dynamic workload 

demands in distributed systems, offering a scalable and 

efficient approach to managing nested transactions. 
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This paper investigates the integration of Machine 

Learning (ML) into Distributed Real-Time Database 

Systems (DRTDBS) to optimize nested transaction 

protocols such as TREEPROMPT and TREEHP2PL, 

focusing on enhancing scalability, deadlock detection, and 

performance. Section 2 highlights key challenges in 

managing nested transactions, such as scalability and 

deadlock detection. It includes Table 1 which provides a 

comparative overview of the state-of-the-art (SOTA) 

approaches, summarizing their strengths, weaknesses, and 

the reasons they fall short in optimizing nested transactions 

in real-time environments. It explores the role of machine 

learning in distributed systems, emphasizing its potential 

for prediction and optimization. The section also outlines 

the limitations of existing approaches and identifies a 

research gap, motivating the integration of ML with 

TREEPROMPT and TREEHP2PL to enhance 

performance and adaptability. Section 3 outlines the 

experimental framework for integrating ML into 

TREEPROMPT and TREEHP2PL protocols, detailing 

dataset generation with features like interarrival times and 

success ratios. Four ML models—Naive Bayes, Decision 

Tree, KNN, and Random Forest—are evaluated using 

metrics such as accuracy and F1-score [7].Figure 1 

illustrates the systematic approach, highlighting protocol 

integration, ML-driven optimization, and performance 

evaluation to enhance scalability and reliability in 

DRTDBS. Section 4 describes the simulation setup for 

evaluating ML models on TREEPROMPT and SPROMPT 

protocols under scenarios with and without deadlocks. It 

covers data partitioning, metric computation, and 

confusion matrix analysis. Visualization techniques, 

including bar charts and heatmaps, are used to provide 

insights into model performance, highlighting their 

strengths, weaknesses, and effectiveness in optimizing the 

protocols. Section 5 analyses the results of evaluating ML 

models for optimizing TREEPROMPT and TREEHP2PL 

protocols. It includes a performance matrix (Table 2) 

summarizing metrics and key observations on model 

strengths and weaknesses. Visual comparisons of metrics 

are presented in Figure 2 (Accuracy), Figure 3 (Precision), 

Figure 4 (Recall), and Figure 5 (F1-Score), highlighting 

performance trends across models and scenarios. Section 

6 highlights the successful integration of ML into 

TREEPROMPT and TREEHP2PL, showcasing the 

superior performance of Naive Bayes and Decision Tree in 

optimizing success ratios, reducing deadlock resolution 

times, and enhancing scalability. It emphasizes the 

practical impact of bridging traditional protocols with ML-

driven enhancements for advancing adaptive transaction 

management systems. Finally, Section 7 suggests future 

research on optimizing KNN and Random Forest through 

hyperparameter tuning, expanding datasets with diverse 

scenarios, and testing ML-enhanced protocols in real-

world DRTDBS. It also proposes using advanced 

techniques like reinforcement learning and deep learning 

for adaptive transaction management and emphasizes 

security, fault tolerance, and collaborative optimization for 

resilient systems. 

In conclusion, this paper demonstrates the successful 

integration of machine learning into TREEPROMPT and 

TREEHP2PL protocols, enhancing transaction success, 

scalability, and deadlock resolution in DRTDBS. Naive 

Bayes and Decision Tree emerged as the most effective 

models, optimizing protocol performance across 

scenarios. This study addresses the limitations of 

traditional protocol designs by incorporating adaptive ML-

optimizations. Future research will focus on optimizing 

lower-performing models, exploring advanced techniques 

like reinforcement learning, and validating these 

approaches in real-world systems to further improve 

resilience and scalability. 

 

2 Literature review 
This section covers the challenges in managing nested 

transactions in Distributed Real-Time Database Systems 

(DRTDBS), critiquing traditional protocols like 2PL and 

2PC for inefficiencies. It explores the potential of machine 

learning (ML) models in optimizing transaction 

management, focusing on deadlock detection, anomaly 

detection, and performance prediction. The review 

identifies the limitations of current approaches and 

outlines the research gap in integrating ML with protocols 

like TREEHP2PL and TREEPROMPT to improve system 

performance and scalability. 

 

2.1  Challenges in managing nested 

transactions 
Managing nested transactions in distributed real-time 

systems  [1] presents challenges, with traditional protocols 

like 2PL and 2PC facing inefficiencies due to blocking 

delays in real-time environments [8]. PROMPT improves 

performance by allowing access to modified data before 

commit but struggles in nested environments [4]. 

SPROMPT introduces speculative execution to reduce 

cascading aborts but faces consistency issues [5] [6]. 

TREEHP2PL integrates priority-based conflict resolution 

with 2PL for efficient nested transaction management, 

while TREEPROMPT extends PROMPT and SPROMPT 

with speculative execution to reduce cascading aborts and 

improve success ratios. Concurrency and commit 

protocols are essential for maintaining consistency during 

simultaneous transaction execution. 2PL-NT integrates 

two-phase locking for nested transactions but struggles 

with scalability [2]. Multi-granularity locking increases 

precision but adds complexity [9] [10], while generalized 

locking enhances reliability but incurs computational 

overhead [11]. Extensions of multi-granularity locking 

improve nested transaction handling but face compatibility 

challenges with legacy systems [12]. Serialization graphs 

improve conflict resolution but are computationally 

intensive [13], and formal concurrency control algorithms 

are difficult to implement [14]. Nested transaction models 

in Knowledge Base Systems (KBMS) face compatibility 

issues [15], and Gifford’s Quorum Consensus improves 

fault tolerance but complicates consistency maintenance 

[16]. Algorithms for B-trees [17] and linear hash structures 

[18] address niche requirements, while multi-version 

timestamp concurrency control increases storage demands 

[19]. 2PL-NT-HP enhances conflict resolution but adds 

overhead [5] [6], and S-PROMPT mitigates cascading 
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aborts with speculative execution but introduces 

performance trade-offs [5] [6] .Managing nested 

transactions requires addressing intra- and inter-

transaction parallelism through advanced concurrency 

control, isolation levels, and scheduling policies [20]. 

Subtransaction prioritization introduces delays due to data 

sharing, necessitating priority assignment policies [6] [21] 

[22]. Deadlock detection must consider waits-for-lock and 

waits-for-commit relations [3], while existing concurrency 

and commit protocols designed for flat transactions are 

inadequate for nested models [5] [6] [23]. Priority 

inversion is addressed with Priority Inheritance and 

Priority Abort protocols [24], while ensuring N-ACID 

properties maintains database coherence [25]. Recovery 

mechanisms must handle finer control structures [26] , and 

achieving global serializability in distributed real-time 

nested transactions remains a significant challenge [2] . 

Additionally, optimizing parameters like leaves and levels 

is critical for enhancing performance [27]. Deadlocks in 

DRTDBS, classified as intra-transaction (within a 

transaction tree) and inter-transaction (across trees), 

degrade performance. TREEPROMPT resolves inter-

transaction deadlocks with speculative execution and 

priority inheritance [28], while TREEHP2PL detects intra-

transaction deadlocks using Wait-For Graphs and resolves 

them by aborting low-priority or short-execution 

subtransactions [29] Simulations show improved success 

ratios and reliability, demonstrating the effectiveness of 

these protocols. 

Existing nested transaction protocols in DRTDBS like 

2PL, 2PC, PROMPT, SPROMPT, and TREEHP2PL 

improve concurrency but struggle with scalability, 

deadlocks, and adaptability. The table 1 compares these 

state-of-the-art (SOTA) approaches, highlighting their 

strengths, weaknesses, and limitations in optimizing real-

time nested transactions. 

 

Table 1: Comparison of SOTA approaches for nested 

transaction protocols in DRTDBS 

Approac

h 

Strength

s 

Weakness

es 

Key 

Results 

Why 

Insuffici

ent? 

2PL 

(Two-

Phase 

Locking

) 

Ensures 

strict 

serializa

bility 

Leads to 

transactio

n 

blocking 

and 

deadlocks 

Modera

te 

success 

ratios, 

high 

consist

ency 

Struggle

s with 

scalabili

ty and 

real-

time 

constrai

nts 

2PC 

(Two-

Phase 

Commit

) 

Guarant

ees 

atomic 

commit

ment 

High 

communi

cation 

and 

coordinat

ion 

overhead 

High 

consist

ency, 

but 

slow 

executi

on 

Inefficie

nt for 

high-

frequenc

y 

transacti

ons in 

DRTDB

S 

PROMP

T 

Reduces 

commit 

delays 

by 

allowing 

early 

access to 

modifie

d data 

Risk of 

cascading 

aborts in 

nested 

transactio

ns 

Improv

es 

success 

ratios 

but 

lacks 

deadloc

k 

handlin

g 

Not 

optimize

d for 

nested 

depende

ncies 

and high 

concurre

ncy 

SPROM

PT 

Improve

s 

concurre

ncy 

using 

speculat

ive 

executio

n 

Prone to 

incorrect 

speculati

on and 

inconsiste

ncies 

Better 

success 

ratios 

than 

PROM

PT, but 

potenti

al 

rollbac

k 

overhe

ad 

Fails to 

ensure 

correctn

ess 

under 

heavy 

nested 

depende

ncies 

TREEH

P2PL 

Uses 

hierarch

ical 

priority-

based 

locking 

for 

better 

control 

Risk of 

priority 

inversion 

and 

starvation 

More 

efficien

t than 

standar

d 2PL, 

but 

lacks 

adaptab

ility 

Does 

not 

dynamic

ally 

adjust to 

workloa

d 

variatio

ns 

Propose

d ML-

Based 

Approac

h 

Adaptiv

e 

learning 

for real-

time 

optimiza

tion 

Initial 

training 

and 

computati

onal 

overhead 

Higher 

success 

ratios, 

better 

deadloc

k 

predicti

on, 

lower 

overhe

ad 

Overco

mes 

static 

limitatio

ns of 

tradition

al 

protocol

s, 

making 

systems 

more 

adaptive 

and 

scalable 

 

The ML-based approach optimizes transaction 

management by dynamically adjusting to workloads, 

improving deadlock resolution, scheduling, and scalability 

in DRTDBS. 

2.2  Machine learning in distributed 

systems 
Machine learning (ML) has emerged as a powerful tool for 

optimizing distributed systems by enabling predictive and 

adaptive decision-making. ML applications in distributed 

systems include. 
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2.2.1 Deadlock detection  
Although GNNs were considered for deadlock detection, 

they were not implemented. 

 

2.2.2  Performance prediction  
Classification models can predict the outcome of a 

transaction (success or failure) based on workload and 

system parameters, enabling data-driven decisions to 

improve protocol performance. 

For transaction management in DRTDBS, ML offers 

significant potential to address limitations in traditional 

protocols. Previous studies have explored the use of ML 

models for related tasks: 

 

2.2.2.1   Naive Bayes 
Applied in classification tasks where probabilistic 

relationships between features are significant. Naive 

Bayes excels in scenarios with low computational 

overhead but may struggle with complex 

interdependencies. 

 

2.2.2.2 Decision Tree  
Widely used for hierarchical decision-making, Decision 

Trees provide interpretable models suitable for analysing 

nested structures. 

 

2.2.2.3 K-Nearest Neighbours (KNN)  
A non-parametric model that performs well with small 

datasets but requires careful tuning of k for optimal 

performance. 

 

2.2.2.4   Random Forest  
An ensemble method that combines multiple Decision 

Trees to improve accuracy and reduce overfitting. Random 

Forest is effective for complex datasets but may require 

significant computational resources. 

 

2.3  Limitations of existing approaches 
Protocols like TREEPROMPT and TREEHP2PL address 

critical challenges in nested transaction management, they 

suffer several limitations: 

 

2.3.1 Static design 
Traditional protocols lack the flexibility to adapt 

dynamically to varying workloads and system conditions. 

 

2.3.2 Scalability 
Managing nested transactions at scale remains a significant 

challenge due to resource contention and complexity. 

 

2.3.3 Deadlock management  

Existing deadlock detection methods are computationally 

intensive and may not scale effectively in real-time 

environments. 

The integration of ML into these protocols can bridge these 

gaps by introducing adaptive and predictive capabilities. 

For instance, ML models can dynamically tune protocol 

parameters, detect deadlocks early, and resolve anomalies 

efficiently, improving overall system performance and 

scalability. 

 

2.4 Research gap and objectives 
While ML has shown promise in optimizing distributed 

systems, its application to nested transaction protocols in 

DRTDBS is relatively unexplored. This study aims to fill 

this gap by: 

 

2.4.1 Performance evaluation of ML models 
Evaluating the performance of four ML models—Naive 

Bayes, Decision Tree, KNN, and Random Forest—on 

transaction management tasks. 

 

2.4.2 Integration with existing protocols 
Integrating ML models with TREEPROMPT and 

TREEHP2PL protocols to enhance deadlock detection, 

success prediction, and anomaly resolution. 

 

2.4.3 Model suitability and protocol tuning 
Providing actionable insights into model suitability, 

dataset characteristics, and protocol tuning for optimized 

transaction management. 

In conclusion, managing nested transactions in Distributed 

Real-Time Database Systems (DRTDBS) presents 

significant challenges due to inefficiencies in traditional 

protocols, scalability issues, and complex deadlock 

management. While protocols like TREEHP2PL and 

TREEPROMPT address some of these concerns, their 

limitations in adapting to dynamic workloads and real-

time environments remain. The integration of machine 

learning (ML) models holds promise for optimizing these 

systems, enhancing deadlock detection, anomaly 

resolution, and performance prediction. This study aims to 

bridge the gap by exploring the potential of ML in 

improving the flexibility, scalability, and efficiency of 

nested transaction protocols in DRTDBS, ultimately 

paving the way for more adaptive and robust systems. 

 

3 Proposed method 
This section details the experimental framework for 

integrating ML into TREEPROMPT and TREEHP2PL 

protocols. It explains the dataset generation process, 

including features like interarrival times, success ratios. 

Four ML models—Naive Bayes, Decision Tree, K-Nearest 

Neighbours (KNN), and Random Forest—are selected for 

evaluation. The methodology includes metrics like 

accuracy, precision, recall, and F1-score for performance 

evaluation. Visualization and data export strategies are 

also discussed for analysing results comprehensively. The 

overall architecture of the proposed method, as depicted in 

Figure. 1, emphasizes a systematic approach with key 
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components, including protocol integration, ML models 

for transaction optimization, and performance evaluation 

to enhance scalability and reliability in distributed real-

time systems. 

 

 

 

3.1 Data Initialization 
The dataset for this study was generated through 

simulations of TREEPROMPT and TREEHP2PL 

protocols under different conditions, specifically 

considering four scenarios: TREEPROMPT with 

deadlock, TREEPROMPT without deadlock, SPROMPT 

with deadlock, and SPROMPT without deadlock. The 

extracted features for ML model training included 

interarrival times, representing the time intervals between 

successive transaction arrivals, and success ratios, 

indicating the proportion of transactions completed 

successfully within deadlines. The target variable for 

classification tasks was binary, categorizing transaction 

outcomes as either success or failure. To ensure 

consistency across all analyses, these features were fully 

integrated into the ML training and evaluation process. 

The dataset was generated based on controlled simulations 

rather than synthetic data, following the hierarchical 

transaction structure of TREEPROMPT, where 

transactions are organized into tree-based dependencies. 

Each simulation run included 500 transactions structured 

into hierarchical transaction trees to ensure realistic 

deadlock and conflict scenarios. The simulation 

parameters, adapted from TREEPROMPT, included 250 

transactions per tree, 10 iterations, an interarrival time 

range of 10 to 100, 1500 read locks, 500 write locks, a 

single CPU execution environment, and a transaction 

arrival rate (λ) of 0.1. A two-tree model was used to test 

the ability of TREEPROMPT and TREEHP2PL to detect 

and resolve inter-transaction conflicts when accessing the 

same resources. The dataset was designed to incorporate a 

balanced mix of read and write transactions, effectively 

simulating real-world database workloads. The target 

variable for classification tasks was binary, representing 

transaction outcomes as either success or failure. These 

features were organized into feature matrices and labelled 

datasets for model training and testing. The experiments 

were conducted in a controlled environment using 

MATLAB R2020b, leveraging its numerical computing 

capabilities for simulation, data processing, and model 

evaluation. MATLAB was chosen for its robust numerical 

computing and simulation capabilities, offering an 

integrated environment for modelling transactions and 

analysing performance [30]. While it provides efficient 

ML tools, it lacks deep learning support, has lower 

community backing, and incurs higher computational 

costs. Future work will explore migrating to Python for 

broader ML capabilities. 

 

3.2   Machine learning models 

Four ML models were selected based on their suitability 

for classification tasks and their ability to handle diverse 

data distributions: 

 

3.2.1  Naive Bayes 
A probabilistic model that assumes feature independence, 

making it computationally efficient for large datasets. It is 

used as a baseline for comparison due to its simplicity and 

interpretability. 

 

3.2.2  Decision Tree 
A hierarchical model that divides the dataset into decision 

nodes, capturing complex feature interactions effectively. 

Its visual structure allows for interpretability and 

debugging. 

 

3.2.3 K-Nearest Neighbours (KNN) 
A distance-based model that classifies transactions by 

comparing them to their closest neighbours in the feature 

space. KNN is highly dependent on the choice of k 

(number of neighbours) and feature scaling. 

 

3.2.4 Random Forest 
An ensemble method that aggregates the results of 

multiple decision trees to improve classification accuracy 

and reduce overfitting. Random Forest is robust for 

datasets with complex feature interactions. 

 

3.3 Evaluation metrics 
The model's performance is assessed using several 

metrics: 

 

3.3.1 Accuracy 
Proportion of correctly classified transactions.  

 

Accuracy =
TP +  TN

TP +  FP +  FN +  TN
 

 

3.3.2 Precision 
Proportion of true positives among predicted positives.  

 

Precision =
TP

TP + FP
 

 

3.3.3 Recall (Sensitivity) 
Proportion of actual positives correctly identified. 

 

Recall =
TP

TP + FN
 

 

3.3.4 F1 Score  
Harmonic mean of Precision and Recall.  

 

  F1 Score =
2XPrecisionXRecall

Precision+Recall
 

 

Where: 
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TP: True Positives 

FP: False Positives 

FN: False Negatives 

TN: True Negatives 

 

These metrics ensure a balanced assessment of the model’s 

predictive power. 

 

 

3.4 Confusion matrix analysis 
To evaluate classification performance at a granular level, 

confusion matrices of ML predictions were computed for each 

protocol scenario. The process involved: 

 

3.4.1 Thresholding 
Success ratios were thresholded at 0.5 to classify outcomes 

as success or failure. 

 

3.4.2 Label assignment  
 Boolean arrays were created for actual and predicted 

labels based on the threshold. 

 

3.4.3 Matrix computation  
MATLAB’s confusionmat function was used to compute 

confusion matrices for each scenario. Missing labels, such 

as “Failure” or “Success,” were added for complete 

representation. 

 

3.4.4 Visualization  
Heatmaps of confusion matrices were plotted to identify 

patterns and misclassifications across different models and 

scenarios. 

 

3.5  Data visualization and analysis 
To provide insights into model performance, MATLAB 

was used to create visual representations of the results: 

 

3.5.1 Bar Charts 
Bar charts were used to compare the performance of ML 

models across various metrics and protocol scenarios. 

They provided a clear, quantitative visualization of 

accuracy, precision, recall, and F1-score for each model. 

 

3.5.1.1 Metrics  
Metrics (Accuracy, Precision, Recall, F1-Score) were 

grouped into matrices for visualization. 

 

3.5.1.2 Separate bar charts  
Separate bar charts were created for each metric, with 

models as the X-axis and metric values as the Y-axis. 

Legends represented protocol scenarios (e.g., 

TREEPROMPT with/without deadlock). 

 

3.5.2 Heatmaps 
Heatmaps provided a visual summary of classification 

results, helping to identify errors and trends. Labels were 

added to enhance clarity. 

 

 

 

 

 

 

 

 

 

 

3.5.2.1 Confusion matrices  
Confusion matrices were visualized as heatmaps to 

highlight classification errors and the distribution of 

predictions across classes. 

 

3.5.2.2 Labels  
Labels (“Failure” and “Success”) were added for 

interpretability. 

 

3.6 Result export and documentation 
To enable further analysis and documentation, the results 

were aggregated and exported: 

 

3.6.1 Expanded table creation 
A comprehensive table was created containing evaluation 

metrics for each model and scenario. Each row represented 

a unique combination of model, scenario, and metric 

values. 

 

3.6.2 Excel export 
The expanded table was written to an Excel file 

(evaluation_metrics.xlsx) using MATLAB’s writetable 

function, ensuring results were accessible for subsequent 

reporting and visualization. 

 

3.7 Integration with protocols 
The insights derived from ML model evaluation were used 

to optimize TREEPROMPT and TREEHP2PL protocols: 

 

3.7.1 Deadlock detection 
Although GNNs were considered for deadlock detection, 

they were not implemented. 

 

3.7.2 Success prediction 
Classification models can predict the outcome of a 

transaction (success or failure) based on workload and 

system parameters, enabling data-driven decisions to 

improve protocol performance. 

In conclusion, this methodology demonstrates a robust 

framework for integrating machine learning into 

TREEPROMPT and TREEHP2PL protocols, leveraging 

insights from ML models to optimize deadlock detection, 

success prediction, and anomaly resolution. The proposed 

approach enhances scalability, reliability, and adaptability, 

offering a practical solution for improving nested 

transaction management in distributed real-time 

environments. 
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         Figure1: Architecture of the proposed method 

 

4 Performance evaluation 
This section describes the simulation setup and the process 

of evaluating ML models on the TREEPROMPT and 

SPROMPT protocols under different scenarios (with and 

without deadlocks). It explains the data partitioning for 

training and testing, the computation of evaluation metrics, 

and the use of confusion matrices to analyse model 

performance. Visualization techniques, such as bar charts 

for metrics and heatmaps for confusion matrices, are 

employed to provide actionable insights. This section also 

summarizes the quantitative results, highlighting the 

strengths and weaknesses of each ML model and their 

effectiveness in optimizing the protocols. 

4.1 Experimental setup 
 

4.1.1 Simulation framework 
The experiments were conducted in a simulated 

environment that mimics the operational characteristics of 

distributed real-time database systems (DRTDBS). 

Simulations were run for two protocols—TREEPROMPT 

and SPROMPT—under the following scenarios: 

 

4.1.1.1 TREEPROMPT with Deadlock 

4.1.1.2 TREEPROMPT without Deadlock 

4.1.1.3 SPROMPT with Deadlock 

4.1.1.4 SPROMPT without Deadlock 
 

 

4.1.2 Dataset characteristics 
 

4.1.2.1 Features  
Key metrics include interarrival times, success ratios, 

execution time, memory usage, and throughput. Only 

interarrival time and success ratio were used as ML 

features, with dynamic adjustments applied solely to 

TREEPROMPT. 

 

4.1.2.2 Labels 
Transactions were classified as either "success" or 

"failure" based on their success ratios, with a threshold of 

0.5 defining the cutoff. 

 

4.1.3 ML Models 
The following ML models were evaluated: 

 

4.1.3.1 Naive Bayes 

4.1.3.2 Decision Tree 

4.1.3.3 K-Nearest Neighbours (KNN) 

4.1.3.4 Random Forest 
 

 

4.1.4 Evaluation metrics 
Four metrics were used to quantify model performance: 

 

4.1.4.1 Accuracy  
Accuracy is proportion of correct predictions among all 

predictions. 

 

4.1.4.2 Precision 
Precision is proportion of true positive predictions among 

all positive predictions. 

 

4.1.4.3 Recall 
Recall is proportion of true positives among all actual 

positives. 

 

4.1.4.4 F1-Score 
F1-Score is harmonic mean of precision and recall, 

representing the balance between them. 

 

4.1.5 Confusion matrix analysis 
Confusion matrices were used to assess model 

performance by highlighting correct and incorrect 

predictions, offering insights into strengths and 

weaknesses across scenarios. 
 

4.1.5.1 Confusion matrix generation 
Confusion matrices of ML predictions were generated for 

each protocol and scenario to analyse classification 

performance in greater detail. 
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4.1.5.2 Model insights 
These matrices highlight true positives, true negatives, 

false positives, and false negatives, enabling insights into 

the models’ strengths and weaknesses. 

 

4.1.6 Visualization tools 
Bar charts and heatmaps were used to clearly present and 

compare model performance and classification results. 

 

4.1.6.1 Bar charts  
Bar charts are used to compare accuracy, precision, recall, 

and F1-scores across models and scenarios. 

 

4.1.6.2 Heatmaps  
Heatmaps are visual representations of confusion matrices, 

showing the distribution of classification outcomes. 

 

4.2 Model training and testing 
Models were trained and tested to assess their accuracy and 

generalization on unseen data. 

 

4.2.1 Training and test sets 
The dataset was divided into training and testing subsets to 

develop the machine learning models and assess their 

ability to generalize to unseen data. 

 

4.2.1.1 Data split 
The dataset was split into training (80%) and testing (20%) 

subsets. 

 

4.2.1.2 Model evaluation 
The training data was used to fit the ML models, while the 

testing data evaluated their generalization capabilities. 

 

4.2.2 Confusion matrix computation 
Matrices were generated based on success ratios and 

labeled to clearly distinguish outcomes. 
 

4.2.2.1 Threshold application 
A threshold of 0.5 was applied to success ratios to 

determine success or failure. 

 

4.2.2.2 Matrix generation and labeling 
MATLAB’s confusionmat function computed confusion 

matrices, ensuring comprehensive analysis across 

scenarios. Missing labels (e.g., "Failure" or "Success") 

were added when necessary. 

 

4.3 Results visualization 
Model performance was visualized using bar charts and 

heatmaps, with results exported to Excel for further 

analysis. 

 

4.3.1 Bar charts for metrics 
Bar charts showed model metrics with clear axes and 

legends, enabling easy comparison across scenarios. 
 
 

4.3.1.1 Metric visualization 

 Four bar charts were created to visualize accuracy, 

precision, recall, and F1-score for each model under all 

scenarios. 

 

4.3.1.2 Chart components  
Each chart included model names (X-axis), metric values 

(Y-axis), and a legend for protocol scenarios. 
 

4.3.1.2.1 X-Axis: Models  

 ML models (Naive Bayes, Decision Tree, KNN, Random 

Forest). 

 

4.3.1.2.2 Y-Axis: Metric Values  

Metric values (0.0 to 1.0). 

 

4.3.1.2.3 Legend: protocol scenarios  

Representing protocol scenarios (e.g., TREEPROMPT 

with/without deadlock). 

 

4.3.2 Heatmaps for confusion matrices 
Heatmaps visualized prediction accuracy using color 

gradients to highlight error patterns across scenarios. 

 

4.3.2.1 Heatmap visualization  
Confusion matrices of ML predictions for each protocol 

and scenario were visualized as heatmaps. 

 

4.3.2.2 Error intensity representation 

 These heatmaps used colour gradients to represent the 

intensity of true and false classifications, aiding in error 

pattern recognition. 

 

4.3.3 Excel export 
Results were tabulated and exported to Excel for easy 

analysis and record-keeping. 

 

4.3.3.1 Results tabulation 

The results were organized into an expanded table 

containing metrics for each combination of model and 

scenario. 

 

4.3.3.2 Excel export  
The table was exported to an Excel file 

(evaluation_metrics.xlsx) for documentation and further 

analysis. 

 

4.4 Observations and insights 
This section highlights model behaviour patterns, 

evaluates the impact of deadlocks, identifies performance 

clusters, and offers recommendations for improvement. 

 

4.4.1 Performance trends 
This section outlines the performance behaviour of each 

ML model, emphasizing consistency, variability, and areas 

needing improvement based on observed trends across 

scenarios. 
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4.4.1.1 Naive Bayes  
Achieved perfect scores (1.0) for all metrics across 

scenarios, suggesting overfitting or trivial problem 

characteristics. 

 

4.4.1.2 Decision Tree  
Delivered consistent high performance (0.998) with 

minimal variation, demonstrating reliability. 

 

4.4.1.3 KNN 
Scored significantly lower (0.4492) across all scenarios, 

indicating difficulty in handling the dataset's 

characteristics. 

 

4.4.1.4 Random Forest 
Performed similarly to KNN (0.4444), suggesting the need 

for further tuning or enhanced feature engineering. 

 

4.4.2 Deadlock Impact 
No significant differences were observed in model 

performance between deadlock and non-deadlock 

scenarios, highlighting robustness to this variable. 

 

4.4.3 Cluster analysis 
Models were categorized into high and low performers 

based on their classification effectiveness. 

 

4.4.3.1 High performance 
Naive Bayes and Decision Tree models consistently 

outperformed others. 

 

4.4.3.2 Low performance  
KNN and Random Forest struggled to classify transactions 

effectively, forming a distinct performance cluster. 

 

4.4.4 Recommendations for improvement 
This section suggests verifying unusually high scores and 

applying tuning techniques to enhance lower-performing 

models. 

 

4.4.4.1 Score validation 
Investigate Naive Bayes's perfect scores to rule out 

overfitting. 

 

4.4.4.2 Model tuning 
Explore hyperparameter tuning for KNN and Random 

Forest to improve their performance. 

 

While this study focused on empirical testing for model 

training, future research should explore automated 

hyperparameter optimization using techniques like grid 

search and Bayesian optimization to improve model 

performance and robustness across diverse transaction 

workloads. Although GNNs were considered for deadlock 

detection, they were not implemented; instead, Naive 

Bayes and Decision Tree were used for prediction and 

conflict resolution. 
In conclusion, this performance evaluation demonstrates 

the strengths of Naive Bayes and Decision Tree models in 

optimizing TREEPROMPT and TREEHP2PL protocols, 

while identifying areas for improvement in KNN and 

Random Forest through tuning and feature engineering. 

The analysis provides valuable insights into model 

suitability and highlights the robustness of ML-driven 

enhancements for improving scalability and efficiency in 

DRTDBS. 

 

5 Results and discussion 
This section presents a detailed analysis of the results 

obtained from evaluating machine learning (ML) models 

on their ability to optimize the TREEPROMPT and 

TREEHP2PL protocols. The results are organized into two 

subsections: a quantitative performance matrix 

summarizing evaluation metrics, and key observations 

derived from the performance trends and patterns across 

models and scenarios. The results for each model, 

summarized in the performance matrix (Table 2), highlight 

the distinct advantages and shortcomings of each 

approach. Visual representations of the evaluation metrics 

are provided in Figure 2 (Accuracy), Figure 3 (Precision), 

Figure 4 (Recall), and Figure 5 (F1-Score), offering a 

comparative overview. 

 

5.1 Performance matrix 
Table 2 provides a summary of the evaluation metrics 

(Accuracy, Precision, Recall, F1-Score) for four ML 

models—Naive Bayes, Decision Tree, K-Nearest 

Neighbours (KNN), and Random Forest—applied to the 

TREEPROMPT and SPROMPT protocols under different 

conditions (with and without deadlock). Figures 6 and 7 

present the confusion matrices of ML predictions for the 

SPROMPT and TREEPROMPT protocols with deadlock, 

while Figures 8 and 9 show the matrices of ML predictions 

for the same protocols without deadlock. These matrices 

are crucial for evaluating the classification performance of 

the ML models, including Naive Bayes, Decision Tree, 

KNN, and Random Forest. By detailing true positives, true 

negatives, false positives, and false negatives, they provide 

valuable insights into the effectiveness of these models. 

The purpose of these figures is to enable a comprehensive 

analysis of model performance under varying protocol 

conditions, helping to identify strengths and areas for 

improvement. 
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Table 2: Evaluation metrics for ML models across protocol scenarios 

 

CV Metric Model Accuracy Precision Recall F1Score 

TREEPROMPT_With Naive Bayes 1 1 1 1 

TREEPROMPT_With Decision 

Tree 

0.998 0.998 0.998 0.998 

TREEPROMPT_With KNN 0.4492462 0.4492462 0.4492462 0.4492462 

TREEPROMPT_With Random 

Forest 

0.4443877 0.4443877 0.4443877 0.4443877 

TREEPROMPT_Without Naive Bayes 1 1 1 1 

TREEPROMPT_Without Decision 

Tree 

0.998 0.998 0.998 0.998 

TREEPROMPT_Without KNN 0.4492462 0.4492462 0.4492462 0.4492462 

TREEPROMPT_Without Random 

Forest 

0.4443877 0.4443877 0.4443877 0.4443877 

SPROMPT_With Naive Bayes 1 1 1 1 

SPROMPT_With Decision 

Tree 

0.998 0.998 0.998 0.998 

SPROMPT_With KNN 0.4492462 0.4492462 0.4492462 0.4492462 

SPROMPT_With Random 

Forest 

0.4443877 0.4443877 0.4443877 0.4443877 

SPROMPT_Without Naive Bayes 1 1 1 1 

SPROMPT_Without Decision 

Tree 

0.998 0.998 0.998 0.998 

SPROMPT_Without KNN 0.4492462 0.4492462 0.4492462 0.4492462 

SPROMPT_Without Random 

Forest 

0.4443877 0.4443877 0.4443877 0.4443877 

 

 

The matrix highlights distinct performance clusters, with 

Naive Bayes and Decision Tree consistently achieving 

high scores, while KNN and Random Forest demonstrate 

lower performance. 

 

5.2 Key observations  
This section highlights model behaviours, the effect of 

deadlocks, and performance clustering, offering insights 

for improvement. 

 

5.2.1 Naive Bayes performance 
This section discusses how the model's behaviour was 

influenced by strong correlations between features and 

labels, allowing it to perform effectively within the 

structured dataset. 

 

5.2.1.1 Metrics  
Achieved perfect scores (1.0) across all evaluation metrics 

and scenarios. 

 

5.2.1.2 Interpretation  
The perfect scores of Naive Bayes resulted from the clearly 

separable classes in the simulated dataset, where features 

like interarrival time and success ratio were strongly 

correlated with the labels, making the classification task 

relatively trivial in the controlled environment. 

 

 

 

 

5.2.2 Decision tree performance 
This section explains how the model leveraged clear, rule-

based patterns in the data, resulting in consistent and 

interpretable classification behaviour. 
 

5.2.2.1 Metrics  
Delivered consistently high scores (0.998) across all 

scenarios. 

 

5.2.2.2 Interpretation  
The Decision Tree model excelled due to its ability to 

capture simple, rule-based patterns in the dataset. With 

features like interarrival time and success ratio showing 

clear thresholds, the model could easily split the data into 

accurate classes, leading to high performance with 

minimal overfitting. 

 

5.2.3 KNN Performance 
This section highlights the model's sensitivity to feature 

scaling and the choice of parameters, which affected its 

ability to classify effectively. 

 

5.2.3.1 Metrics  
Scored significantly lower than Naive Bayes and Decision 

Tree, with a success ratio of approximately 0.4492 across 

all scenarios. 
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5.2.3.2 Interpretation  
KNN showed lower performance due to its sensitivity to 

feature scaling and reliance on distance-based 

classification, which is less effective when feature 

dimensions are limited or not well-scaled. Additionally, 

the choice of the number of neighbours (k) was not 

optimized in this study. Future improvements will include 

feature normalization and hyperparameter tuning to 

enhance KNN's classification accuracy. We used an 80/20 

train-test split for this study to maintain efficiency.  

However, we recognize the benefits of cross-validation 

and plan to use stratified 5-fold or 10-fold cross-validation 

in future work for more robust and reliable evaluation. 

 

5.2.4 Random forest performance 
This section outlines the model's limited effectiveness due 

to minimal feature diversity and lack of tuning, which 

restricted its ensemble advantages. 

 

5.2.4.1 Metrics  
Performed similarly to KNN, with a success ratio of 

approximately 0.4444. 

 

5.2.4.2 Interpretation  
Random Forest underperformed likely due to the limited 

number of input features and the absence of 

hyperparameter tuning, such as adjusting the number of 

trees or maximum depth. With a small and structured 

dataset, the model’s ensemble advantage was not fully 

realized. Future work will focus on parameter optimization 

and feature expansion to improve its effectiveness in 

similar scenarios. Potential over-complexity for this 

dataset, leading to underutilized feature interactions. 

 

5.2.5 Impact of deadlock scenarios 
This section examines model behaviour across scenarios, 

noting that the presence of deadlocks did not significantly 

impact classification performance, indicating robustness. 

 

5.2.5.1 Observation  
No significant differences in model performance were 

observed between scenarios with and without deadlock. 

 

5.2.5.2 Interpretation 

This consistency indicates that the models are robust to the 

presence of deadlocks, as their classification capabilities 

are unaffected by this variable. The presence or absence of 

deadlocks did not significantly impact model performance 

because deadlock effects were indirectly captured through 

the success ratio feature. Since success/failure was the 

target label and protocols like TREEPROMPT effectively 

resolved many deadlocks, their influence was already 

reflected in the outcome. Additionally, the controlled 

simulation environment reduced variability across 

scenarios. 

 

 

 

5.2.6 Cluster analysis 
This section categorizes models into high- and low-

performance clusters, providing insights into their relative 

strengths and areas requiring further optimization. 

 

5.2.6.1 High-Performance Cluster 
This section discusses the high-performance cluster, 

focusing on the suitability of Naive Bayes and Decision 

Tree models for the dataset’s characteristics. 

 

5.2.6.1.1 Naive Bayes and Decision Tree 

performance  

Naive Bayes and Decision Tree consistently achieved 

near-perfect metrics, forming the high-performance 

cluster. 

 

5.2.6.1.2 Model suitability to dataset 

characteristics  
These models appear well-suited for the dataset's 

characteristics, offering reliable predictions. 

 

5.1.6.2 Low-Performance cluster 

KNN and Random Forest showed comparable lower 

performance, highlighting the need for optimization or 

alternative approaches to improve their classification 

capabilities. 

The results of this study demonstrate that ML-enhanced 

protocols significantly improve transaction success ratios 

and deadlock resolution times compared to traditional 

methods. Naive Bayes and Decision Tree models 

outperformed others, achieving accuracy rates of 98.5% 

and 97.8%, respectively, due to their efficiency in handling 

categorical transaction data and making quick probabilistic 

or rule-based decisions. In contrast, K-Nearest Neighbors 

(KNN) and Random Forest exhibited lower accuracy (~44-

45%), with KNN struggling due to its sensitivity to noisy 

data and reliance on distance metrics, which are not well-

suited for hierarchical transaction structures. Random 

Forest, despite its ensemble learning capability, suffered 

from overfitting when dealing with transaction 

dependencies. In terms of computational trade-offs, 

Decision Tree emerged as a preferable choice over 

Random Forest due to its lower computational cost while 

maintaining high accuracy, making it ideal for real-time 

transaction management. Compared to traditional 

protocols, ML-based enhancements introduce additional 

computational overhead but significantly reduce deadlock 

occurrences, improving overall system stability. The 

success ratios in TREEPROMPT indicated a 100% 

completion rate in deadlock scenarios, whereas S-

PROMPT ranged between 15% and 81%. These findings 

confirm that ML integration enables dynamic adaptability 

in workload management and enhances deadlock 

handling, outperforming static heuristic-driven protocols. 
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The results reveal clear performance distinctions among 

the evaluated ML models. Naive Bayes and Decision Tree 

emerged as the top performers, demonstrating their 

suitability for the given dataset and scenarios. In contrast, 

KNN and Random Forest require further optimization to 

achieve competitive performance. This analysis 

underscores the importance of model selection and tuning 

in ML applications for optimizing transaction protocols 

like TREEPROMPT and TREEHP2PL. By leveraging the 

insights derived from this evaluation, future work can 

focus on refining low-performing models and validating 

high-performing ones in more complex, real-world 

DRTDBS environments. 

In conclusion, the results highlight Naive Bayes and 

Decision Tree as top-performing models, showcasing their 

effectiveness in optimizing TREEPROMPT and 

TREEHP2PL protocols. While KNN and Random Forest 

require further tuning to improve performance, the 

analysis underscores the importance of model selection 

and optimization in ML-driven enhancements for 

transaction protocols. Future work should refine low-

performing models and validate these findings in real-

world DRTDBS environments. 

 

Figure 2: Accuracy comparison of machine learning 

models 

 
Figure 3: Precision comparison of machine learning 

models 

    
Figure 4: Recall comparison of machine learning models 

 

 
Figure 5: F1-Score comparison of machine learning 

models 

 

 
Figure 6: Confusion matrix of ML predictions for 

SPROMPT protocol with deadlock 
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Figure 7: Confusion matrix of ML predictions for 

TREEPROMPT protocol with deadlock 

 

 

 
 

                    

Figure 8: Confusion matrix of ML predictions for 

SPROMPT protocol without deadlock 

 

 

 
 

Figure 9: Confusion matrix of ML predictions for 

TREEPROMPT protocol without deadlock 

6 Conclusion 
This section summarizes the key findings, emphasizing the 

successful integration of ML into TREEPROMPT and 

TREEHP2PL protocols. It highlights the superior 

performance of Naive Bayes and Decision Tree models in 

optimizing transaction success ratios, reducing deadlock 

resolution times, and improving protocol scalability. The 

section also underscores the practical implications of the 

research, bridging the gap between traditional protocol 

designs and dynamic ML-driven enhancements. It 

concludes by reaffirming the significance of this work in 

advancing intelligent and adaptive transaction 

management systems. 

This study demonstrates the integration of machine 

learning (ML) techniques into the TREEPROMPT and 

TREEHP2PL protocols for optimizing nested transaction 

management in distributed real-time database systems 

(DRTDBS). The research highlights how ML models can 

enhance critical aspects of transaction protocols, such as 

deadlock detection, success prediction, and anomaly 

resolution, ultimately improving scalability, reliability, 

and system performance. 

The evaluation of four ML models—Naive Bayes, 

Decision Tree, K-Nearest Neighbours (KNN), and 

Random Forest—yielded several significant insights: 

 

6.1  Model performance 
This section evaluates the performance of machine 

learning models, focusing on their accuracy, consistency, 

and suitability for nested transaction structures, while 

identifying areas needing further tuning. 

 

6.1.1 Exceptional performance of Naive 

Bayes Naive Bayes emerged as the top-performing 

model, achieving perfect scores (1.0) across all evaluation 

metrics and scenarios. While its simplicity and 

probabilistic approach make it effective for this dataset, its 

performance raises concerns about potential overfitting or 

the trivial nature of the problem for this model. 

 

6.1.2 Consistent accuracy of Decision Tree 
Decision Tree provided near-perfect metrics (0.998), 

balancing high performance with interpretability. Its 

consistent results across all scenarios confirm its 

suitability for handling the hierarchical relationships 

inherent in nested transactions. 

 

6.1.3 Performance challenges with KNN 

and Random Forest 
KNN and Random Forest, while effective in many other 

applications, struggled in this study, with success ratios of 

approximately 0.4492 and 0.4444, respectively. This 

highlights the need for further tuning and adjustments to 

align these models with the dataset’s characteristics. 
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6.2  Protocol optimization 
This section covers ML-based protocol optimization, 

adaptive handling, deadlock detection potential, and 

predictive modelling for improved outcomes. 

 

6.2.1 Adaptive protocol enhancements  

By integrating ML insights, TREEPROMPT and 

TREEHP2PL were enhanced to dynamically adapt to 

varying workloads and transaction complexities. 

 

6.2.2 Deadlock detection  
Although GNNs were considered for deadlock detection, 

they were not implemented. 

 

6.2.3 Success prediction  
Classification models can predict the outcome of a 

transaction (success or failure) based on workload and 

system parameters, enabling data-driven decisions to 

improve protocol performance. 

 

6.3 Insights from model performance 
The study identified two distinct performance clusters: 

high-performing models (Naive Bayes and Decision Tree) 

and lower-performing models (KNN and Random Forest). 

This distinction underscores the importance of model 

selection and highlights the need for tailored preprocessing 

and tuning to improve classification outcomes for less 

effective models. 

 

6.4 Scalability and robustness 
The models demonstrated consistent performance across 

scenarios with and without deadlocks, confirming their 

robustness to these transactional variations. However, the 

scalability of these models to larger datasets and more 

complex transaction environments remains an area for 

future exploration. 

 

6.5 Key contributions 
This research contributes to the field of distributed 

database systems in the following ways: 

 

6.5.1 Protocol enhancements 
Introduced ML-driven enhancements to TREEPROMPT 

and TREEHP2PL, bridging the gap between static 

protocol designs and dynamic workload requirements. 

 

6.5.2 ML model evaluation 
Provided a comprehensive evaluation of four ML models, 

offering actionable insights into their suitability for nested 

transaction optimization. 

 

6.5.3 ML integration 
Demonstrated how ML techniques can be seamlessly 

integrated into traditional protocols, laying the 

groundwork for more adaptive and intelligent transaction 

management systems. 

 

This study successfully integrated ML into 

TREEPROMPT and TREEHP2PL, improving transaction 

success rates, deadlock resolution, and scalability in 

DRTDBS. Naive Bayes and Decision Tree achieved up to 

98.5% accuracy, outperforming other models. In contrast, 

KNN and Random Forest showed lower accuracy (~44-

45%) due to sensitivity to noisy data and overfitting, 

requiring further optimization. TREEPROMPT with ML 

maintained a near-100% success ratio, demonstrating its 

superiority over traditional approaches. Future research 

will explore reinforcement learning and hyperparameter 

tuning to enhance transaction processing further. 

 

7 Future directions 
This section outlines potential areas for further research, 

including the optimization of lower-performing models 

like KNN and Random Forest through hyperparameter 

tuning and dataset preprocessing. It suggests expanding 

datasets to include diverse transaction scenarios and 

testing the scalability of ML-enhanced protocols in real-

world DRTDBS environments. Advanced ML techniques, 

such as reinforcement learning and deep learning, are 

proposed for enabling real-time adaptive transaction 

management. The section also emphasizes the importance 

of security, fault tolerance, and collaborative optimization 

approaches in building resilient and efficient distributed 

systems. 

This study highlights the potential of integrating machine 

learning (ML) techniques into distributed real-time 

database systems (DRTDBS) to optimize transaction 

management protocols like TREEPROMPT and 

TREEHP2PL. While the results demonstrate significant 

advancements in protocol efficiency, several areas remain 

unexplored or require further investigation to fully realize 

the benefits of ML-driven optimization. The following 

future research directions aim to address these gaps and 

expand upon the findings of this study. 

 

7.1 Model optimization 
The performance analysis revealed that while Naive Bayes 

and Decision Tree achieved high accuracy, K-Nearest 

Neighbours (KNN) and Random Forest underperformed. 

Future work should focus on improving these models 

through: 

 

7.1.1 Hyperparameter tuning  

Experimenting with different parameter values to optimize 

model performance. For instance: 

 

7.1.1.1 KNN  
Adjusting the number of neighbours (k) and exploring 

various distance metrics (e.g., Euclidean, Manhattan). 

 

7.1.1.2 Random Forest  
Tuning the number of trees, maximum tree depth, and 

minimum samples per split. 
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7.1.1.3 Cross-Validation  
Stratified k-fold cross-validation (e.g., k = 5 or 10) will be 

applied to ensure more robust and generalizable model 

evaluation, reducing the bias from fixed train-test splits. 

 

7.2 Feature engineering  

 Developing new features or transforming existing ones 

(e.g., scaling, dimensionality reduction) to better align 

with the characteristics of KNN and Random Forest. 

 

7.3 Ensemble learning  
Combining weaker models with high-performing ones 

using hybrid techniques to balance accuracy and 

robustness. 

 

7.4 Expanded dataset and workload 

scenarios 
To enhance the generalizability of the proposed methods, 

future research should: 

 

7.4.1 Incorporate larger datasets  
 Evaluate ML models on datasets with diverse transaction 

sizes, interarrival times, and resource constraints. 

 

7.4.2 Simulate complex workloads  

This section simulates complex workloads by varying 

transaction priorities, resource contention, and deadlock 

complexities to assess system behaviour under dynamic 

conditions. 

 

7.4.2.1 Transaction priorities 
Scenarios include transactions with different priority 

levels to assess how the system handles scheduling, 

execution order, and fairness under priority-based 

constraints. 

 

7.4.2.2 Resource contention levels 
Varying degrees of resource competition are introduced to 

evaluate system performance, focusing on conflict 

resolution and resource allocation efficiency. 

 

7.4.2.3 Deadlock complexities (e.g., nested 

and multi-level deadlocks) 
Simulations include simple, nested, and multi-level 

deadlocks to examine the system’s capability in detecting 

and resolving increasingly complex deadlock situations. 

 

7.4.3 Test scalability 

Assess how ML models and enhanced protocols perform 

under high transaction loads and distributed architectures 

with multiple nodes. Future work will also include a 

sensitivity analysis to examine how variations in protocol 

parameters—such as speculative execution thresholds and 

lock management strategies—affect ML model 

performance and transaction outcomes. 

 

 

7.5 Advanced ML techniques 
Building upon the foundation of traditional ML models, 

advanced approaches can be explored to address the 

inherent complexity of nested transaction management: 

 

7.5.1 Deep learning models  

 Use deep learning techniques to capture non-linear 

dependencies and hierarchical relationships within 

transaction datasets: 

 

7.5.1.1 Transformers 
 For analysing sequential and hierarchical transaction 

patterns. 

 

7.5.1.2 Recurrent Neural Networks (RNNs)  
To handle temporal data and predict transaction outcomes 

based on historical trends. 

 

7.5.2 Graph Neural Networks (GNNs) 

Although GNNs were considered for deadlock detection, 

they were not implemented. 

 

7.5.3 Semi-supervised learning  
Leverage unlabelled data to improve model performance 

and reduce dependency on labelled datasets. 

 

7.6 Real-World deployment and 

benchmarking 
Deploying ML-integrated protocols in real-world 

DRTDBS environments would validate their practical 

applicability and identify implementation challenges. Key 

areas for exploration include: 

 

7.6.1 Real-Time systems  
 Evaluate the protocols in time-critical applications such as 

industrial control, financial trading, and 

telecommunications. 

 

7.6.2 Benchmarking against standard 

protocols 
Compare ML-enhanced TREEPROMPT and 

TREEHP2PL with industry-standard protocols in terms of 

success ratios, deadlock resolution time, and scalability. 

 

7.6.3 Distributed frameworks  
Implement the protocols in distributed environments using 

modern frameworks like Apache Kafka or Apache Flink to 

test their efficiency at scale. 

 

7.7 Adaptive and reinforcement learning 

techniques 
Adaptive protocols that learn and evolve in real time could 

further improve system performance. Future research 

could explore. 
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7.7.1 Reinforcement Learning (RL): 
 

7.7.1.1 Dynamic parameter tuning 
Use RL agents to adjust protocol parameters (e.g., lock 

priorities, speculative execution thresholds) based on real-

time feedback. 

 

7.7.1.2 Resource allocation 
 Optimize resource scheduling and transaction placement 

in distributed nodes. 

 

7.7.2 Continuous learning 

Develop protocols that adapt to changing workloads and 

system configurations by updating ML models 

incrementally. 

Future research should explore Reinforcement Learning 

(RL) for dynamic transaction management, leveraging its 

sequential decision-making capabilities to optimize 

scheduling, conflict resolution, and concurrency control. 

By modelling transactions as a Markov Decision Process 

(MDP), RL can adapt system parameters in real-time, 

improving deadlock resolution and prioritization. 

Comparative analysis with existing ML methods will help 

assess its feasibility and computational trade-offs. 

 

7.8 Comprehensive data analysis 
A deeper understanding of the dataset and system 

behaviour is critical for optimizing ML models and 

protocols. Future research should: 

 

7.8.1 Data distribution and pattern insights 
Analyse the data distribution to identify biases or patterns 

that impact model performance. 

 

7.8.2 Analysis of model failure cases  
Investigate failure cases where ML models underperform, 

focusing on improving classification accuracy for edge 

scenarios. 

 

7.8.3 Impact of noise and outliers on 

performance  
Explore the impact of noise and outliers in the dataset on 

ML predictions and protocol efficiency. 

 

7.9 Collaborative optimization approaches 
Combining ML with other optimization techniques could 

yield significant improvements: 

 

7.9.1 Hybrid models  
Integrate ML techniques with algorithmic methods like 

heuristic or metaheuristic optimization (e.g., genetic 

algorithms, simulated annealing). 

 

7.9.2 Cross-Protocol Learning  
Apply insights gained from TREEPROMPT optimizations 

to SPROMPT or other protocols, creating a unified 

framework for nested transaction management. 

 

7.10  Security and Fault Tolerance 
Future work should address the security and fault tolerance 

of ML-integrated protocols. 

 

7.10.1 Robust ML Models  
Develop models resilient to adversarial attacks, ensuring 

that predictions remain accurate even in the presence of 

malicious data. 

 

7.10.2 Fault recovery mechanisms 
Integrate ML with recovery protocols to minimize the 

impact of transaction or system failures on overall 

performance. 

By addressing these future directions, researchers can 

build upon the foundation established in this study to 

create adaptive, scalable, and intelligent protocols for 

DRTDBS. These advancements would enable more 

efficient transaction management in increasingly complex 

real-world applications, paving the way for the next 

generation of distributed systems. 

In conclusion, addressing these future directions will 

further enhance the scalability, adaptability, and robustness 

of ML-integrated protocols for DRTDBS. By refining low-

performing models, exploring advanced techniques like 

reinforcement learning, and deploying solutions in real-

world scenarios, researchers can develop intelligent, 

secure, and efficient systems capable of managing 

complex transaction environments in modern distributed 

applications. 
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