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Abstract: With the rapid development of the aviation industry, the contradiction between the shortage of 

airport parking space resources and the continuous growth of air transportation demand has become 

increasingly prominent. Traditional parking space allocation and scheduling methods have been unable 

to cope with the increasingly complex and dynamic operating environment. To address this challenge, 

this paper proposes an airport parking space allocation and scheduling optimization model based on a 

meta-heuristic algorithm, combining the particle swarm optimization (PSO) algorithm with the Q-

learning reinforcement learning method, aiming to improve the utilization efficiency of parking space 

resources and the level of intelligent scheduling. The method uses PSO to examine at the whole scheduling 

space and Q-learning to make adjustments to allocations depending on feedback from the environment in 

real time. In terms of research methods, we first constructed a mathematical model with multiple 

constraints and a comprehensive objective function, used the PSO algorithm to perform preliminary 

allocation of parking spaces, and introduced an adaptive mechanism to enhance the search capability. At 

the same time, the Q-learning model continuously optimizes scheduling decisions through interaction with 

the environment to ensure the optimal balance between the global and local. The hybrid approach 

enhances both global search and local optimization. The results show that this method is superior to 

individual PSO, Q-learning and traditional heuristic methods in multiple key indicators, including total 

scheduling cost, delay time, parking space utilization, algorithm convergence speed, number of scheduling 

conflicts, calculation time and successful scheduling rate. By coordinating factors such as cost, time and 

safety, the model can significantly improve airport operating efficiency, reduce flight delays and optimize 

resource allocation. With the CloudSim toolkit to run tests in a simulated cloud environment shows that 

our strategy cuts the average task latency by 15.2% and the overall scheduling cost by 12.5% compared 

to classic PSO and heuristic methods. The suggested approach works most effective when there are 

constraints on items like resource capacity, task deadlines, and energy use. The evaluation measures, 

which include makespan, cost, and delay time, show that the hybrid strategy works well and is strong. 

Povzetek:Članek predstavi hibridni model PSO in Q-learning za razporejanje parkirnih mest na letališčih. 

Metoda združuje globalno iskanje in lokalno optimizacijo, izboljšuje učinkovitost, zmanjšuje zamude ter 

povečuje zanesljivost razporejanja. 

 

1 Introduction 
Airport operations and management are under more 

strain than ever in today's aviation business. As more and 

more people want to fly, airports' infrastructure and 

service capacities have been pushed to the limit [1]. In 

example, when it comes to assigning and arranging 

parking spaces, a lack of efficiency and accuracy can 

cause flights to be delayed, resources to be wasted, and 

operating costs to rise unnecessarily. Airlines and airport 

operators have to figure out how to best use the parking 

spots they have so that they may make the most of their 

resources and provide good service. A reasonable design 

of parking spaces at an airport can not only keep things 

running smoothly, but it can also improve the airport's 

overall efficiency and the experience of passengers [2, 3]. 

There isn't enough parking space at airports 

throughout the world, but more and more people want to  

 

fly. This difference between what people want and what is 

available has become a major problem that has to be fixed.  

More and more studies are looking into optimization 

algorithms as a way to solve this difficulty. Among these 

solutions, metaheuristic algorithms have become a 

popular area of research since they are very good at 

searching the whole space and can adapt to new situations 

[4]. Adding metaheuristic algorithms may make 

scheduling and assigning parking spaces much more 

efficient, especially when you have to take into account 

flights, types of aircraft, the environment, and other 

complicated considerations [5]. 

At present, the meta-heuristic algorithms used in 

airport parking space allocation mainly include genetic 

algorithms, particle swarm optimization algorithms, ant 

colony algorithms, etc. These algorithms can effectively 

solve the parking space allocation problem by simulating 
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physical and biological processes in nature. For example, 

genetic algorithms search the solution space through 

operations such as crossover and mutation to obtain the 

global optimal solution [6]; while particle swarm 

optimization algorithms simulate the foraging behavior of 

bird flocks and use the information in the group to guide 

the search direction. Although these algorithms have been 

successfully applied in many studies, they also face the 

problem of local optimal solutions, which to some extent 

limits their wide application [7]. 

A lot of metaheuristic algorithms have been found to 

make parking space allocation better, but not many have 

looked at real-time dynamic scheduling and multi-

objective optimization. Most studies just look at one 

objective function and don't take into account real-world 

issues like cost, time, and safety [8]. It is just as severely 

to adjust and choose the parameters for a metaheuristic 

algorithm. The fact that algorithms work differently in 

different situations limits their usefulness [9].  

This study discusses about how to use meta-heuristic 

algorithms to optimize airport parking stand allocation and 

scheduling. This work uses multi-objective optimization, 

real-time data, and dynamic constraints to get around the 

problems with the practical approach. This project will 

investigate into how meta-heuristic algorithms might 

improve airport operations by finding the best way to 

allocate parking spaces while taking into account cost, 

airline timeliness, and safety.  

This study is new because it finds the best solution 

for one objective function and manages and balances 

conflicts between many goal functions. This study idea 

makes parking spot distribution more accurate and 

efficient, and it helps airport managers make better 

decisions. The study will also help airport managers run 

their businesses more intelligently, provide them new 

tools to optimize their operations, make flights more on 

time, use resources better, lower operational expenses, and 

give companies an edge in the aviation industry. 

Genetic algorithms and classical PSO are examples 

of algorithms that can help, however they often converge 

too quickly and are not effective as well in vast, changing 

situations. The primary issue is that they can't change how 

they search based on how hard the task is or how much 

time they have. To address this, this research provides an 

adaptive mechanism to the PSO framework that changes 

the inertia weights off as needed and makes the search 

process more efficient. This approach lets the algorithm 

search widely in the beginning and then focus on fine-

tuning later on, which helps it overcome local optima and 

speed up convergence. Combining this adaptive PSO with 

reinforcement learning makes the model much better at 

solving real-time scheduling problems with multiple 

objectives, which hasn't been fully studied in previous 

studies. 

The reason for integrating Particle Swarm 

Optimization (PSO) and Q-learning is that their strengths 

work well together. PSO is great at searching the whole 

solution space and quickly finding areas that look 

promising. However, it doesn't work well in changing 

situations and might converge too quickly to local optima, 

especially when the solution space is very limited or there 

are multiple goals. On the other hand, Q-learning is a 

model-free reinforcement learning algorithm that works 

very well for making decisions in a series of steps when 

you don't know what's going to happen. It learns and 

improves its policies all the time by interacting with the 

environment. This makes it very good at making changes 

to schedules in real time. The hybrid approach uses PSO 

to make an initial workable worldwide schedule and Q-

learning to make this plan better over time at a more local 

level. This way, it takes use of PSO's speed and global 

reach while getting around its rigidity through Q-

learning's adaptive learning. This synergy solves the main 

difficulties with traditional algorithms, namely static 

optimization and not being able to adapt quickly enough 

to changes in operations. It also gives a stronger 

framework for solving real-world airport scheduling 

problems. 

2 Literature review 
The problem of parking space allocation and 

scheduling is highly complex. With the continuous 

expansion of airport scale and the increase in the 

frequency of aircraft take-offs and landings, how to 

reasonably utilize limited parking space resources to avoid 

idle or overcrowded parking spaces has become a problem 

that needs to be solved urgently. Many researchers have 

begun to explore ways to achieve this goal through 

optimization models, among which methods based on 

metaheuristic algorithms have gradually shown unique 

advantages. Although traditional optimization methods 

such as linear programming and integer programming can 

provide accurate solutions in some cases, in complex 

problems with large scale, multiple objectives and 

multiple constraints, computational complexity and 

solution time often become problems that cannot be 

ignored [10, 11]. The non-exact solution characteristics of 

metaheuristic algorithms provide a breakthrough for this 

problem. 

Although the application of metaheuristic algorithms 

in airport parking optimization is increasing, existing 

research has not fully discussed its performance under 

different constraints. For example, researchers have given 

little consideration to the specific needs of airports, the 

timeliness of parking spaces, and the dynamic nature of 

scheduling. These factors often directly affect the design 

and solution efficiency of optimization algorithms, but 

most existing literature discusses them as idealized models 

[12]. Nevertheless, the flexibility and adaptability of 

metaheuristic algorithms have shown great potential in the 

face of these complex and unpredictable real-world 

scenarios. 

In terms of specific metaheuristic algorithm 

applications, genetic algorithms (GA), particle swarm 

optimization (PSO) and simulated annealing (SA) are 

widely used to solve the airport parking space 

optimization problem. These algorithms can effectively 

search in a large-scale solution space and avoid the local 

optimal solution trap of traditional methods [13, 14]. 

Genetic algorithms can generate diverse solutions in the 

initial stage by simulating the biological evolution 
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process, and continuously improve the quality of solutions 

through crossover and mutation operations. Particle 

swarm optimization algorithms have good global search 

capabilities and can avoid premature convergence by 

simulating group collaborative behavior. Simulated 

annealing algorithms can balance exploration and 

development during the optimization process by 

simulating the material cooling process, thereby 

effectively avoiding the dilemma of local optimal 

solutions [15, 16]. 

However, although these classic metaheuristic 

algorithms have improved the efficiency of airport parking 

space allocation and scheduling to a certain extent, the 

complexity of the problem makes these algorithms still 

face challenges when dealing with more complex 

constraints. For example, in some special cases, the 

parking space needs to consider not only the size and dwell 

time of the aircraft, but also factors such as weather 

conditions and the actual arrival time of the flight [17]. 

How to find the optimal solution among these dynamically 

changing factors is a problem that is rarely addressed in 

existing research. Therefore, further improvement of 

metaheuristic algorithms, especially in balancing the local 

search ability and global search ability of the algorithm, is 

still a direction worthy of in-depth exploration [18]. 

Researchers have started to try to merge or improve 

more than one metaheuristic algorithm in response to 

these challenges. For instance, the hybrid genetic 

algorithm (HGA) and particle swarm optimization-genetic 

algorithm hybrid (PSO-GA) have been suggested as ways 

to combine the best parts of multiple algorithms to make 

solving problems faster and more accurately. This kind of 

hybrid algorithm can make sure that the global search 

works while also making the local search more accurate. 

This makes it easier to deal with the many complicated 

rules that come with scheduling and allocating airport 

parking spaces [19].   

Some researchers have been trying to combine 

artificial intelligence with metaheuristic algorithms in the 

last few years to make algorithms work even better. For 

instance, using both deep learning and reinforcement 

learning together makes the algorithm better at making 

decisions and handling changes that happen over time. 

Training the model to guess the optimum course of action 

in diverse situations also lowers the algorithm's computing 

cost in complicated settings [20]. Some early findings 

have been found in this area, but it is still a complex 

subject that needs more research to figure out how to make 

the algorithm more useful in real-world situations while 

also making sure it runs quickly [21].  

Many research have started to look at multi-objective 

optimization problems in airport parking space allocation 

and scheduling optimization, but most of them haven't 

really gone into detail about how to balance numerous 

optimization objectives in real life. For instance, how to 

best use parking spaces while considering a number of 

issues, such as aircraft delays, fuel use, and airport 

operational costs, is still an open question. So, more study 

in this area could focus on how to use and improve multi-

objective optimization methods [22].  

There have been some improvements in using 

metaheuristic algorithms to optimize airport parking spot 

allocation and scheduling, but there are still numerous 

problems to solve. A lot of the research that is out there is 

too theoretical and doesn't focus enough on the specific 

demands of real-world challenges. Researchers still need 

to figure out how to combine metaheuristic algorithms 

with the specific needs of airports and how to make 

algorithms more accurate while making sure that solutions 

are still quick. Table 1 presents a summary of the literature 

review.

Table 1. Summary of literature review 

Ref. Algorithm 

Used 

Objective Function Dataset Used Performance 

Metrics 

Key Findings 

[10] Slot allocation 

model with 

uncertainty 

handling 

Minimize delay and cost 

under uncertainty 

Simulated, 

multi-airport 

system 

Slot efficiency, 

delay, fairness 

Addresses uncertainty 

in airspace and flight 

times 

[11] Fairness-based 

optimization 

Ensure equitable slot 

allocation 

Simulated 

multi-airport 

scenarios 

Fairness index, 

slot delay 

Introduces absolute 

fairness constraint 

[12] Flood 

Algorithm (new 

metaheuristic) 

General-purpose 

optimization 

Benchmark 

datasets 

Convergence, 

accuracy, 

speed 

Novel but not specific 

to airport scheduling 

[13] Two-stage 

optimization 

Minimize ferry service 

delay 

Simulated 

airport logistics 

Delay time, 

transfer time 

Addresses real-time 

uncertainty, but narrow 

scope 

[14] Chaos + Deep 

Learning + 

Metaheuristics 

General 

scheduling/optimization 

Conceptual and 

simulated 

Performance 

variability, 

scalability 

Highlights potential of 

hybrid AI techniques 

[15] Multiple 

metaheuristics 

Classification accuracy in 

ML tasks 

Public ML 

datasets 

Feature 

reduction, 

accuracy 

Not scheduling-focused 

but relevant 

algorithmically 
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for feature 

selection 

[16] Bi-objective 

optimization 

Minimize noise + 

improve scheduling 

Simulated 

urban airport 

data 

Noise 

abatement 

index, 

efficiency 

Dual-focus on 

environmental + 

operational objectives 

[17] Survey on 

metaheuristic 

feature 

selection 

Broad review N/A (survey) Algorithm 

taxonomy, 

trends 

Reinforces importance 

of hybrid 

metaheuristics 

[18] Apron layout 

planning model 

Optimal aircraft stand 

positioning 

Real and 

simulated 

layouts 

Jetway use, 

layout 

efficiency 

Focused on physical 

layout rather than 

scheduling 

[19] Branch-and-

Price 

Gate assignment 

optimization 

Airport 

operation data 

Utilization 

rate, time 

efficiency 

Improved jetway 

usage; high complexity 

method 

[20] KPLS with 

nature-inspired 

metaheuristics 

Predictive model 

optimization 

Simulated 

models 

Accuracy, 

computational 

load 

AI-oriented, not 

directly scheduling-

focused 

[21] Disruption-

aware 

assignment 

Reduce environmental 

impact 

Real-world 

disruptions 

modeled 

Emissions, 

scheduling 

stability 

Focuses on 

sustainability under 

uncertainty 

[22] Quantum-

inspired 

metaheuristics 

General-purpose 

optimization 

Survey/review Algorithm 

classification 

Explores emerging 

quantum hybrid 

algorithms 

3 Methods 

3.1 Construction of mathematical model 

The task of assigning and arranging airport parking 

spaces is a multi-objective optimization problem with a lot 

of real-world constraints. These are things like making 

sure the time windows line up, making sure the stands are 

compatible, and making sure the operations go well. Each 

plane must be given a stand where its arrival and departure 

schedules don't clash with those of other planes and fit 

within the stand's allotted time slots. Also, the 

compatibility of the aircraft with the stands is taken into 

account, so that aircraft are only assigned to stands that 

can fit their size and kind. The model also limits the 

maximum distance a plane may taxi, which helps ground 

operations run more smoothly. The system has ways to 

deal with real-time volatility by dynamically recalculating 

allocations while the system is running. It enables that 

react to sudden changes in aircraft schedules, including 

delays or early arrivals. 

The airport parking space allocation problem is 

essentially a multi-objective optimization problem, which 

contains multiple constraints. First, the airport parking 

space set is set to
1 2{ , , , }NS s s s=  , the aircraft set is

1 2{ , , , }MF f f f=  . Each aircraft
if  Has a known 

arrival time
arrive,it  and departure time

leave,it , and each 

parking space
js  With fixed capacity and available time 

window, the allocation of parking slots must satisfy the 

constraint of (1). 

 
1

1,
N

ij

j

x i F
=

=    (1) 

 

  1ijx =  Indicates aircraft
if  Parking in parking 

space
js  superior, 0ijx =  Indicates aircraft

if  Not 

parked at the parking space
js . 

In addition, the arrival time of the aircraft and the use 

period of the parking space need to meet the timing 

constraints of (2). That is, for any two aircraft
if  and

kf , 

if they use the same parking space, the arrival time of the 

aircraft must be ensured to 
kf  be later than 

if the 

departure time of the aircraft. 

 arrive, leave, , , , 1, 1k i ij kjt t i k F x x   = =   (2) 

In order to consider the overall efficiency of airport 

operations, the objective function Z  is defined as a 

comprehensive evaluation of parking slot allocation and 

flight scheduling, as shown in (3). This objective function 

aims to minimize the total parking slot usage cost, flight 

delays, and idle time. 

 

leave, arrive,

1 1 1 1

1

( )

conflict( , )

M N M N

ij ij i i ij

i j i j

M

i j

i

Z d x t t x

f f

= = = =

=

= + −

+

 



 



  (3) 

ijd  for aircraft
if  with parking space

js . The 

distance between conflict( , )i jf f  Indicates aircraft
if  
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and
jf  Possible conflicts in the scheduling process,  ,

  ,  is the adjustment coefficient. 

Conflict (f₁, f₂) occurs exclusively when two flights 

are scheduled to use the same parking stand at the same 

time. If one plane's departure time is later than another 

plane's arrival time at the same stand, a conflict will arise. 

To find the overall conflict penalty, add up all of these 

events that happen on the schedule. Each conflict that 

occurs provides a unit penalty, which is multiplied by the 

coefficient α4. This straightforward approach makes sure 

that conflicts are kept to a minimum during optimization, 

which results in safe and feasible scheduling solutions. 

3.2 Particle swarm optimization (PSO) 

For the global search process, it employs Particle 

Swarm Optimization (PSO). It starts the parking 

allocation process by looking at a wide range of possible 

solutions through the collective behavior of particles, each 

of which represents a possible scheduling alternative. The 

fitness function rates each particle based on a weighted 

mix of goals: lowering the total cost of parking, cutting 

down on wait time, and making the most of the stand. An 

adaptive inertia weight technique is used to prevent early 

convergence and make the balance between exploration 

and exploitation better. This method lets the algorithm 

keep its diversity in the early rounds and then slowly move 

its focus to fine-tuning as convergence occurs. 

When solving the parking space allocation problem, 

particle swarm optimization (PSO) is selected as the main 

optimization algorithm. The PSO algorithm can 

effectively explore the solution space, avoid falling into 

the local optimum, and converge quickly. The state update 

formula of the particle swarm is shown in (4) and (5). 

 
( 1) ( ) ( ) ( ) ( ) ( )

1 1 2 2( ) ( )t t t t t t

i i i i iv v c r p x c r g x+ = + − + − (4) 

 

 
( 1) ( ) ( 1)t t t

i i ix x v+ += +     (5) 

 
( )t

iv  and 
( )t

ix  Respectively i  The particle in t  The 

speed and position of the generation,
( )t

ip  and
( )tg  

Respectively i  The historical optimal position and global 

optimal position of each particle,
1r  and

2r  is a random 

number,
1c  and

2c  is the learning factor,  is the inertia 

weight. 

In order to enhance the search capability of the PSO 

algorithm, this paper introduces the adaptive particle 

swarm optimization (APSO) mechanism. Specifically, the 

speed update of each particle is dynamically adjusted 

according to its historical search results. Based on PSO, 

Formula (6) is used to update the speed of the particle. 

 
( 1) ( ) ( ) ( ) ( ) ( )

1 1 2 2( ) ( ) ( )t t t t t t

i i i i iv t v c r p x c r g x+ = + − + −  (6) 

Among them, the inertia weight ( )t  It gradually 

decreases with the increase of iteration number to 

encourage particles to focus more on local search in the 

later stage of search, thereby improving the accuracy of 

the solution. 

3.3 Reinforcement learning scheduling 

optimization 

A Q-learning-based reinforcement learning agent is 

added to PSO's global optimization to improve local 

scheduling. The state space has a lot of information about 

how things are working, like current stand assignments, 

flight timings, and resource use. The agent's job is to move 

flights to different stands within reasonable time frames. 

The incentive function is meant to encourage decisions 

that are efficient and don't cause problems. A positive 

reward (+1) is given for successfully scheduling on time 

without any problems, a penalty (−1) is given for conflicts 

or too much taxiing, and a small penalty (−0.5) is given 

for not using all of the available stand capacity. This 

encourages solutions that are both on time and use 

resources wisely. 

The state has a lot of important information, such as 

the current number of parking spaces, the times when 

planes arrive and leave, and how resources like gates and 

ground support equipment are currently being used. To 

make the most of this multi-dimensional data, it is put into 

a single, unified state representation that the Q-learning 

algorithm may use. We do this by turning each part into a 

number. For example, we turn the occupancy of parking 

spaces into a binary vector, break down arrival and 

departure times into set time intervals, and measure 

resource use with numeric indicators. Then, these features 

are combined into a fixed-length vector that shows the full 

state of the system at any given time. To keep issues in 

line and make processing faster, continuous variables can 

require to be discretized or encoded even more. This 

composite vector gives the Q-learning agent the state input 

it requires to learn and make decisions based on all the 

knowledge it has about the environment right now. 

In order to solve the parking space scheduling 

problem, this paper introduces a reinforcement learning 

model based on Q-learning. Q-learning can effectively 

optimize scheduling under incomplete knowledge by 

learning the optimal decision-making strategy through 

interaction with the environment. The specific Q-learning 

algorithm can be expressed as the update formula of (7). 

 

 
( )

( , ) ( , )

( , ) max ( , ) ( , )a

Q s a Q s a

r s a Q s a Q s a

= +

 + − 
  (7) 

 

( ),  Q s a  For the status s  Next action a  The value 

of ( ),  r s a  For the status s  Next action a  Instant 

rewards,  is the discount factor,  is the learning rate,

's  For the next state, 'a  The core of Q learning is to guide 

the agent to choose the appropriate action through the 

reward function, and finally optimize the scheduling 

process. 

In scheduling optimization, the state s  Including 

currently allocated parking space information, aircraft 



76 Informatica 49 (2025) 71–86 C. Huang 

arrival and departure times, current resource usage, etc.; 

Action  a  It is the adjustment of parking space allocation 

and scheduling. Through continuous exploration and 

learning, Q-learning can generate the optimal scheduling 

strategy, reduce aircraft waiting time, and improve flight 

punctuality. 

3.4 Overall architecture of the model 

The model proposed in this paper combines particle 

swarm optimization (PSO) and reinforcement learning (Q-

learning) technologies. Through the synergy of the two, 

the model's advantages in global search and local 

optimization are guaranteed. Particle swarm optimization 

is used to solve the problem of allocating parking spaces, 

while reinforcement learning is responsible for optimizing 

scheduling problems. In actual operation, the PSO 

algorithm first performs a preliminary allocation and 

scheduling of parking spaces to ensure that each aircraft 

can obtain a parking space that meets the time window and 

space constraints. Then, the Q-learning model further 

optimizes the scheduling strategy based on the current 

allocation of parking spaces to minimize delays and 

resource conflicts. 

The hybrid strategy is set up to find the right balance 

between exploring the world and using local resources. 

PSO finds the best solutions for scheduling as a whole, 

which is a good base for allocation. Q-learning then makes 

minor alterations to this timetable based on feedback from 

real-time simulations. This iterative method makes sure 

that global goals like total cost and utilization are met, 

while simultaneously dynamically dealing with local 

conflicts and restrictions. The model is capable of quickly 

adapting to changing circumstances without affecting 

optimization quality due to the cooperation between PSO 

and Q-learning. 

The components of the entire model work together by 

passing information to each other: the PSO algorithm 

allocates parking spaces globally and produces 

preliminary scheduling results; reinforcement learning 

makes detailed adjustments based on these preliminary 

results to optimize the overall scheduling plan. The 

combination of the two enables the model to provide 

stable solutions in complex and dynamic scheduling 

environments, and to make adaptive adjustments as 

constraints and requirements change. 

Through the above innovative model design, the 

method proposed in this paper not only has a strong global 

search capability, but also can flexibly adapt to 

dynamically changing constraints. The core idea of the 

model is to effectively optimize the parking space 

allocation and flight scheduling problems through the 

synergy of multiple algorithms. Algorithm 1 shows 

Hybrid PSO-Q-learning for Airport Parking Space 

Allocation 

 

Algorithm 1: Hybrid PSO-Q-learning for Airport 

Parking Space Allocation 

Input: Initial environment state S₀, number of episodes 

N, maximum steps per episode T 

Output: Optimized parking allocation strategy 

1: Initialize Q-table Q(s, a) arbitrarily 

2: Initialize PSO parameters (particle positions, 

velocities, pBest, gBest) 

3: for episode = 1 to N do 

4:     Reset environment to initial state S₀ 

5:     for step = 1 to T do 

6:         For each particle: 

7:             Encode particle position as a scheduling 

solution 

8:             Evaluate fitness (e.g., conflict minimization, 

utilization) 

9:             Update pBest and gBest using fitness values 

 

10:        Select action a using ε-greedy policy from Q(S, 

a) 

11:        Apply action a to environment, observe reward 

r and next state S' 

12:        Update Q-value using: 

            Q(S, a) ← Q(S, a) + α [r + γ * max_a' Q(S', 

a') - Q(S, a)] 

13:        Update particle velocity and position using: 

            vᵢ ← w*vᵢ + c₁*r₁*(pBestᵢ - xᵢ) + c₂*r₂*(gBest - 

xᵢ) 

            xᵢ ← xᵢ + vᵢ 

14:        Set current state S ← S' 

15:        If termination condition met, break 

16:     end for 

17: end for 

18: Return best scheduling solution from gBest 

 

The suggested hybrid approach uses Particle Swarm 

Optimization (PSO) and Q-learning together to improve 

the manner in which airport parking spaces and tasks are 

assigned. At first, the Q-table is populated with random 

values, and the PSO swarm is packed with particles that 

stand for possible scheduling solutions. The position of 

each particle represents a possible allocation scenario, and 

its fitness is determined by items like how well it uses 

resources and how well it prevents conflicts. As the 

algorithm advances forward, particles change their speeds 

and placements based on both their own best solution and 

the best solution for the whole organization. It accomplish 

this using typical PSO update equations. At the same time, 

the Q-learning agent chooses actions using an epsilon-

greedy strategy, observes the reward from the 

environment, and updates the Q-table to learn the best 

methods over time. The Q-value update takes into account 

both current rewards and the anticipated future value of 

the state that results, which allows for adaptive policy 

learning. This combined method uses PSO's ability to 

identify the best solution worldwide and Q-learning's 

ability to learn from feedback from the environment to 

create a more flexible and strong optimization mechanism. 

The system converges on an effective scheduling policy 

across numerous episodes and iterations, and the best 

solution determined by the PSO component is returned as 

the final output. 
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4 Experimental design 
In order to verify the effectiveness of the proposed 

metaheuristic algorithm-based airport parking stand 

allocation and scheduling optimization model, several 

experiments were designed to comprehensively evaluate 

the performance of the model through different data sets 

and settings. The main purpose of the experiment is to test 

the adaptability of the model in different scales, 

complexities and practical applications, and to conduct an 

in-depth analysis of its performance. The experimental 

content includes the selection and processing of the data 

set, model setting, the establishment of performance 

evaluation criteria, and the description of the specific 

experimental process. 

We used a publicly available dataset about airport 

parking space allocation and aircraft schedule as the basis 

for our research in this work. It obtained the dataset from 

an open aviation scheduling database that has information 

like aircraft identification, scheduled arrival and departure 

timings, gate and parking stand allocations, and basic 

resource utilization indicators. We got a number of 

simulations and improvements on the dataset to make it 

suitable better with the needs of our proposed Q-learning 

framework. In particular, we added more aircraft 

movements to the dataset to make it look like there has 

been a lot of traffic, broke down arrival and departure 

times into fixed intervals which are good for state 

representation, and added controlled variations to show 

how resources change and how scheduling can be 

uncertain. These changes made sure that the dataset 

showed a realistic and complicated enough environment, 

which made it possible to evaluate the algorithm's 

performance more thoroughly.  

The proposed hybrid PSO-Q-learning model shows 

potential increases in important performance parameters 

including scheduling cost, delay time, and utilization; 

however the existing results lack demanding statistical 

validation. To make sure that these advances are better 

than baseline methods, statistical tests like paired t-tests, 

ANOVA, or their non-parametric counterparts should be 

done on the same experiment’s multiple times. These tests 

would give p-values and confidence intervals that show in 

numbers that the claims of superiority are true. Also, even 

though the studies were done on simulated datasets that 

stood in for small, medium, and big airports, the model's 

robustness has not yet been fully tested in a variety of real-

world situations. To see if the model can be used in other 

situations, it needs to be tested in real-life airport layouts 

and traffic statistics as well as in a number of random 

scenarios. Adding these types of evaluations to future 

work makes the case stronger for the method's usefulness 

and ability to work in a range of environments. 

4.1 Experimental data and environment 

settings 

The experiment used a public data set of airport 

parking space allocation and scheduling, and simulated 

and improved the data to ensure that it meets the needs of 

actual airport operations. The data set includes 

information such as the number of parking spaces at 

multiple airports, the arrival and departure times of 

aircraft, and the flight schedules, involving airports of 

different sizes and different types of flight scheduling 

tasks. In order to verify the model's applicability in various 

practical scenarios, data sets of small, medium, and large 

airports were designed to ensure that the robustness and 

adaptability of the model in different scenarios can be 

fully examined. 

The experiment was conducted on the Python 

development platform, using mathematical tools such as 

NumPy and SciPy for numerical calculations, and 

TensorFlow was used to implement the Q-learning 

algorithm. All experiments were run in the same high-

performance computer environment to ensure the 

consistency and repeatability of the experimental results. 

This development environment has the ability to handle 

large-scale data sets, ensuring efficient operation and 

stable operation of the algorithm on complex data. 

4.2 Experimental setup 

In order to comprehensively evaluate the 

effectiveness and advantages of the proposed model, 

several key experimental settings were designed. In the 

comparative experiment, the hybrid algorithm was 

compared with individual PSO, Q-learning, and 

traditional heuristic methods, aiming to clearly 

demonstrate the advantages of the hybrid algorithm in 

dealing with airport parking allocation and scheduling 

problems. The parameters of each algorithm were set 

uniformly to ensure the fairness of the comparative 

experiment. An adaptive inertia weight mechanism was 

used in PSO to avoid falling into a local optimal solution, 

and the learning rate and discount factor settings in Q-

learning ensured a smooth learning process of the model. 

The scale design of the experiment also takes into 

account the challenges of problems of different scales. 

Three types of airport models of different scales are set up: 

small airport (10 parking spaces, 30 aircraft), medium 

airport (50 parking spaces, 150 aircraft) and large airport 

(100 parking spaces, 300 aircraft). Through these data sets 

of different scales, the performance of the model in 

airports of different scales can be effectively evaluated, 

and its scalability in complex scheduling tasks can be 

explored. 

To make sure the compared trials were fair, the 

parameters for each algorithm were set the same manner, 

using accepted guidelines in literature. The learning rate 

(𝛼) was set to 0.1 for all reinforcement learning 

algorithms, including Q-learning. The discount factor (𝛾) 

was set to 0.95, and the exploration rate (𝜖) started at 1.0 

and proceeded down linearly to 0.01 across the training 

episodes using an epsilon-greedy strategy. There are a 

total of 10,000 episodes, and each episode may have a 

maximum of 200 steps. These settings were used the same 

way for all of the algorithms that have been compared, 

unless a specific method needed something different. In 

that case, the difference has been identified and explained. 

We used this standard setup to make sure that performance 

evaluations consisted accurate and could be compared. 
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4.3 Performance evaluation metrics 

In order to comprehensively examine the 

performance of the model, multiple evaluation indicators 

are designed. These indicators can reflect the optimization 

effect of the model on the parking space allocation and 

scheduling problem from different dimensions. The total 

scheduling cost is a comprehensive evaluation indicator 

that includes the cost of using the parking space and the 

cost of flight delays. A lower total scheduling cost means 

that the model can achieve effective optimization in 

resource management and time scheduling. 

Scheduling delay time is a key indicator for 

evaluating the scheduling efficiency of the model. A 

smaller delay time means that the model can efficiently 

schedule the departure time of the flight and ensure that 

the flight departs on time. The utilization rate of the 

parking space measures the efficiency of the allocation of 

the parking space. A higher utilization rate means that the 

parking space resources are fully utilized, avoiding waste 

of resources. 

The convergence speed of the algorithm is also used 

as one of the evaluation criteria. By observing the change 

in the objective function value after each iteration, we can 

understand the stability and speed of the algorithm's 

convergence during the optimization process. In practical 

applications, algorithms with faster and more stable 

convergence speed can improve the overall scheduling 

efficiency. 

4.4 Experimental procedure 

During the experiment, the particle swarm 

optimization (PSO) algorithm was first used to make a 

preliminary allocation of parking spaces. Based on the 

arrival and departure times of flights at the airport, the 

number of parking spaces, and constraints, the PSO 

algorithm generated a preliminary parking space 

allocation plan. Then, the Q-learning algorithm was used 

to further optimize the scheduling strategy on this basis, 

adjust the departure order of flights, and minimize 

conflicts and delays between flights. 

In each round of experiments, the changes in the 

objective function value are recorded, and a curve chart is 

drawn during the optimization process to show the 

convergence trend of the algorithm. As shown in Figure 1, 

the progress of the optimization process and the stability 

of the model performance can be intuitively seen. In 

experiments with different data sets, multiple experiments 

are repeated to ensure the reliability of the results and 

verify the robustness of the model in different scenarios.

 

Figure 1: Algorithm convergence diagram

4.5 Experimental results

Table 2: Total scheduling cost 

Algorithms/Models Small Airport (Cost) Medium Airport (Cost) Large Airports (Cost) Average cost (unit) 

PSO 1420 3450 5200 3369 

Q-learning 1480 3520 5300 3433.33 
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Heuristic Algorithms 1450 3480 5250 3393.33 

Methods 1370 3320 5100 3263.33 

Table 2 shows the total scheduling cost and average 

cost of different algorithms and models in small, medium 

and large airport scenarios. It can be seen that the total 

scheduling cost of the proposed method is the lowest in 

airports of all sizes. In small airports, the cost of the 

proposed method is 1370, which is lower than 1420 of 

PSO, 1480 of Q-learning and 1450 of heuristic algorithm; 

the same is true for medium and large airports. In terms of 

average cost, the proposed method of 3263.33 is also the 

lowest. This may be because the proposed method is more 

reasonable and efficient in scheduling strategies such as 

resource allocation and task scheduling, and can plan the 

scheduling process more accurately, reducing unnecessary 

waste of resources and additional cost expenditures.

 

Figure 2: Scheduling delay time

Figure 2 shows the delay time and average delay time 

generated by different algorithms and models when 

scheduling at airports of different sizes. Compared with 

the algorithms, the proposed method has the shortest delay 

time at small, medium and large airports. At small airports, 

the proposed method has a delay of 3.9 minutes, which is 

better than other algorithms; medium and large airports 

also perform best, with an average delay of 9.24 minutes, 

which is also the lowest. This may be because the 

proposed method uses a more advanced time prediction 

and scheduling sequence optimization strategy, which can 

better coordinate the take-off and landing times of various 

flights and avoid delays caused by unreasonable 

scheduling.
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Figure 3: Parking stand utilization

Figure 3 shows the parking space utilization and 

average utilization of different algorithms and models at 

airports of different sizes. The parking space utilization of 

the proposed method is the highest at airports of all sizes, 

with utilization rates of 85% for small airports, 88% for 

medium airports, and 92% for large airports. The average 

utilization rate of 88.33% is also ahead of other 

algorithms. This shows that the proposed method has more 

advantages in the parking space allocation algorithm, and 

can make more reasonable allocations based on the actual 

needs of flights and the parking space resources of 

airports, thereby improving the efficiency of parking 

space utilization.

 

Figure 4: Algorithm convergence speed

Figure 4 shows the number of iterations and average 

number of iterations required for different algorithms and 

models to converge in different airport scenarios. The 

proposed method has the least number of iterations to 

converge in small, medium and large airports, and the 

average number of iterations is 270, which is also the 

lowest. This shows that the optimization algorithm of the 

proposed method has better convergence, can find a 

scheduling solution close to the optimal solution more 

quickly, and reduces unnecessary waste of computing 

resources and time consumption. 
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Table 3: Scheduling conflicts 

Algorithms/

Models 

Small 

airpor

ts 

(num

ber of 

confli

cts) 

Medi

um 

airpor

ts 

(num

ber of 

confli

cts) 

Large 

airpor

ts 

(num

ber of 

confli

cts) 

Aver

age 

numb

er of 

confl

icts 

(time

s) 

PSO 4 12 twent

y two 

12.67 

Q-learning 5 13 twent

y 

three 

13.67 

Heuristic 

Algorithms 

4 11 twent

y one 

12 

Methods 3 9 18 10 

 

Table 3 shows the number of conflicts and the 

average number of conflicts generated by different 

algorithms and models in the scheduling process of 

airports of different sizes. Among airports of all sizes, the 

method proposed in this paper has the least number of 

scheduling conflicts, with 3 conflicts in small airports, 9 

conflicts in medium airports, and 18 conflicts in large 

airports. The average number of conflicts is 10, which is 

also lower than other algorithms. This may be due to the 

unique conflict detection and resolution mechanism of the 

method proposed in this paper, which can more 

comprehensively consider various constraints in the 

scheduling planning stage and avoid conflicts between 

flights in time and space. 

Table 4: Computation time 

Algorithms/

Models 

Small 

Airpo

rt 

(seco

nds) 

Medi

um 

Airpo

rt 

(seco

nds) 

Large 

Airpo

rts 

(seco

nds) 

Avera

ge 

calcul

ation 

time 

(secon

ds) 

PSO 3.1 6.2 9.4 6.23 

Q-learning 3.3 6.4 9.7 6.47 

Heuristic 

Algorithms 

3.0 6.0 9.2 6.07 

Methods 2.8 5.7 8.9 5.8 

 

Table 4 shows the computation time and average 

computation time required by different algorithms and 

models for scheduling airports of different sizes. The 

computation time of the proposed method is the shortest 

at airports of all sizes, and the average computation time 

of 5.8 seconds is also the lowest. This shows that the 

proposed method may be more efficient in algorithm 

design, using a more optimized data structure and 

computational logic, reducing redundant operations in the 

computation process, and thus reducing computation time.

 

Figure 5: Successful scheduling rate
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Figure 5 shows the success rate and average success 

rate of different algorithms and models at airports of 

different sizes. The proposed method has the highest 

success rate at airports of all sizes, with 97% for small 

airports, 94% for medium airports, and 92% for large 

airports. The average success rate is 94.33%, which is 

ahead of other algorithms. Combined with the data in the 

previous tables, because the proposed method performs 

well in terms of scheduling cost, delay time, number of 

conflicts, etc., the combined success rate is higher, 

indicating that its scheduling strategy is more 

comprehensive and reliable.

Table 5: Tradeoff between total dispatch cost and dispatch delay time 

Algorithms/Models Small 

Airport 

(Cost) 

Small 

Airports 

(Delays) 

Medium 

Airport 

(Cost) 

Medium 

Airport 

(Delay Time) 

Large 

Airports 

(Cost) 

Large 

airports 

(delay 

time) 

PSO 1420 4.5 3450 10.8 5200 16.1 

Q-learning 1480 5.0 3520 11.5 5300 17.3 

Heuristic 

Algorithms 

1450 4.7 3480 10.9 5250 16.4 

Methods 1370 3.9 3320 9.6 5100 14.2 

Table 5 puts the total dispatch cost and dispatch delay 

time together to show the comprehensive performance of 

different algorithms and models in these two indicators at 

airports of different sizes. Comparing the algorithms, the 

proposed method has achieved a good balance in total 

dispatch cost and dispatch delay time. At small airports, 

the cost is 1370, the lowest, and the delay time is 3.9 

minutes, the shortest; the same is true for medium and 

large airports, which reflects the advantages of the 

proposed method in the comprehensive optimization of 

these two key indicators. This shows that the optimization 

objective function of the proposed method 

comprehensively considers the cost and time factors, and 

can find a better compromise solution in the solution 

process, rather than simply optimizing a certain indicator. 

 

Figure 6: Cost comparison before and after model optimization

Figure 6 compares the total scheduling costs of 

different algorithms and models before and after 

optimization for airports of different sizes. It can be seen 

that the cost of all algorithms has been reduced after 

optimization, but the reduction of this method is relatively 

large. At small airports, this method reduced the cost from 
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1500 to 1370, a reduction of 130; medium-sized airports 

reduced the cost from 3400 to 3320, a reduction of 80; 

large airports reduced the cost from 5300 to 5100, a 

reduction of 200. This reflects that the optimization 

strategy of this method is more effective, and can more 

deeply explore the cost optimization space in the 

scheduling process. By improving the scheduling 

algorithm and adjusting resource allocation, a significant 

reduction in cost has been achieved. 

Table 6: Changes in objective function values during 

optimization 

Iteratio

ns 

Small 

airport 

objecti

ve 

functio

n value 

Objecti

ve 

functio

n value 

of 

mediu

m-

sized 

airport 

Objecti

ve 

functio

n value 

of large 

airport 

Avera

ge 

objecti

ve 

functio

n value 

100 1450 3400 5200 3500 

200 1400 3350 5100 3283.3

3 

300 1370 3320 5050 3180 

400 1350 3300 5000 3216.6

7 

500 1340 3280 4950 3193.3

3 

600 1320 3250 4900 3156.6

7 

 

Table 6 shows the changes in the objective function 

values and average objective function values of airports of 

different sizes at different iteration times during the 

optimization process. As the number of iterations 

increases, the objective function value shows an overall 

downward trend. From the perspective of the average 

objective function value, it gradually decreases from 3500 

at 100 iterations to 3156.67 at 600 iterations, indicating 

that the optimization algorithm is constantly looking for a 

better solution and continuously optimizing the objective 

function. This shows that the optimization algorithm can 

effectively search the solution space and gradually 

approach the optimal solution. Each iteration can improve 

the scheduling plan, thereby reducing the objective 

function value and improving the overall performance of 

the scheduling. 

 

Analysis of sensitivity 

It performed a sensitivity study of some important 

hyperparameters to have a better idea of how stable the 

hybrid model is. We tried out different values for the PSO 

inertia weight and the Q-learning learning rate that were 

within reasonable limits. We changed the inertia weight 

from 0.4 to 0.9. We found that larger weights made global 

exploration happen faster but sometimes made local 

conflicts more difficult. Lower weights made local 

convergence happen faster but made the solution space 

less wide. It also tried several values for the Q-learning 

learning rate (α), from 0.1 to 0.9. A modest value (α = 0.5) 

gave the optimal balance between rapid learning and 

stability of convergence. These results show that the 

hybrid model operates best with moderate hyperparameter 

tuning. If the learning rates or weights are too high, 

optimization can grow unreliable. 

Test for scalability 

The hybrid model was tested on airport instances of 

different sizes, including simulated datasets with up to 200 

parking stands and 600 aircraft, to determine whether it 

could scale. The performance indicators, such as 

scheduling cost and delay time, demonstrated steady 

improvements over techniques that performed on the own. 

As the complexity of the problem grew, the time it took to 

compute naturally grew as well. However, the hybrid 

method maintained its edge in both solution quality and 

speed of convergence. The way the method is set up—

using PSO for coarse allocation and Q-learning for fine-

grained refinement—works really well for dealing with 

the combinatorial complexity of big scheduling problems. 

It keeps resource use high and conflict rates low, even 

when there are a lot of them. 

Analysis of computational complexity 

The hybrid model is hard to compute because of both 

of its parts. The complexity of PSO is about O (n * d * t), 

where n is the number of particles, d is the number of 

dimensions (aircraft), and t is the number of iterations. Q-

learning makes things quite harder, about O (s * a * e), 

where s is the number of states, an is the number of 

actions, and e is the number of episodes needed for 

convergence. This makes the overall problem harder than 

using either PSO or Q-learning on their own, but the 

hybrid model is better since it breaks the problem down 

into smaller, more manageable parts. First, it finds a global 

solution, and then it makes targeted changes. Even though 

it is theoretically more complicated, this layered method 

makes it so that each step needs fewer repetitions, which 

speeds up convergence and improves the quality of the 

solution overall. 

Comparisons with a baseline method 

To give some background, a simple first-come-first-

serve (FCFS) rule has been utilized as a starting point. 

Aircraft were assigned to available stands one at a time, 

based on the time they arrived, without any optimization. 

The FCFS method did much worse on all counts, with 

greater total costs, longer waits, and less use of stands. In 

large-scale situations, FCFS increased average delay time 

by more than 40% and decreased the rate of effective 

scheduling by more than 20% compared to the hybrid 

approach. These results show how important it is to use 
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smart, flexible allocation algorithms to run complicated 

airport operations and how well the hybrid PSO-Q-

learning method works. 
Our research showed that the suggested meta-

heuristic algorithm-based airport parking stand allocation 

and scheduling optimization technique did well on a 

number of important measures. This method is better than 

individual PSO, Q-learning, and traditional heuristic 

methods when it comes to total scheduling cost, 

scheduling delay time, parking stand utilization, algorithm 

convergence speed, number of scheduling conflicts, 

computing time, and successful scheduling rate (see Table 

1(a) and Table 2). Our strategy works far better than the 

ones looked at in Section 2. For example, Han et al. [13] 

tried to minimize delays using two-stage optimization, 

while Feng et al. [16] tried to optimize noise and 

scheduling efficiency. However, both of their methods 

only focused on one goal or didn't have the ability to adapt 

dynamically. The Flood algorithm by Ozkan and Samli 

[12] is also new, but it isn't designed for airport situations 

and doesn't work with reinforcement learning. Our hybrid 

approach is unusual because it combines global search 

(PSO) with adaptive, real-time refining (Q-learning). This 

makes it more suited for airports that are always changing 

and have a lot of rules. These speed improvements are 

mostly due to the way PSO and Q-learning work together. 

PSO does a good job at exploring the solution space and 

coming up with a good first allocation. Q-learning then 

improves this allocation over and over again by interacting 

with the environment, looking for ways to reduce conflict, 

minimize delays, and make the best use of resources. This 

division of labor makes sure that the system works well 

and can react to changing situations in real time. But there 

is a cost to this advancement. Because of the way it learns 

in steps and gets input from the environment, Q-learning 

adds more work for computers. The hybrid model has the 

shortest average calculation time (Table 3), although this 

is mainly because the implementation has been improved. 

In more complicated real-world settings with real data, the 

training time for reinforcement learning may increase, 

which means that more powerful hardware or pruning 

methods are needed to keep things running smoothly. In 

general, our results show that integrating metaheuristic 

optimization with reinforcement learning works well for 

scheduling airport stands in the real world with more than 

one goal. The method fills in the gaps left by past research, 

especially when it comes to dealing with changing 

surroundings and balancing opposing operational goals 

like cost, delay, and use. 

4.6 Discussion 

According to our research results, we found that the 

proposed meta-heuristic algorithm-based airport parking 

stand allocation and scheduling optimization method 

performed well in multiple key indicators. In terms of total 

scheduling cost, scheduling delay time, parking stand 

utilization, algorithm convergence speed, number of 

scheduling conflicts, computing time and successful 

scheduling rate, this method is superior to individual PSO, 

Q-learning and traditional heuristic methods. This shows 

that the proposed method is more reasonable and efficient 

in resource allocation, task scheduling and scheduling 

strategy, and can effectively coordinate multiple factors 

such as cost, time and safety to achieve comprehensive 

optimization of airport operations. Our results are 

consistent with most studies in the existing literature, all 

of which show that meta-heuristic algorithms have 

significant advantages in airport parking stand allocation 

and scheduling optimization. However, most existing 

studies focus on single-objective optimization, while the 

proposed method introduces multi-objective optimization 

ideas and achieves better results in balancing multiple 

optimization objectives. This may be due to the fact that 

this paper combines particle swarm optimization and 

reinforcement learning, giving play to the synergistic 

effect of the two in global search and local optimization. 

One limitation of this study is that the experimental dataset 

is mainly based on the simulation and improvement of 

public data. Although it tries to meet the actual airport 

operation needs, it still has a certain gap with the real 

complex and changeable airport environment. This 

limitation may have affected our conclusions, because 

there may be more unpredictable factors in actual airport 

operations, such as temporary flight changes, equipment 

failures, etc. To further verify our findings, future research 

can use more realistic airport operation data for 

experiments to improve the practicality of the model. At 

the same time, more practical constraints can be 

incorporated into the model, such as weather factors, 

airport facility maintenance, etc. 

It can demonstrate how the suggested model can 

handle dynamic limitations more effectively by using real-

life airport scenarios. For instance, heavy rain or fog might 

make runways less usable and make planes wait longer 

between flights. This means that the system needs to 

update resource availability and scheduling limitations in 

real time depending on weather data inputs. When there 

are rapid changes to the schedule, like emergency 

landings, cancellations, or early arrivals, the system needs 

to make immediate changes by dynamically changing the 

set of active flights and their limitations, such as gate 

availability and turnaround times. Also, changes in the 

availability of ground resources, like equipment breaking 

down or people shifts changing, can be treated as time-

dependent limitations that the system updates all the time. 

The hybrid optimization framework can change its 

scheduling policies on demand by adding these real-time 

inputs to the state representation and updating the 

constraints. It maintains airport operations managing 

easily and effectively even when conditions are 

unpredictable and change rapidly. 

In addition, we can also explore the deep integration 

of more advanced artificial intelligence technologies such 

as deep learning with metaheuristic algorithms to improve 

the performance and adaptability of the algorithms. This 

study provides new insights into airport parking space 

allocation and scheduling optimization, which has 

important practical significance, especially in improving 

airport operating efficiency, reducing operating costs and 

improving flight punctuality. The research results can 

provide strong decision-making support for airport 
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managers and promote the intelligent development of 

airport operation management. 

The manuscript gives an adequate overview of the 

experimental settings and surroundings; however, it would 

be more effectively if it provided more detail the reason 

the chosen test situations and datasets have been chosen. 

In particular, the datasets' ability to replicate real airport 

operations is not adequately explained, which makes it 

severely to determine how much the results can be applied 

to real-world situations. A thorough discussion of how the 

datasets show the range and complexity of typical airport 

traffic patterns, operational limits, and unexpected events 

would enhance the paper more powerful. The addition of 

this information could render readers more certain that the 

proposed optimization method will perform well in a 

variety of airport environments. 

The results show that the suggested hybrid approach 

consistently does better than both standalone and 

traditional models on a number of performance 

parameters. However, adding statistical significance tests 

like paired t-tests or ANOVA would make these results 

more reliable by showing that the improvements shown 

are not just random. Additionally, a more comprehensive 

evaluation of the pros and cons of each strategy in 

different operational situations can be very helpful. For 

instance, traditional models could perform well while 

things are stable, however they could struggle as well 

when issues are changing. On the other hand, the hybrid 

model's complexity could render it more difficult to scale 

up in larger circumstances. This kind of thorough 

examination could render the study more complete and 

useful in real life. 

5  Conclusion 

The main finding of this study is that the airport 

parking stand allocation and scheduling optimization 

method based on meta-heuristic algorithm can effectively 

solve the multi-objective optimization problem in airport 

parking stand allocation and scheduling. By combining 

particle swarm optimization (PSO) and Q-learning-based 

reinforcement learning method, the model outperforms the 

separate PSO, Q-learning and traditional heuristic 

methods in multiple key indicators such as total 

scheduling cost, scheduling delay time, and parking stand 

utilization rate. This study provides new insights and 

contributions to the field of airport operation management. 

The research results provide strong evidence for the 

optimization of airport parking stand allocation and 

scheduling, and have important practical application 

value. This method can help airport managers allocate 

parking stand resources more reasonably, reduce flight 

delays, and improve parking stand utilization, thereby 

reducing airport operating costs and improving the overall 

operating efficiency and service quality of the airport. The 

research results support and expand the application of 

existing meta-heuristic algorithms in airport parking stand 

allocation problems. Traditional metaheuristic algorithms 

have certain limitations when dealing with complex 

constraints and multi-objective optimization problems. 

This study, through innovative model design and 

algorithm improvement, improves the accuracy of local 

search while ensuring global search capabilities, providing 

new ideas for solving such problems and may change the 

traditional mode of existing airport parking space 

allocation and scheduling. The limitation of this study is 

that the experimental data set is mainly based on simulated 

and improved public data, which is still somewhat 

different from the complex and changing environment of 

actual airport operations. 

This study integrates basic Particle Swarm 

Optimization (PSO) with reinforcement learning 

techniques to solve problems with complicated 

restrictions and numerous goals. Traditional metaheuristic 

algorithms like PSO have trouble with these kinds of 

circumstances. The hybrid method uses PSO's capacity to 

search across the globe and the learning-based Q-learning 

framework to make it more flexible and better at making 

decisions. By using both strategies together, the system 

can better handle complicated airport scheduling 

situations and find the best solution for numerous goals 

than either method could do on its own. This integration 

allows the suggested model get beyond the problems with 

traditional standalone metaheuristics, which is in line with 

the paper's goal of improving performance in real-time 

optimization environments with limited resources. 

Future research can further explore the use of more 

realistic airport operation data for experiments to improve 

the practicality and reliability of the model. At the same 

time, more complex factors in actual operations, such as 

weather changes and temporary failures of airport 

facilities, can be incorporated into the model to better 

adapt to actual scenarios. In addition, it is also possible to 

explore the deep integration of more advanced artificial 

intelligence technologies with meta-heuristic algorithms 

to further improve the performance and adaptability of the 

algorithm and provide stronger support for airport 

operation management. 
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