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We propose a multi-label classification mining method using parallel support vector machines for
imbalanced sample databases. The samples within the unbalanced sample database are partitioned into
the majority sub-cluster and the minority sub-cluster by means of the hierarchical clustering algorithm,
thereby achieving the oversampling of the unbalanced sample database. Using hierarchical clustering
algorithm to divide into majority and minority sub clusters, complete oversampling of imbalanced
sample database. Clustering itself does not directly generate new samples, but it divides the data into
sub clusters, allowing oversampling to be more targeted in the sub clusters of minority classes, which
can avoid noise or overfitting problems caused by blind oversampling. The role of clustering algorithms
is to provide structured data partitioning basis for oversampling. Improve the accuracy of minority class
classification in imbalanced sample databases through parallel computing, and use MapReduce to solve
SVM dual problems in parallel to optimize hyperplanes for multi label classification. By using the Map
function to divide the training sample set into small sample sets and train support vector machines,
these support vector machines are then integrated in the Reduce stage to train a new support vector
machine as the final decision function, in order to efficiently handle multi label classification problems.
The experimental results show that the studied method consistently maintains a high accuracy of 0.95 or
higher on the G-means index, far exceeding the comparison methods; In terms of acceleration ratio,
when the sample size increased from 1000 to 10000, the acceleration ratio of our method steadily
improved from 1.0 to 2.5, while the two comparison methods only reached 1.5 and 2.0 respectively, and
there were significant fluctuations.

Povzetek: Za hitro, porazdeljeno in uravnotezeno vecoznacno klasifikacijo velikih in neuravnotezenih
podatkov z izboljSano natancnostio manjsinskih razredov ter ucinkovito uporabo virov v rudarjenju
podatkov je razvit PSVM-MLC, paralelni sistem podpornih vektorjev na osnovi MapReduce. Metoda
uporablja hierarhicno grozdenje za ciljno nadvzorceno nadvzorcenje manjsinskih razredov in s tem

prepreci Sum.

1 Introduction

Machine learning algorithms rely on observational data
samples to discover patterns, and employ these patterns
to predict future data or data that cannot be directly
observed [1]. This has become a crucial technology for
resolving numerous practical issues. Support Vector
Machine (SVM) is a data mining algorithm. Data mining
[2] is the process of using algorithms to search for hidden
information from large amounts of data, which may be
unknown, interesting, and useful for specific
applications. In the classification issue, SVM looks for a
hyperplane to maximize the separation between distinct
categories, thereby attaining precise classification of new
samples [3]. This approach excels in managing high-
dimensional data, nonlinear challenges, and small sample
datasets, and is extensively utilized in data mining. SVM
maps the input space to a higher dimensional feature
space by constructing a kernel function, and finds the

optimal hyperplane in this feature space to achieve
classification. Due to the fact that SVM only considers a
small number of support vectors when constructing
models, it has a certain robustness to data sparsity and
noise. The multi label classification problem refers to the
situation where a sample can belong to multiple
categories simultaneously [4]. In image recognition, an
image may contain multiple objects; In text
classification, an article may belong to multiple topics
simultaneously. This type of problem poses higher
requirements for classification algorithms, which not
only need to consider accurate classification of individual
labels [5], but also need to deal with the correlation
between labels and the imbalance of samples. Sample
imbalance is a common problem, where the number of
samples in certain categories far exceeds that of other
categories, resulting in the model leaning towards
majority class samples during training and insufficient
learning of minority class samples, which affects the
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overall classification performance. For the multi label
classification problem [6], this imbalance is even more
complex because each sample may belong to multiple
imbalanced categories simultaneously. To address these
challenges, researchers have proposed various solutions
such as oversampling, undersampling, ensemble
learning, etc. Exploring parallel support vector machine
algorithms and utilizing parallel computing techniques to
improve training speed and classification performance
has become an important research direction.

In recent years, many scholars have studied multi
label classification mining in unbalanced sample
databases. For example, Moral-Garcia et al. used Credal
C45 to rank calibration labels in multi label
classification [7]. Credal C4.5 uses imprecise probability
to deal with noise in data, which is particularly important
in multi label classification. This approach establishes a
binary classifier for each pair of labels and employs the
calibration function of Credal C4.5 to mitigate the issue
of category imbalance to some extent, thereby enhancing
the recognition accuracy of minority categories. Consider
the correlation between each pair of tags to build tag
ranking, which is helpful to more accurately predict
multiple tags of an instance. However, the performance
of Credal C4.5 is affected by its internal parameters.
When dealing with imprecise probability, the setting of
upper bound and lower bound functions has a significant
impact on the final classification results. Udandarao et al.
use the attention based multitask cyclic network to
classify multi label physical text [8], and use the deep
learning model to automatically extract features from the
original text data without manually constructing features,
reducing manual intervention and costs. The introduction
of attention mechanism enables the model to dynamically
focus on key information in the text, further improving
the accuracy of feature extraction. Multi task learning
allows the model to learn multiple related tasks at the
same time. By sharing the presentation layer, different
tasks can promote each other and improve the overall
performance. In physical text classification, if there is
association or sharing of some features between different
tags, multi task learning can effectively use these
commonalities to improve the classification effect. The
attention mechanism can assign varying weights to
different segments of the text, enabling the model to
focus more on key information pertinent to labels during
classification. Nonetheless, in multi-label classification,
there exists interference among different labels.
Especially when there are multiple keywords related to
different tags in the text, the model will cause
classification errors due to improper allocation of
attention mechanism. Qaraei and Babbar studied the
classifier negative sampling method for extreme multi
label classification [9]. The negative sampling technique
only selects part of the negative samples for training,
which  significantly  reduces the computational
complexity and improves the training efficiency.
Negative sampling helps the model better learn to
distinguish between the boundaries of positive and
negative samples. It forces the model to pay more
attention to those samples that are clearly marked as
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negative in the training process, which helps the model to
more accurately judge which labels are not applicable to
the current instance when predicting. However, negative
sampling technology is prone to lead to sample selection
bias. In extreme multi label classification, the distribution
of labels is often very unbalanced. If the selection of
negative samples is not random or representative enough,
the model will learn biased feature representation,
affecting its generalization ability on new data.
Bogatinovski et al. studied the multi label classification
method with dataset attributes [10]. When processing
multi label datasets, they can better identify and allocate
multiple related labels to each instance. Considering the
diversity and complexity of dataset attributes, it can learn
the potential patterns in the data and show good
generalization ability on new data. However, the
performance of multi label classification methods largely
depends on the quality of data sets and the accuracy of
labels. If there are noise or label errors in the dataset, the
accuracy of the classification results will be directly
affected. Stefanovic et al. proposed a multi label text data
class based on self-organizing mapping and latent
semantic analysis [11]. Text data is preprocessed using
multiple types of filters to remove redundant and
irrelevant information. Latent semantic analysis is used
for dimensionality reduction processing, mapping high-
dimensional text vectors to a low dimensional latent
semantic space by constructing a semantic space, while
preserving core semantic features. Cosine similarity is
applied to optimize multi label classification by
quantifying vector directional similarity to identify the
label categories that need to be adjusted. The self-
organizing mapping neural network discovers data
topology structure through competitive learning
mechanism, achieves text similarity clustering, and
provides decision-making basis for new text category
allocation. However, although the linear transformation
based on singular value decomposition in latent semantic
analysis can capture explicit semantic features, it cannot
effectively handle complex language phenomena such as
synonym ambiguity and context dependence, resulting in
the loss of fine-grained semantic information.

The summary of the existing research mentioned
above is shown in Table 1.

Table 1: Summary of existing research

Methods Data set Index Defect
Neglecting
label

Traditional | Unbalance - correlation,

Classificati | G-

C45 CLR | d sample

7] database on accuracy | means<0.85
under
imbalanced
data

Multi task | CBSE Classificati | High

recurrent Physics on accuracy | computational

network Textbook complexity
based on | (Grades 6- and

attention B | 12) fluctuating




Parallel Support Vector Machines for Multi-Label Classification...

acceleration
ratio (1.5-2.0)
Extreme Unclear Training Sample
multi label efficiency selection bias
classificati affects
on method generalization
1 ability
Dataset 40 MLC | Multi label | Hyperparamet
attribute datasets+5 | classificatio | er
method 1 | 0 meta | n optimization
features consumes  a
large number
of resources,
and the
improvement
effect is not
proportional
to the
resource
consumption
Self Public Correct When latent
organizing | website allocation semantic
mapping rate analysis
and latent reduces  the
semantic data
analysis [*4 dimension to
40, it obtains
82% correct
allocation

To address the issues with the above methods in
label classification, this paper explores a multi label
classification mining technique for imbalanced sample
databases based on parallel support vector machines. The
parallelization architecture of parallel support vector
machines utilizes the MapReduce framework to block
and process large-scale data, significantly improving
computational efficiency. By dividing data into sub
clusters through hierarchical clustering, it is possible to
accurately identify the distribution characteristics of
minority class samples, provide structured basis for
oversampling, and avoid model bias caused by blind
sampling. Not only does it overcome the classification
bias problem of traditional SVM in handling imbalanced
data, but it also achieves efficient processing of massive
data through distributed computing, providing a solution

that balances speed and accuracy for multi label
classification tasks. Compared to state-of-the-art
attention based multi task recurrent networks, this

method significantly improves classification performance
on imbalanced datasets through structured oversampling
and parallelization, providing a better solution for
massive data mining.

2 Multi-label classification mining
methods for unbalanced sample
databases

For imbalanced sample databases, a hierarchical
clustering algorithm is used to divide majority and
minority class samples into sub clusters. By calculating
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the sub cluster misclassification rate, the oversampling
weight is determined, and sub clusters with higher
misclassification rates are given greater weight for
priority processing. Based on the roulette wheel
mechanism, select seed samples and combine them with
neighboring samples to synthesize new data, ensuring the
randomness of the synthesized samples and the
authenticity of the data distribution. This process
balances inter class differences through dynamic weight
allocation, while avoiding model bias caused by
oversampling, ultimately improving the
representativeness of minority class samples and
optimizing the overall data distribution.

Implementing parallel SVM algorithm based on
MapReduce framework, the Map stage divides the data
into subsets and solves local Lagrange multipliers in a
distributed manner to extract support vectors. In the
Reduce stage, the global support vectors are aggregated
and retrained to generate the final classifier. Mapping
data to high-dimensional space through kernel functions,
constructing a maximum interval hyperplane, and
optimizing the model's generalization ability based on the
principle of minimizing structural risk. Parallelization
significantly  improves  computational efficiency,
effectively solves the problem of imbalanced data
classification bias, and enhances the accuracy of minority
class recognition.

2.1 Oversampling treatment

To acquire more effective sample information, sampling
is conducted on the samples within the unbalanced
sample database. When oversampling the imbalanced
sample database, the imbalance of data both between and
within classes is thoroughly considered. A hierarchical
clustering algorithm is employed to partition the majority
class samples in the imbalanced dataset into multiple
majority class subclusters. Subsequently, the minority
class samples are divided into different minority class
subclusters based on the majority class samples.

The notions of misclassification rate and
oversampling weight are brought in for oversampling the
samples within the unbalanced sample database. The
misclassification rate is employed to signify the
proportion of the quantity of samples misclassified by the
support vector machine classifier for a subcluster to the
overall number of samples in the entire subcluster [12],
represented as E(C min,), and then the following holds:

E(Cmin) =k /m 1)

Among them, k  denotes the number of

misclassified samples in the minority class subcluster

Cmin,, m, denotes the total number of samples in the
minority class subcluster Cmin, .

The oversampling weight is the product of the
weight of the misclassification rate of the subcluster, the
difference between the number of samples in the
majority class and the number of samples in the minority
class, denoted as W (C min, ), then there is:
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E(Cmin,)
o XNy

> E(Cmin,)
t=1
Among them, N, denotes the number of majority

class samples in the original unbalanced samples
database, N_;, denotes the number of minority class

samples in the original unbalanced sample database,
& €[0,1] indicates the oversampling rate.

The proportion of misclassification rate reflects the
relative importance of sub cluster classification errors.
The oversampling rate controls the replication factor of
minority class samples, while the oversampling weight
combines the two and the difference in the number of
categories to dynamically determine the number of
samples that each sub cluster needs to generate. Priority
is given to increasing data in areas where classification is
difficult and samples are scarce.

After sub-clustering the minority class samples in
the imbalanced sample database, different oversampling
weights are assigned to the sub-clusters according to
their misclassification rates. From Equation (2), the more
the number of misclassified samples in the minority class
subcluster [13], then the larger the W (Cmin,), the
larger the oversampling weight required. The
oversampling weights are assigned to subclusters
according to their misclassification rates to achieve inter-
class data balance.

The probability distribution of the subcluster of the

minority class is reintroduced. In the subcluster Cmin,
of the minority class, when ¥YxeCmin,, x is selected

as the "seed sample" to constitute the probability
distribution of the subcluster Cmin,, denoted as P, then

there is:

W (Cmin,) =

l/ idx)’t
t=1
k
>3, |
t=1

Among them, Yy, represents the t majority class
sample nearest neighbor of x , where 1<t<k . d

P =W (Cmin,) (3)

Ixn

XYy
denotes the Euclidean distance between the minority
class sample x and the majority class sample Yy, , n

signifies the number of samples in the minority class
subcluster, and k is the number of near-neighbor
samples.

The selection probability of seed samples is
determined by the distance from the sample to the nearest
neighbors of the majority class. The closer the distance,
the higher the probability. This can make minority class
samples closer to the classification boundary more likely
to be selected for oversampling, thereby enhancing the
model's learning ability in the boundary region.

Based on the probability distribution of minority
subclusters, we employ a roulette selection method to
choose "seed samples,” and subsequently, randomly
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select one of the neighboring minority samples for
oversampling. This random selection approach ensures
that the synthetic samples exhibit randomness [14],
thereby better mimicking the original data distribution
within the unbalanced sample database.

To prevent oversampling of certain sub-clusters that
could bias the support vector machine classifier toward
these sub-clusters, all minority sub-clusters in the
imbalanced sample database are assigned oversampling
weights to achieve intra-class data balance [15]. By
selecting "seed samples” and their nearest neighbor
samples from the same minority sub-cluster, we can both
avoid choosing nearest neighbors that are too distant
from the seed samples and mitigate the over-coverage
phenomenon caused by synthetic samples.

The steps for dividing the minority class subclusters
in the unbalanced sample database are as follows:

(1) Initialize each minority class sample in the
unbalanced sample database as a separate minority class
subcluster; the

(2) If there are no majority class samples present
between the two closest minority class subclusters, the
two-minority class subclusters are combined.

(3) Continue reiterating steps (1) and (2) until the
separation between the subgroups diminishes to below
the predetermined threshold, thereby concluding the
iteration process.

Oversampling of data in the unbalanced sample
database consists of 3 processes:

(1) Divide the minority class samples to form
different minority class subclusters;

(2) Calculate the misclassification rate of each
subcluster and the oversampling weight of the subcluster
in the unbalanced sample database [16];

(3) The probability distribution within each
underrepresented subcluster is ascertained using formula
(3). Based on this distribution and the oversampling
weights, "seed exemplars" and their proximate minority
samples are identified for oversampling purposes, with
synthetic  minority samples subsequently  being
generated. Using the results of step (2), repeat in step (3)
until the number of iterations reaches the oversampling
weight, end the cycle, and output the oversampled data

set X ={X, Xy,.ces Xiyurs X, -

Through the aforementioned methodology, the
process of sample oversampling within the imbalanced
database is finalized, resulting in a more even
distribution of samples. This, in turn, enhances the
precision of multi-label classification mining operations
within the said imbalanced database.

Hierarchical clustering effectively captures the
intrinsic structure of data through multi-level sample
aggregation, making it particularly suitable for handling
imbalanced data with complex inter class distributions.
Compared to hard clustering methods such as K-means,
it does not require a preset number of clusters and reveals
the hierarchical relationship of samples through tree
visualization. For example, in medical diagnostic data,
hierarchical clustering can naturally distinguish the
nested relationship between rare case subtypes and
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mainstream cases, while K-means may forcibly classify
sparse minority class samples into majority classes due to
initial center sensitivity. The bottom-up merging strategy
based on distance threshold can preserve local sample
density features and avoid cluster splitting problems
caused by global parameters in DBSCAN.

2.2 Multi-label classification mining based
on parallel support vector machine

Within an imbalanced sample database, the disparity in
sample counts between certain categories can skew the
training of classification models towards the prevalent
categories, hindering the recognition of underrepresented
classes. Augmenting the number of samples belonging to
the minority class through oversampling enables a more
equitable distribution across classes. Consequently,
introducing dataset X ={X,%,,.... X,...,X,} into a

parallel support vector machine framework enables a
more nuanced capture of the features specific to the
minority class, ultimately boosting the classification
accuracy for these underrepresented instances.

While Support Vector Machine (SVM) excels at
handling small sample sizes, its performance falters
when confronted with imbalanced sample databases. To
bolster its processing capabilities, this study incorporates
the MapReduce programming paradigm into the
nonlinear SVM algorithm, realizing a parallel SVM
implementation grounded in MapReduce [17].

Map stage: Cut the input oversampled data set
X ={X, %, X,..., X, } into multiple equal subsets of

data, and then allocate the data subsets to the idle Map
work units. Finally, the work units solve the Lagrange
multipliers on each data subset in parallel in a distributed
manner. The sample points corresponding to non-zero
Lagrange multipliers are support vector machines.
Reduce stage: Upon completion of each map
operation, the locally obtained support vectors are
combined as Reduce input. All support vector machines
undergo retraining, with the final training results serving
as classifiers and the retraining results representing the
global optimal solution. The samples corresponding to
the support vector machines are saved to local files [18].
The parallel support vector machine algorithm
harnesses the power of SVM for executing multi-label
classification mining in imbalanced sample databases.
This approach translates the multi-label classification
challenge inherent in such databases into a series of
binary classification tasks. SVM, as a learning
mechanism, is optimized through structural risk
minimization (SRM), which involves the simultaneous
minimization of two opposing goals. First, empirical risk
is minimized based on available data. However, as model
complexity increases, observed errors on the training
data may decrease to arbitrarily low levels, potentially
causing increased errors on unseen data due to model
overfitting. Second, structural risk minimization (SRM)
includes minimizing a monotonic function term related to
test error, known as structural risk, which depends
directly on model complexity. For linear systems, this

Informatica 49 (2025) 301-314 305

complexity grows proportionally with the norm of the
system's parameters [19].

For the dichotomy classification problem, SVM's
fundamental approach identifies an optimal hyperplane
in the sample space to maximize the separation margin
between two distinct sample classes. The training set is
defined as follows:

(X, T)={(%.t,),i=12...n} 4)
Among them, t; is the category tags of the Sample
X, te{-11}.

Introducing nonlinear mappings ¢(X) , mapping
the training set into a high-dimensional space:
(@(X).T) ={(p(x)%),i=12,..,n} ()
The chosen kernel function is:
K(x, ) = p(x)" p(y) (6)
Introducing slack variables & >0 , constructing
standard support vector machine expressions:

minJoff +C3-¢?
@ i=1

st. t (0" (%) +b)>1-¢& 7
£ 20,i=12,..,n
Among them, @ denotes the normal vector of the
classification plane, b indicates a bias term.
Solving the optimization problem, i.e., the dyadic
problem of Eq. (7).
mizn%ZZoziozjK(xi,xj)—Zozi
i=1

@ i=1 j=1
st. D ta; =0 (8)
i=1

0<¢,20i=12,..,n
Among them, ¢; , «; both denote Lagrange

multipliers.

In parallel support vector machines, the Map phase
projects data into a high-dimensional space and
constructs a dual problem through nonlinear mapping
and kernel functions. This approach efficiently identifies
the optimal hyperplane in parallel computing
environments,  thereby  accelerating  multi-label
classification training for imbalanced sample data.

2.3 Parallel training process for support
vector machines

Upon completion of the binary classification process in
the Map stage of the support vector machine, the input
key-value pairs undergo a transformation via the Map
function, yielding a sequence of intermediary key-value
pairs formatted as <key, value>. Key-value pairs sharing
the same key are then routed to their respective Reduce
functions for further processing. During the Reduce
phase, these received <key, value> pairs are reformatted
into <key, list(values)> pairs, and for each such pair, the
reduce method is invoked, ultimately outputting the
processed results.



306 Informatica 49 (2025) 301-314

In order to train the support vector machine [20]
under the MapReduce model, it is considered that the
final decision of the classification plane for the
classification mining task is the support vector machine,
and the samples between the two optimal hyperplanes
play an important role in the adjustment of the support
vector machine. First, the training sample set is divided
into several small training sample sets, and the support
vector machine is trained for each small sample set in the
Map task, then select the samples near the optimal
hyperplane corresponding to each support vector
machine, namely the sample data (x;,t;) of 0<a; <C
as the input of Reduce, and train a new support vector
machine as the final decision function in the Reduce
stage.

Assuming that the solution to the dyadic problem is
a’, then the normal vector of the optimal hyperplane is:
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Take the x;, t; corresponding to some 0 < a’; <C,
so it follows that:

b"=t, - > taK(x,X;)
i=1

From this it is possible to construct the decision
function:

(10)

n
f(x)=2tiaiK(xi,x.)+b* (11)
i=1

The process of MapReduce training support vector
machine is shown in Figure 1.

For multi label classification, the main steps of
MapReduce training support vector machine are as
follows:

Step 1: Label the data containing class training
samples and reduce it to the format of<key, value>,
where key value is the sample category and value is the

oo sample feature data.
o =Y a'tp(x) ©) Step 2:
i=1
Map
. Training SVM:
A I
split1 P Select sample data and
output it as<Key, value>
Map Reduce
- . . Output
. Training SVM: The protocol is<Key, list A
split2 " Select sample data and - (value)>: > clasr?::iglon
output it as<Key, value> Train a new SVM
Map
. ) Training SVM:
split3 Select sample data and

output it as<Key, value>

Figure 1: The process of MapReduce training support vector machine.

The data in the <key,value> format is input into the
Map function for optimization. In each Map function, the
optimization problem of the input data is solved to obtain
multiple support vector machines. The output format is
the intermediate data in the <key,value> format, where
the key is the positive sample category of the support
vector machine and the value is the labeled support
vector. Marking as 1 indicates that the training sample
corresponding to the support vector in the support vector
machine is a positive sample. Marking as -1 indicates
that the training sample corresponding to the support
vector is a negative sample.

Step 3: Perform the Partitoon phase operation on the
intermediate key value pair data, and send the data with
the same key value to the same Reduce node for
processing.

Step 4: The data of intermediate key value pairs is
transferred to the Reduce node and sorted into data in the
format of<key, list (values)>, where key is the support
vector machine category and list(values) is all the data

corresponding to that category collected from the data of
intermediate key value pairs.

Step 5: The Reduce function processes the data in
the <key, list(values)> format and obtains a new support
vector machine by solving the optimization problem.
This support vector machine is used to identify the
category of the imbalanced sample data corresponding to
the key. After the Reduce phase is executed, a new
support vector machine is obtained and output in the
<key,value> format.

3 Test experiments

This study focuses on the multi label classification
problem in imbalanced sample databases, with the core
objective of achieving collaborative optimization of
classification accuracy and computational efficiency. By
effectively improving data distribution through
oversampling methods based on hierarchical clustering,
combined with the design of a parallelized SVM
architecture, classification performance is significantly
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improved while maintaining the statistical characteristics
of the original data. This study significantly improved the
performance of the model in imbalanced multi label
classification tasks through systematic hyperparameter
optimization. The selection of kernel function underwent
rigorous cross validation testing, and ultimately
determined to use RBF kernel as the basic kernel
function. Its key parameter y was optimized to 0.01
through grid search. This setting can effectively capture
the nonlinear relationship between labels and avoid the
risk of overfitting. The dynamic weight adjustment
mechanism uses the reciprocal of the category frequency
as the initial weight, and performs online optimization
through gradient descent. The weight update step is set to
0.001 to balance convergence speed and stability.

3.1 Sample data

In order to verify the multi-label classification mining
performance of the studied method for unbalanced
sample database, a typical unbalanced sample database in
the network is selected as the experimental object. The
unbalanced sample database in the network is selected as
the research object, which contains 10 datasets, and some
samples in the dataset have multi-labels, which enhances
the classification difficulty.

The unbalanced dataset used this time includes:
Comedy, History, Musical, War, Motorway, News,
Fantasy, Animation, Game, Talk. In the field of data
classification, each label category represents a specific
set of content and topics. Comedy tags are associated
with the characteristics of humor and funny, covering
comedy films, TV dramas, sketches, talk shows and other
forms. Historical labels focus on past events and
characters, including historical books, documentaries,
historical dramas and archaeological discoveries.
Musical labels involve music and performing arts,
including musicals, concerts, music videos and music
education. The war label focuses on conflict and military
action, covering war movies, military history, war games
and military equipment. Highway labels are related to
traffic and travel, including road construction, traffic
rules, car brands and travel guides. News labels closely
follow current events, involving news articles,
journalists, news programs and political news. Fantasy
tags involve magic and supernatural elements, including
fantasy novels, movies, games and animation. Animation
tags focus on animation production and visual effects,
covering animated films, TV series, animated short films
and animation technology.

The original data sources of these tag data mainly
come from film and television work libraries, news
media platforms, traffic management databases and
entertainment industry reports. The tags "comedy",
"history”, "musical”, "war" and "animation" mostly
originate from the classified metadata of film rating
websites, streaming media platforms and film and
television  production companies, reflecting the
preferences of the general public for cultural
consumption. Highway label data comes from the road
condition monitoring system of the transportation
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department and statistics of the automotive industry,
reflecting infrastructure and travel demands. News tags
are captured in real time through news aggregation
platforms and social media, reflecting hot social events.
The "Fantasy" and "Game" tags are extracted from game
development forums, anime communities, and e-sports
event records, revealing the creative trends in the virtual
entertainment industry. The generation of each tag is
based on structured or unstructured data in a specific
field, and its real-world background is directly related to
the cross-influence of the cultural industry, public affairs
and technological development.

The data set setup in the unbalanced sample
database is shown in Table 2.

This database contains 10 datasets from different
fields, with significant differences in the proportion of
majority class and minority class samples. For example,
the Talk dataset has a ratio of 383:1, while the War,
Motorway, and other datasets have a ratio of over 40:1,
while Animation is relatively balanced (8.2:1). The
sample sizes of each dataset range from 1058 to 9154,
with label numbers ranging from 16 to 31, reflecting the
complexity of data imbalance in multi-dimensional
classification scenarios.

The experiment adopts the MapReduce framework
and is configured with 32 physical processor nodes (Intel
Xeon) E5-2680v4@2.4GHz Each node has 14 cores and
28 threads, with a total memory of 1.5TB, and resource
scheduling is performed through YARN. At the software
level, a hybrid deployment of Hadoop 3.1.4 and Spark
3.0.1 is used, with HDFS block size set to 256MB and
data sharding strategy allocated based on sample ID hash.
Especially for highly imbalanced datasets, dynamic
partition optimization is enabled, and the number of
reducers is adjusted from the default 200 to match the
number of minority class samples (set to 9 reducers in
this example), and Spark's cost model is enabled for
skewed data processing. All nodes run CentOS 7.6
system and JDK version is OpenJDK 11.

3.2 Analysis of oversampling effects

The oversampling method based on hierarchical
clustering adopted has structured characteristics in
sample selection, which avoids the introduction of noise
or omission of important samples that may be caused by
traditional random sampling by pre dividing the data
hierarchy. This method implements differentiated
sampling strategies for different layers while maintaining
the distribution characteristics of the original data,
ensuring the spatial integrity of minority class samples
and avoiding the risk of overfitting caused by simple
random replication. The hierarchical mechanism
concentrates the synthesized samples more on the key
areas of the decision boundary, rather than uniformly
dispersing them in the feature space. This directional
enhancement strategy significantly improves the
effectiveness and controllability of the sampling process.
The distribution of raw data samples is shown in Figure
2.
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The selected dataset is oversampled using the Comparison of the experimental results in Fig. 2 and
method of this paper, and after oversampling, the result  Fig. 3 shows that the new samples synthesized by this
of data distribution within this dataset is shown in Figure  paper's method are concentrated in the middle region of
3. the dataset by utilizing the category imbalance data

Table 2: Experimental dataset settings.

Serial data set Sample Most Minority Number of
Number guantity/piece classes/individual class/individual tags/piece
1 Comedy 1058 816 242 18
2 History 3151 2615 536 16
3 Musical 2815 2164 651 21
4 War 5648 5516 132 23
5 Motorway 6185 5985 200 27
6 News 7185 6941 244 28
7 Fantasy 8164 7852 312 26
8 Animation 9154 8164 990 27
9 Game 7158 6841 317 26
10 Talk 3461 3452 9 31
8
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(b) After clustering
Figure 4: Multi label classification mining results.

Figure 4 shows the effectiveness of our method in
multi label classification mining of imbalanced sample
databases. Before clustering, the four types of label data
were randomly distributed. After clustering, each labeled
data formed distinct and relatively independent clusters.
This indicates that the method proposed in this paper can
effectively classify and mine multi label data with
imbalanced samples, distinguish  different label
categories clearly, tightly aggregate similar label data,
and effectively improve the accuracy and clarity of multi
label classification. It has significant advantages in
dealing with complex multi label classification problems
with imbalanced samples.

3.4 Test programs and indicators

In order to verify the effectiveness of this method, G-
means (geometric mean) value and acceleration ratio are
selected as experimental indicators, and this method,
reference [7] method and reference [8] method are used
for comparative experiments. The calculation formula of
its experimental indicators is as follows:

(1) G-means (geometric mean) value: an important
evaluation index to measure the classification
performance of category imbalance sample database. The
calculation formula is as follows:

G= exp(%ilog(xi)j

The geometric mean is characterized by a lower
sensitivity to extreme values than the arithmetic mean,
and thus provides a more robust estimate of the mean
when dealing with data with large fluctuations or
extreme values.

(2) Speedup: Speedup is an important indicator to
measure the performance improvement of parallel
computing or optimization algorithms. It is usually
defined as the ratio of the time required to execute a task
on a uniprocessor system to the time required to execute
the same task on a multiprocessor system. The speedup
can be wused to evaluate the effectiveness of
parallelization or optimization measures, as well as the
improvement of system performance. The mathematical
expression for speedup r is:

r= T—l (13)

n

(12)

Of which: T, indicates the time required for a single
processor to perform a task. T, is the time required to

perform the same task using n processors. The higher
the r value, the better the parallelization or optimization
effect, and the more significant the performance
improvement.

(3) Classification mining time refers to the total time
taken from the start of executing classification algorithms
to completing all sample label predictions, including the
entire process of feature computation, model training,
and prediction inference. This indicator directly reflects
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the computational efficiency of classification methods in
scenarios with imbalanced samples, with a particular
focus on the time cost of minority class sample
recognition.

(4) KL divergence: KL divergence is an asymmetric
indicator that measures the difference between two
probability distributions. It evaluates the sampling effect
by calculating the relative entropy between the original
distribution and the sampled distribution in the label
space. In the scenario of multi label imbalanced data, KL
divergence test quantifies the degree of preservation of
the original label distribution features by the sampling
method. The smaller the value, the higher the consistency
between the sampled label distribution and the original
distribution.

(5) F1 value: F1 value is the harmonic mean of
precision and recall, used to comprehensively evaluate
the classification performance of the model in
imbalanced samples. The closer its value is to 1, the
more balanced the model's recognition ability in minority
categories and overall prediction accuracy.

3.5 Analysis of test results

(1)G-means

G-means (geometric mean) value is an important
evaluation indicator for measuring the classification
performance of imbalanced sample databases. It
comprehensively considers the recall rate (sensitivity) of
minority classes and the specificity of majority classes,
and avoids the dominance of a single indicator in the
evaluation results through geometric mean. Traditional
accuracy tends to favor the majority class in imbalanced
data, while G-means can more fairly reflect the model's
ability to recognize each class. When the G-means value
is high, it indicates that the model performs well in both
recognizing minority classes (sensitivity) and correctly
excluding majority classes (specificity), which is
particularly important for applications that value
minority class recognition and are cost sensitive. The
method in this paper is used to calculate the G-means
value of multi label classification mining for unbalanced
sample database, and the statistical results are shown in
Figure 5.

1

3
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Figure 5: G-means values for multi label classification
mining.
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Upon scrutiny of the experimental outcomes
depicted in Figure 5, it becomes evident that the
methodology employed in this paper distinctly
outperforms the two rival approaches when confronted
with the multifaceted challenge of multi-label
classification mining within an imbalanced sample
database. Notably, across varying degrees of imbalance,
the geometric mean accuracy (G-means) achieved by our
method consistently surpasses the 0.95 threshold,
towering over alternative methods and showcasing its
remarkable proficiency in multi-label classification
mining. The cornerstone of this exceptional performance
lies in the method's innovative algorithm design and
optimization tactics, which empower it to not only
adeptly discern and categorize the preponderance of
samples but also meticulously discern the nuanced traits
of minority samples, thereby preserving a harmonious
balance and precision in classification across both
majority and minority samples. This balance is
paramount in multi-label classification tasks, as it is
intimately tied to the equity and trustworthiness of
classifiers in practical applications.

The significance test results are shown in Table 3.

Table 3: Significance test results.

Control group | P value
Data set A | Data setB Ee??
(1:10) (1:20) (1:50)

Proposed

method VS - s .

Reference  [7] 0.001 0.001 0.002

method

Proposed

method VS . s .

Reference  [8] 0.003 0.001 0.008

method

From the significance test results in Table 3, it can
be seen that our method is significantly better than the
comparison method on three different imbalance ratio
datasets (1:10/1:20/1:50) (p<0.01), especially at high
imbalance ratios (1:50), it still maintains strong
significance (p=0.008), indicating that the algorithm has
strong robustness to data skewing. As the imbalance ratio
increases, the p-value of our method compared to
reference [8] increases from 0.003 to 0.008, reflecting
that the performance fluctuation is smaller when the
proportion of majority class samples increases, indicating
that the model design can effectively alleviate the
problem of class dominance. The sensitivity analysis of
hyperparameters is implicit in the stability across
datasets, and the sustained excellent performance under
different data distributions validates the adaptability of
the algorithm parameters.

(2) Speedup

In order to further verify the feasibility of the
method in this paper, the speedup is selected as an
experimental index, and the speedup of the three methods
are counted for multi-label classification mining of
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unbalanced sample databases, and the statistical results
are shown in Fig. 6.
Proposed method

———-- Reference [7] method
Reference [8] method

25

15

speedup ratio

0.5
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sample size/piece

Figure 6: Comparison of the speedup ratio results.

When the sample size is 1000, the proposed method
has an acceleration ratio slightly higher than 1, while the
acceleration ratio of the Reference [7] method is close to
1, while the acceleration ratio of the Reference [8]
method hovers around 1. As the sample size gradually
increased to 2000, the acceleration ratio of our method
steadily increased to about 1.2, while the Reference [7]
method only showed a slight increase and remained
around 1, while the Reference [8] method slightly
increased to about 1.1. When the sample size reaches
10000 pieces, the acceleration ratio of our method
approaches 2.5, demonstrating strong growth momentum
and efficiency. The acceleration ratio of the reference [7]
method still fluctuates between 1 and 1.5, indicating
weak growth. Although the acceleration ratio of the
reference [8] method has increased, it mostly fluctuates
between 1.5-2, indicating poor stability. Overall, during
the process of sample size changing from 1000 to 10000,
the acceleration ratio of our method not only increased
numerically, but also grew steadily, maintaining a
leading advantage.

(3) Classification mining time

Time testing plays a crucial role in multi label
classification mining of imbalanced sample databases,
mainly reflected in evaluating model efficiency and
generalization ability. Due to uneven data distribution,
classification algorithms are prone to bias towards the
majority of classes, resulting in distorted prediction
results. The response speed of the model on different
subsets of data can be quantified through time testing to
verify its stability in handling large-scale sparse labels.
At the same time, it can reflect the computational costs of
feature extraction, weight adjustment, and other
processes, providing a quantitative basis for optimizing
algorithms. The classification mining time results of the
three methods are shown in Table 4.
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Table 4: Classification mining time results.

Dataset | Classification mining time/s
Number | Proposed Reference Reference
method [7] method [8] method

1 1.02 5.67 8.91

2 0.98 6.12 9.23

3 1.05 5.89 8.76

4 0.99 6.34 9.01

5 1.01 5.78 8.87

6 1.03 6.02 9.15

7 0.97 5.95 8.68

8 1.04 6.21 9.09

This method demonstrates significant advantages in
classification mining time and has better computational
efficiency compared to the methods in references [7] and
[8]. From the data in Table 4, it can be seen that the time
stability of our method on each dataset is maintained
within 1.02 seconds, with minimal fluctuations and a
standard deviation of only 0.03 seconds, demonstrating
the robustness of the algorithm. Compared with the 5.67-
6.34 seconds of the method in reference [7] and the 8.68-
9.23 seconds of the method in reference [8], our method
accelerates by more than 5 times, especially when
dealing with high-dimensional sparse labels, it can still
maintain millisecond level response. This is because this
article uses MapReduce parallelization SVM training,
which divides the data into blocks and integrates key
support vectors, significantly reducing the computational
complexity of the kernel matrix. By dynamically
optimizing weights, the number of iterations is
significantly reduced, and the parallel architecture
effectively distributes the computational burden caused
by class imbalance, thus achieving high-precision
classification in about 1 second and increasing efficiency
by more than 5 times.

(4) KL divergence

KL divergence can be used to quantify the
difference in data distribution before and after sampling,
verifying whether the sampling method effectively
maintains the statistical characteristics of the original
data and avoids classifier bias towards the majority class
due to sample imbalance. Meanwhile, KL divergence can
evaluate the stability of parallel SVM on different
subsets of data, ensuring the convergence and
generalization ability of distributed computing. The test
results can guide the optimization of sampling strategies,
improve the accuracy and recall balance of multi label
classification. The KL divergence results of the three
methods are shown in Figure 7.
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Figure 7: KL divergence results

From the KL divergence results in Figure 7, it can be
seen that for datasets 1-8, the KL divergence values of
our method are significantly lower than those of the
methods in references [7] and [8]. Throughout the entire
dataset, the KL divergence values of the reference [7]
method fluctuate between 0.2-0.6, the reference [8]
method fluctuates between 0.3-0.5, while the proposed
method consistently maintains a low level below 0.2.
This indicates that the method proposed in this paper has
significant advantages in maintaining the statistical
properties of the original data, effectively avoiding
classifier bias towards the majority class, and having
stronger stability on different subsets of data, which is
more conducive to optimizing sampling strategies and
achieving a good balance between accuracy and recall.
(5) Classification performance

In the multi label classification task of imbalanced
sample databases, the number of samples in minority
categories is much lower than that in majority categories,
and traditional accuracy indicators are prone to masking
the recognition defects of the model for minority
categories due to the dominance of majority categories.
The F1 wvalue can more sensitively reflect the
performance of the model in minority categories by
harmonizing accuracy and recall, avoiding evaluation
distortion caused by skewed sample distribution. The F1
values of the three methods are shown in Table 5.
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Table 5: F1 value results.

Dataset | F1 value

Number | Proposed Reference Reference
method [7] method [8] method

1 0.912 0.745 0.689

2 0.925 0.721 0.673

3 0.908 0.738 0.695

4 0.917 0.712 0.668

5 0.921 0.749 0.701

6 0.909 0.733 0.682

7 0.915 0.727 0.676

8 0.923 0.754 0.698

Table 5 shows that the parallel support vector
machine method proposed in this paper has significantly
higher F1 values than the reference method on all eight
datasets, with the highest reaching 0.925 and the lowest
remaining at 0.908. The overall performance is stable
and excellent. In contrast, the F1 values of the methods
in reference [7] and reference [8] are generally lower
than 0.75, with a maximum difference of 0.236,
indicating that traditional methods are sensitive to sample
imbalance issues. This method optimizes the decision
boundary calculation of support vector machines through
parallel architecture, effectively alleviating the problem
of minority class samples being ignored. Although
traditional support vector machines can handle small
sample data, they are susceptible to the influence of class
distribution in multi label imbalanced scenarios, and their
single kernel function and serial training mode are
difficult to balance the weights of each class. The method
proposed in this article achieves higher accuracy in
capturing rare labels through distributed kernel
computing and dynamic weight adjustment, verifying the
necessity of parallelization transformation to improve
model robustness.

In summary, this method demonstrates significant
advantages in multi label classification tasks, and its core
innovation lies in effectively solving the performance
bottleneck of traditional methods on imbalanced data by
parallelizing SVM training and dynamic weight
optimization. Compared with the methods in references
[7] and [8], our method performs well in terms of G-
means value, acceleration ratio, and classification time,
especially when dealing with high imbalance ratio data,
and still maintains strong robustness.

From the perspective of classification performance,
this method significantly improves the model's
recognition ability for minority class samples through
distributed kernel computing and dynamic weight
adjustment, with an F1 value stable above 0.9, far
exceeding the comparison methods. This design not only
alleviates the bias caused by class imbalance, but also
optimizes computational efficiency through parallel
architecture, reducing classification time to about 1
second.

Another innovation of this method lies in verifying
the effectiveness of the sampling strategy through KL
divergence, indicating that it can better maintain the
statistical characteristics of the original data and avoid
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the classifier bias towards the majority class. This
characteristic makes it highly valuable in cost sensitive
fields such as medical diagnosis and financial risk
control. However, this method has strong assumptions
about data distribution, and if the actual data has extreme
sparsity or poor non-linear separability, performance may
decrease. In the future, lightweight parallel frameworks
such as Spark can be explored to replace MapReduce, in
order to further enhance the flexibility and applicability
of the algorithm.

4 Conclusion

By introducing the parallel support vector machine
technology, this research proposes an innovative
classification mining method for the multi label
classification problem in the unbalanced sample
database. This method oversamples samples through
hierarchical clustering algorithm, effectively balances the
distribution of samples with different labels, and
implements parallel computing through MapReduce
framework, significantly improving the accuracy of
classification of minority labels. Through experimental
verification, the performance of multi label classification
is significantly improved by combining parallel
processing, unbalanced data processing technology and
multi label classification strategy. In the future, we will
continue to explore and optimize this method in order to
exert its potential in a wider range of practical
application scenarios and contribute more innovative
solutions to the data mining field.
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