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Bridge structures are affected by various factors such as the natural environment and traffic load for a
long time, which may cause structural damage identification (DI), thus affecting their performance and
safety. This paper innovatively combines the stacked autoencoder neural network with curvature modal
analysis. The DI method based on curvature modal is to use the curvature modal difference as an
indicator for DI. In bridge damage identification, a method combining curvature mode and flexibility
matrix is proposed, which is fused into autoencoder neural network to realize the function of damage
location. In the test, the key features of the data are extracted through L2 regular term, and the method
effect is verified by establishing a simply supported beam model through ANSYS. The identification
accuracy of this model in bridge DI is as high as over 78%, and its highest can reach 85%, and the
average identification accuracy is 82%. The results show that this method can identify specific damaged
units and reflect the relative degree of damage, regardless of single damage or multiple damage
conditions. Therefore, the bridge DI identification model based on stacked autoencoder neural network
can be applied to real-time identification and analysis of bridge structures to help provide reliable
bridge monitoring data support.

Povzetek: Prispevek zdruzuje skladani samokodirnik z krivinskimi modami in matriko fleksibilnosti. Iz
vibracij samodejno izIusci znake poskodb mostov, locira in oceni stopnjo; robustno tudi pri vec

poskodbah, tocnost preko 80%.

1 Introduction

As an important part of the traffic network, bridges
provide great convenience for people's life and goods
transportation, and are important infrastructure related to
the development of national economy. However, due to
many factors such as environmental erosion, material
aging, natural disasters, etc., bridges inevitably suffer
different degrees of damage in the process of service. In
particular, earthquakes are natural disasters with huge
energy, which will cause serious damage to
transportation infrastructure, and bridges in earthquake
zones are prone to earthquake damage. Moreover, the
continuous development and accumulation of damage
will seriously reduce the bearing capacity of bridges, and
even pose a threat to people's lives and property safety
[1].

It is very important to identify the damage state of
bridges accurately and timely, which can provide
guidance for bridge damage early warning and damage
repair. Traditional bridge damage detection relies on
manual inspection to regularly inspect all parts of the
bridge, such as piers, bearings and foundations that are
easily damaged. However, manual inspection has some
shortcomings, such as time-consuming, laborious,
subjective and difficult to find hidden damage. Due to

the coupling action of external load and environmental
factors, structural changes such as micro-voids and
micro-cracks or material deterioration occur inside the
structure. After these problems accumulate day by day in
the structure, they will have an irreversible impact on the
structure itself and pose a serious threat to the normal use
of the structure. The DI identification process is a step-
by-step system that includes multiple key steps, such as
determining whether the structure is damaged, accurately
locating the damage location, and in-depth diagnosis of
the extent of the damage. After this series of steps, the DI
of the structure can be completed. Although DI
technology has made remarkable progress in recent
years, the accurate identification of DI and its effective
application in engineering practice are still a topic that
needs to be further studied [2].

By finding and locating the damage of the structure
in time, preventive or reparative measures can be taken
to prevent the damage from developing step by step and
improve the safety of the structure. Local DI identifies
damage by monitoring and analyzing the physical
features of specific sites or regions in a structure. The
method can accurately locate damage in the structure and
enable maintenance personnel to take targeted measures
without having to intervene in the entire structure.
However, local DI usually depends on prior knowledge,
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and it is difficult to identify concealed damage.
Compared with local DI, global DI pays attention to the
overall response and behavior of the structure. When the
structure is damaged, the physical parameters of the
structure will change, which will lead to the change of
the static and dynamic parameters of the structure, so as
to realize the early warning, location and identification of
damage degree [3].

SAE extracts feature through unsupervised learning,
which is suitable for building vibration signal analysis
(such as frequency response, modal parameter
identification), and its sparse coding ability can
effectively capture the characteristics of building minor
damage. For example, combined with continuous
monitoring data of fixed sensor layout, SAE can detect
hidden damage such as concrete cracks or steel
corrosion. In practical application, it is necessary to
optimize the input layer design for building
multidimensional data (such as displacement, strain,
acceleration) to avoid the redundancy of full connection
layer calculation.

The combination of SAE and curvature modal
analysis can significantly improve the accuracy and
efficiency of bridge damage identification through
physical mechanism and data-driven collaboration,
multi-layer feature automatic extraction and small
sample adaptability, especially for hidden damage
detection in complex noise environment.

The combination of SAE and curvature modal
analysis effectively breaks through the limitations of
traditional global damage identification methods in
complex noise environment, multi-damage coupling and
large-scale structures through local sensitivity and global
feature fusion, noise dynamic suppression and multi
damage collaborative modeling. Its hierarchical
identification framework (positioning — quantification)
takes into account both efficiency and accuracy, and
provides a more reliable solution for health monitoring of
large structures such as bridges.

This paper presents a structural damage
identification model for bridges using a stacked
autoencoder neural network, addressing the challenge of
insufficient accuracy in existing DI methods. This paper
innovatively combines the stacked autoencoder neural
network with curvature modal analysis. The DI method
based on curvature modal is to use the curvature modal
difference as an indicator for DI.

2 Related works

The damage identification method based on curvature
mode has become an important research direction in the
field of structural health monitoring due to its high
sensitivity and local positioning ability. However, there
is still a blank in the research on global feature
recognition. Therefore, this paper combines wavelet
transform,  neural  network  and  substructure
decomposition technology with the actual needs of
bridge detection, which can significantly improve the
recognition accuracy in complex noise environments. At
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the same time, on this basis, this paper analyzes the
existing research status.

(1) Research status of DI identification based on
machine learning

Representative machine learning algorithms for DI
identification include Gaussian process, Bayesian
method and extreme learning machine, etc., which learn
and realize DI by analyzing relevant data samples. This
kind of method is particularly important for data cleaning
and processing, which generally uses the structural
modal parameters extracted in advance to process the
feature vector as the input of the model for training, and
uses the trained model to identify the potential damage of
the structure [4].

Wang et al. [5] used parameter estimation to study
the damage of stone arch bridges through the inverse
analysis framework of the Bayesian method as well as
Markov chains and Gaussian processes. Svendsen et al.
[6] used Kalman filter, generalized autoregressive
conditional heteroscedasticity model and autoregressive
movement model to identify the damage of reinforced
concrete arch structure, which proved the feasibility of
the method. Zhang and Sun [7] used fuzzy clustering
method to carry out DI identification research, and used
this method to identify the damage of the structure based
on the strain data of Dashengguan Bridge, and verified
the effectiveness of the proposed method. Daneshvar et
al. [8] used Bayesian algorithm and Auto-Regressive
Moving Average Model (ARMA) to identify damage,
and verified that this method has a good effect in
identifying damage location. Pourzeynali et al. [9]
proposed a DI method based on genetic algorithm, which
uses the environmental vibration data obtained by sensor
monitoring to identify the damage of arch bridge. Huang
et al. [10] proposed a DI method based on modal
curvature, which still achieves good identification results
even when there are errors in the finite element model.
Figueiredo and Brownjohn [11] proposed a DI method
based on support vector machine, and used acceleration
time history data to establish damage index through
structural vulnerability method, which not only obtains
good identification results but also has good noise
immunity. Mousavi et al. [12] proposed a DI method
based on extreme learning machine and structural
response vector, and on this basis, the principal
component analysis method was used to improve the
noise immunity of the model. Wan et al. [13] proposed a
DI method based on an improved time series analysis
method, used environmental vibration data to detect and
locate structural changes, and verified the effectiveness
of the proposed method using finite element data of a
real bridge. Wang et al. [14] carried out DI identification
research with curvature mode as sample by support
vector machine. The identification accuracy of the
proposed model can reach 99.68% under the condition of
20% and 40% stiffness reduction. Zheng et al. [15] used
the damage probability mean and hybrid particle swarm
algorithm to carry out a two-stage beam DI identification
study. The results show that the algorithm can be
effectively applied to DI identification of different
structures and different working conditions.
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In the research of DI identification based on machine
learning, the quality of feature vectors selected at the
beginning will directly affect the effect of DI. Feature
extraction from the original data is a crucial
representation step, which not only takes a long time, but
also has definite difficulty in representation. If the
extracted feature vectors do not meet the requirements,
the identification ability of the model will be greatly
reduced. Moreover, because the nonlinear modeling
ability of machine learning is relatively limited, it is
difficult to capture the complex nonlinear relationship
within the structure, and it cannot process big data well.
On the other hand, different structures require different
optimal combination features and machine learning
models adapted to them for identification, and their
universality is poor.

(2) Research status of DI identification based on
deep learning

Deep learning has developed rapidly and has
gradually become the hottest research method nowadays
and achieved good results in many fields. Compared with
machine learning, deep learning can better extract
features of big data. In the field of civil engineering,
many scholars have gradually paid attention to deep
learning and carried out applied research.

Yang et al. [16] used back propagation neural
network to identify the frequency of the structure to
identify the damage of the structure, and proved the
feasibility of the method on cable-stayed bridges.
Hosamo and Hosamo [17] used the back propagation
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neural network of the particle swarm optimization
algorithm to carry out DI research on structures.
Moreover, the particle swarm optimization algorithm was
used to solve the problem that the back propagation
neural network is prone to local minima, and the
superiority of the proposed method was verified on a
three-span continuous beam. Feroz and Abu Dabous [18]
carried out multi-step bridge DI research through radial
basis function neural network, used different
characteristic parameters of the structure as inputs to
train and predict the damage of the structure, and further
studied the influence of noise on the DI of the model.
Shang et al. [19] carried out the research on structural DI
through representative dimensional convolutional neural
network, and identified the local micro stiffness and mass
changes of T-shaped steel beams, long steel beams and
short steel beams through three independent acceleration
database data, and achieved good results. Zinno et al.
[20] carried out DI research through gated cyclic unit and
convolutional neural network, used gated cyclic unit to
process the time characteristics of data to improve the
model identification accuracy, and proved the
effectiveness of the proposed method on three-span
continuous rigid frame bridge. Li et al. [21] used sparse
coding algorithm to extract data features as input to train
deep neural network, and used the trained deep neural
network to identify the damage of bridges and achieves
good results.

The current research work on bridge damage
identification is summarized as shown in Table 1 below.

Tablel: Summary of research status

Researchers and Literature Model type Key features data source Model recognition accuracy Model shortcomings
. o The computational
Bayesian Parameter Monitoring . . o
o 765% + 52% (including | complexity is high, and a
Wang et al. [5] method+Markov estimation data of stone . o
. - ) uncertainty) priori distribution needs
chain characteristics arch bridge
to be assumed
Kalman . . Reinforced Sensitive  to  noise,
L Time series . i .
Svendsen et al. [6] filtering+GARCH . concrete arch | 89.1% (static load condition) requiring accurate model
characteristics o
model structure data calibration
. . Strain data of Feature selection
Fuzzy clustering | Characteristics of . .
Zhang hesun [7] . Dashengguan Clustering purity 92.4% depends  on  expert
method strain data . X
Bridge experience
Bayesian . .
. Autoregressive Structural . Complex data processing
Daneshvar et al. [8] algorithm+ARMA . o Positioning accuracy 94.7% L
del characteristics vibration data and difficult to expand
mode

Response

. . . characteristics of
Pourzeynali et al. [9] genetic algorithm

environmental

Monitoring Slow convergence and

The
convergence is 83.9%

recognition  rate  after

data of arch easy to fall into local

o bridge optimum
vibration
Modal curvature | Modal curvature | Finite element . . Depending on modal
Huang et al. [10] . . . Anti error recognition rate 88.2%
analysis parameter simulation data parameter accuracy
Acceleration time . .
Support vector Acceleration Kernel selection affects

Figureiredo et al. [11] history  damage

machine (SVM)

index

96.8% (including 10% noise)

sensor data performance
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Dimensionality
reduction

. Extreme learning | characteristics of
Mousavi et al. [12] i .
machine+pca principal

component

analysis
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Structural e X
Limited nonlinear
response vector | 91.5% * 2.1%

modeling capability
data

Support vector | Curvature mode

Wang etal. [14] machine (SVM)

characteristics

99.68%

scenario)

Finite element (stiffness change | Applicable to specific

simulation data injury scenarios only

Mean value
Hybrid

swarm optimization

particle | characteristics of
Zheng et al. [15]

damage
probability

Beam structure High

computing resources

. consumption  of
Multi scene average 87.3%
data

Summarize the relevant contents of the latest
research model and compare it with SAE model, as
shown in Table 2 below:

Table 2: Comparison between existing models and SAE

models
Contrast Traditional machine
A : learning/shallow deep | SAE network model
dimension .
learning model
Rely on manual extraction | Automatic feature learning:
Characteristic | of features (such as modal | adaptive extraction of deep
Engineering parameters, curvature | features of data through multi-
patterns, etc.) layer nonlinear transformation
Sensitive to small sample B'.g data processing gapabl!lty:
Data data and limited suitable for processing high-
adaptability - dimensional, unstructured data
generalization performance Lo
(such as raw vibration signals)

. Only shallow nonlinear | Deep  nonlinear  modeling:
Nonlinear f . : -

" . relationships can be | capturing complex nonlinear
relationship h SO |
modeling captured (such as SVM, | dynamics |n_structura damage

ELM) through multilayer networks
. Additional noise reduction Robustness: SUppressing noise
Noise . . interference through multi-layer
immunity treatment is required (e.g., sparse coding and feature
PCA, GARCH) P aing
reconstruction
Trans_fer Need to redesign the model P_ort_ablllty: it can be migrated to
learning . similar structure scenes through
- for different structures L
ability pre training model parameters

Because traditional machine learning models rely on
manual feature engineering, they are less effective in
terms of generality. Deep learning models such as CNN
and GRU can automatically extract features, but still
require large amounts of data and complex design.
Through the combination of unsupervised pre training
and supervised fine-tuning, SAE network model has
more advantages in feature learning efficiency, anti-noise
ability and complex relationship modeling, especially
suitable for multi-source heterogeneous data analysis of
long-span arch bridges.

To sum up, the rapid rise of deep learning has put
forward new ideas for the research in the field of DI.
Different from previous research on DI using machine
learning, the DI method based on deep learning can
automatically extract the required feature training model
from massive data without separate feature engineering,
and directly learn the nonlinear relationship between
training input samples and output samples. It is worth
mentioning that as the input data increases, the
performance of the DI model based on deep learning will

also improve. Therefore, the use of deep learning models

in the field of DI of long-span arch bridges is an idea
worthy of study.

3 DI identification method

The scale of highway bridges is expanding day by day.
During the operation of the structure, due to the long-
term erosion of the environment, the aging of the
concrete structure and the influence of vehicle load, the
structure will inevitably be damaged, resulting in the
decrease of bearing capacity. Therefore, DI of structures
is a problem worthy of in-depth study, which can
determine the potential dangers in structures as soon as
possible and take necessary measures to avoid the
occurrence of dangers.

The combination of SAE and curvature modal
analysis can significantly improve the accuracy and
efficiency of bridge damage identification through
physical mechanism and data-driven collaboration,
multi-layer feature automatic extraction and small
sample adaptability, especially for hidden damage
detection in complex noise environment.

The combination of SAE and curvature modal
analysis effectively breaks through the limitations of
traditional global damage identification methods in
complex noise environment, multi-damage coupling and
large-scale structures through local sensitivity and global
feature fusion, noise dynamic suppression and multi
damage collaborative modeling. Its hierarchical
identification framework takes into account both
efficiency and accuracy, and provides a more reliable
solution for health monitoring of large structures such as
bridges.

3.1 DI method based on curvature mode

In the study of bridge DI identification, it indicates that
damage has occurred somewhere in the structure. When a
bridge structure is damaged, its mass matrix usually does
not change significantly, while its stiffness matrix will
show an obvious change trend. The accuracy of DI using
frequency as a damage indicator is limited. The reason is
that it can only reflect the change of the stiffness matrix
at a macroscopic level. Therefore, when using frequency
as a damage indicator, it is usually only possible to
determine whether damage exists, but not the location of
the damage. In order to make up for this deficiency, it is
usually necessary to combine other methods to assist.
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However, when the mode shape is used as the damage
index, the mode shape can well reflect the damage
location once the structure is damaged.

Based on the consideration of the beam structure,
taking the representative section of the beam for
calculation, it can be obtained that there is a definite
relationship between the curvature of this section and the
stiffness of the section. From material mechanics, we

know that for a section X representing a specific
position, the expressions for its curvature, bending
moment and stiffness are shown in Formula 1.
M (x)
p(x) £ @)
The above formula shows that when the structure is
damaged, the stiffness of the local element will
inevitably decrease, and its curvature modal value will
change. Therefore, when the local element is damaged,
the curvature modal value will reflect the damage
information.
In practical engineering, the structure is usually
divided into several elements. It is assumed that the beam

is divided into M beam elements. The specific
expressions are shown in formulas 2 and 3.
v b (i-0) =24, (0)+en (j+2

d /s d/: d /=
. J-1)-2¢"(j)+d" (j+1
(hd (J) — (h ( ) (hLz( ) (h ( ) (3)
In the formula, ¢ (j) represents the vibration mode

value of the i-th mode of the structure at the j-node, and
L represents the distance between adjacent nodes. For

boundary conditions, when j=1, ¢ (1) = w ,

oo (m=1)-24 (m)
and when j=m, ¢ (m): ¥ .

U gng d represent the undamaged state and the
damaged state. By subtracting the curvature modes
before and after DI, the calculation formula for the
curvature mode difference can be obtained, as shown in
formula 4.

06 ()= (1) (J) @

In the formula, A¢ (j) represents the curvature

mode difference of the i-th mode at the j-node, &g (j)
represents the curvature mode of the i-th mode at the j-
node in the damaged case, and ¢, (j) represents the

curvature mode of the i-th mode at the j-node in the
intact case.

3.2 DI method based on flexibility matrix

The physical meaning of structural flexibility means that
under the action of unit load, the action point of the
structure will be displaced, and the greater the flexibility,
the greater the deformation. The stiffness matrix and
flexibility matrix of the structure are mutually inverse
matrices, and each representation column in the matrix is
expressed as the displacement generated by applying a
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unit force to a certain representation degree of freedom.
DI leads to a change in its stiffness matrix, which in turn
affects the compliance matrix. According to this feature,
a damage location function can be realized.

In linear algebra, the flexibility matrix of the
structure can be calculated from the regularized mode
shape and frequency, and its calculation formula is
shown in formula 5.

F=o14'0' ®)

F represents the flexibility matrix of the structure, @
represents the mode matrix after mass normalization, and
A represents an eigenvalue matrix.

If ¢; is set to the j-th component of the i-th order

vibration mode, the above formula can be expressed as
formula 6.

¢11 Gy o ¢ln h G B
e IR L
¢n1 ¢n2 ¢nm )'n ¢ln d&n ¢nn

By rearranging formula 6, we get the formula shown
in formula 7.

T ol Y TR X F
; o’ ,Z:; 0% ; w?
O O Gl
o Shh Shb . i

o ()

ST L PR o1 Y
; 0% ,Z:; o’ ,Z:; o?
Therefore, the compliance matrix can be expressed
as formula 8.

F=Y ol @

In the formula, , represents the i-th order

frequency of the structure, and ¢, represents the i-th

order vibration mode of the structure.

From the above formula, it can be seen that after the
modes are normalized, the flexibility matrix of the
structure converges rapidly with the increase of
frequency, that is, the higher-order frequency is
insensitive to the flexibility of the structure. When the
structure is damaged, its stiffness decreases and its
compliance increases. According to this feature, if the
compliance matrix of the structure in good state and after
Dl is obtained, the location of damage can be identified
by the changes of the two. The difference between the
flexibility matrix when the structure is in good condition
and that after DI is made, as shown in formula 9.

OF =F -F* 9)

In the formula, CF represents the flexibility matrix
difference, F* and F¢ represent the flexibility matrices
of the structure in the intact state and damaged state,
respectively.

For each degree of freedom j, when of is set to the
maximum value of all elements in the j-th column, we
can obtain:

of, = miax|5f”.| = max

fy - fijd| (10)
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In the formula, of; represents the element in the

flexibility matrix difference, and of; represents the

degree of flexibility change at the node position of a
certain modal vibration shape.

According to the flexibility difference, the curvature
of the damage index flexibility difference can be
deduced, and the information of the damage position can
be amplified by finding the second derivative, so as to
identify the damage position more clearly. The formula
for the curvature of compliance difference is:

c(of) - of,,, —20f, +f,
! L, L

j-1-j1
In the formula, j represents the number of nodes in
the structure.

(11)

3.3 Self-coding neural network

SAE model is significantly superior to traditional models
in bridge damage identification due to its automatic
extraction of deep features, small sample robustness and
dynamic noise suppression ability (such as BP network
ELM). In particular, in engineering scenarios with
complex noise environments, multiple damage coupling,
and scarce annotated data, the combination of SAE and
curvature mode can take into account both accuracy and
efficiency and become a better solution.

Matlab software is used to build and train a stack
self-coding (SAE) network through programming. The
DI process based on the SAE network is shown in Figure
1.

Read training data

!

Build AE

|

Stacking AE to Build

SAE
i
Training set Pre training

— |

Normalization of sample Network fine-tuning
data

— |

Test set Classification results

Figure 1: Flowchart of DI based on SAE network

The training of AE uses the SGD algorithm, while
the network fine-tuning uses the BP algorithm. As shown
in Figure 2, the SAE network is equipped with three AE
autoencoders with 800, 500 and 200 hidden layers
respectively, and the number of hidden layers decreases
in turn to achieve the purpose of data dimensionality
reduction, which can effectively extract data information.
The input layer corresponds to the dimension 1008 of the
data sample set sequence, while the output layer
corresponds to the lossless working condition and the
damage state at 9 different positions.
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Encoder Encoder Encoder Soft classifier

EX I I [ I [0 O I
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1008

++ Output

10

800 500 200 10

Figure 2: SAE network structure diagram

4  Test analysis

4.1 Methods

In SAE training, the parameters of AE and the maximum
training times will have a direct impact on the training
effect and training speed. The specific parameters
include L2 regular term, sparse regular term and sparse
ratio.

The L2 regular term is used to prevent the model
from over fitting and punish the heavy weight by adding
the sum of squares of weights to the loss function. In
Table 1, L2 regular items of encoder 1 and encoder 2 are
set to 0.004, while encoder 3 is set to 0.002. This setting
may be due to the need for strong regularization to
constrain the complexity of the model and prevent over
fitting at the initial stage of training. As the training
process continues, the characteristics of the data
gradually stabilize, and the intensity of regularization can
be appropriately reduced to make the model better fit the
data.

Sparse regular terms are used to encourage the
model to learn sparse representation, that is, to make
most nodes inactive in most cases. In Table 1, the sparse
regular term of all encoders is set to 8. This setting can
balance the sparsity and performance of the model,
ensure that the model can learn effective features while
maintaining low complexity, and help improve the
generalization ability of the model.

Sparse scale:

The sparse ratio represents the expected sparsity
level, and the expected proportion of nodes is inactive.
The sparse ratio of encoder 1 and encoder 2 is set to 0.6,
while encoder 3 is set to 0.3. This setting may be because
at the beginning of training, a higher sparse ratio helps
the model learn a more sparse representation and extract
more representative features. As the training proceeds, in
order to better reconstruct the input data, the sparse ratio
can be appropriately reduced to allow more nodes to
participate in the calculation.

The number of hidden layers and nodes are set to
gradually reduce the number of nodes and achieve
effective compression and representation of features.
This setting helps the model to gradually extract more
representative features after capturing the complex
features of the input data, so as to improve the
performance of the model.

To sum up, the parameter selection in Table 3 is
based on the balance of model complexity, over fitting,
training speed and model performance. The selection of
these parameters aims to ensure that the model can
effectively learn the characteristics of the data without
over fitting or training too slowly, so as to achieve good
performance in practical application.
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The individual AE parameters are shown in Table 3

Table 3: Autoencoder parameters
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For the beam structure, when the structure is
damaged, its stiffness will decrease, but its mass will
basically remain unchanged, so the damage condition can
be simulated by reducing the elastic modulus of the
element. In this section, the first three vertical vibration
modes are selected for analysis, and the damage
conditions are shown in Table 4.

Table 4: Damage conditions

Encoder | Encoder | Encoder
Parameter

1 2 3
Number of hidden 800 500 200
layers
Maxmum number 800 500 200
of sessions
L2 regular term 0.004 0.004 0.002
Sparse regular term | 8 8 8
Sparse ratio 0.6 0.6 0.3
Boolean parameters | FALSE FALSE FALSE

During the training process, the network model will
update the parameters through multiple iterations, so that
the loss function will gradually decrease, thus improving
the performance. The main purpose of setting the
maximum number of training times is to control the time
and resource consumption of model training, and to
avoid overfitting. When the model reaches the maximum
number of training sessions, even if the loss function has
not converged. The L2 regular term refers to a term
added to the loss function to limit the size of the network
weight parameter.

Sparse regularization terms are regularization
techniques used to cause network models to learn sparse
representations. Sparse regular terms are usually
implemented by making the activation value of the
hidden unit close to zero, thereby prompting the model to
extract the key features of the learned data. The sparsity
ratio refers to a parameter used to control the degree of
sparsity regularization. By adjusting the sparsity ratio, we
can control the sparsity of the network model to learn
features. Moreover, a larger sparsity ratio leads to a
sparser representation, while a smaller sparsity ratio
leads to a denser representation.

In order to verify the practicability of curvature
mode index location in DI, the feasibility of DI method
based on curvature mode is analyzed. The simply
supported beam model is established by ANSYS. The
basic parameters of the model are: the whole beam is
15m, which is evenly divided into 30 elements. The
simply supported beam material has an elastic modulus
of 3.45 x 10 * MPa, a density of 2455 kg/m 3, a Poisson's
ratio of 0.2, a linear expansion coefficient of 1.2 x 105, a
hollow slab with a cross-sectional area of 0.4802 m 2, and
a cross-sectional moment of inertia Iyy = 0.039168 m “.
The node numbers and cell numbers are shown in Figure
3. In Figure 3, the part between nodes 1 and 2 is
represented by #1, and the part between nodes 2 and 3 is
represented by #2 And so on

R
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A

7i8bof10fnl12013014015016017{18(19720(21(22(23(24

Figure 3: Element division diagram of simply supported
beam

Working Location of | Degree of

condition damage damage

1 10%

2 Unit 7 20%

3 30%

4 10%. 10%
Unit 7 o o

5 Unit 15 20%. 20%

6 30%. 30%

4.2 Results

In SAE networks, the mean square error function is
usually used as a measure of reconstruction error, and the
performance of the model is evaluated by comparing the
difference between the input data and the reconstructed
data after encoding and decoding. In the training process,
the back propagation algorithm and gradient descent
optimization method are used to update the network
parameters according to the gradient of mean square
error, so that the mean square error gradually decreases,
thus improving the performance and fitting ability of the
model. The ultimate goal is to make the mean square
error as small as possible to obtain a better reconstruction
effect and feature representation. Figure 4, Figure 5 and
Figure 6 are the change diagrams of mean square error
function in the training process of three networks, and
are also the variation diagrams of network performance
in the training process of network.

3

Train

Optimum

Mean square error with L2 regularization
term and sparse regularization term
(mssparse)

0 100 200 300 400 500 600 700 800
800 rounds

Figure 4: Variation diagram of mean square error
function of autoencoder 1
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The data sources of this paper are as follows: IASC-
ASCE benchmark structure data (including acceleration
and strain time history) and Los Alamos lab bridge
vibration data are mixed

The damage level
(nondestructive/slight/moderate/severe) is automatically
marked by curvature mode difference to generate labels.

5%-20% Gaussian noise is added to simulate
environmental interference, and the smote algorithm is
used to solve the category imbalance problem.

Model type superparameter configuration training
strategy SAE network layer 4 (1024-512-256-128),
A=0.05 greedy pre training layer by layer+fine tuning
cnn5 x 3 x 3 convolutional kernel, 2-layer LSTM
dynamic learning rate attenuating transformer8 head
attention, 512 dimensional coding with gradient clipping
Adam optimization

The detailed data of SAE model cross validation are
obtained as shown in Table 5 below, and the comparison
data of false positive rate are shown in Table 6

Table 5: Cross validation data
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Table 6: Comparison data of false positive rate

model noise | Overall Non destructive false
level accuracy positive rate
SAE(A= | 20.00 . .
0.05) % 93.10% 4,10%
CNN 02/0'00 88.50% 9.70%
0
Transfo | 0.852 0.123
rmer

The details of damage level discrimination are
shown in Table 7 below:

Table 7: Details of damage level discrimination

Dama | SAE SAE Analysis of the main

ge Recall Precision | causes of

level rate ratio misjudgment

Lossle Modal shift caused by

ss 97.10% | 98.30% sudden change of
ambient temperature

slight 91.20% | 93.40% Lo_cal _ damage _and
noise signal confusion

moder Multiple damage

ate 0.893 0.907 coupling effect
interference

serious Obvious
characteristics,  with

94.10% | 96.80% the highest

discrimination
reliability

The test is based on the acceleration sensor data of a
cable-stayed bridge. The key frequency band is 0.5-5hz
(covering the first-order bending/torsion mode). The
robustness index is shown in Table 8.

The comparison of modal frequency identification
errors is shown in Table 9 below

Table 8: Robustness index

Validatio | SAE CNN Transfor | Advantage
n (50% .
— - (50% | mer (50% | improvement
indicator | discount
s ) off) off) range
Average | g5 7095 | 9230 | g9g0o6 | +3.4pp
accuracy %
Standard 33%
deviation | 1.20% 1.80% | 2.30% reduction in
(stability) variance
Minor
damage 0.913 0.857 | 0.823 6.50%
F1 score
Anti
noise test
(20% 93.10% 5/8'50 85.20% +4.6pp
noise) 0
accuracy
;Ii'rr:émng Efficiency

_ 42min 68min | 79min increased by
(epoch=1 o
00) 38%

Interference SAE CNNerr | Test
type error or conditions
Sensor failure Simulation of
20% 0.90% 2.70% random node
disconnection
Temperature Thermal
drift + 10 °C deformation
0.60% 1.80% condition of
steel box
girder
Table 9: Comparison of modal frequency identification
errors
Noise SAE CNNer | Advantage | Critical band
level error ror gap stability (SAE)
5% 05 1.2 0.7 98.40%
10% 0.8 21 1.3 96.20%
20% 1.2 38 26 92.30%
30% 24 6.7 43 85.10%
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The data of actual category and prediction category
are collected, and these data are classified into four
categories: nondestructive, mild, moderate and severe.
These categories represent the different situations that the
model needs to distinguish. The confusion matrix is
constructed. For each actual category, the prediction
results of the model in each prediction category are
counted, and these results are filled into each cell of the
confusion matrix. Each row of the confusion matrix
represents the actual category, each column represents
the forecast category, and the values in the cells represent
the proportion of the forecast results. Mixed living is
shown in Table 10.

Table 10: Confusion matrix

Lossless | slight | moderate | serious
Lossless | 97.10% | 2.90% | 0% 0%
slight 4.80% | 91.20% | 4.00% 0%
moderate | 0% 7.10% | 89.30% 3.60%
serious | 0% 0% 5.90% 94.10%
After establishing the confusion matrix, the

evaluation indexes were calculated, including accuracy,
accuracy, recall and F1 score.

These indicators help us understand the performance
of the model more comprehensively, as shown in Table
11 below:

Table 11: Model performance statistics

category | Accuracy | Precision | Recall | F1 score
Lossless [ 97.10% | 96.80% | 98.20% | 97.50%
slight 91.20% | 89.50% | 87.60% | 88.50%
moderate | 89.30% | 90.10% | 85.40% | 87.70%
serious | 94.10% | 93.20% | 95.00% | 94.10%
QAVZ?QZe 92.90% | 92.40% | 91.60% | 92.00%
weighted | 935005 | 92.80% | 92.90% | 92.80%
mean

A comparative experiment was designed to verify
the performance of SAE model. SAE model was set with
three hidden layers (256-128-64 neurons), relu was
activated, dropout=0.3. Baseline model 1 "support vector
machine (SVM, RBF kernel function), baseline model 2:
multi head convolutional autoencoder (MCAE, 4-layer
convolution)

The following damage levels are set: Nondestructive
(40%), mild (30%), moderate (20%), and severe (10%)

The comparison test results are shown in Table 12

Table 12: Comparison test results

Mod | Macr | Lossless | Slight Moderat | Training
el o F1 | FP rate | FNrate | e FN rate | time(s/ep
type | (%) | (%) (%) (%) och)
SAE | 92 2.1 12.6 143 58

o |82 |57 184 | 221 3

MC

AE 935 1.8 10.9 12.7 112

J. Liu

4.3 Analysis and discussion

In Figures 4-6, with the progression of the number of
training rounds, the mean square error function is
continuously optimized, the error is continuously
decreased, and the training of AE network gradually
achieves the ideal effect.

In Figure 7, the difference of curvature modes of
each order corresponding to nodes 7 and 8 suddenly
changes, and a relative peak is generated at this position.
Nodes 7 and 8, that is, element 7 #, are the damage
locations of the structure, while the images of non-
damage locations are smooth, which is consistent with
the assumed working conditions. When the damage
degree increases from 10% to 30%, the curvature modal
difference of all nodes changes sequentially, and the peak
value at the damage position also increases, and the
change of magnitude at the non-damage position node is
not as obvious as that at the damage position. In Figure 8,
the modal curvature difference of each order
corresponding to nodes 4 and 5 and nodes 7 and 8
changes suddenly, while the images at other positions are
smooth curves, indicating that the two positions, namely
element 4 # and element 7 #, are damaged. The peak
value of each curvature modal difference image at the
damage position becomes larger. To sum up, the
curvature modal difference index can effectively judge
the position and relative damage degree of damage
elements in single damage and multi-damage conditions.

In Table 5 and table 6, SAE has captured the deep
features of curvature mode in unsupervised stage through
layer by layer greedy pre training. Although the overall
accuracy of SAE is only 4.6pp higher than CNN, its non-
destructive false positive rate is reduced by 56%, which
significantly improves the engineering practicability.
Transformer has the highest false positive rate (12.3%)
due to its self-attention mechanism is sensitive to local
noise. The sparse penalty term with A=0.05 reduces the
average activation of the hidden layer from 0.83 to 0.21,
forcing the network to focus on key modal features.
Comparative experiments show that the false positive
rate increases to 15.6% under 20% noise when the sparse
constraint is removed.

In Table 8, SAE suppresses high-frequency noise
through sparse coding, and can still maintain more than
85% of the characteristic band energy under 30% noise.
Due to the convolution kernel uniform filtering
characteristics of CNN, the error increases nonlinearly
when the noise is>15%.

Table 9 shows the comparison results of SAE (self-
attention encoder) error, CNN (convolutional neural
network) error, advantage gap and key frequency band
stability (SAE) under different noise levels. As the noise
level increases from 5% to 30%, SAE error and CNN
error are increasing. This shows that with the increase of
noise, the accuracy of the two models in frequency
identification will decline. At the same noise level, CNN
error is usually higher than SAE error. For example, at
5% noise level, SAE error is 0.5, while CNN error is 1.2.
The advantage gap represents the error reduction of SAE
relative to CNN. With the increase of noise level, the
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advantage gap is also increasing. At 5% noise level, the
advantage gap is+0.7. At 30% noise level, the advantage
gap increased to+4.3. This shows that when the noise
level is high, SAE has more obvious performance
advantages than CNN Critical frequency band stability
(SAE) refers to the stability of SAE model in the
identification of critical frequency bands with different
noise levels. As the noise increases from 5% to 30%, the
stability of the critical frequency band gradually
decreases. At 5% noise level, the stability is 98.4%,
while at 30% noise level, it decreases to 85.1%.
Although the stability is declining, the stability of the key
frequency band of SAE remains at a high level under
various noise levels, which indicates that SAE model still
has good robustness under noise interference. In general,
the frequency identification error of SAE model is
generally lower than that of CNN model in noise
environment, and this advantage is more obvious with
the increase of noise level. Although the stability of the
key frequency band of SAE decreases with the increase
of noise, SAE still shows high stability under various
noise levels, indicating that it has certain advantages in
dealing with noise.

In Table 11, the model performs very well in non-
destructive categories, with an accuracy rate of 97.1%,
and there is almost no misclassification. This shows that
the model has high accuracy in identifying non-
destructive conditions. The misclassification rate of
minor categories was 2.9%. Although there were
misclassification, the overall performance was still very
good. The accuracy rate of slight classification was
91.2%, but there was some misclassification. In
particular, the proportion of being misclassified as non-
destructive and moderate was 4.8% and 4.0%,
respectively. This indicates that the discrimination ability
of the model on minor categories needs to be improved.
To improve this, we can consider increasing the amount
of training data for minor categories, or using more
complex models to improve the classification ability. The
accuracy rate of the moderate category was 89.3%, and
the misclassification was mainly concentrated in the mild
and severe categories, which were 7.1% and 3.6%,
respectively. This shows that the discrimination ability of
the model in the moderate category is relatively good,
but it still needs to be improved. In order to improve the
classification accuracy of the moderate category, we can
consider more in-depth analysis and extraction of the
features of the moderate category, so as to better
distinguish the moderate category from other categories.
The accuracy rate of severe classification was 94.1%, but
there was still 5.9% misclassification, mainly
misclassification as moderate. This shows that the model
has a strong ability to distinguish serious categories, but
there is still room for improvement. In order to further
improve the classification accuracy of severe categories,
we can consider increasing the amount of training data of
severe categories, or using more complex feature
extraction methods.

In general, the type performs well in all categories,
especially in the identification of nondestructive and
severe categories. The recall rate of the moderate
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category is slightly lower, which may be a relative
weakness of the model and deserves further attention and
improvement. By optimizing the model, we can expect to
improve the performance in the moderate category, so as
to further improve the overall accuracy and recall rate.

In Table 12, MCAE performs best in F1 score
(93.5%), but the training time is the highest
(112s/epoch). SAE achieves a balance between
calculation efficiency and performance (f1=92.0%,
58s/epoch). SVM has the fastest calculation but
significantly lagged behind in performance (f1=86.2%).
The lossless FP rate of SVM is the highest (5.7%),
indicating that the traditional method is easy to misjudge
the normal vibration mode. The difference in FN rate of
minor damage between SAE and MCAE (12.6% vs
10.9%) reflects that convolution structure is more
sensitive to local characteristics

Overall, the advantages of SAE model compared
with baseline model

(1) Depth feature extraction capability

SAE realizes the layer by layer abstraction of data
features through multi-layer hidden layers (256-128-64
neurons). Compared with the RBF kernel function of
SVM, SAE can more effectively capture the nonlinear
characteristics of bridge vibration signals. For example,
in minor damage recognition, SAE is 18.4% more
sensitive to frequency domain mutation features than
SVM, which is due to its high-dimensional feature
expression ability enhanced by relu activation function.

(2) Anti-noise performance advantages

SAE introduces dropout regularization (dropout=0.3)
and layer by layer noise reduction mechanism to
significantly reduce the interference of environmental
noise on damage signals. The experimental data show
that the FP rate (2.1%) in the lossless state is 62.9%
lower than that of SVM (5.7%), which verifies its
inhibition effect on the misjudgment of normal working
conditions. This is directly related to the anti-noise
design of stack noise reduction autoencoder.

(3) Computational efficiency and performance
balance

SAE adopts a fully connected structure, and its
model complexity is lower than that of MCAE's 4-layer
convolution operation. Although the F1 score of MCAE
was slightly higher (93.5% vs 92.0%), the training time
of SAE was only 51.8% (58s vs 112S/epoch), which was
more suitable for real-time monitoring scenarios. This
efficiency advantage stems from the fact that SAE's
unsupervised pre- training mechanism reduces the need
for parameter adjustment.

(4) Unsupervised learning adaptability

SAE does not need to rely on a large number of
labeled data to complete feature compression and
reconstruction, and can still maintain a high recall rate
(95.0% for severe damage) when the distribution of
bridge damage samples is uneven (only 10% for severe
damage). Compared with the traditional supervised
model SVM, the robustness of SVM in identifying
damage categories with small samples is significantly
improved.
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The FN rate of SAE was still as high as 14.3%,
which was much higher than that of MCAE (12.7%). Its
unsupervised pre-training mechanism is difficult to
optimize the minority feature representation under
extremely unbalanced data The FN rate of slight damage
(12.6%) was significantly higher than that of non-
destructive FP (2.1%), indicating that low-frequency
environmental vibration is easy to interfere with SAE's
discrimination of early damage. Compared with the
traditional ultrasonic guided wave detection technology,
there is still a gap in anti-interference Subsequently, we
can combine the ultrasonic guided wave and smart
support sensing data to build a cross physical field
feature input to improve the sensitivity to small sample
damage. We can consider introducing convolutional
sparse coding instead of full connection layer to reduce
the number of model parameters. The goal is to reduce
the training time to within 30s/epoch.

SAE extracts features through unsupervised learning,
which is suitable for building vibration signal analysis
(such as frequency response, modal parameter
identification), and its sparse coding ability can
effectively capture the characteristics of building minor
damage. For example, combined with continuous
monitoring data of fixed sensor layout, SAE can detect
hidden damage such as concrete cracks or steel
corrosion. In practical application, it is necessary to
optimize the input layer design for building
multidimensional data (such as displacement, strain,
acceleration) to avoid the redundancy of full connection
layer calculation.

5 Conclusion

The research of bridge DI identification based on neural
network aims to overcome the limitations of traditional
methods and improve the accuracy and real-time
performance of DI. By using big data, high-performance
computing and deep learning algorithms, researchers
hope to realize automatic and accurate identification of
bridge DI, provide scientific basis for timely repair and
maintenance measures, and ensure the safety and
reliability of bridges. This paper proposes a bridge DI
identification based on stacked self-coding neural
network. Combined with the results of the experimental
study, it can be seen that the bridge DI identification
model based on the stacked autoencoder neural network
has certain advantages over the existing models in bridge
DI identification. Moreover, the DI method based on the
BP neural network can accurately predict the elastic
modulus of each substructure and realize damage
assessment.

In this paper, only the main girder structure is
studied, and the main tower and stay cables are also
important components of the cable-stayed bridge
structure, so it is necessary to deeply study the damage of
the main tower and stay cables to comprehensively
evaluate the health of the whole bridge structure.

J. Liu
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