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Bridge structures are affected by various factors such as the natural environment and traffic load for a 

long time, which may cause structural damage identification (DI), thus affecting their performance and 

safety. This paper innovatively combines the stacked autoencoder neural network with curvature modal 

analysis. The DI method based on curvature modal is to use the curvature modal difference as an 

indicator for DI. In bridge damage identification, a method combining curvature mode and flexibility 

matrix is proposed, which is fused into autoencoder neural network to realize the function of damage 

location. In the test, the key features of the data are extracted through L2 regular term, and the method 

effect is verified by establishing a simply supported beam model through ANSYS. The identification 

accuracy of this model in bridge DI is as high as over 78%, and its highest can reach 85%, and the 

average identification accuracy is 82%. The results show that this method can identify specific damaged 

units and reflect the relative degree of damage, regardless of single damage or multiple damage 

conditions. Therefore, the bridge DI identification model based on stacked autoencoder neural network 

can be applied to real-time identification and analysis of bridge structures to help provide reliable 

bridge monitoring data support. 

Povzetek: Prispevek združuje skladani samokodirnik z krivinskimi modami in matriko fleksibilnosti. Iz 

vibracij samodejno izlušči znake poškodb mostov, locira in oceni stopnjo; robustno tudi pri več 

poškodbah, točnost preko 80%. 

 

1 Introduction  
As an important part of the traffic network, bridges 

provide great convenience for people's life and goods 

transportation, and are important infrastructure related to 

the development of national economy. However, due to 

many factors such as environmental erosion, material 

aging, natural disasters, etc., bridges inevitably suffer 

different degrees of damage in the process of service. In 

particular, earthquakes are natural disasters with huge 

energy, which will cause serious damage to 

transportation infrastructure, and bridges in earthquake 

zones are prone to earthquake damage. Moreover, the 

continuous development and accumulation of damage 

will seriously reduce the bearing capacity of bridges, and 

even pose a threat to people's lives and property safety 

[1]. 

It is very important to identify the damage state of 

bridges accurately and timely, which can provide 

guidance for bridge damage early warning and damage 

repair. Traditional bridge damage detection relies on 

manual inspection to regularly inspect all parts of the 

bridge, such as piers, bearings and foundations that are 

easily damaged. However, manual inspection has some 

shortcomings, such as time-consuming, laborious, 

subjective and difficult to find hidden damage. Due to  

 

the coupling action of external load and environmental 

factors, structural changes such as micro-voids and  

micro-cracks or material deterioration occur inside the 

structure. After these problems accumulate day by day in 

the structure, they will have an irreversible impact on the 

structure itself and pose a serious threat to the normal use 

of the structure. The DI identification process is a step-

by-step system that includes multiple key steps, such as 

determining whether the structure is damaged, accurately 

locating the damage location, and in-depth diagnosis of 

the extent of the damage. After this series of steps, the DI 

of the structure can be completed. Although DI 

technology has made remarkable progress in recent 

years, the accurate identification of DI and its effective 

application in engineering practice are still a topic that 

needs to be further studied [2]. 

By finding and locating the damage of the structure 

in time, preventive or reparative measures can be taken 

to prevent the damage from developing step by step and 

improve the safety of the structure. Local DI identifies 

damage by monitoring and analyzing the physical 

features of specific sites or regions in a structure. The 

method can accurately locate damage in the structure and 

enable maintenance personnel to take targeted measures 

without having to intervene in the entire structure. 

However, local DI usually depends on prior knowledge, 
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and it is difficult to identify concealed damage. 

Compared with local DI, global DI pays attention to the 

overall response and behavior of the structure. When the 

structure is damaged, the physical parameters of the 

structure will change, which will lead to the change of 

the static and dynamic parameters of the structure, so as 

to realize the early warning, location and identification of 

damage degree [3]. 

SAE extracts feature through unsupervised learning, 

which is suitable for building vibration signal analysis 

(such as frequency response, modal parameter 

identification), and its sparse coding ability can 

effectively capture the characteristics of building minor 

damage. For example, combined with continuous 

monitoring data of fixed sensor layout, SAE can detect 

hidden damage such as concrete cracks or steel 

corrosion. In practical application, it is necessary to 

optimize the input layer design for building 

multidimensional data (such as displacement, strain, 

acceleration) to avoid the redundancy of full connection 

layer calculation. 

The combination of SAE and curvature modal 

analysis can significantly improve the accuracy and 

efficiency of bridge damage identification through 

physical mechanism and data-driven collaboration, 

multi-layer feature automatic extraction and small 

sample adaptability, especially for hidden damage 

detection in complex noise environment. 

The combination of SAE and curvature modal 

analysis effectively breaks through the limitations of 

traditional global damage identification methods in 

complex noise environment, multi-damage coupling and 

large-scale structures through local sensitivity and global 

feature fusion, noise dynamic suppression and multi 

damage collaborative modeling. Its hierarchical 

identification framework (positioning → quantification) 

takes into account both efficiency and accuracy, and 

provides a more reliable solution for health monitoring of 

large structures such as bridges. 

This paper presents a structural damage 

identification model for bridges using a stacked 

autoencoder neural network, addressing the challenge of 

insufficient accuracy in existing DI methods. This paper 

innovatively combines the stacked autoencoder neural 

network with curvature modal analysis. The DI method 

based on curvature modal is to use the curvature modal 

difference as an indicator for DI. 

2 Related works 
The damage identification method based on curvature 

mode has become an important research direction in the 

field of structural health monitoring due to its high 

sensitivity and local positioning ability. However, there 

is still a blank in the research on global feature 

recognition. Therefore, this paper combines wavelet 

transform, neural network and substructure 

decomposition technology with the actual needs of 

bridge detection, which can significantly improve the 

recognition accuracy in complex noise environments. At 

the same time, on this basis, this paper analyzes the 

existing research status.  

(1) Research status of DI identification based on 

machine learning 

Representative machine learning algorithms for DI 

identification include Gaussian process, Bayesian 

method and extreme learning machine, etc., which learn 

and realize DI by analyzing relevant data samples. This 

kind of method is particularly important for data cleaning 

and processing, which generally uses the structural 

modal parameters extracted in advance to process the 

feature vector as the input of the model for training, and 

uses the trained model to identify the potential damage of 

the structure [4]. 

Wang et al. [5] used parameter estimation to study 

the damage of stone arch bridges through the inverse 

analysis framework of the Bayesian method as well as 

Markov chains and Gaussian processes. Svendsen et al. 

[6] used Kalman filter, generalized autoregressive 

conditional heteroscedasticity model and autoregressive 

movement model to identify the damage of reinforced 

concrete arch structure, which proved the feasibility of 

the method. Zhang and Sun [7] used fuzzy clustering 

method to carry out DI identification research, and used 

this method to identify the damage of the structure based 

on the strain data of Dashengguan Bridge, and verified 

the effectiveness of the proposed method. Daneshvar et 

al. [8] used Bayesian algorithm and Auto-Regressive 

Moving Average Model (ARMA) to identify damage, 

and verified that this method has a good effect in 

identifying damage location. Pourzeynali et al. [9] 

proposed a DI method based on genetic algorithm, which 

uses the environmental vibration data obtained by sensor 

monitoring to identify the damage of arch bridge. Huang 

et al. [10] proposed a DI method based on modal 

curvature, which still achieves good identification results 

even when there are errors in the finite element model. 

Figueiredo and Brownjohn [11] proposed a DI method 

based on support vector machine, and used acceleration 

time history data to establish damage index through 

structural vulnerability method, which not only obtains 

good identification results but also has good noise 

immunity. Mousavi et al. [12] proposed a DI method 

based on extreme learning machine and structural 

response vector, and on this basis, the principal 

component analysis method was used to improve the 

noise immunity of the model. Wan et al. [13] proposed a 

DI method based on an improved time series analysis 

method, used environmental vibration data to detect and 

locate structural changes, and verified the effectiveness 

of the proposed method using finite element data of a 

real bridge. Wang et al. [14] carried out DI identification 

research with curvature mode as sample by support 

vector machine. The identification accuracy of the 

proposed model can reach 99.68% under the condition of 

20% and 40% stiffness reduction. Zheng et al. [15] used 

the damage probability mean and hybrid particle swarm 

algorithm to carry out a two-stage beam DI identification 

study. The results show that the algorithm can be 

effectively applied to DI identification of different 

structures and different working conditions.  
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In the research of DI identification based on machine 

learning, the quality of feature vectors selected at the 

beginning will directly affect the effect of DI. Feature 

extraction from the original data is a crucial 

representation step, which not only takes a long time, but 

also has definite difficulty in representation. If the 

extracted feature vectors do not meet the requirements, 

the identification ability of the model will be greatly 

reduced. Moreover, because the nonlinear modeling 

ability of machine learning is relatively limited, it is 

difficult to capture the complex nonlinear relationship 

within the structure, and it cannot process big data well. 

On the other hand, different structures require different 

optimal combination features and machine learning 

models adapted to them for identification, and their 

universality is poor. 

(2) Research status of DI identification based on 

deep learning 

Deep learning has developed rapidly and has 

gradually become the hottest research method nowadays 

and achieved good results in many fields. Compared with 

machine learning, deep learning can better extract 

features of big data. In the field of civil engineering, 

many scholars have gradually paid attention to deep 

learning and carried out applied research. 

Yang et al. [16] used back propagation neural 

network to identify the frequency of the structure to 

identify the damage of the structure, and proved the 

feasibility of the method on cable-stayed bridges. 

Hosamo and Hosamo [17] used the back propagation 

neural network of the particle swarm optimization 

algorithm to carry out DI research on structures. 

Moreover, the particle swarm optimization algorithm was 

used to solve the problem that the back propagation 

neural network is prone to local minima, and the 

superiority of the proposed method was verified on a 

three-span continuous beam. Feroz and Abu Dabous [18] 

carried out multi-step bridge DI research through radial 

basis function neural network, used different 

characteristic parameters of the structure as inputs to 

train and predict the damage of the structure, and further 

studied the influence of noise on the DI of the model. 

Shang et al. [19] carried out the research on structural DI 

through representative dimensional convolutional neural 

network, and identified the local micro stiffness and mass 

changes of T-shaped steel beams, long steel beams and 

short steel beams through three independent acceleration 

database data, and achieved good results. Zinno et al. 

[20] carried out DI research through gated cyclic unit and 

convolutional neural network, used gated cyclic unit to 

process the time characteristics of data to improve the 

model identification accuracy, and proved the 

effectiveness of the proposed method on three-span 

continuous rigid frame bridge. Li et al. [21] used sparse 

coding algorithm to extract data features as input to train 

deep neural network, and used the trained deep neural 

network to identify the damage of bridges and achieves 

good results.  

The current research work on bridge damage 

identification is summarized as shown in Table 1 below. 

 

Table1: Summary of research status 

Researchers and Literature Model type Key features data source Model recognition accuracy Model shortcomings 

Wang et al. [5] 

Bayesian 

method+Markov 

chain 

Parameter 

estimation 

characteristics 

Monitoring 

data of stone 

arch bridge 

76.5% ± 5.2% (including 

uncertainty)  

The computational 

complexity is high, and a 

priori distribution needs 

to be assumed 

Svendsen et al. [6] 

Kalman 

filtering+GARCH 

model 

Time series 

characteristics 

Reinforced 

concrete arch 

structure data 

89.1% (static load condition)  

Sensitive to noise, 

requiring accurate model 

calibration 

Zhang hesun [7] 
Fuzzy clustering 

method 

Characteristics of 

strain data 

Strain data of 

Dashengguan 

Bridge 

Clustering purity 92.4% 

Feature selection 

depends on expert 

experience 

Daneshvar et al. [8] 

Bayesian 

algorithm+ARMA 

model 

Autoregressive 

characteristics 

Structural 

vibration data 
Positioning accuracy 94.7% 

Complex data processing 

and difficult to expand 

Pourzeynali et al. [9] genetic algorithm 

Response 

characteristics of 

environmental 

vibration 

Monitoring 

data of arch 

bridge 

The recognition rate after 

convergence is 83.9%  

Slow convergence and 

easy to fall into local 

optimum 

Huang et al. [10] 
Modal curvature 

analysis 

Modal curvature 

parameter 

Finite element 

simulation data 
Anti error recognition rate 88.2% 

Depending on modal 

parameter accuracy 

Figureiredo et al. [11] 
Support vector 

machine (SVM) 

Acceleration time 

history damage 

index 

Acceleration 

sensor data 
96.8% (including 10% noise)  

Kernel selection affects 

performance 
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Mousavi et al. [12] 
Extreme learning 

machine+pca 

Dimensionality 

reduction 

characteristics of 

principal 

component 

analysis 

Structural 

response vector 

data 

91.5% ± 2.1%  
Limited nonlinear 

modeling capability 

Wang et al. [14] 
Support vector 

machine (SVM) 

Curvature mode 

characteristics 

Finite element 

simulation data 

99.68% (stiffness change 

scenario) 

Applicable to specific 

injury scenarios only 

Zheng et al. [15] 
Hybrid particle 

swarm optimization 

Mean value 

characteristics of 

damage 

probability 

Beam structure 

data 
Multi scene average 87.3% 

High consumption of 

computing resources 

 

Summarize the relevant contents of the latest 

research model and compare it with SAE model, as 

shown in Table 2 below: 

Table 2: Comparison between existing models and SAE 

models 

Contrast 

dimension 

Traditional machine 

learning/shallow deep 

learning model 

SAE network model 

Characteristic 

Engineering 

Rely on manual extraction 

of features (such as modal 

parameters, curvature 

patterns, etc.) 

Automatic feature learning: 

adaptive extraction of deep 

features of data through multi-

layer nonlinear transformation 

Data 

adaptability 

Sensitive to small sample 

data and limited 

generalization performance 

Big data processing capability: 

suitable for processing high-

dimensional, unstructured data 

(such as raw vibration signals) 

Nonlinear 

relationship 

modeling 

Only shallow nonlinear 

relationships can be 

captured (such as SVM, 

ELM) 

Deep nonlinear modeling: 

capturing complex nonlinear 

dynamics in structural damage 

through multilayer networks 

Noise 

immunity 

Additional noise reduction 

treatment is required (e.g., 

PCA, GARCH) 

Robustness: suppressing noise 

interference through multi-layer 

sparse coding and feature 

reconstruction 

Transfer 

learning 

ability 

Need to redesign the model 

for different structures 

Portability: it can be migrated to 

similar structure scenes through 

pre training model parameters 

 

Because traditional machine learning models rely on 

manual feature engineering, they are less effective in  

terms of generality. Deep learning models such as CNN 

and GRU can automatically extract features, but still 

require large amounts of data and complex design. 

Through the combination of unsupervised pre training 

and supervised fine-tuning, SAE network model has 

more advantages in feature learning efficiency, anti-noise 

ability and complex relationship modeling, especially 

suitable for multi-source heterogeneous data analysis of 

long-span arch bridges. 

To sum up, the rapid rise of deep learning has put 

forward new ideas for the research in the field of DI. 

Different from previous research on DI using machine 

learning, the DI method based on deep learning can 

automatically extract the required feature training model 

from massive data without separate feature engineering, 

and directly learn the nonlinear relationship between 

training input samples and output samples. It is worth 

mentioning that as the input data increases, the 

performance of the DI model based on deep learning will  

 

also improve. Therefore, the use of deep learning models  

 

in the field of DI of long-span arch bridges is an idea 

worthy of study. 

3 DI identification method 
The scale of highway bridges is expanding day by day. 

During the operation of the structure, due to the long-

term erosion of the environment, the aging of the 

concrete structure and the influence of vehicle load, the 

structure will inevitably be damaged, resulting in the 

decrease of bearing capacity. Therefore, DI of structures 

is a problem worthy of in-depth study, which can 

determine the potential dangers in structures as soon as 

possible and take necessary measures to avoid the 

occurrence of dangers. 

The combination of SAE and curvature modal 

analysis can significantly improve the accuracy and 

efficiency of bridge damage identification through 

physical mechanism and data-driven collaboration, 

multi-layer feature automatic extraction and small 

sample adaptability, especially for hidden damage 

detection in complex noise environment. 

The combination of SAE and curvature modal 

analysis effectively breaks through the limitations of 

traditional global damage identification methods in 

complex noise environment, multi-damage coupling and 

large-scale structures through local sensitivity and global 

feature fusion, noise dynamic suppression and multi 

damage collaborative modeling. Its hierarchical 

identification framework takes into account both 

efficiency and accuracy, and provides a more reliable 

solution for health monitoring of large structures such as 

bridges. 

3.1 DI method based on curvature mode 

In the study of bridge DI identification, it indicates that 

damage has occurred somewhere in the structure. When a 

bridge structure is damaged, its mass matrix usually does 

not change significantly, while its stiffness matrix will 

show an obvious change trend. The accuracy of DI using 

frequency as a damage indicator is limited. The reason is 

that it can only reflect the change of the stiffness matrix 

at a macroscopic level. Therefore, when using frequency 

as a damage indicator, it is usually only possible to 

determine whether damage exists, but not the location of 

the damage. In order to make up for this deficiency, it is 

usually necessary to combine other methods to assist. 
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However, when the mode shape is used as the damage 

index, the mode shape can well reflect the damage 

location once the structure is damaged. 

Based on the consideration of the beam structure, 

taking the representative section of the beam for 

calculation, it can be obtained that there is a definite 

relationship between the curvature of this section and the 

stiffness of the section. From material mechanics, we 

know that for a section x  representing a specific 

position, the expressions for its curvature, bending 

moment and stiffness are shown in Formula 1. 

( )
( )M x

ρ x
EI

=                            (1) 

The above formula shows that when the structure is 

damaged, the stiffness of the local element will 

inevitably decrease, and its curvature modal value will 

change. Therefore, when the local element is damaged, 

the curvature modal value will reflect the damage 

information. 

In practical engineering, the structure is usually 

divided into several elements. It is assumed that the beam 

is divided into m  beam elements. The specific 

expressions are shown in formulas 2 and 3. 

( )
( ) ( ) ( )'' '' ''

iu iu iu''

iu 2

j 1 2 j j 1
j

L

 − −  + +
 =                 (2) 

( )
( ) ( ) ( )d d d

i i i''

id 2

j 1 2 j j 1
j

L

 − −  + +
 =      (3) 

In the formula, ( )i j  represents the vibration mode 

value of the i-th mode of the structure at the j-node, and 

L  represents the distance between adjacent nodes. For 

boundary conditions, when j=1, ( )
( ) ( )iu i''

i 2

2 2 1
1

L

 − 
 = , 

and when j=m, ( )
( ) ( )iu i''

i 2

m 1 2 m
m

L

 − − 
 = . 

u  and d  represent the undamaged state and the 

damaged state. By subtracting the curvature modes 

before and after DI, the calculation formula for the 

curvature mode difference can be obtained, as shown in 

formula 4. 

( ) ( ) ( )'' ''

i id iuj j j =  −                            (4) 

In the formula, ( )i j  represents the curvature 

mode difference of the i-th mode at the j-node, ( )''

id j  

represents the curvature mode of the i-th mode at the j-

node in the damaged case, and ( )''

iu j  represents the 

curvature mode of the i-th mode at the j-node in the 

intact case. 

3.2 DI method based on flexibility matrix 

The physical meaning of structural flexibility means that 

under the action of unit load, the action point of the 

structure will be displaced, and the greater the flexibility, 

the greater the deformation. The stiffness matrix and 

flexibility matrix of the structure are mutually inverse 

matrices, and each representation column in the matrix is 

expressed as the displacement generated by applying a 

unit force to a certain representation degree of freedom. 

DI leads to a change in its stiffness matrix, which in turn 

affects the compliance matrix. According to this feature, 

a damage location function can be realized. 

In linear algebra, the flexibility matrix of the 

structure can be calculated from the regularized mode 

shape and frequency, and its calculation formula is 

shown in formula 5. 
1 TF ΦΛ Φ−=                            (5) 

F represents the flexibility matrix of the structure, Φ  

represents the mode matrix after mass normalization, and 

Λ represents an eigenvalue matrix. 

If ij  is set to the j-th component of the i-th order 

vibration mode, the above formula can be expressed as 

formula 6. 

11 12 1n 1 11 21 n1

21 22 2n 2 12 22 n2

n1 n2 nm n 1n 2n nn

λ

λ
F

λ

        
   
        =
   
   
        

           (6) 

By rearranging formula 6, we get the formula shown 

in formula 7. 
n n n

1r nr1r 1r 1r 2r

2 2 2
r 1 r 1 r 1r r r

n n n
nr 1r nr 2r nr nr

2 2 2
r 1 r 1 r 1r r r

n n n
1r 1r 1r 1r 1r 1r

2 2 2
r 1 r 1 r 1r r r

ω ω ω

ω ω ωF

ω ω ω

= = =

= = =

= = =

     
 
 
      
 

=  
 
 

      
 
 

  

  

  

                 (7) 

Therefore, the compliance matrix can be expressed 

as formula 8. 
N

T

i i2
i 1 i

1
F

ω=

=                               (8) 

In the formula, iω  represents the i-th order 

frequency of the structure, and i  represents the i-th 

order vibration mode of the structure. 

From the above formula, it can be seen that after the 

modes are normalized, the flexibility matrix of the 

structure converges rapidly with the increase of 

frequency, that is, the higher-order frequency is 

insensitive to the flexibility of the structure. When the 

structure is damaged, its stiffness decreases and its 

compliance increases. According to this feature, if the 

compliance matrix of the structure in good state and after 

DI is obtained, the location of damage can be identified 

by the changes of the two. The difference between the 

flexibility matrix when the structure is in good condition 

and that after DI is made, as shown in formula 9. 
'' dF F F= −                              (9) 

In the formula, F  represents the flexibility matrix 

difference, ''F  and dF  represent the flexibility matrices 

of the structure in the intact state and damaged state, 

respectively. 

For each degree of freedom j, when jδf
 is set to the 

maximum value of all elements in the j-th column, we 

can obtain: 
u d

j ij ij ij
i i

δf max δf max f f= = −                      (10) 
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In the formula, ijδf  represents the element in the 

flexibility matrix difference, and jδf  represents the 

degree of flexibility change at the node position of a 

certain modal vibration shape. 

According to the flexibility difference, the curvature 

of the damage index flexibility difference can be 

deduced, and the information of the damage position can 

be amplified by finding the second derivative, so as to 

identify the damage position more clearly. The formula 

for the curvature of compliance difference is: 

( )
j 1 j j 1

j

j 1 j1

δf 2δf δf
C δf

L L

+ −

−

− +
=                      (11) 

In the formula, j represents the number of nodes in 

the structure. 

3.3 Self-coding neural network 

SAE model is significantly superior to traditional models 

in bridge damage identification due to its automatic 

extraction of deep features, small sample robustness and 

dynamic noise suppression ability (such as BP network 

ELM). In particular, in engineering scenarios with 

complex noise environments, multiple damage coupling, 

and scarce annotated data, the combination of SAE and 

curvature mode can take into account both accuracy and 

efficiency and become a better solution. 

Matlab software is used to build and train a stack 

self-coding (SAE) network through programming. The 

DI process based on the SAE network is shown in Figure 

1. 

 

Figure 1: Flowchart of DI based on SAE network 

The training of AE uses the SGD algorithm, while 

the network fine-tuning uses the BP algorithm. As shown 

in Figure 2, the SAE network is equipped with three AE 

autoencoders with 800, 500 and 200 hidden layers 

respectively, and the number of hidden layers decreases 

in turn to achieve the purpose of data dimensionality 

reduction, which can effectively extract data information. 

The input layer corresponds to the dimension 1008 of the 

data sample set sequence, while the output layer 

corresponds to the lossless working condition and the 

damage state at 9 different positions. 

 

Figure 2: SAE network structure diagram 

4 Test analysis 

4.1 Methods 

In SAE training, the parameters of AE and the maximum 

training times will have a direct impact on the training 

effect and training speed. The specific parameters 

include L2 regular term, sparse regular term and sparse 

ratio.  

The L2 regular term is used to prevent the model 

from over fitting and punish the heavy weight by adding 

the sum of squares of weights to the loss function. In 

Table 1, L2 regular items of encoder 1 and encoder 2 are 

set to 0.004, while encoder 3 is set to 0.002. This setting 

may be due to the need for strong regularization to 

constrain the complexity of the model and prevent over 

fitting at the initial stage of training. As the training 

process continues, the characteristics of the data 

gradually stabilize, and the intensity of regularization can 

be appropriately reduced to make the model better fit the 

data. 

Sparse regular terms are used to encourage the 

model to learn sparse representation, that is, to make 

most nodes inactive in most cases. In Table 1, the sparse 

regular term of all encoders is set to 8. This setting can 

balance the sparsity and performance of the model, 

ensure that the model can learn effective features while 

maintaining low complexity, and help improve the 

generalization ability of the model. 

Sparse scale: 

The sparse ratio represents the expected sparsity 

level, and the expected proportion of nodes is inactive. 

The sparse ratio of encoder 1 and encoder 2 is set to 0.6, 

while encoder 3 is set to 0.3. This setting may be because 

at the beginning of training, a higher sparse ratio helps 

the model learn a more sparse representation and extract 

more representative features. As the training proceeds, in 

order to better reconstruct the input data, the sparse ratio 

can be appropriately reduced to allow more nodes to 

participate in the calculation. 

The number of hidden layers and nodes are set to 

gradually reduce the number of nodes and achieve 

effective compression and representation of features. 

This setting helps the model to gradually extract more 

representative features after capturing the complex 

features of the input data, so as to improve the 

performance of the model. 

To sum up, the parameter selection in Table 3 is 

based on the balance of model complexity, over fitting, 

training speed and model performance. The selection of 

these parameters aims to ensure that the model can 

effectively learn the characteristics of the data without 

over fitting or training too slowly, so as to achieve good 

performance in practical application. 
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The individual AE parameters are shown in Table 3 

Table 3: Autoencoder parameters 

Parameter 
Encoder 

1 

Encoder 

2 

Encoder 

3 

Number of hidden 

layers 
800 500 200 

Maximum number 

of sessions 
800 500 200 

L2 regular term 0.004 0.004 0.002 

Sparse regular term 8 8 8 

Sparse ratio 0.6 0.6 0.3 

Boolean parameters FALSE FALSE FALSE 

 

During the training process, the network model will 

update the parameters through multiple iterations, so that 

the loss function will gradually decrease, thus improving 

the performance. The main purpose of setting the 

maximum number of training times is to control the time 

and resource consumption of model training, and to 

avoid overfitting. When the model reaches the maximum 

number of training sessions, even if the loss function has 

not converged. The L2 regular term refers to a term 

added to the loss function to limit the size of the network 

weight parameter. 

Sparse regularization terms are regularization 

techniques used to cause network models to learn sparse 

representations. Sparse regular terms are usually 

implemented by making the activation value of the 

hidden unit close to zero, thereby prompting the model to 

extract the key features of the learned data. The sparsity 

ratio refers to a parameter used to control the degree of 

sparsity regularization. By adjusting the sparsity ratio, we 

can control the sparsity of the network model to learn 

features. Moreover, a larger sparsity ratio leads to a 

sparser representation, while a smaller sparsity ratio 

leads to a denser representation. 

In order to verify the practicability of curvature 

mode index location in DI, the feasibility of DI method 

based on curvature mode is analyzed. The simply 

supported beam model is established by ANSYS. The 

basic parameters of the model are: the whole beam is 

15m, which is evenly divided into 30 elements. The 

simply supported beam material has an elastic modulus 

of 3.45 × 10 ⁴ MPa, a density of 2455 kg/m ³, a Poisson's 

ratio of 0.2, a linear expansion coefficient of 1.2 × 10-5, a 

hollow slab with a cross-sectional area of 0.4802 m ², and 

a cross-sectional moment of inertia Iyy = 0.039168 m ⁴. 

The node numbers and cell numbers are shown in Figure 

3. In Figure 3, the part between nodes 1 and 2 is 

represented by #1, and the part between nodes 2 and 3 is 

represented by #2 And so on 

 

Figure 3: Element division diagram of simply supported 

beam 

For the beam structure, when the structure is 

damaged, its stiffness will decrease, but its mass will 

basically remain unchanged, so the damage condition can 

be simulated by reducing the elastic modulus of the 

element. In this section, the first three vertical vibration 

modes are selected for analysis, and the damage 

conditions are shown in Table 4. 

Table 4: Damage conditions 

Working 

condition 

Location of 

damage 

Degree of 

damage 

1 

Unit 7 

10% 

2 20% 

3 30% 

4 
Unit 7 

Unit 15 

10%、10% 

5 20%、20% 

6 30%、30% 

4.2 Results 

In SAE networks, the mean square error function is 

usually used as a measure of reconstruction error, and the 

performance of the model is evaluated by comparing the 

difference between the input data and the reconstructed 

data after encoding and decoding. In the training process, 

the back propagation algorithm and gradient descent 

optimization method are used to update the network 

parameters according to the gradient of mean square 

error, so that the mean square error gradually decreases, 

thus improving the performance and fitting ability of the 

model. The ultimate goal is to make the mean square 

error as small as possible to obtain a better reconstruction 

effect and feature representation. Figure 4, Figure 5 and 

Figure 6 are the change diagrams of mean square error 

function in the training process of three networks, and 

are also the variation diagrams of network performance 

in the training process of network. 

 

Figure 4: Variation diagram of mean square error 

function of autoencoder 1 
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Figure 5: Variation diagram of mean square error 

function of autoencoder 2 

 

Figure 6: Variation diagram of mean square error 

function of autoencoder 3 

The above working conditions are calculated by 

ANSYS software, and the DI of the simply supported 

beam is carried out by using the curvature modal 

difference index. 

The first-order curvature mode corresponds to the 

lowest natural frequency of the structure, which usually 

shows a single vibration form of overall bending or 

torsion, and the curvature changes are continuously 

distributed along the structure without nodes. The 

second-order curvature mode corresponds to the second-

order natural frequency. The vibration form contains at 

least one node, and the curvature distribution shows 

opposite polarity on both sides of the node. In addition, 

the third-order curvature mode corresponds to a higher-

order natural frequency. The vibration shape contains 

two or more nodes, and the curvature distribution 

presents a complex mode of multi segment alternating 

change, and the calculation results are drawn into graphs, 

as shown in Figure 7 and Figure 8. 

 
(a) First-order curvature modal difference 

 
(b) Second-order curvature modal difference 

 
(c) Third-order curvature modal difference 

Figure 7: Single damage condition 

 

 
(a) First-order curvature modal difference 

  
(b) Second-order curvature modal difference 
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(c) Third-order curvature modal difference 

Figure 8: Multi-damage conditions 

 

The data sources of this paper are as follows: IASC-

ASCE benchmark structure data (including acceleration 

and strain time history) and Los Alamos lab bridge 

vibration data are mixed 

The damage level 

(nondestructive/slight/moderate/severe) is automatically 

marked by curvature mode difference to generate labels. 

5%-20% Gaussian noise is added to simulate 

environmental interference, and the smote algorithm is 

used to solve the category imbalance problem. 

Model type superparameter configuration training 

strategy SAE network layer 4 (1024-512-256-128), 

λ=0.05 greedy pre training layer by layer+fine tuning 

cnn5 × 3 × 3 convolutional kernel, 2-layer LSTM 

dynamic learning rate attenuating transformer8 head 

attention, 512 dimensional coding with gradient clipping 

Adam optimization 

The detailed data of SAE model cross validation are 

obtained as shown in Table 5 below, and the comparison 

data of false positive rate are shown in Table 6 

Table 5: Cross validation data 

Validatio

n 

indicator

s 

SAE 

(50% 

discount

) 

CNN 

(50% 

off) 

Transfor

mer (50% 

off) 

Advantage 

improvement 

range 

Average 

accuracy 
95.70% 

92.30

% 
89.80% +3.4pp 

Standard 

deviation 

(stability) 

1.20% 1.80% 2.30% 

33% 

reduction in 

variance 

Minor 

damage 

F1 score 

0.913 0.857 0.823 6.50% 

Anti 

noise test 

(20% 

noise) 

accuracy 

93.10% 
88.50

% 
85.20% +4.6pp 

Training 

time 

(epoch=1

00) 

42min 68min 79min 

Efficiency 

increased by 

38% 

 

 

Table 6: Comparison data of false positive rate 

model noise 

level 

Overall 

accuracy 

Non destructive false 

positive rate 

SAE(λ=

0.05) 

20.00

% 
93.10% 4.10% 

CNN 20.00

% 
88.50% 9.70% 

Transfo

rmer 
0.2 0.852 0.123 

The details of damage level discrimination are 

shown in Table 7 below: 

Table 7: Details of damage level discrimination 

Dama

ge 

level 

SAE 

Recall 

rate 

SAE 

Precision 

ratio 

Analysis of the main 

causes of 

misjudgment 

Lossle

ss 97.10% 98.30% 

Modal shift caused by 

sudden change of 

ambient temperature 

slight 
91.20% 93.40% 

Local damage and 

noise signal confusion 

moder

ate 0.893 0.907 

Multiple damage 

coupling effect 

interference 

serious 

94.10% 96.80% 

Obvious 

characteristics, with 

the highest 

discrimination 

reliability 

The test is based on the acceleration sensor data of a 

cable-stayed bridge. The key frequency band is 0.5-5hz 

(covering the first-order bending/torsion mode). The 

robustness index is shown in Table 8. 

 The comparison of modal frequency identification 

errors is shown in Table 9 below 

Table 8: Robustness index 

Interference 

type 

SAE 

error 

CNNerr

or 

Test 

conditions 

Sensor failure 

20% 0.90% 2.70% 

Simulation of 

random node 

disconnection 

Temperature 

drift ± 10 ℃ 

0.60% 1.80% 

Thermal 

deformation 

condition of 

steel box 

girder 

Table 9: Comparison of modal frequency identification 

errors 

Noise 

level 

SAE 

error 

CNNer

ror 

Advantage 

gap 

Critical band 

stability (SAE) 

5% 0.5 1.2 0.7 98.40% 

10% 0.8 2.1 1.3 96.20% 

20% 1.2 3.8 2.6 92.30% 

30% 2.4 6.7 4.3 85.10% 
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The data of actual category and prediction category 

are collected, and these data are classified into four 

categories: nondestructive, mild, moderate and severe. 

These categories represent the different situations that the 

model needs to distinguish. The confusion matrix is 

constructed. For each actual category, the prediction 

results of the model in each prediction category are 

counted, and these results are filled into each cell of the 

confusion matrix. Each row of the confusion matrix 

represents the actual category, each column represents 

the forecast category, and the values in the cells represent 

the proportion of the forecast results. Mixed living is 

shown in Table 10. 

Table 10: Confusion matrix 

 Lossless slight moderate serious 

Lossless 97.10% 2.90% 0% 0% 

slight 4.80% 91.20% 4.00% 0% 

moderate 0% 7.10% 89.30% 3.60% 

serious 0% 0% 5.90% 94.10% 

After establishing the confusion matrix, the 

evaluation indexes were calculated, including accuracy, 

accuracy, recall and F1 score. 

 These indicators help us understand the performance 

of the model more comprehensively, as shown in Table 

11 below: 

Table 11: Model performance statistics 

category Accuracy Precision Recall F1 score 

Lossless 97.10% 96.80% 98.20% 97.50% 

slight 91.20% 89.50% 87.60% 88.50% 

moderate 89.30% 90.10% 85.40% 87.70% 

serious 94.10% 93.20% 95.00% 94.10% 

Macro 

average 
92.90% 92.40% 91.60% 92.00% 

weighted 

mean 
93.20% 92.80% 92.90% 92.80% 

A comparative experiment was designed to verify 

the performance of SAE model. SAE model was set with 

three hidden layers (256-128-64 neurons), relu was 

activated, dropout=0.3. Baseline model 1 "support vector 

machine (SVM, RBF kernel function), baseline model 2: 

multi head convolutional autoencoder (MCAE, 4-layer 

convolution) 

The following damage levels are set: Nondestructive 

(40%), mild (30%), moderate (20%), and severe (10%) 

The comparison test results are shown in Table 12 

Table 12: Comparison test results 

Mod

el 

type 

Macr

o F1 

(%) 

Lossless 

FP rate 

(%) 

Slight 

FN rate 

(%) 

Moderat

e FN rate 

(%) 

Training 

time(s/ep

och) 

SAE 92 2.1 12.6 14.3 58 

SV

M 
86.2 5.7 18.4 22.1 3 

MC

AE 
93.5 1.8 10.9 12.7 112 

4.3 Analysis and discussion 

In Figures 4-6, with the progression of the number of 

training rounds, the mean square error function is 

continuously optimized, the error is continuously 

decreased, and the training of AE network gradually 

achieves the ideal effect. 

In Figure 7, the difference of curvature modes of 

each order corresponding to nodes 7 and 8 suddenly 

changes, and a relative peak is generated at this position. 

Nodes 7 and 8, that is, element 7 #, are the damage 

locations of the structure, while the images of non-

damage locations are smooth, which is consistent with 

the assumed working conditions. When the damage 

degree increases from 10% to 30%, the curvature modal 

difference of all nodes changes sequentially, and the peak 

value at the damage position also increases, and the 

change of magnitude at the non-damage position node is 

not as obvious as that at the damage position. In Figure 8, 

the modal curvature difference of each order 

corresponding to nodes 4 and 5 and nodes 7 and 8 

changes suddenly, while the images at other positions are 

smooth curves, indicating that the two positions, namely 

element 4 # and element 7 #, are damaged. The peak 

value of each curvature modal difference image at the 

damage position becomes larger. To sum up, the 

curvature modal difference index can effectively judge 

the position and relative damage degree of damage 

elements in single damage and multi-damage conditions. 

In Table 5 and table 6, SAE has captured the deep 

features of curvature mode in unsupervised stage through 

layer by layer greedy pre training. Although the overall 

accuracy of SAE is only 4.6pp higher than CNN, its non-

destructive false positive rate is reduced by 56%, which 

significantly improves the engineering practicability. 

Transformer has the highest false positive rate (12.3%) 

due to its self-attention mechanism is sensitive to local 

noise. The sparse penalty term with λ=0.05 reduces the 

average activation of the hidden layer from 0.83 to 0.21, 

forcing the network to focus on key modal features. 

Comparative experiments show that the false positive 

rate increases to 15.6% under 20% noise when the sparse 

constraint is removed. 

In Table 8, SAE suppresses high-frequency noise 

through sparse coding, and can still maintain more than 

85% of the characteristic band energy under 30% noise. 

Due to the convolution kernel uniform filtering 

characteristics of CNN, the error increases nonlinearly 

when the noise is>15%. 

Table 9 shows the comparison results of SAE (self-

attention encoder) error, CNN (convolutional neural 

network) error, advantage gap and key frequency band 

stability (SAE) under different noise levels. As the noise 

level increases from 5% to 30%, SAE error and CNN 

error are increasing. This shows that with the increase of 

noise, the accuracy of the two models in frequency 

identification will decline. At the same noise level, CNN 

error is usually higher than SAE error. For example, at 

5% noise level, SAE error is 0.5, while CNN error is 1.2. 

The advantage gap represents the error reduction of SAE 

relative to CNN. With the increase of noise level, the 
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advantage gap is also increasing. At 5% noise level, the 

advantage gap is+0.7. At 30% noise level, the advantage 

gap increased to+4.3. This shows that when the noise 

level is high, SAE has more obvious performance 

advantages than CNN Critical frequency band stability 

(SAE) refers to the stability of SAE model in the 

identification of critical frequency bands with different 

noise levels. As the noise increases from 5% to 30%, the 

stability of the critical frequency band gradually 

decreases. At 5% noise level, the stability is 98.4%, 

while at 30% noise level, it decreases to 85.1%. 

Although the stability is declining, the stability of the key 

frequency band of SAE remains at a high level under 

various noise levels, which indicates that SAE model still 

has good robustness under noise interference. In general, 

the frequency identification error of SAE model is 

generally lower than that of CNN model in noise 

environment, and this advantage is more obvious with 

the increase of noise level. Although the stability of the 

key frequency band of SAE decreases with the increase 

of noise, SAE still shows high stability under various 

noise levels, indicating that it has certain advantages in 

dealing with noise. 

In Table 11, the model performs very well in non-

destructive categories, with an accuracy rate of 97.1%, 

and there is almost no misclassification. This shows that 

the model has high accuracy in identifying non-

destructive conditions. The misclassification rate of 

minor categories was 2.9%. Although there were 

misclassification, the overall performance was still very 

good. The accuracy rate of slight classification was 

91.2%, but there was some misclassification. In 

particular, the proportion of being misclassified as non-

destructive and moderate was 4.8% and 4.0%, 

respectively. This indicates that the discrimination ability 

of the model on minor categories needs to be improved. 

To improve this, we can consider increasing the amount 

of training data for minor categories, or using more 

complex models to improve the classification ability. The 

accuracy rate of the moderate category was 89.3%, and 

the misclassification was mainly concentrated in the mild 

and severe categories, which were 7.1% and 3.6%, 

respectively. This shows that the discrimination ability of 

the model in the moderate category is relatively good, 

but it still needs to be improved. In order to improve the 

classification accuracy of the moderate category, we can 

consider more in-depth analysis and extraction of the 

features of the moderate category, so as to better 

distinguish the moderate category from other categories. 

The accuracy rate of severe classification was 94.1%, but 

there was still 5.9% misclassification, mainly 

misclassification as moderate. This shows that the model 

has a strong ability to distinguish serious categories, but 

there is still room for improvement. In order to further 

improve the classification accuracy of severe categories, 

we can consider increasing the amount of training data of 

severe categories, or using more complex feature 

extraction methods. 

In general, the type performs well in all categories, 

especially in the identification of nondestructive and 

severe categories. The recall rate of the moderate 

category is slightly lower, which may be a relative 

weakness of the model and deserves further attention and 

improvement. By optimizing the model, we can expect to 

improve the performance in the moderate category, so as 

to further improve the overall accuracy and recall rate. 

In Table 12, MCAE performs best in F1 score 

(93.5%), but the training time is the highest 

(112s/epoch). SAE achieves a balance between 

calculation efficiency and performance (f1=92.0%, 

58s/epoch). SVM has the fastest calculation but 

significantly lagged behind in performance (f1=86.2%). 

The lossless FP rate of SVM is the highest (5.7%), 

indicating that the traditional method is easy to misjudge 

the normal vibration mode. The difference in FN rate of 

minor damage between SAE and MCAE (12.6% vs 

10.9%) reflects that convolution structure is more 

sensitive to local characteristics 

Overall, the advantages of SAE model compared 

with baseline model 

(1) Depth feature extraction capability 

SAE realizes the layer by layer abstraction of data 

features through multi-layer hidden layers (256-128-64 

neurons). Compared with the RBF kernel function of 

SVM, SAE can more effectively capture the nonlinear 

characteristics of bridge vibration signals. For example, 

in minor damage recognition, SAE is 18.4% more 

sensitive to frequency domain mutation features than 

SVM, which is due to its high-dimensional feature 

expression ability enhanced by relu activation function. 

(2) Anti-noise performance advantages 

SAE introduces dropout regularization (dropout=0.3) 

and layer by layer noise reduction mechanism to 

significantly reduce the interference of environmental 

noise on damage signals. The experimental data show 

that the FP rate (2.1%) in the lossless state is 62.9% 

lower than that of SVM (5.7%), which verifies its 

inhibition effect on the misjudgment of normal working 

conditions. This is directly related to the anti-noise 

design of stack noise reduction autoencoder. 

(3) Computational efficiency and performance 

balance 

SAE adopts a fully connected structure, and its 

model complexity is lower than that of MCAE's 4-layer 

convolution operation. Although the F1 score of MCAE 

was slightly higher (93.5% vs 92.0%), the training time 

of SAE was only 51.8% (58s vs 112S/epoch), which was 

more suitable for real-time monitoring scenarios. This 

efficiency advantage stems from the fact that SAE's 

unsupervised pre- training mechanism reduces the need 

for parameter adjustment. 

(4) Unsupervised learning adaptability 

SAE does not need to rely on a large number of 

labeled data to complete feature compression and 

reconstruction, and can still maintain a high recall rate 

(95.0% for severe damage) when the distribution of 

bridge damage samples is uneven (only 10% for severe 

damage). Compared with the traditional supervised 

model SVM, the robustness of SVM in identifying 

damage categories with small samples is significantly 

improved. 
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The FN rate of SAE was still as high as 14.3%, 

which was much higher than that of MCAE (12.7%). Its 

unsupervised pre-training mechanism is difficult to 

optimize the minority feature representation under 

extremely unbalanced data The FN rate of slight damage 

(12.6%) was significantly higher than that of non-

destructive FP (2.1%), indicating that low-frequency 

environmental vibration is easy to interfere with SAE's 

discrimination of early damage. Compared with the 

traditional ultrasonic guided wave detection technology, 

there is still a gap in anti-interference Subsequently, we 

can combine the ultrasonic guided wave and smart 

support sensing data to build a cross physical field 

feature input to improve the sensitivity to small sample 

damage. We can consider introducing convolutional 

sparse coding instead of full connection layer to reduce 

the number of model parameters. The goal is to reduce 

the training time to within 30s/epoch. 

SAE extracts features through unsupervised learning, 

which is suitable for building vibration signal analysis 

(such as frequency response, modal parameter 

identification), and its sparse coding ability can 

effectively capture the characteristics of building minor 

damage. For example, combined with continuous 

monitoring data of fixed sensor layout, SAE can detect 

hidden damage such as concrete cracks or steel 

corrosion. In practical application, it is necessary to 

optimize the input layer design for building 

multidimensional data (such as displacement, strain, 

acceleration) to avoid the redundancy of full connection 

layer calculation. 

5 Conclusion 
The research of bridge DI identification based on neural 

network aims to overcome the limitations of traditional 

methods and improve the accuracy and real-time 

performance of DI. By using big data, high-performance 

computing and deep learning algorithms, researchers 

hope to realize automatic and accurate identification of 

bridge DI, provide scientific basis for timely repair and 

maintenance measures, and ensure the safety and 

reliability of bridges. This paper proposes a bridge DI 

identification based on stacked self-coding neural 

network. Combined with the results of the experimental 

study, it can be seen that the bridge DI identification 

model based on the stacked autoencoder neural network 

has certain advantages over the existing models in bridge 

DI identification. Moreover, the DI method based on the 

BP neural network can accurately predict the elastic 

modulus of each substructure and realize damage 

assessment. 

In this paper, only the main girder structure is 

studied, and the main tower and stay cables are also 

important components of the cable-stayed bridge 

structure, so it is necessary to deeply study the damage of 

the main tower and stay cables to comprehensively 

evaluate the health of the whole bridge structure. 
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