
Informatica 39 (2015) 169–176 169

Data Mining-Assisted Parameter Tuning of a Search Algorithm

Jurij Šilc
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
E-mail: jurij.silc@ijs.si

Katerina Taškova
Institute of Computer Science, Johannes Gutenberg University Mainz, Staudingerweg 9
55128 Mainz, Germany
E-mail: ktaskova@uni-mainz.de

Peter Korošec
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia, and
Faculty of Mathematics, Science and Information Technologies, University of Primorska
Glagoljaška 8, SI-6000 Koper, Slovenia
E-mail: peter.korosec@ijs.si

Keywords: data mining, differential ant-stigmergy algorithm, low-discrepancy sequences, meta-heuristic optimization,
parameter tuning

Received: December 1, 2014

The main purpose of this paper is to show a data mining-based approach to tackle the problem of tuning the
performance of a meta-heuristic search algorithm with respect to its parameters. The operational behavior
of typical meta-heuristic search algorithms is determined by a set of control parameters, which have to
be fine-tuned in order to obtain a best performance for a given problem. The principle challenge here is
how to provide meaningful settings for an algorithm, obtained as result of better insight in its behavior. In
this context, we discuss the idea of learning a model of an algorithm behavior by data mining analysis of
parameter tuning results. The study was conducted using the Differential Ant-Stigmergy Algorithm as an
example meta-heuristic search algorithm.

Povzetek: Osnovni namen članka je pokazati, kako se lahko z uporabo tehnik podatkovnega rudar-
jenja lotevamo problema uglaševanja sposobnosti metahevristčnega iskalnega algoritma z vidika njegovih
parametrov. Delovanje značilnega metahevrističnega iskalnega algoritma je določeno z naborom njegovih
krmilnih parametrov, ki morajo biti za dosego najboljših sposobnosti pri danem problemu dobro uglašeni.
Temeljni izziv je kako zagotoviti najboljšo nastavitev algoritma, ki bo rezultat vpogleda v njegovo vedenje.
V zvezi s tem razpravljamo o ideji učenja modela za obnašanje algoritma na osnovi analize podatkovnega
rudarjenja rezultatov uglaševanja njegovih parametrov. Študija je narejena z uporabo Diferencialnega al-
goritma s stigmergijo mravelj, kot primera metahevrističnega iskalnega algoritma.

1 Introduction

The research interest for meta-heuristic search algorithms
has been significantly growing in the last 25 years as a
result of their efficiency and effectiveness to solve large
and complex problems across different domains [2]. The
state-of-the-art nature-inspired meta-heuristic algorithms
for high-dimensional continuous optimization include also
algorithms inspired from the collective behavior of social
organisms [14].

One such algorithm, which we will address in this paper,
is the Differential Ant-Stigmergy Algorithm (DASA) ini-
tially proposed by Korošec [6], and further improved in [8].
DASA is inspired by the efficient self-organizing behav-
ior of ant colonies emerging from a pheromone-mediated
communication, known as stigmergy [3]. One of the first
stigmergy-based algorithms designed for continuous func-

tion optimization was Multilevel Ant Stigmargy Algorithm
[7].

Naturally, DASA can be classified within the Ant Colony
Optimization (ACO) framework. However, the use of a
continuous pheromone model in the form of Cauchy prob-
ability distribution with representation of the search space
in the form of the so-called differential graph makes DASA
dissimilar from the original ACO paradigm. The rationale
behind DASA is in memorizing (via the pheromone model
updates) the “move” in the search space that improves the
current best solution and using it in further search. As it
is the case with most of the meta-heuristic algorithms, the
operational behavior of DASA is determined by a set of
control parameters. In practice, these parameters have to
be fine-tuned in order to obtain best performance of the al-
gorithm. It can be quite inconvenient for the users as:

170 Informatica 39 (2015) 169–176 J. Šilc et al.

– they usually do not have insight into the behavior of
the algorithm, and

– even if a default setting exists, it may not be adequate
for a specific instance or type of a problem. Moreover,
parameter tuning is computationally expensive task.

The principle challenge here is how to provide meaning-
ful (default) settings for DASA, obtained as result of better
insight into the algorithm’s behavior. Furthermore, can we
find optimal regions in DASA parameter space by analyz-
ing the patterns in the algorithm’s behavior with respect to
the problem characteristics? Related to this, we discuss the
preliminary findings based on data mining analysis of pa-
rameter tuning results. More precisely, the parameter tun-
ing task is approached by two-step procedure that combines
a kind of experimental design with data mining analysis.

We use Sobol’ sequences [10] for even sampling of the
algorithm parameter space to generate a large and diverse
set of parameter settings. These are used as input to DASA
to be tuned on a given function optimization problem. The
performance of DASA on the given function optimization
problem, in terms of function error, is captured at different
time points for all sampled parameter settings. The data
collected in the first step, DASA performance with corre-
sponding parameter settings, is subject for intelligent data
analysis, i.e., multi-target regression with Predictive Clus-
tering Trees [1].

Parameter sampling combined with regression has been
already used by Stoean et al. [11] for tuning meta-
heuristics: Latin hypercubes parameter sampling is com-
bined with single-target regression with Support Vector
Machines. Our approach modifies the former by replacing
the Latin hypercube sampling by Sobol’ sequences, as the
former is best suited in the case when a single parameter
dominates the algorithm’s performance, while it should be
used with care if there are interactions among the sampled
parameters [9]. Moreover, we define the regression task as
multi-target regression, taking into account more than one
target (in this case the function error at few time points)
with the goal to find parameter settings for the given al-
gorithm that will not only solve the problem but will also
solve the optimization problem fastest.

The reminder of this paper is structured as follows. Sec-
tion 2 introduces the differential ant-stigmergy algorithm.
Then, Section 3 addresses the parameter tuning task and
Section 4 presents the experimental evaluation with the re-
sults. After that, Section 5 discusses the idea of post-hoc
analysis of parameter tuning by data mining. Finally, Sec-
tion 6 summarizes this study and outlines possible direc-
tions for further work.

2 The Differential Ant-Stigmergy
Algorithm

The version of DASA used in our experimental evaluation
is described in details by Korošec et al. [8] (see Figure 1).

DASA introduces the concept of variable offsets (re-
ferred as to parameter differences) for solving the continu-
ous optimization problems. By utilizing discretized offsets
of the real-valued problem parameters, the continuous op-
timization problem is transformed to a graph-search prob-
lem. More precisely, assuming a multidimensional param-
eter space with xi being the current solution for the i-th
parameter, we define new solutions x′i as follow:

x′i = xi + ωδi, (1)

where δi is called the parameter difference and is selected
from the following set:

∆i = ∆−i ∪ {0} ∪∆+
i , (2)

where

∆−i = {δ−i,k| δ
−
i,k = −bk+Li−1, k = 1, 2, . . . , di} (3)

and

∆+
i = {δ+i,k| δ

+
i,k = bk+Li−1, k = 1, 2, . . . , di}. (4)

Here,
di = Ui − Li + 1, (5)

Li = blogb(εi)c, (6)

Ui = blogb(max(xi)−min(xi))c, (7)

i = 1, 2, . . . , D, D is dimension of the problem, b is the
discretization base, ε is the maximal computer arithmetic’s
precision, and the weight ω = Random_Integer(1, b−
1) is added to enable a more flexible movement over the
search space.

In principle, DASA relies on two distinctive characteris-
tics, differential graph and continuous pheromone model.
Here, we will briefly discuss these two characteristics and
outline the main loop of the DASA search process.

First, DASA transforms theD-dimensional optimization
problem into a graph-search problem. The corresponding
differential graph is a directed acyclic graph obtained by
fine discretization of the continuous parameters’ offsets.
The graph has D layers with vertices, where each layer
corresponds to a single parameter. Each vertex corresponds
to a parameter offset value that defines a change from the
current parameter value to the parameter value in the next
search iteration. Furthermore, each vertex in a given layer
is connected with all vertices in the next layer. The set
of possible vertices for each parameter depends on the pa-
rameter’s range, the discretization base and the maximal
computer arithmetic’s precision, which defines the minimal
possible offset value. Ants use these parameters’ offsets to
navigate through the search space. At each search itera-
tion, a single ant positioned at a certain layer moves to a
specific vertex in the next layer, according to the amount
of pheromone deposited in the graph vertices belonging to
this layer.

Data Mining-Assisted Parameter Tuning of a Search Algorithm Informatica 39 (2015) 169–176 171

1: ~x tbest= Rnd_Solution()
2: y best= f (~x tbest)
3: y tbest= inf
4: G = Graph_Initialization(b, ~L, ~U, ~ǫ)
5: Pheromone_Initialization(G)
6: while terminating condition is not metdo
7: k = 0
8: for all m antsdo
9: repeat

10: ~pi = Find_Path(G) {path of thei-th ant}
11: k = k+ 1
12: if k > m2 then
13: ~x tbest= Rnd_Solution()
14: y best= f (~x tbest)
15: Pheromone_Initialization(G)
16: goto line 7 {a local optimum was found, so the search process is restarted}
17: end if
18: until (~pi = 0) {means of all parameters’ offsets are 0}
19: ω = Random_Integer(1, b− 1)
20: ~xi = ~x tbest+ ωδ(~p)
21: end for{ants created solutions}
22: y cbest= inf
23: for all m antsdo
24: y = f (~xi) {function evaluation}
25: if y < y cbestthen
26: y cbest= y
27: ~p cbest= ~pi

28: ~x cbest= ~xi

29: end if
30: end for {created solutions were evaluated}
31: if y cbest< y tbestthen
32: y tbest= y cbest

33: ~x tbest= ~x cbest

34: s= Update_Scales(sglobal, slocal)
35: Pheromone_Redistribution(~pcbest, s)
36: if y tbest< y bestthen
37: y best= y tbest

38: ~x best= ~x tbest

39: end if
40: else
41: Update_Scale(sglobal)
42: Pheromone_Evaporation(G, ρ)
43: end if
44: end while

6

Figure 1: The Differential Ant-Stigmergy Algorithm

172 Informatica 39 (2015) 169–176 J. Šilc et al.

Second, DASA performs pheromone-mediated search
that involves best-solution-dependent pheromone distribu-
tion. The amount of pheromone is distributed over the ver-
tices according to the Cauchy Probability Density Function
(CPDF) [9]. DASA maintains a separate CPDF for each
parameter. Initially, all CPDFs are identically defined by
a location offset set to zero and a scaling factor set to one.
As the search process progresses, the shape of the CPDFs
changes: CPDFs shrink and stretch as the scaling factor de-
creases and increases, respectively, while the location off-
sets move towards the offsets associated with the better so-
lutions. The search strategy is guided by three user-defined
real positive factors: the global scale increase factor, s+,
the global scale decrease factor, s−, and the pheromone
evaporation factor, ρ. In general, these three factors de-
fine the balance between exploration and exploitation in the
search space. They are used to calculate the values of the
scaling factor and consequently influence the dispersion of
the pheromone and the moves of the ants.

Finally, the main loop of DASA consists of an iterative
improvement of a temporary-best solution, performed by
searching appropriates paths in the differential graph. The
search is carried out by m ants, all of which move simul-
taneously from a starting vertex to the ending vertex at the
last level, resulting in m constructed paths. Based on the
found paths, DASA generates and evaluates m new can-
didate solutions. The best among the m evaluated solu-
tions is preserved and compared to the temporary-best so-
lution. If it is better than the temporary-best solution, the
latter is replaced, while the pheromone amount is redis-
tributed along the path corresponding to the path of the pre-
served solution and the scale factor is accordingly modified
to improve the convergence. If there is no improvement
over the temporary-best solution, then the pheromone dis-
tributions stay centered along the path corresponding to the
temporary-best solution, while their shape shrinks in or-
der to enhance the exploitation of the search space. If for
some fixed number of tries all the ants only find paths com-
posed of zero-valued offsets, the search process is restarted
by randomly selecting a new temporary-best solution and
re-initializing the pheromone distributions.

3 Parameter Tuning

To obtain the best possible performance on a given prob-
lem, one should consider a task specific tuning of the pa-
rameter setting for the optimization algorithm used. Deter-
mining the optimal parameters is an optimization task in it-
self, which is extremely computationally expensive. There
are two common approaches for choosing parameters val-
ues: parameter tuning and parameter control. The first ap-
proach selects the parameter settings before running the op-
timization algorithm (and they remain fixed while perform-
ing the optimization). The second approach optimizes the
algorithm’s parameters along with the problem’s parame-
ters. Here, we will focus on the first approach, parameter

tuning.
A detailed discussion and survey of parameter tuning

methods is given by Eiben and Smit [4]. According to
this survey, one way to approach parameter tuning is by
sampling methods. Sampling methods reduce the search
effort by decreasing the number of investigated parameter
settings as compared to the full factorial design: the ba-
sic full factorial design investigates 2k parameter settings,
subject to k parameters, each of which have 2 possible val-
ues; in the more general case, parameters can have arbitrary
number of values; moreover, an increase in the number of
investigated parameters means an exponential increase in
the number of parameter settings to be tested. Two widely
used sampling methods are Latin-squares [9] and Taguchi
orthogonal arrays [12]. However, these are not the most ro-
bust sampling techniques, e.g., Latin-squares or Latin hy-
percube sampling is good in the case where one of the pa-
rameters dominates the algorithm’s performance, while it
should be used with care if there are interactions among
the parameters.

Ultimately, we would like to find a sampling schema that
will be able to detect the interactions among the parame-
ters, will be independent from user-specified information
regarding the particular parameter values to be considered
(typical for factorial design), and will deliver small but rep-
resentative sample of the parameter search space. The first
two requirements are satisfied by the pure random sam-
pling, but the last is not, as random sampling does not guar-
antee that the sampled values are evenly spread across the
entire domain. The so-called low-discrepancy sequences
were specially designed to fulfill all three requirements.
Therefore, Sobol’ sequences, a representative variation of
low-discrepancy sequences introduced by Sobol’ [10], was
considered for sampling the parameter space of DASA in
this study.

Sobol’ sequences, sampled from a D-dimensional unit
search space, are quasi-random sequences of D-tuples that
are more uniformly distributed than uncorrelated random
sequences of D-tuples. These sequences are neither ran-
dom nor pseudo-random: they are cleverly generated not
to be serially uncorrelated by taking into account which tu-
ples in the search space have already been sampled. For a
detailed explanation and overview of the schemas for gen-
erating Sobol’ sequences, we refer to [9]. The particular
implementation of Sobol’ sampling used in our analysis is
based on the Gray code order [5].

4 Experimental Evaluation

Since data mining methods can only discover patterns actu-
ally present in the data, the dataset subject to analysis must
be large enough and informative enough to contain these
patterns, i.e., to describe different types of algorithm’s be-
havior. For this reason, we decided to use a simple test
function, which matched this requirement and was used for
building an example case model.

Data Mining-Assisted Parameter Tuning of a Search Algorithm Informatica 39 (2015) 169–176 173

Table 1: Parameter settings for DASA* and DASA◦

Algorithm DASA◦ DASA*
Parameter D = 20 D = 40 D = 20 D = 40
m 10 10 5 7
ρ 0.2 0.2 0.324 0.388
s+ 0.02 0.02 0.201 0.136
s− 0.01 0.01 0.289 0.344
b 10 10 6 8

Table 2: Median values of the function errors for the Sphere function

Algorithm DASA◦ DASA*
FEs D = 20 D = 40 D = 20 D = 40
25×D 16.7 18.3 2.53 9.31
250×D 0.0003 0.0021 0 0
2500×D 0 0 0 0
25000×D 0 0 0 0

Therefore, the performance of DASA was evaluated on
the Sphere function:

f(x) = |z|2 + f(xopt), (8)

where z = x − xopt and xopt is optimal solution vector,
such that f(xopt) is minimal. Function f(x) is defined over
D-dimensional real-valued search space x and is scalable
with the dimension D. It has no specific value of its optimal
solution (it is randomly shifted in x-space) and has an artifi-
cially chosen optimal function value (it is randomly shifted
in f -space). In this study, we considered the Sphere func-
tion with respect to two dimensions, D = 20 and D = 40.

The performance of DASA is dependent on the values of
five parameters: three real-valued parameters that directly
influence the search heuristic (s+, s−, and ρ) and two
integer-valued parameters (m and b). Therefore, we con-
sidered all of them for tuning DASA performance on the
Sphere function for both search space dimensions, D = 20
and D = 40. Using the Gray-code-based Sobol’ genera-
tor we generated 5000 parameter settings (5-tuples). Note
that the Sobol’ sampling generates numbers on the unit in-
terval: in order to obtain the true parameter settings, we
mapped these values on the predefined search range of pa-
rameter values. The latter for each of the five tuned param-
eters was defined as follows: 4 ≤ m ≤ 200, 0 ≤ ρ ≤ 1,
0 ≤ s+ ≤ 1, 0 ≤ s− ≤ ρ, and 2 ≤ b ≤ 100. Moreover,
the mapped values for the integer-valued parametersm and
b were rounded to the closest integer value. Finally, due
to implementation reasons, the upper bound of the global
scale decrease factor s− was actually limited by the value
of the evaporation factor ρ.

In the next step, the performance of the Sobol’ sampled
parameter settings were tested on the Sphere benchmark
function. Due to the stochastic nature of DASA, every
parameter setting was used in a multiple-run experimental
evaluation. Each run included 25000×D function evalua-
tions (FEs). The number of runs was set to 15. The results

gathered by the parameter tuning process are most often
subjected to ordinal data analysis, which includes ranking
of the different sampled parameter sets according to some
calculated statistics, e.g., best or mean performance of the
algorithm in some predefined number of runs [13]. In this
case, performance of the algorithm is expressed in terms
of the function error, i.e., the difference between the ob-
tained and optimal function value. In order to find a setting
that will be satisfactory in terms of convergence speed, we
captured the error values at four different time points, cor-
responding to 25×D, 250×D, 2500×D, and 25000×D
FEs.

The optimal performing parameter setting was chosen
based on the median best performance over all runs aggre-
gated over all time points for a given dimension (D = 20
and D = 40). A common approach is to use the mean
performance, but we took the median in order to avoid
the problems that the mean has when observing large vari-
ance in the function values across the runs. More precisely,
given a function, an individual rank is assigned to every
setting (out of 5000) for the four time points. A single fi-
nal rank is calculated by ranking the sum of the four in-
dividual rankings assigned to the parameter settings. The
best-ranked parameter setting for a given dimension defines
instance of DASA referred to as DASA*.

The results of DASA tuning subject to ordinal data anal-
ysis are presented in Tables 1 and 2. Table 1 reports the
tuned parameter settings for both DASA* instances.

In addition, the default parameter setting for DASA from
[8] is given as a reference for comparison. The correspond-
ing instance is referred to as DASA◦.

Results in Table 2 represent the median values of the
function errors, at the four time points, obtained by DASA*
and DASA◦ instances for both dimensions. Note, that er-
ror value below 10−8 was treated as zero. The table clearly
shows that DASA* is better than DASA◦.

174 Informatica 39 (2015) 169–176 J. Šilc et al.

< 1.0E-08 1.0E-06 ... 1.0E-04 … 11.0E-02 … 11.0E-01 … 1
1000 0 0 0 0 0

10000 0 1.5 2.5 3.5 24
100000 38 9 10.5 21 9

1000000 86 3 5.5 4 1.5

0%

20%

40%

60%

80%

100%

1.0E+03 1.0E+04 1.0E+05 1.0E+06

FEs

Error
> 1.0E+02

1.0E+01 … 1.0E+02

1.0E+00 … 1.0E-01

1.0E-01 … 1.0E-02

1.0E-02 … 1.0E-04

1.0E-04 … 1.0E-02

1.0E-06 ... 1.0E-08

< 1.0E-08

Figure 2: Median error distributions for the Sphere func-
tion in the case of D = 40.

5 Data Mining Analysis

Parameter tuning of an algorithm leads to a better per-
formance, however it is a computationally expensive and
problem-dependent task. Considering this, the idea is to
extend the simple tuning that delivers a single parameter
set and analyze the gathered data in an intelligent way. The
intelligent analysis can extract patterns (regularities) in the
explored parameter space that define a specific behavior of
DASA. To this end, data mining methods for automated
discovery of patterns in data can be used. As data mining
methods can only discover patterns that are present in the
data, the dataset subject to analysis must be large enough
and informative enough to contain these patterns, i.e., to
describe different types of algorithm’s behavior. Related to
this, we considered a data mining approach on a represen-
tative example, i.e., error model of the Sphere function.

To begin with, consider the graph in Figure 2 that visu-
alizes the Sphere function error distribution. The graph de-
picts the distribution of the median error values obtained by
5000 parameter settings at four different points forD = 40.
As we are more concerned with the practical significance
between a large and a small error value than the statisti-
cal significant difference between two actual error values,
the error values are discretized into nine intervals, each
of which is represented with a color chosen according to
the error magnitude between black (error below 10−8) and
white (error above 102). The graph clearly shows that the
sampled settings determine different DASA performance.
As evident, there is a big cluster of parameter settings
that solve this function to the aimed accuracy (error below
10−8) in the given time budget (106 FEs). Moreover, subset
of this cluster solves the function for an order of magnitude
less FEs. Our aim, therefore, is to find a (common) descrip-
tion of this cluster, in terms of DASA parameter relations,

that represents a good behavior of DASA (as well as what
parameter relations lead to a bad DASA performance).

For this purpose, we formulated the problem as a predic-
tive modeling task using decision trees to model the func-
tion error values in terms of the values of DASA parame-
ters. Since the function error variables are continuous, the
task at hand is a regression task. Furthermore, as our goal
is to model the behavior of DASA at all time points simul-
taneously, the problem at hand is then a multi-target re-
gression. To this end, we used Predictive Clustering Trees
(PCTs) which are implemented in Clus system [1]. In this
case, the median error at the four time points define the four
target attributes considered for modeling (with the PCT) in
dependence from the descriptive attributes, i.e., the func-
tion dimension and the five DASA parameters. The re-
sulting dataset is composed of 10002 rows described with
the 5001 parameter settings (including the default setting)
of DASA applied to the two different dimensions, and 10
columns corresponding to the 10 attributes.

Figure 3 presents a PCT model for the Sphere function
error. Each internal node of the tree contains a test on a
descriptive attribute, while the leaves store the model pre-
dictions for the function error, i.e., a tuple of four values.
The predictions are calculated as the mean values of the
corresponding error values for the data instances belonging
to the particular leaf (represented by a box). In fact, each
leaf identifies one cluster of data instances (the size of the
cluster is the value in the small box). The predictive perfor-
mance of the model was assessed with 10-cross-validation.
Note that this particular model was learned on the com-
plete dataset subject to constraints on the maximal tree size
of 25 nodes. We did this because the original model con-
tained 1643 nodes (of which 822 leaves) and despite its
better predictive performance, both training and testing, it
was not comprehensible; aiming for an explanatory model,
small and comprehensible, we considered the smaller tree
obtained with the limitation of the size. The predictive per-
formance of both models in terms of Root Relative Mean
Squared Error (RRMSE) and Pearson Correlation Coeffi-
cient (PCC) are given in Table 3. Note that RRMSE rep-
resents the relative error with respect to the mean predictor
performance, while PCC represents the linear correlation
between the data and the model predictions. Good models
have RRMSE values closer to 0 and PCC closer to 1.

The model in Figure 3 outlines 13 clusters of data in-
stances, of which two (depicted with light-gray boxes)
represent a good DASA performance. According to this
model, the number of ants, m, is the most important
DASA parameter for its performance on the Sphere func-
tion. More precisely, if m > 83, independent of the values
of the other parameters, DASA solves the 20-dimensional
functional problem for the given time budget. Moreover,
if m ≤ 83 another DASA parameters become important
as well. For example, if 43 < m ≤ 83 and s+ > 0.009
and D = 20 then DASA solves the function with error
3 × 10−6, while the pattern m ≤ 43 and s≤0.040 and
s− > 0.656 describes a poor DASA performance regard-

Data Mining-Assisted Parameter Tuning of a Search Algorithm Informatica 39 (2015) 169–176 175

Figure 3: Predictive clustering tree representation of the error model for the Sphere function.

less of the function dimension. An interesting fact is that,
the evaporation factor is not essential for DASA perfor-
mance on the Sphere function. Moreover, the model also
shows that is more difficult to describe the behavior of
DASA for the 40-dimensional function problem than the
20-dimensional one.

Finally, note that the training performance (learned on
the complete dataset) of the model in terms of the error and
the correlation coefficient is best for the first target, while
it gets worse with respect to the other three targets (see Ta-
ble 3). This is especially significant if we take into account
the testing performance of the model estimated with 10-
cross-validation. However, the training performance is ac-
ceptable in our case, as we are interested in understanding
the behavior of DASA and not aiming to obtain a model for
prediction.

6 Conclusion
The principle challenge of meta-heuristic design is provid-
ing a default algorithm configuration, in terms of parameter
setting, that will perform reasonably well in general (prob-
lem) case. However, while it is a good initial choice, the
default algorithm configuration may result in low quality
solutions on a specific optimization problem. In practice,
the algorithms parameters have to be fine-tuned in order
to obtain best algorithm’s performance for the problem at
hand, leading to the computational expensive task of pa-
rameter tuning. So, if the tuning task is unavoidable, the
question is: can we use the results from the parameter tun-
ing to extract some knowledge about the algorithm’s be-

havior?

Related to this, the study focused on the problem of tun-
ing the performance of the Differential Ant-Stigmergy Al-
gorithm (DASA) with respect to its parameters. As it is the
case with most of the meta-heuristic algorithms, the oper-
ational behavior of DASA is determined by a set (five) of
control parameters. The existing default setting of DASA
parameters [8] is obtained by experimentation with both
real and benchmark optimization problems, but not as a
result of some systematic evaluation. Furthermore, there
is no deeper understanding of the impact of a particular
parameter or parameters relations on the performance of
DASA. In this context, we performed a systematic evalua-
tion of DASA performance obtained by solving the Sphere
function optimization problem with 5000 Sobol’ sampled
DASA parameter settings regarding two dimensions, 20
and 40.

Furthermore, we discussed the idea of learning a model
of DASA behavior by data mining analysis of the parame-
ter tuning results. In this context, we formulated the prob-
lem as multi-target regression and applied predictive clus-
tering trees for learning a model of DASA behavior with
respect to the function error performance. The obtained
model revealed that the parameter denoting number of ants
is the most important parameter for DASA performance on
the 20-dimensional function problem. On the other hand,
the evaporation factor is not essential for DASA perfor-
mance on the Sphere function.

Further work will focus on additional experimental eval-
uation and data mining analysis of data with respect to
more complex functions problems. This idea can be fur-

176 Informatica 39 (2015) 169–176 J. Šilc et al.

Table 3: Model performance with respect to RRMSE and PCC

Measure RRMSE PCC
Training 1643 nodes 25 nodes 1643 nodes 25 nodes
25×D 0.166 0.408 0.986 0.913
250×D 0.373 0.679 0.928 0.734
2500×D 0.487 0.562 0.873 0.827
25000×D 0.472 0.546 0.882 0.837
Mean 0.396 0.557 0.843 0.689
Testing 1643 nodes 25 nodes 1643 nodes 25 nodes
25×D 0.219 0.450 0.976 0.893
250×D 0.638 0.817 0.777 0.584
2500×D 1.019 1.039 0.304 0.246
25000×D 1.053 1.055 0.234 0.218
Mean 0.806 0.875 0.426 0.312

ther extended to building models of DASA behavior that
will include the optimization problem characteristics (such
as multimodality, separability, and ill-conditioning) as de-
scriptive attributes as well. The latter can provide insights
on how to configure DASA performance with respect to
the type of the optimization problem. Moreover, these in-
sights can serve as a valuable information for improvement
of DASA design.

References
[1] H. Blockeel, J. Struyf (2002) Efficient Algorithms for

Decision Tree Cross-validation, Journal of Machine
Learning Research, vol. 3, pp. 621–650.

[2] C. Blum, A. Roli (2003) Metaheuristics in Combina-
torial Optimization: Overview and Conceptual Com-
parison, ACM Computing Surveys, vol. 35, no. 3, pp.
268–308.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz (1999) Swarm
Intelligence: From Natural to Artificial Systems, Ox-
ford University Press.

[4] A. E. Eiben, S. K. Smit (2011) Parameter Tuning for
Configuring and Analyzing Evolutionary Algorithms,
Swarm and Evolutionary Computation, vol. 1, no. 1,
pp. 19–31.

[5] S. Joe, F. Y. Kuo (2008) Constructing Sobol Se-
quences with Better Two-dimensional Projections,
SIAM Journal on Scientific Computing, vol. 30, no.
5, pp. 2635–2654.

[6] P. Korošec (2006) Stigmergy as an Approach to
Metaheuristic Optimization, Ph.D. dissertation, Jožef
Stefan International Postgraduate School, Ljubljana,
Slovenia.

[7] P. Korošec, J. Šilc (2008) Using Stigmergy to Solve
Numerical Optimization Problems, Computing and
Informatics, vol. 27, no. 3, pp. 341–402.

[8] P. Korošec, J. Šilc, B. Filipič (2012) The Differential
Ant-stigmergy Algorithm, Information Sciences, vol.
192, no. 1, pp. 82–97.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.
Flannery (1992) Numerical Recipes, Cambridge Uni-
versity Press.

[10] I. M. Sobol’ (1967) Distribution of Points in a Cube
and Approximate Evaluation of Integrals, USSR Com-
pututational Mathematics and Mathematical Physics,
vol. 7, no. 4, pp. 86–112.

[11] R. Stoean, T. Bartz-Beielstein, M. Preuss, C. Stoean
(2009) A Support Vector Machine-Inspired Evolu-
tionary Approach for Parameter Setting in Meta-
heuristics, CIOP Technical report 01/09, Faculty of
Computer Science and Engineering Science, Cologne
University of Applied Science, Germany.

[12] G. Taguchi, T. Yokoyama (1993) Taguchi Methods:
Design of Experiments, ASI Press.

[13] E.-G. Talbi (2009) Metaheuristics: From Design to
Implementation, John Wiley & Sons.

[14] X.-S. Yang (2008) Nature-Inspired Metaheuristic Al-
gorithms, Luniver Press.

