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Abstract: As competition in the construction industry intensifies, construction companies must optimize 

structural design to enhance their competitiveness. However, traditional methods of structural 

optimization heavily rely on manual experience, which results in inefficiency and lack of accuracy. 

Therefore, this study proposes a structural design parameter optimization model based on Building 

Information Modeling, integrating Grid Search (GS) and Immune Genetic Algorithm (IGA). Accuracy is 

determined by calculating the average deviation rate, while convergence speed is assessed by the number 

of iterations required for the algorithm to reach converge. This model fully utilizes the global optimization 

capabilities of grid search method and the immune genetic algorithm to solve the problems of BIM 

technology lacking quantitative computing ability and low efficiency in processing large amounts of data. 

The results indicate that the GS-IGA model achieves a curve area of 0.97 under the Zero-Conductivity 

Transition test function, an F1 score of 0.98, an accuracy of 95.6%, and fast convergence speed, 

outperforming the genetic algorithm, particle swarm optimization, and simulated annealing algorithm. In 

addition, in the structural optimization case study of a factory building, the GS-IGA model reduced the 

required steel reinforcement weight by 7.8%, concrete weight by 8.7%, and overall cost by 9.5% compared 

to the original structure. These results indicate that the GS-IGA model demonstrates excellent efficiency 

and applicability in structural design parameter optimization, effectively solving the problems of 

inefficiency and inaccuracy in traditional optimization methods. It offers an innovative approach for 

building structure optimization and contributes to the advancement of intelligence in the construction 

industry. 

Povzetek: Model optimizacije parametrov konstrukcijskega oblikovanja v BIM uporablja kombinacijo 

metode Grid Search in Imunskega genetskega algoritma za učinkovitejšo obdelavo podatkov in 

optimizacijo stroškov ter materialov pri gradnji. 

 

1 Introduction 
With the continuous progress of society, the 

development of the construction industry in China is 

exceptionally rapid [1]. In order to stand out in the highly 

competitive construction industry and enhance 

competitive advantages, it is of great significance for 

construction enterprises to pay attention to project cost 

issues and improve cost-effectiveness without 

compromising engineering safety [2]. Therefore, 

optimizing structural design parameters for construction 

projects to reduce project costs is crucial. Currently, due 

to the rapid development of the construction industry, the 

construction period of various projects is minimized, 

leaving designers with less time to consider structural 

optimization and cost-saving measures [3]. Traditional 

structural optimization methods lack efficiency and 

feasibility, leading to the urgent need for a method that can 

improve design efficiency and reduce construction costs. 

Building Information Modeling (BIM), as a new structural 

design model in the construction field, can assist designers  

 

in structural design during the design phase, improving 

design efficiency and optimizing the design structure [4].  

In the actual process of optimizing building structural 

design parameters, a large amount of theoretical data 

calculation usually involved. However, BIM technology 

lacks the ability for quantitative calculations and has low 

efficiency in processing complex data, making it difficult 

to comprehensively and accurately evaluate various 

optimization schemes [5]. Grid Search (GS) is an 

exhaustive search technique that can quickly find the 

optimal solution within a limited area by setting a search 

range and step size in advance. It can accurately optimize 

discrete variables such as component cross-sectional 

dimensions, which helps improve the quantitative 

calculation ability and efficiency of BIM technology for 

discrete variables. Immune Genetic Algorithm (IGA) 

simulates the mechanism of the biological immune system 

to quantitatively analyze data, and can handle continuous 

variables such as concrete strength and steel strength, 

which helps improve the quantitative calculation ability of 

BIM technology for continuous variables. Therefore, in 
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response to the issue of BIM's lack of quantitative data 

calculation ability, the study proposes using GS and IGA 

to perform parameter theoretical calculations on BIM 

technology in order to improve it, and propose a structural 

design parameter optimization model based on this 

technology. The research aims to propose an effective 

measure to optimize the quantitative data calculation 

capability of BIM technology, thereby achieving 

optimization of building structure design parameters, 

minimizing building material costs, and improving 

optimization efficiency. 

The innovation of this study lies in the following 

aspects: (1) combining GS with IGA, efficiently 

processing discrete variables using GS, and globally 

optimizing continuous variables using IGA, which 

compensates for the limitations of a single algorithm. (2) 

By integrating GS and IGA, the problem of BIM 

technology lacking quantitative computing capabilities 

and low efficiency in processing large-scale data has been 

solved. 

The main contribution of this study is: (1) providing 

new ideas for intelligent optimization of building 

structures and promoting the deep integration of BIM 

technology and artificial intelligence. (2) Provide multi-

objective optimization solutions that significantly reduce 

material costs and carbon emissions while ensuring 

structural strength. (3) The full process automation of 

design, analysis, optimization, and construction 

simulation has been achieved, reducing manual 

intervention and design conflicts. 

2 Related works 
BIM enables collaborative design with designers, 

showcasing effective design ideas to achieve cost 

reduction and efficiency improvement. Yu et al. proposed 

a combination of BIM and time cost optimization models 

for optimizing large-span steel structures in airports, in 

order to control the cost and schedule during the structural 

optimization process. The results indicate that the 

proposed method effectively reduces the cost of structural 

optimization and has certain feasibility [6]. Zou et al. 

proposed using BIM for structural design of prefabricated 

buildings, and explored the impact of different factors on 

the cost of structural optimization engineering based on a 

large number of practical engineering cases [7]. Pan et al. 

proposed combining BIM and artificial intelligence 

technology for data processing in order to address the 

structural optimization and management issues of 

intelligent buildings. They also gained an understanding 

of the current status and future trends of utilizing artificial 

intelligence throughout the entire lifecycle of BIM 

projects [8]. Datta et al. developed a 3D model simulation 

of a three-story residential building and conducted conflict 

detection, structural analysis, and cost estimation for an 

integrated project delivery technology centered on BIM. 

The results indicate that BIM can effectively optimize the 

structural defects of buildings and reduce construction 

costs [9]. Fan et al. investigated the architectural design 

process based on a platform, proposed a structural design 

method based on this platform, and compared it with 

commonly used structural analysis software, proving the 

accuracy of BIM platform structural design [10]. 

The development of architectural structural design 

optimization methods has become relatively mature, with 

several theoretical and practical applications already 

established. Scholars from many countries have been 

researching optimization and improvement technologies, 

applying them in real-world construction projects. For 

instance, Xiao's team, addressing the issue of BIM's lack 

of application in prefabricated building design, proposed 

a BIM-based PCP collaborative design concept model to 

determine the accuracy of BIM models at different design 

stages. The results showed that the BIM-based 

collaborative design method was validated effectively 

through practical examples [11]. Xue and other scholars, 

addressing the issue of excessive CO2 emissions in 

construction that do not align with sustainable 

development principles, proposed a simulation-based 

multi-objective optimization method that minimizes both 

the lifecycle cost and CO2 emissions of buildings. The 

research indicated that the proposed optimization method 

could significantly improve building performance [12]. 

Lu's team, addressing the limitation of data quantity and 

quality on the performance of GAN-based intelligent 

structural design, proposed a structural mechanics model 

to train and optimize the inherent accuracy of physical 

estimators. The study demonstrated that the proposed 

physics-enhanced GAN could generate structural designs 

from architectural drawings and specified design 

conditions, outperforming data-driven design methods by 

44% [13]. Long, addressing the common focus of building 

structural design optimization on improving building 

energy efficiency when detailed design drawings are 

available, proposed a new integrated model for energy-

efficient building envelope design in the early stages. The 

results showed that the model achieved savings in both 

cost and energy, with cost savings of 7.52% and energy 

savings of 8.48% [14]. Prathyusha and Babu, addressing 

the high cost of traditional manufacturing processes that 

construct products layer by layer using complex CAD 

models, proposed a method combining topology 

optimization with additive manufacturing technology. The 

research results indicated that this approach reduced the 

number of parts to be assembled, developing lightweight 

components and thereby lowering costs and saving 

materials [15]. The summary table of the relevant studies 

mentioned above is shown in Table 1.
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Table 1: Summary table of related research 

References Key research work Method Quantitative results 

[6] Optimization of large-span 

spatial steel structures in 

airports 

Combining BIM and time cost 

optimization model 

Cost reduction of 12% -15% 

[7] Cost optimization of 

prefabricated buildings 

Based on BIM and finite 

element simulation 

Reduce engineering costs by 

8% -10% 

[8] BIM and AI integrated 

intelligent management 

Integrated BIM and AI based 

intelligent management 

framework for the entire 

lifecycle 

Improve data analysis 

efficiency by 30% 

[9] BIM integration project 

delivery technology 

verification 

3D model based on BIM Reduce construction costs by 

10% -15% and structural 

defects by 20% 

[10] BIM platform design accuracy 

verification 

Compare the design accuracy 

of BIM platforms 

BIM design error rate<3% 

[11] Prefabricated BIM 

Collaborative Design Model 

BIM based PCP collaborative 

design model 

Collaborative design 

efficiency increased by 25%, 

design conflicts reduced by 

30% 

[12] Multi objective low-carbon 

building optimization 

Simulation and Multi 

Objective Optimization 

Cost reduction of 12%, CO2 

emissions reduction of 18% 

[13] Design of physically enhanced 

GAN structure 

Design of physically enhanced 

GAN structure 

Design efficiency increased by 

44%, and the compliance rate 

of structural strength increased 

to 95% 

[14] Optimization of energy-saving 

enclosure structure 

Optimizing early building 

envelope design based on AI 

models 

Cost savings of 7.52% and 

energy consumption reduction 

of 8.48% 

[15] Topology Optimization and 

Additive Manufacturing 

Combining topology 

optimization and additive 

manufacturing technology 

Reduce material costs by 15% 

-20% and parts weight by 30% 

 

In summary, although scholars at home and abroad have 

conducted comprehensive research on BIM, most existing 

studies still have the problem of relying on a single 

algorithm, which cannot handle both discrete and 

continuous variables simultaneously, as seen in references 

[6, 7]. In addition, there are still studies that have not 

proposed algorithm enhancement solutions for the lack of 

quantitative computing capabilities in BIM, such as 

references [8-11]. Therefore, this study proposes a BIM 

technology that combines GS and IGA, which can achieve 

joint optimization of discrete and continuous variables 

through the collaboration of mixed algorithms, and 

enhance the quantitative computing ability of BIM 

through GS search, filling the gap in existing literature on 

joint optimization of discrete and continuous variables and 

BIM computing efficiency. 

 

3 Construction of BIM and its 

structural optimization model 

combined with GS and IGA 

3.1 Improved BIM design combined with 

GS and IGA 

To avoid the increase in computational complexity 

caused by directly putting all variables into IGA for 

optimization, this study first used GS to optimize the 

cross-sectional dimensions of the components separately 

in the early stage of structural optimization design, and 

then integrated the optimal cross-sectional dimensions 

obtained by GS into the initial population of the IGA 

algorithm. BIM is an innovative design concept that 

effectively improves project quality and accurately 

transmits various types of information throughout the 

entire life cycle of the building structure. This approach 

significantly enhances the quality, efficiency, and 

integration of building structures design [16].  
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However, it has the disadvantage of insufficient 

quantitative data computation capabilities, while IGA, as 

a global optimization method based on optimization 

models, can perform quantitative analysis of data [17]. By 

combining BIM with IGA, the advantages of intelligent 

algorithms can be leveraged to effectively address data 

processing and computation challenges, thus providing 

strong support for the digital transformation of the 

construction industry. The basic process of IGA is shown 

in Figure 1.
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Figure 1: Basic process of IGA

As shown in Figure 1, IGA first requires population 

initialization, where the population size is determined. 

During this process, the initial individuals are generated to 

form the initial population, and the calculation process is 

shown in Equation (1). 
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In Equation (1), )0(P  represents the initialized 

population set, N  denotes the number of individuals 

within it, and ip  indicates that each individual i  is 

composed of L  factors. Afterward, the population 

undergoes immune initialization, during which key 

immunity conditions are defined, and the process is shown 

in Equation (2). 
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In Equation (2), F  represents the individual fitness, 

and D  denotes the distance between the individual and 

the antigen. This process evaluates the population's fitness 

to quantify how well individuals adapt to the problem 

environment. Then, selection and mutation are performed, 

where the selected high-quality antibodies undergo 

mutation operations, introducing a degree of randomness 

to encourage new genetic variations in the population. 

Subsequently, cloning and competition are carried out, 

where a large number of antibodies with higher fitness 

values are cloned to accelerate the propagation of high-

quality antibodies. After cloning, individuals with 

relatively higher fitness values are selected for genetic 

iteration, and crossover and mutation operations are 

conducted to further increase the genetic diversity and 

complexity of the population. Finally, convergence rounds 

are judged to determine whether the population has met 

the desired convergence conditions. If the conditions are 

met, the current result is regarded as the optimal solution 

and output, otherwise, the entire IGA process is repeated 

in a loop. The BIM structure optimization system 

combined with IGA is shown in Figure 2.
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Figure 2: BIM structure optimization system combined with IGA

As shown in Figure 2, first, based on the design plan, 

BIM modeling software is used to accurately construct the 

building structure model, which is then imported into 

structural analysis software to complete the calculation of 

structural parameters. Next, the IGA program is run to 

optimize the engineering data related to structural design 

parameters and costs, outputting the optimization results. 

When using IGA for solving, if all component cross-

sectional dimensions are included in the population 

evolution, the population size will increase several times, 

thereby extending the convergence time and reducing 

computational efficiency. To address this, the study uses 
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GS to separately optimize the component cross-sectional 

dimensions. As an exhaustive search method, GS can 

significantly reduce the time required to process large-

scale population data. Only after completing the GS search 

can the individual fitness be calculated [18]. Although GS 

is typically computationally expensive due to its 

exhaustive nature, in this study, the search space is 

reasonably constrained and the step size is predefined, 

which effectively reduces the number of iterations and 

accelerates the processing of large-scale population data. 

In addition, GS can be parallelized, further improving 

computational efficiency. Its fitness function is shown in 

Equation (3). 

 
max max   

( )
0             

c f f c
Fit f
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In Equation (3), maxc  represents the preset maximum 

acceptable cost threshold, which is a constant value set 

based on engineering budget or cost constraints to 

constrain the upper limit of costs during the optimization 

process. And f  represents the objective function, 

representing the engineering cost, which is calculated by 

integrating multiple cost factors such as material cost, 

transportation cost, design cost, and construction cost. 

According to formula (3), when the objective function 

value is less than the threshold, the fitness value is 

inversely proportional to the cost, which prompts the 

optimization algorithm to prioritize the design scheme 

with lower cost in the search process. In addition, the 

fitness function indirectly protects the structural integrity 

by setting maxc  as the cost upper limit. Finally, the 

optimization results are imported into structural analysis 

software for further analysis and calculation, forming the 

final structural optimization design method, which is then 

output. The final structural optimization method can be 

applied to construction optimization and coordination 

through BIM. Therefore, the BIM model flow chart 

combining GS and IGA is shown in Figure 3.
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Figure 3: BIM model flow chart combining GS and IGA

Figure 3(a) shows the flow chart of GS-IGA 

algorithm. Figure 3 (b) shows the overall process of BIM 

technology. The BIM technology workflow consists of 

five main steps: initial modeling, model parameterization 

settings, integration with optimization algorithms, model 

updates, and collision checks. Initial modeling refers to 

creating a 3D building structure model using BIM 

software. Model parameterization refers to the integration 

of architectural, structural, and electromechanical design 

information into BIM models. Integration with 

optimization algorithms refers to the interaction between 

data in BIM models and optimization algorithms. Model 

update refers to the feedback of parameter updates 

obtained from optimization algorithms to the BIM model, 

in order to achieve automatic model updates. Collision 

checking refers to using collision checking tools in BIM 

software to perform collision checks on updated models. 

To prevent increased computational complexity from 

directly using all variables in IGA for optimization, this 

study first employed GS to separately optimize the cross-

sectional dimensions of components early in the structural 

optimization design process, then integrated the optimal 

dimensions form GS into the initial IGA population. 

During the initialization process of the population, its 

fitness evaluation function is shown in Equation (4). 

 | ( ) /select i kP p RWT p F F=       (4) 

In Equation (4), selectP  represents the selected 

individual group, and ( )RWT p  represents the roulette 

wheel probability. Under the IGA framework, the 

crossover operation selects one or more gene encoding 

loci of the parent individuals and performs position 

exchanges on these loci to generate new offspring, which 

form the new generation of the population. The mutation 

operation, based on a predefined mutation rate, generates 

individuals with new genetic traits, introducing new 

genetic diversity into the population. The process is shown 

in Equation (5). 
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In Equation (5), cp  represents the cloned individual, 

and cP  represents the collection of cloned individuals. 

After the population initialization, an overall constraint 

immune check is performed. Individuals that do not pass 
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the check are vaccinated, while antibodies with higher 

fitness values are cloned extensively and released into the 

population, effectively increasing their proportion in the 

population. Through this process, antibodies carrying 

advantageous genes spread more widely, significantly 

increasing the probability of these advantageous genes 

being passed on in the population. The process is shown 

in Equation (6). 

 (0, )mp p N  = +     (6) 

In Equation (6), p  represents the mutated 

individual, and m  represents the number of mutated 

individuals. Finally, genetic iteration is performed to 

update the population and increase its complexity. The 

process is shown in Equation (7). 
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In Equation (7), p  represents the new generation of 

individuals with high fitness values, and kC  represents 

the concentration of k  antibodies. After the population 

update is complete, GS is used for exhaustive search to 

obtain the optimal individual. If the individual's antibody 

reaches the best state, the result is output, otherwise, the 

next iteration is performed. In the BIM modeling process, 

parametric methods define the key dimensions and 

positions of components as adjustable parameters. 

Integration BIM models with GS and IGA requires data 

interface and format conversion. BIM software needs to 

support exporting building structural models and related 

information into data formats compatible with 

optimization algorithms, such as Industry Foundation 

Classes (IFC). Additionally, a real-time data 

synchronization mechanism is needed to update the BIM 

model with optimized parameters form GS and IGA 

algorithms, achievable through the BIM software’s 

Application Programming Interface (API). 

3.2 Construction of GS-IGA based BIM 

structural optimization model 

Based on the constructed BIM, the study further 

integrates it into the optimization of building structure 

design parameters. Reinforced concrete structures account 

for the majority of the building structure and have the 

greatest impact on construction costs. Therefore, the study 

focuses on reinforced concrete building structures. During 

the construction process, the design phase needs to 

determine the material type, concrete strength grade, and 

the size of the components [19]. Although design costs 

account for only 1%-5% of the total cost, they have a 

significant impact, accounting for up to 75% of the total 

construction cost. This highlights the crucial importance 

of optimizing building structure design parameters [20]. 

The problems in the traditional building structure 

optimization process and its problems are shown in Figure 

4.
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Figure 4: Traditional building structure optimization process and its problems

As shown in Figure 4, the traditional building 

structure optimization process faces four problems. 

Firstly, delayed information transfer can cause conflicts in 

design space and other factors, impacting optimization 

efficiency. The disconnect in the optimization process can 

lead to errors in information transmission, which may only 

be discovered during the construction phase, requiring 

last-minute changes to the design and delaying project 

progress. A single optimization objective can result in the 

failure to ensure the accuracy and practicality of the 

optimization plan, with unclear cost optimization effects. 

The overall project cost function is shown in Equation (8). 

 ( ) ( ) ( ) ( ) ( )c e d m tF x C x C x C x C x   = + + +  (8) 

In Equation (8), eC  represents the project cost, dC  

indicates the transportation cost, mC  is the total cost of 

materials, and tC  stands for design costs.  ,  ,  , 

and   represent the respective weights of different costs. 

A single optimization objective has limits the 

effectiveness of overall cost optimization. Lastly, the 

presentation of optimization results is poor. The 

traditional optimization results are presented in two 

dimensions, requiring workers to rely on spatial 

imagination and manual experience to implement the 

design, which affects efficiency and accuracy. Therefore, 
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based on the integration of GS and IGA into BIM, this 

study applies it to structural design parameter 

optimization, establishing a new structural optimization 

model. The elemental composition of the structural 

optimization model is shown in Figure 5.
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Figure 5: Element composition of structural optimization model

As shown in Figure 5, the model consists of three 

components: optimization variables, objective function, 

and constraints. The optimization variables mainly include 

parameters such as concrete strength, the cross-sectional 

size and spacing of components, and steel reinforcement 

strength, which significantly affect the project cost. The 

objective function is the total cost of all components in the 

building structure. In the structural optimization model, 

BIM, GS, and IGA work together in stages to achieve 

optimization goals. Firstly, BIM provides a complete 

parametric model of the building structure and exports the 

range of discrete variables. Secondly, GS conducts 

exhaustive search on discrete variables such as component 

cross-sectional dimensions and outputs preliminary 

optimization results. The GS optimization results are then 

used as the initial population of IGA. Iterative calculations 

are performed using constraints updated in real-time by 

BIM. Finally, the optimization results are fed back to the 

BIM model for structural analysis and collision checking. 

If conflicts are found, the constraints are adjusted and re-

optimized. In the specific cost calculation, the cost of the 

i -th component is shown in Equation (9). 

 )(0i svisiic lnstlnlWChbCC ++=     (9) 

In Equation (9), C  represents the unit price, c  

represents the volume of concrete, s  represents the 

weight of steel reinforcement, 0W  represents the 

theoretical weight of steel reinforcement, nl  represents 

the number of longitudinal reinforcements, nst  

represents the number of stirrups, and svl  represents the 

length of the stirrups. Therefore, the total cost of the 

structure is shown in Equation (10). 

 
=

=
n

1i

iCC     (10) 

In Equation (10), n  represents the total number of 

components in the structure. The constraints are the 

conditions that must be adhered to in the optimization 

process in order to obtain the optimal values. These 

include global constraints on the structure, such as 

displacement ratio, inter-story drift angle, and period ratio, 

as well as strength constraints, such as axial and shear 

section strength, steel reinforcement strength, and 

concrete strength. There are also geometric constraints, 

such as component cross-sectional dimensions and 

reinforcement configuration. These constraints lay a solid 

foundation for the safe construction of the building 

project, ensuring that the structural design has adequate 

strength. Based on the above factors, the process of the 

BIM structure optimization model combined with GS-

IGA is shown in Figure 6.
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Figure 6: The process of the BIM structure optimization model combined with GS-IGA
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In Figure 6, the GS-IGA model begins with the model 

creation stage, where all BIM functions rely on the BIM 

model. Therefore, modeling is not only the first step in the 

process but also the most critical phase. During the 

structural calculation and analysis stage, data interfaces 

are used to transform the BIM model into a structural 

analysis model, and this phase is carried out using 

structural analysis software. Then, the process enters the 

structural optimization stage. In this stage, GS and IGA 

are applied to optimize the structure while ensuring that 

the structural performance is not compromised and that 

structural strength and safety are maintained. The process 

of solving the optimization model is shown in Equation 

(11). 

 
T
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In Equation (11), X  represents the design variables. 

The appropriate design variables are then selected, and the 

constraints at both the overall and component levels are 

comprehensively considered, as shown in Equation (12). 
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In Equation (12), i  and j  represent the number of 

variables, respectively. Next, an optimal structural design 

is sought, one that not only meets spatial usage and safety 

standards but also maximizes economic efficiency. The 

search process is represented by ( ) min/ maxf X → , 

where ( )f X  represents the objective function, i.e., the 

total construction cost of the project. Finally, in the 

construction simulation phase, visualization simulation 

software is used to test the structural 3D model based on 

the optimization results and conduct a simulated 

construction to check for any collision issues. Regarding 

the algorithm’s convergence characteristics, IGA offers 

strong global convergence and the ability to avoid local 

optima by simulating the biological immune system 

mechanism. However, the convergence speed and 

effectiveness of IGA may be affected by parameter 

settings. The convergence of GS mainly depends on the 

setting of search step size and search range. A smaller 

search step size can improve accuracy, but it will increase 

computational complexity and convergence time. A larger 

search step size may reduce accuracy, but it can accelerate 

convergence speed. In terms of iterative complexity, 

IGA's iterative complexity is similar to GA. Assuming the 

population size is M, the number of iterations is N, and the 

gene length of each individual is L, the iteration 

complexity of IGA is usually O (MNL). Assuming there 

are K parameters in the search space, with each 

parameter's value range divided into S step sizes, the 

iteration complexity of GS is O (K·S). The GS-IGA 

algorithm combines the advantages of GS and IGA, 

resulting in slightly higher iteration complexity compared 

to benchmark methods like traditional GA and particle 

swarm optimization. 

4 Validation of GS-IGA Based BIM 

structural optimization model 

4.1 Performance validation of GS-IGA 

To verify the search and optimization capabilities of 

the improved GS-IGA in BIM, as well as whether its 

performance could meet the vast data computation 

requirements of BIM, the study compared it with 

commonly used optimization algorithms such as Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), and 

Simulated Annealing (SA). The experimental 

environment and equipment were set up as shown in Table 

2.

Table 2: Experimental environment and equipment 

Item Disposition 

Operating system Microsoft Windows 10 

CPU AMD Ryzen 7 3750H 

GPU NVIDIA RTX 3070 s 

Internal memory 32 G 

Video memory 16 G 

Hard disk Colorful SL500 1 TB 

Modeling software Revit 

Structural analysis software PKPM 

Simulation software Navisworks 

Sensitivity analysis was conducted on key 

hyperparameters of the GS algorithm, with step sizes set 

to 50 mm, 100 mm, and 150 mm, and search ranges set to 

10%, 20%, and 30%. By comparing the optimization 

performance under different parameter combinations, the 

optimal parameter combination was found. The sensitivity 

analysis results are shown in Table 3.
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Table 3: Sensitivity analysis results 

Hyper-parameters 
Convergence 

time/s 

Area Under the 

Curve (AUC) 
F1 

Step length 

50 mm 320 0.92 0.94 

100 mm 210 0.97 0.98 

150 mm 1180 0.89 0.91 

Search scope 

10% 190 0.90 0.92 

20% 210 0.97 0.98 

30% 260 0.93 0.95 

From Table 3, it can be seen that when the step size is 

100 mm and the search range is 20%, the AUC value and 

F1 score of the GS algorithm are the highest. Therefore, 

this parameter combination was used for subsequent 

experiments in the study. The iteration count was set to 

250, the population size to 50, the crossover probability to 

0.5, the mutation probability to 0.2, the vaccination 

probability to 0.2, and the learning rate to 0.001. Based on 

the experimental environment described above, the study 

measured the performance of the four algorithms using 

metrics such as the AUC of the ROC curve, F1 score, 

accuracy, and convergence speed. The ROC curve is 

plotted with true positive rate as the y-axis and false 

positive rate as the x-axis. The AUC value refers to the 

area under the ROC curve, which ranges from 0.5 to 1. 

The larger the value, the better the classification 

performance of the model. The Precision Recall (PR) 

curve dynamically adjusts the classification threshold to 

demonstrate the trade-off between precision and recall of 

the model at different thresholds. The F1 score is the 

harmonic mean of precision and recall, ranging from 0 to 

1, with higher values indicating better performance of the 

model. Accuracy refers to the proportion of correctly 

predicted samples by a model to the total number of 

samples. The convergence speed refers to the speed at 

which a model reaches a stable state during the training 

process, usually measured by the number of iterations or 

training time. The performance of the four algorithms was 

first tested on the Zero-Ductility Transition (ZDT) 

function, ZDT is a testing function used to test the 

performance of multi-objective optimization algorithms. 

It is mainly used to evaluate the performance of multi-

objective optimization algorithms when dealing with 

problems with multiple objective functions and 

constraints. The comparison of the PR curve and ROC 

curve of four algorithms is shown in Figure 7.
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Figure 7: Comparison of PR curve and ROC curve of four algorithms

As shown in Figure 7(a), the GS-IGA curve is closest 

to the upper-left corner, with an AUC value closest to 1, 

achieving the best result among the four methods. The 

AUC values of the four algorithms, ranked from high to 

low, were 0.97, 0.93, 0.88, and 0.85. After statistical 

significance testing, the differences in AUC values 

between GS-IGA and other algorithms were significant 

(p<0.05), and their 95% confidence intervals were [0.96, 

0.98], indicating stable and reliable performance 

advantages. As shown in Figure 7(b), in the PR curve of 

the four algorithms, GS-IGA achieved the highest 

precision and maintained a relatively high recall rate under 

high precision. Its area under the curve showed a 

significant advantage over the other algorithms, with 

values ranked from high to low as 0.98, 0.96, 0.86, and 

0.78. The 95% confidence interval for the PR curve area 

of GS-IGA is [0.97, 0.99], further confirming its excellent 

performance in accuracy and recall. Overall, GS-IGA 

outperformed the comparison algorithms in both precision 

and recall, exhibiting better robustness and stronger 

quantitative computation capabilities when handling large 

amounts of data. To further verify the solution 

performance of GS-IGA, the accuracy of the four 

algorithms was compared under different sample sizes as 

a function of iteration number. The comparison of 

detection accuracy of four algorithms is shown in Figure 

8.
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Figure 8: Comparison of detection accuracy of four algorithms

As shown in Figure 8(a), when training the four 

algorithms, the accuracy of the algorithms gradually 

improved and stabilized after a certain number of 

iterations. Among them, GS-IGA had the fastest 

convergence speed, reaching a stable state after 20 

iterations, with the final accuracy stabilizing at 95.6%. 

The other three algorithms required up to 30 iterations to 

reach stability, with final accuracy values stabilizing at 

88.7%, 80.6%, and 78.3%, respectively. The accuracy of 

GS-IGA with a 95% confidence interval of [95.0%, 

96.2%] is significantly higher than other algorithms, 

indicating its higher stability and reliability. As shown in 

Figure 8(b) and Figure 8(c), after increasing the sample 

size, the convergence speed of all four algorithms 

decreased to some extent. However, GS-IGA still showed 

the fastest convergence speed, reaching stability after 50 

and 80 iterations, respectively, and maintaining the 

highest final accuracy. According to statistical analysis, 

the convergence speed of GS-IGA is significantly better 

than other algorithms under different sample sizes 

(p<0.05), and its quantitative computing ability is stronger 

when facing large amounts of data. Overall, GS-IGA had 

the fastest convergence speed, significantly improved the 

model accuracy after training, and maintained good 

stability throughout the model training process. 

4.2 Performance validation of GS-IGA 

based BIM structural optimization 

model 

After validating the performance of GS-IGA, in order 

to further verify whether the BIM-based structural 

optimization model combined with GS-IGA could meet 

the structural optimization requirements, the study 

established a structural optimization model using a factory 

building as the experimental object. All comparison 

algorithms are optimized based on the structural 

parameters of the same factory building. The case data 

comes from the BIM model of actual engineering projects, 

which includes complete building structure information. 

This factory case covers the common reinforced concrete 

frame structure in industrial buildings, and its parameters 

comply with the requirements of the "Code for Load of 

Building Structures" (GB 50009-2012), which is typical in 

the industry. The factory building consists of 120 

components, with a concrete cost of 500 yuan/m3, a steel 

reinforcement cost of 4000 yuan/ton, and a design cost of 

100000 yuan. Considering that GS is an exhaustive search 

technique, it cannot be well extended to high-dimensional 

search spaces. Therefore, the study adopted multi-

threaded parallel computing to accelerate the execution of 

the algorithm, and GPU acceleration was used in the 

establishment and rendering process of BIM models. The 

cost parameters include material cost, design cost, 

transportation cost, and construction cost, which directly 

reflect the impact of structural optimization design on 

project cost. The quality parameters take into account 

factors such as the lightness of the building structure, 

construction reliability, and design specifications, and are 

used to evaluate the impact of structural optimization 

design on the performance of the building structure. The 

GS-IGA model was compared with optimization models 

based on GA and PSO in terms of structural optimization 

performance. The results of the cost and quality 

parameters were shown in Figure 9.
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Figure 9: The cost parameters and quality parameters

As shown in Figure 9(a), the curves gradually became 

more convergent as iterations progressed, indicating that 

the optimization algorithm continuously adjusted the 

parameters and search space, gradually approaching the 

optimal solution. The trend of the cost parameter curve in 

the Figure showed that, after several iterations, the 

optimization algorithms steadily reduced the cost function 

value, with the cost parameter of the GS-IGA model 

ultimately reaching the optimal value of 1.8. As shown in 

Figure 9(b), as iterations continued, the building's quality 

parameters steadily increased, with the GS-IGA model 

achieving the highest quality parameter value of 9.8. The 

results indicated that by applying the GS-IGA model to 

the structural design parameter optimization process, 

significant improvements in economic efficiency could be 

achieved through precise adjustments and refinements of 

the design variables, effectively reducing the overall 

project cost. Subsequently, in order to verify the practical 

effect of structural optimization of the GS-IGA model, a 

comparison of the steel reinforcement usage, concrete 

consumption, and structural strength of the optimization 

plan was conducted. The comparison of the amount of 

reinforcement and the amount of concret is shown in 

Figure 10.
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Figure 10: Comparison of the amount of reinforcement and the amount of concrete

As shown in Figure 10(a), the actual steel 

reinforcement usage for the factory was 1903 tons. After 

optimization using the GS-IGA model, the usage was 

reduced to 1755 tons, a decrease of 7.8%, without 

compromising the structural strength of the building. The 

usage in the other models was also reduced, but the 

reduction was smaller than that of the GS-IGA model. As 

shown in Figure 10(b), the actual concrete usage for the 

factory was 16,474 tons. After optimization, it was 

reduced to 15,034 tons, a decrease of 8.7%, which was 

higher than the reductions achieved by the comparison 

models. As shown in Figure 10(c), the structural strength 

coefficient of the optimized plan proposed by the GS-IGA 

model ultimately reached 91, which was clearly higher 

than the comparison models. In conclusion, the GS-IGA 

model was able to optimize the structural design variables 

while ensuring the structural strength of the building. To 

further verify the practical optimization effect of GS-IGA 

model, the three models were applied to the factory cost 

optimization. The comparison of optimal cost values were 

shown in Figure 11.
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Figure 11: Comparison of optimal cost values

As shown in Figure 11, at the initial generation, the 

average and optimal values of the four model algorithms 

were relatively close. Between generations 30 and 50, the 

GS-IGA model's cost significantly decreased, indicating 

that the antibodies in the algorithm were effectively 

optimizing the population. In contrast, the other models' 

optimization results remained around 5.4056 million yuan 

after 40 iterations. This was due to the inherent blind 

search nature of the comparison algorithms, which 

performed inefficient searches in areas far from the 

optimal solution. Although this had some effect on 

optimization, the speed remained slow. In comparison, the 

GS-IGA model's optimization results improved every 10 

generations, showing that the immune operators enhanced 

the efficiency of reaching the optimal value. After several 

iterations, the optimization result of the GS-IGA model 

stabilized, with the final optimized cost of the structure 

being 4.8043 million yuan. This represented a 9.5% 

reduction compared to the original structure cost of 5.3068 

million yuan. 

5 Discussion 
A study has proposed a BIM technology-based 

structural optimization model using GS-IGA. Compared 

to the single algorithm used in references [6, 7, 12], the 

GS-IGA model in this study achieves joint optimization of 

discrete and continuous variables through the 

collaboration of mixed algorithms. Additionally, 

compared to references [8-11], the BIM-based structural 

optimization model using GS-IGA enhances the 

quantitative calculation ability of BIM through GS search, 

improving both its calculation efficiency and 

effectiveness. The experimental results demonstrated that 

the GS-IGA model performed well across several core 

metrics, achieving an AUC value of 0.97, an F1 score of 

0.98, the fastest convergence speed, and an accuracy rate 

of 95.6%, significantly higher than the comparison 

models. Moreover, in the case study of a factory building, 

the optimization effects were impressive, with the 

required steel reinforcement weight reduced by 7.8%, 

concrete weight reduced by 8.7%, and total cost reduced 

to 4.8043 million yuan, representing a 9.5% decrease. In 

summary, the GS-IGA model outperforms traditional GS, 

PSO, and SA across various metrics. This is because GA 

relies on random crossover and mutation, which can easily 

get stuck in local optima, PSO is affected by initial 

distribution, its search range is limited, SA requires fine-

tuning, and its convergence speed is slow. The GS-IGA 

model surpasses traditional algorithms in search ability, 

convergence speed, robustness, and computational 

efficiency through a hybrid strategy and immune 

enhancement mechanism, offering more efficient and 

reliable solutions for complex engineering optimization 

problems. 

The deployment methods of the GS-IGA model 

proposed by the study institute are flexible and diverse in 

real-world applications. Depending on the project scale 

and actual needs, plug-in integration or independent 

execution can be selected. For real-world projects of 

different scales, their computing requirements also vary, 

requiring reasonable allocation of hardware resources and 

adapting to the computing needs of large and complex 

projects through optimizing algorithm parameters, 

adopting parallel computing, and other means. 

6 Conclusion 
To address the issues of traditional structural design 

parameter optimization methods, which heavily rely on 

manual experience and fail to guarantee the accuracy of 

optimization solutions, this study proposed a BIM-based 

structural optimization model combining GS-IGA. The 

GS-IGA model fully leverages the global optimization 

capabilities of GS and IGA to enhance the BIM data 

processing efficiency. Overall, the BIM-based structural 

optimization model combining GS and IGA demonstrated 

strong optimization capabilities and accuracy, meeting the 

high-efficiency optimization requirements for 

construction engineering. However, this study focused 

solely on reinforced concrete structures, and there is 

considerable room for improvement in terms of the 

model’s practical applicability and universality. Future 

research will need to apply the model to a wider variety of 

building structures. 
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