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In this study, we explore the impact of noise handling strategies on optimization performance in the context
of a real-world production planning problem. Uncertainties intrinsic to the production system are captured
using a discrete event simulation (DES) model, and the production plan is optimized using an evolutionary
algorithm. The stochastic nature of the fitness values (as returned by the DES simulation) may impact on
optimization performance, and we explore explicit and implicit averaging strategies to address this issue.
Specifically, we evaluate the effectiveness of different strategies, when a limited budget of evaluations
is available. Our results indicate a general advantage of implicit averaging in this setting, and a good
degree of robustness with regard to population size. On the other hand, explicit averaging is found to be
non-competitive, due to the cost of repeat-evaluations of the same solution. Finally, we explore a hybrid
approach that uses explicit averaging to refine fitness estimates during final solution selection. Under
increasing levels of fitness variability, this hybrid strategy starts to outperform pure implicit and explicit
averaging strategies.

Povzetek: V študiji smo raziskali vpliv strategij za ravnanje s šumom na uspešnost optimizacije v okviru
realnega problema načrtovanja proizvodnje. Negotovosti, ki se pojavljajo v proizvodnem sistemu so bile
zajete z modelom simulacije diskretnih dogodkov (DES), proizvodni načrt pa je bil optimiran z uporabo
evolucijskega algoritma. Ker stohastična narava vrednosti kriterijske funkcije (kot jo vrača DES) lahko
vpliva na uspešnost optimizacije, smo raziskali eksplicitne in implicitne strategije povprečenja za reševanje
tega problema. Natančneje, oceniti smo učinkovitost različnih strategij v primerih, ko je na voljo omejeno
število ocenitev kriterijske funkcije. Rezultati v splošnem kažejo na prednost implicitnega povprečenja in
dobro stopnjo robustnosti glede na velikost populacije. Po drugi strani pa smo za eksplicitno povprečenje
ugotovili, da ni konkurenčno zaradi stroškov večkratnih ovrednotenj iste rešitve. Končno, raziskali smo
hibridni pristop, ki uporablja eksplicitno povprečenje za izpopolnitev ocene kriterijske funkcije pri končni
izbiri rešitev. S povečano stopnjo spremenljivosti kriterijske funkcije začne hibridna strategija prekašati
čisti, eksplicitni in implicitni strategiji.

1 Introduction
Optimization problems that include uncertainty pose chal-
lenges that are difficult to address using standard optimiza-
tion methodologies. While a portion of the optimization
literature is concerned with the development of method-
ologies capable of identifying optimal solutions to prob-
lems with uncertainty, the application of these methods
often requires stringent assumptions and / or simplifica-
tions that are necessary to satisfy relevant optimality con-
ditions. Those methods are often insufficiently powerful to
accurately incorporate the full complexity and uncertainty
intrinsic to real-world problems into the problem formu-
lation, even when their consideration is essential for the
generation of reliable and feasible solutions. For this rea-
son, solutions obtained from traditional approaches to op-
timization under uncertainty (such as fuzzy, stochastic and

stochastic dynamic programming) may often be of limited
value in producing realistic solutions for real-world prob-
lems.

Simulation-based optimization constitutes an interesting
alternative in situations where the high level of complex-
ity precludes a complete analytic formulation of a prob-
lem [7] and where uncertainty needs to be considered [8].
Simulation-based optimization involves the development
of a detailed simulation model, which is then coupled with
an optimizer in a black-box fashion. In other words, the op-
timizer operates on a (sub-)set of model parameters and the
optimization process is based exclusively on the (usually
stochastic) simulation responses. Evolutionary algorithms
(EAs) are well-suited to black-box optimization settings,
as highlighted by their wide application to real-world op-
timization problems that cannot be handled by analytical
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approaches [14]. The feasibility and reliability of solutions
become the primary consideration in such settings [8], and
the EAs’ flexibility in this respect typically offsets its dis-
advantages (specifically, the lack of guaranteed optimality
of its identified solutions).

When EAs are employed as optimizers of simulation-
based optimization models, fitness values become sub-
ject to the variability arising from the stochastic responses
within the simulation model. The resulting noisy nature of
the fitness values poses a challenge to the evolutionary opti-
mizer, for it may mislead selection procedures [1] and lead
to the propagation of inferior individuals or to the elimina-
tion of superior ones, thereby undermining algorithm per-
formance [17]. Under these circumstances, noise handling
strategies can play an important role in compensating for
the impact of noise on the optimizer, and, specifically, in
helping the optimizer to identify solutions that exhibit low
fitness variability and give rise to high average fitness. Mul-
tiple studies have analysed situations in which noise causes
perturbations during fitness evaluation, thus generating dis-
crepancies between the observed and “true" fitness [14].
We refer the reader to [10] for a comprehensive survey of
noise handling strategies proposed in the existing literature.

Implicit and explicit averaging are the two strategies
most commonly employed to reduce the influence of noise
in evolutionary optimization under noise. Implicit averag-
ing relies on the EA mechanism itself to compensate for
the impact of noise. Specifically, it assumes that the use
of sufficiently large populations will ensure that individu-
als from promising regions of the search space are sampled
repeatedly [10, 17], and the impact of noise can be reduced
in this manner. On the other hand, explicit averaging strate-
gies ensure that individuals are evaluated using average fit-
ness values obtained across a specific number (n) of fitness
evaluations (replicates). Statistically, this approach ensures
that the expected error of fitness estimates (i.e. the differ-
ence between the observed and the “true" fitness mean) re-
duces with a factor of

√
n [10].

Both implicit and explicit averaging strategies incur ad-
ditional fitness evaluations due to (i) the increase in popula-
tion size and due to (ii) the increase in the number of trials,
respectively. Fitness evaluations present an important con-
sideration in simulation-based optimization, as each repli-
cation of a simulation is time-consuming and the number
of these replications may be limited by available computa-
tional time. Here, we investigate the efficiency and effec-
tiveness of different noise-handling strategies in a realistic
simulation-based optimization setting, in which the compu-
tational budget available for the optimization (and, there-
fore, the overall number of simulation replicates) is lim-
ited. Specifically, we compare explicit averaging against
implicit averaging strategies for two different population
sizes. Finally, we investigate a hybrid scheme that aims to
combine the strengths of both approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the real-world optimization problem con-
sidered and the corresponding simulation-based optimiza-

tion model developed in this study. Explicit averaging, im-
plicit averaging and a hybrid strategy combining both ap-
proaches are described in Section 3. Section 4 presents de-
tails about the comparative analysis, and empirical findings
are presented in Section 5. Overall conclusions, as well as
the limitations of this study and future research directions,
are discussed in Sections 6 and 7, respectively.

2 Simulation-Based Optimization
Model

In this study, a simulation-based optimization approach
based on the integration of discrete event simulation (DES)
and a genetic algorithm (GA) is applied to address the pro-
duction planning problem of a real manufacturing company
presented by Diaz Leiva and Handel [6] with the difference
that, here, the objective is to achieve profit maximization.
Additional modifications made to the original DES and op-
timization models presented in [6] are stated in Sections 2.1
and 2.2, respectively.

This problem corresponds to a big bucket, multi-product,
multi-level (sub-products), capacitated (constraints are
considered) production planning problem of a failure-prone
manufacturing system, consisting of multiple work centres
with insufficient capacity to fully cover demand require-
ments.

The DES model was developed in SimEventsr (The
MathWorks, Inc., 2014) and Matlab’s GA (MI-LXPM) im-
plementation [5] was used as the optimizer. This is the de-
fault MATLABr R2014a’s (The MathWorks, Inc., 2013)
implementation for solving integer and mixed integer prob-
lems with GA. The GA employs Laplace crossover, power
mutation and binary tournament selection as operators. The
truncation procedure, which ensures compliance with in-
teger constraints after crossover and mutation is described
in [5]. The inbuilt constraint-handling method is the param-
eter free penalty function approach proposed by Deb [4].

All computations were executed in parallel on a 12 core
Intel(R) Xeon(R) CPU L5640 @ 2.27GHz with 24 GB of
RAM running Scientific Linux, release 6.2.

2.1 Simulation Model

The DES model employed in this study is a modified ver-
sion of the model presented by Diaz Leiva and Handel [6].

The DES model represents the production of 31 prod-
ucts k within 7 work centres l. A work centre corresponds
to the set of resources (e.g., machines, people, etc.) needed
to manufacture certain products. Given that some prod-
ucts can be manufactured in several work centres a total of
41 processes j are considered in the DES model. A pro-
cess j includes all series of events involved in the initial-
ization of orders of a product k, its manufacturing in a spe-
cific work centre l and its storage in an specific sink s (with
s = 1, 2, . . . , 41).
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This model intends to capture the delays (αl) caused
by work centre failures and provides the stock of products
manufactured during a production period of one month (24
days composed of 3 shifts of 8 hours each). The total stock
of a specific product (Sk) corresponds to the sum of lots
manufactured across the different work centres as shown
by the following equation:

Sk =

7∑
l=1

Sk,l, (1)

where Sk,l is the stock of product k manufactured in work
centre l.

The first modification to the original model is that in-
stead of using probability distribution functions (PDFs) to
represent the time required to manufacture a specific pro-
duction lot (Tj), constant values are assigned to those at-
tributes according to specifications provided by the com-
pany.

Moreover, unlike the original DES model, the probabil-
ity of occurrence of a work centre failure during the manu-
facturing of a product lot is here denoted as Pl and is mod-
elled as attributes assigned to each work centre (rather than
to each process). The probabilities used for Pl, as well as
the PDFs employed to represent the delays caused by those
failures (αl), are summarized in Table 2.

Finally, an additional server was added to each process,
so that the first lot of every process is processed by this
server during the entire duration of each simulation repli-
cation (24 days). This modification was made to allow de-
cision variables to take values equal to zero, a possibility
not accounted for in the original model [6].

2.2 Optimization Model

The objective here is to generate production plans that try to
maximize the expected sum of contributions to profit gen-
erated from processes undertaken by a failure-prone man-
ufacturing system. The expected sum of contributions to
profit is later referred to as “profit" for simplification pur-
poses.

A total of 41 decision variables (xj) are considered,
which correspond to the number of lots to be produced in
each process j, and are constrained to be non-negative inte-
gers. Those decision variables, specified by the GA, con-
stitute the input to the DES model and the responses Sk
obtained from the DES model are used for computing the
value of the fitness function.

The fitness value f is calculated across n independent
simulation replicates for each individual x as follows:

maximize f(x) = c̄ =
1

n

n∑
m=1

cm, (2)

where the value of n varies depending on the strategy ap-
plied (see Section 4 for details about n).

For each replication m, the responses (Sk) of the DES
model are used to calculate cm as follows:

cm =

31∑
k=1

Pk, (3)

where the total profit derived from product k is defined as:

Pk = Sk × ρk, (4)

where ρk denotes the contribution margin per lot of product
k.

Additional constraints are imposed in the form of Equa-
tion 5 to avoid production levels greater than the maximum
demand, to represent the requirement of sub-products and
labour needed to undertake each process.

41∑
j=1

ai,j × xj ≤ bi (i = 1, 2, . . . , 44), (5)

where bi denotes the magnitude of constraint i and ai,j cor-
responds to the amount deployed from bi by manufacturing
one lot in process j.

3 Noise Handling Strategies
In this study we focus exclusively on implicit and ex-
plicit averaging strategies, as these are straightforward to
implement in any EA and present the approaches most
commonly employed in practice. Other noise handling
strategies, such as averaging by means of approximated
models [3, 12, 16] and modifications of the selection
scheme [2, 15] have been proposed in the literature, but
are not considered here.

An explicit averaging strategy uses a fixed number n of
simulation replicates to obtain an average fitness value for
each individual, as described in Equation 2. These average
fitness estimates are then used to inform selection proba-
bilities in the evolutionary algorithm. Therefore, under the
explicit averaging strategy (ES) here analysed, fitness of
an individual x is computed across 10 independent fitness
evaluations (n = 10) and the population size employed cor-
responds to 50 individuals. n is set at this relatively small
level because a limited computational budget of 25,000 fit-
ness evaluations is available, and assigning higher values to
n or using a larger population size would reduce the num-
ber of generations that can be executed under ES.

In contrast, an implicit averaging strategy uses a sin-
gle simulation replicate (n = 1) to evaluate the quality of
an individual. Increased robustness towards noise is then
achieved by increasing population size relative to standard
settings of this parameter. Consequently, under the implicit
averaging strategy (IS), a single fitness evaluation (n = 1)
is used to compute fitness and a population size of 100 in-
dividuals is applied. Additionally, a baseline strategy (BS)
is also analysed in order to evaluate the performance of im-
plicit averaging when the population size is the same as in
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ES, and therefore, twice as many generations are evolved
compared to IS.

Moreover, we further describe a hybrid strategy (HS)
that attempts to combine aspects of implicit and explicit
averaging. This strategy applies implicit averaging (n = 1
and a population size of 100 individuals) throughout the
evolution process, but switches behaviour towards the end
of the optimization: instead of choosing the final solution
based on a single fitness value, we propose to select from
the final population the feasible individual with the best av-
erage fitness. Consequently, we implement a mechanism
that computes the average fitness of every feasible indi-
vidual of the final population across a number γ of fitness
evaluations, generated from independent simulation repli-
cations. The value of γ depends on the number of feasible
individuals (δ) in the final population and on the computa-
tional budget available for this last step (E), which in this
case corresponds to 1000 fitness evaluations. γ is computed
as follows:

γ =

⌊
E

δ

⌋
. (6)

Therefore, having a population size of 100, if every in-
dividual in the final population is feasible, 10 fitness eval-
uations are used to compute the average fitness of each in-
dividual. However, if infeasible individuals are present in
the final population, those 1000 fitness evaluations are dis-
tributed amongst feasible individuals only.

Parameters specified for all four noise handling strate-
gies introduced in this section are presented in Table 1.

4 Comparative Analysis

In order to test the effectiveness of the strategies under dif-
ferent levels of fitness variability, the following compar-
ative analysis is undertaken for two different problem in-
stances. Table 2 shows the different levels of uncertainty
incorporated into each instance of the problem.

The performance of the EA under the proposed HS is
compared with the performance observed for IS, ES and
BS. In order to provide a fair comparison of the four strate-
gies analysed, the stopping criteria selected to terminate the
optimization procedure is the number of fitness evaluations.
As mentioned in Section 3, a total budget of 25,000 fitness
evaluations is allocated for every strategy as shown in Ta-
ble 1.

The simulation-based optimization model is run 60 dif-
ferent times for each strategy; in each run, the best solution
(based on last fitness evaluations) is selected from the final
population. Consequently, 240 production plans are gen-
erated per problem instance. The precise quality of each
of these plans is evaluated using extensive simulation: av-
erage profit, measured in United States Dollar (USD), is
computed for every production plan across 1000 profit val-
ues obtained via stochastic simulation.

Subsequently, the four sets of average profit values are
depicted as cumulative distribution functions (CDFs) and
stochastic dominance criterion [18] is applied to determine
whether or not the optimization performance, as measured
in average profit values, differs between strategies.

Furthermore, Mann-Whitney U test [11] is then con-
ducted for paired comparisons to test whether the optimiza-
tion performance achieved under the different strategies is
statistically significant, expressed in the form of the follow-
ing hypotheses:

– Ho : stochastic homogeneity of CDFs of average
profit values obtained under both strategies

– Ha : average profit values obtained under one strategy
are stochastically smaller than the ones obtained under
the other strategy

Mann-Whitney U test is employed instead of t-test, since
distributions of the samples analysed do not fulfil the nor-
mality assumption.

5 Results
Descriptive statistics (means, minimum values, maximum
values and standard deviations) of the average profit values
(as computed across 1000 independent replications) ob-
tained under the four strategies as well as the corresponding
average computation times are presented in Tables 3 and 4
for problem instance 1 and 2, respectively.

Since our intention is to test the hypothesis presented in
section 4 among the four strategies, homogeneity of vari-
ances of the ranked values across the different samples is a
necessary condition for Mann-Whitney U test to be a reli-
able test [9]. Therefore, non-parametric Levene tests [13]
were performed on every combination of samples in both
problem instances. In both problem instances, results from
these tests indicate that variances did not differ significantly
(p > 0.05) between the samples of ranks analysed, con-
firming the suitability of Mann-Whitney U test to evaluate
the hypothesis above mentioned (Section 4).

Figures 1 and 2 illustrate as CDFs the 60 average profit
values obtained with production plans generated under
each strategy in problem instance 1 and 2, respectively.
Both figures clearly show that the CDFs of average profit
obtained under BS, IS and HS dominate the CDF of profit
obtained under ES (first-order stochastic dominance). Fur-
thermore, results from Mann-Whitney U test statistically
show that average profit values obtained under ES are
stochastically smaller (p < 0.01) than the ones obtained
under BS, IS and HS in both problem instances, as shown
in Tables 5 and 6.

These results demonstrate that ES is an inadequate noise
handling strategy in our setting: this result is likely to be
driven by the limited computational budget available, and
a stronger performance of ES may potentially be achieved
when considering performance upon convergence.
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Table 1: Parameters used for baseline, implicit averaging, explicit averaging and hybrid strategies

BS IS ES HS
n 1 1 10 1
PopulationSize 50 100 50 100
Generations 500 250 50 240
Fitness evaluations 25,000 25,000 25,000 ≤ 25,000

Table 2: Probabilities for Pl and PDFs for αl

Instance 1 Instance 2 Instance 1 and 2

Work centre (l) Pl Pl
αl

PDF Mean (d)
1 0.00 0.00 — —
2 0.10 0.30 Exponential 0.0847
3 0.25 0.45 Exponential 0.0935
4 0.15 0.35 Exponential 0.1338
5 0.00 0.00 — —
6 0.00 0.00 — —
7 0.00 0.00 — —

Table 3: Descriptive statistics of average profits and average computation times per strategy in problem instance 1

BS IS ES HS
Mean (USD) 703,689 715,376 555,932 707,503
Minimum (USD) 550,417 484,229 460,416 550,014
Maximum (USD) 793,316 795,716 689,685 792,696
Std dev (USD) 55,539 60,416 47,322 60,754
Average computation time (s) 1256 1144 1235 1369

Table 4: Descriptive statistics of average profits and average computation times per strategy in problem instance 2

BS IS ES HS
Mean (USD) 707,600 703,420 543,140 723,460
Minimum (USD) 536,840 538,990 437,930 561,550
Maximum (USD) 785,810 783,040 656,800 790,460
Std dev (USD) 60,137 61,744 43,412 51,258
Average computation time (s) 1284 1108 1214 1265
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No dominance (neither first nor second degree stochas-
tic dominance) can be determined among the CDFs of av-
erage profit obtained under BS, IS and HS in problem in-
stance 1, where all three strategies appear equally compet-
itive. These results are in accordance with results from
Mann-Whitney U test, which indicate stochastic homo-
geneity (p > 0.05) among samples obtained under BS, IS
and HS in problem instance 1. It is interesting that popula-
tion size (i.e. different setups of implicit averaging) has no
significant effect in this setting as evidenced under BS and
IS.

In problem instance 2, results from Mann-Whitney U
tests also indicate stochastic homogeneity (p > 0.05)
among samples obtained under BS, IS and HS. However,
the CDFs of average profit obtained under HS dominates
the CDFs of average profit obtained under IS and under BS,
respectively (first and second-order stochastic dominance).
These results indicate that, even in a setting with a lim-
ited evaluation budget, the accurate fitness estimates from
explicit averaging can be beneficial to optimization. It is
clear that the difference between IS and HS arises during
the final stages of the optimization only, while IS contin-
ues optimization during additional generations, HS focuses
resources on explicit averaging across its last population.
When seen in combination with the poor performance of
ES, our results suggest that the trade-off between improved
exploration (from evaluating more individuals) and accu-
rate fitness evaluations (through simulation replicates for
the same individual) needs to be carefully balanced in this
setting. This finding appears in line with previous research
that has delivered contradictory results regarding the rela-
tive performance of explicit and implicit averaging.

Table 5: Values for Mann-Whitney U statistic obtained in
problem instance 1

BS IS HS ES
BS — 1525 1705 107**
IS — — 1662 117**
HS — — — 113**
ES — — — —

** p < 0.01

Table 6: Values for Mann-Whitney U statistic obtained in
problem instance 2

BS IS HS ES
BS — 1719 1549 103**
IS — — 1485 96**
HS — — — 36**
ES — — — —

** p < 0.01

6 Conclusion

Implicit averaging strategies reduce the impact of noise by
having a sufficiently large population, which ensures that
individuals from promising regions of the search space are
sampled repeatedly [10, 17]. On the other hand, explicit
averaging strategies use average fitness values, obtained
across a specific number of fitness evaluations, to ensure
that evaluation of individuals is based on fitness estimates
that are more robust to noise [10].

One of the key findings of this study was that, in the con-
text of our real-world problem, a noise-handling strategy
based on explicit averaging did not provide a competitive
performance. More generally, this points to the fact that the
computational costs incurred by simulation replicates may
be problematic in constrained time settings.

Furthermore, we found that implicit averaging per-
formed robustly for both of the population sizes used. The
performance of our hybrid strategy does indicate that some
effort towards explicit averaging may become important
with increasing variability. Under low levels of fitness
variability, the hybrid strategy, implicit averaging and our
baseline showed a comparable performance. This situation
changed with increasing levels of fitness variability, when
HS started to enhance overall performance.

Compared to a pure, implicit averaging strategy, the hy-
brid strategy misses out on the last few generations of op-
timization. Our results show, however, that this disadvan-
tage is more than counter-balanced by the benefits from an
accurate final selection step that reduces the likelihood of
choosing an inferior individual (in terms of average fitness)
as the final solution.

7 Limitations and Future Research

The relevance of obtaining more reliable fitness estimates
increases with the level of variability, since there is a higher
risk of choosing an inferior solution. It is, therefore, intu-
itive that the final selection mechanism implemented in HS
would be more beneficial in such circumstances. But at
the same time, the number of fitness evaluations needed to
obtain reliable estimates is expected to raise with higher
fitness variability, leaving to the evolutionary process a
smaller share of the computational budget. Therefore, fur-
ther research may focus on investigating the right trade-
off between exploration (IS) and accurate fitness evaluation
(ES). In this sense, the application of different sampling
techniques (e.g., Latin Hypercube) during the final selec-
tion mechanism might be worthy of future investigation, as
it may allow a reduction in the number of fitness evalua-
tions required in this last step.

Our results underline issues around the computational
cost of explicit averaging, but also highlight that sporadic
use of this strategy may, nevertheless, be beneficial. In this
study, the use of explicit averaging in the hybrid strategy
was limited to the final selection step only. Future research
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Figure 1: CDFs of average profit values obtained with production plans generated under the four different strategies in
problem instance 1.

Figure 2: CDFs of average profit values obtained with production plans generated under the four different strategies in
problem instance 2.
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may consider the possibility of using explicit averaging at
earlier points during the optimization process.
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