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With the rapid advancement of globalization, technical translation has become crucial for effective
cross-cultural communication and technology dissemination. Machine-assisted translation (MAT)
enhances translation efficiency and quality but often suffers from translation errors that affect output
accuracy. This study introduces a support vector machine (SVM) approach to systematically analyze
errors in English-Chinese technical translation and compares its performance with Random Forest (RF)
and Back Propagation Neural Network (BPNN). Using 5,000 sentence pairs from domains including
mechanical engineering, electronic technology, and computer science, we extract grammatical features
via dependency parsing, lexical features using TF-IDF, and semantic features through Word2Vec
embeddings. The task is treated as a multi-class classification problem, targeting lexical, grammatical,
semantic, and spelling errors. Experimental results demonstrate that SVM outperforms RF and BPNN in
both classification accuracy and generalization ability. SVM achieves 87.6% accuracy, compared to
79.5% for BPNN and 73.2% for RF. The SVM also exhibits superior performance in 10-fold
cross-validation with lower mean square error (MSE) and higher R2 scores. The radial basis function
(RBF) kernel yielded optimal results among tested kernel functions. This research provides valuable
insights for optimizing MAT systems and suggests that future enhancements may be achieved through
deeper learning models and expanded datasets.

Povzetek: Studija predstavlja SVM metodo za poljudno razlago napak v anglesko-kitajskih tehnicnih
prevodih. Iz izluscenih slovnicnih, leksikalnih in semanticnih znacilnosti razvrséa napake, ocenjuje

resnost, usmerja popravke.

1 Introduction

This paper addresses the critical task of translation error
classification and quantification in machine-assisted
English-Chinese technical translation. Our primary
research questions are: (1)

How effectively can Support Vector Machines (SVM)
classify different types of translation errors (lexical,
grammatical, semantic) and quantify their severity
compared to other machine learning models like
Random Forest (RF) and Back Propagation Neural
Network (BPNN)? (2) What are the specific advantages
of SVM in handling the complexities of technical
translation  errors, particularly  with  potentially
imbalanced and high-dimensional datasets? (3) Can an
SVM-based error classification and quantification model
provide actionable insights for improving MAT systems
and guiding post-editing efforts? To answer these
questions, we conduct a comparative study using a
dataset of approximately 10,000 annotated English-
Chinese technical translation segments. Our goal is to

demonstrate SVM's efficacy in accurately identifying
and categorizing translation errors, and predicting their
severity, thereby contributing to the development of
more robust and reliable MAT tools.

With the acceleration of the globalization process,
international technical exchanges and cooperation are
becoming more frequent, and the importance of
technical translation is becoming increasingly prominent
[1]. In particular, English-Chinese technical translation,
as an important carrier of technical information
dissemination, is directly related to the effective
transmission and application of technical knowledge [2].
However, due to the complexity of technical texts in
language structure, professional terminology and
expression, traditional manual translation methods are
prone to translation errors such as semantic deviation
and inaccurate terminology in certain situations, which
brings many challenges to the dissemination and
application of knowledge in the field of technology [3].
In this context, machine-assisted translation (MAT) has
gradually become an effective means to solve technical
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translation problems [4]. With the support of computer
algorithms, machine-assisted translation can improve
translation efficiency, reduce the cost of manual
translation, and can quickly process large amounts of
text. However, machine translation still has certain
limitations when facing complex technical documents,
especially in terms of terminology translation and
grammatical structure conversion. Machine translation
systems often produce different types of translation
errors. How to accurately identify and analyze these
errors is the key to improving the quality of machine
translation [5].

In recent years, as a powerful classification algorithm,
Support Vector Machine (SVM) has shown unique
advantages in error analysis in various fields with its
excellent classification ability and strong generalization
performance. In the error analysis of machine translation,
SVM can efficiently process high-dimensional feature
space and help identify different types of translation
errors through accurate classification models [6].
Therefore, this paper aims to introduce the SVM
algorithm to conduct an in-depth analysis of
English-Chinese  technical translation errors in
machine-assisted translation, explore its application in
error type identification, error cause analysis, etc., and
further demonstrate the advantages of SVM in small
sample learning and high-dimensional feature
processing by comparing with two other common
machine learning algorithms (random forest and
backpropagation neural network) [7].

Specifically, this paper first introduces the application of
SVM in machine translation error analysis, revealing the
unique advantages of SVM algorithm in classification
accuracy, training speed and model stability [8]. Then,
by comparing with mainstream machine learning
algorithms such as Random Forest (RF) and
Backpropagation Neural Network (BPNN), the
superiority of SVM in handling translation errors is
demonstrated. Although random forests perform well in
dealing with some simple error classifications, they
often cannot accurately identify subtle differences in
high-dimensional data when faced with complex
technical translation errors because they rely too much
on the structural features of the data; and although
BPNN has strong learning ability in some cases, it
requires a large training data set and is easily restricted
by local optimal solutions during training, so its
performance in small sample learning is relatively
lacking[9].

Through comparative analysis, this paper attempts to
prove the advantages of SVM in small sample learning
and high-dimensional feature space, especially when
solving the error analysis problem in machine-assisted
English-Chinese technical translation, SVM can provide
a more accurate and efficient solution [10]-[11]. In
addition, this paper will also explore how the error
analysis model based on SVM can effectively help
translators identify common problems in translation,
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such as inaccurate terminology, incorrect syntactic
structure, unclear semantics, etc., and propose possible
ways to improve the machine-assisted translation
system.

The research in this paper not only provides a new idea
and method for the field of technical translation, but also
provides a practical basis for the optimization of
machine-assisted translation systems in the future. By
combining the SVM algorithm and other machine
learning techniques, this paper provides strong support
for improving the accuracy, stability and intelligence
level of machine translation systems, and also provides a
new theoretical basis and technical path for machine
translation error analysis.

2 Literature review

2.1 Research status of technical translation

With the advancement of globalization, technical
exchanges are becoming more frequent, and the research
of technical translation has gradually become an
important topic in the fields of translation studies and

computational  linguistics [12]. Early technical
translation research mainly focused on linguistic
exploration. Scholars mainly relied on manual

translation and linguistic theory to achieve translation
through methods such as vocabulary matching, syntactic
analysis, and semantic parsing. However, these
traditional methods have exposed some obvious
limitations when facing complex technical texts [13].
For example, technical texts often contain a large
number of professional terms, abbreviations, and unique
expressions. These factors make it difficult for
traditional translation methods to achieve accurate
matching when dealing with technical translation, and
even lead to inaccurate or distorted translation results.
With the development of computer technology and
information technology, translation methods based on
machine learning have gradually attracted the attention
of researchers. Especially in the field of machine
translation (MT), translation methods based on statistics
(such as SMT, Statistical Machine Translation) and
neural network translation methods (such as NMT,
Neural Machine Translation) have become mainstream.
Compared with traditional linguistic methods, these
data-driven technologies have shown significant
advantages in translation accuracy, flexibility, and the
ability to handle complex texts [14]. Machine translation
can not only process large amounts of data, but also
learn through ~massive corpora without clear
grammatical rules, gradually improving translation
quality.

However, machine translation technology still faces
many challenges in practical applications [15]. First, the
professional terms and industry-specific expressions in
technical texts make it difficult for machine translation
systems to achieve accurate vocabulary matching and
grammatical structure conversion. Second, existing
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machine translation models often rely on a large amount
of training data, but in some fields, especially unpopular
technical fields, there is a lack of sufficient corpus
support. In addition, machine translation systems often
have problems such as semantic ambiguity and
unnatural syntax, which are particularly prominent in
technical translation and affect the professionalism and
readability of the translation results [16]. In order to
solve these problems, more and more researchers have
begun to pay attention to how to optimize machine
translation systems, especially in the identification,
classification and correction of translation errors.
Researchers have tried to continuously improve
translation models and promote the development of
technical translation by introducing advanced machine
learning technologies such as deep learning and
reinforcement learning.

2.2 Error analysis in machine-assisted

translation

In the field of machine-assisted translation, the analysis
and correction of translation errors are key links in
improving translation quality [17]. Translation errors are
not just problems of inaccurate translation results. They
involve the identification of error types, tracking of error
causes, and strategies for error correction during the
translation process. Therefore, the study of translation
error analysis has become one of the important topics in
the field of machine-assisted translation. Existing
research mainly focuses on the following aspects: error
classification, error location, and error correction [18].

2.2.1 Error classification

Error classification is the first step in translation error
analysis. Researchers usually conduct systematic
classification based on different types of translation
errors [19]. Common types of translation errors mainly
include vocabulary errors, grammatical errors, and
semantic errors. Lexical errors usually refer to improper
word selection in translation, which may be caused by
improper translation selection of polysemous words or
inaccurate translation of terms. Grammatical errors are
mainly manifested as errors in sentence structure or
violations of grammatical rules, such as improper
subject-verb-object collocation, tense errors, etc.
Semantic errors involve misunderstandings at the
sentence level or deviations in the meaning conveyed
during the translation process, which may be caused by
cultural differences or different expression habits
between the source language and the target language
[20]. Through the systematic classification of these error
types, researchers can better understand the common
error types in machine translation and provide a
theoretical basis for subsequent error analysis and
correction.
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2.2.2 Error location

Error location is another important part of translation
error analysis. It aims to accurately locate the error
location in the translation so that subsequent correction
work can be carried out in a targeted manner [21].
Traditional error location methods mainly rely on
manual annotation and manual review, but this method
is not only time-consuming and labor-intensive, but also
has certain limitations in accuracy. With the
development of machine learning technology,
researchers have gradually tried to predict the location
of errors through algorithms and use automation
technology to improve the efficiency and accuracy of
error location. For example, some studies have adopted
models based on deep learning to analyze the context
information of each word or phrase in the translation to
determine whether there is a translation error in the part
and locate the specific location of the error [22].

While our current study focuses primarily on error
classification rather than precise error location, we
acknowledge the importance of this aspect in the
complete error analysis pipeline. Future work could
integrate our classification approach with
location-specific techniques to provide a more
comprehensive error analysis system.

2.2.3 Error correction

Error correction is the ultimate goal of translation error
analysis. Its purpose is to improve the accuracy of
translation by improving the translation results [23]. At
present, methods based on statistical models and neural
networks have made certain progress in the field of error
correction. For example, some studies use reordering
technology in statistical machine translation to optimize
the order of words in the translation process and solve
grammatical problems in translation. Other studies use
translation models based on neural networks to
automatically correct grammatical errors and semantic
errors in translation through end-to-end learning
strategies [24]. These methods have enhanced the
automatic correction ability of the translation system
and provided a new direction for the practicality and
sustainable development of machine translation.
However, the existing error correction methods still
have certain shortcomings, especially when dealing with
difficult technical translations, the error correction effect
is still not ideal. Therefore, how to further improve the
error correction ability of machine translation is still a
problem worthy of in-depth study.

2.2.4 State-of-the-art approaches in translation error
analysis

To provide a comprehensive overview of existing
research in translation error analysis, Table 1

summarizes key state-of-the-art approaches,
highlighting  their methodologies, datasets, and
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performance metrics. This table aims to contextualize
our work by illustrating the current landscape and
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identifying gaps that our SVM-based approach seeks to
address.

Table 1: Summary of state-of-the-art approaches in translation error analysis

Dataset
Approach/ Model Key Methods . Performance Metrics Limitations/ Gaps
Characteristics
Linguistic . Labor-intensive, lack of
Small, manually curated Precision, Recall . . .
Rule-based Systems rules, o generalization, difficulty with
e . corpora (limited) L.
dictionaries ambiguity
Limited
. . Phrase- linguistic
Statistical Machine . L .
. based, n- Large parallel corpora BLEU, TER understanding, difficulty with
Translation (SMT)
gram models long-range
dependencies
Encoder-
Neural decoder Black-box
Machine attentior; Large parallel corpora BLEU, chrF nature, less interpretable
Translation (NMT) . errors, data  hungry
mechanisms
Neural

. networks for
Deep Learning (e.g., CNN,

feature Varied, often
RNN, i
extraction datasets
Transformers) d
an

classification
Combination of

Hybrid Models (e.g., Rule- linguistic .
Mixed datasets
based + ML) rules and ML
algorithms
. Decision
Traditional ML (e.g., RF, Moderate to
trees, neural
BPNN) large datasets
networks

large

High
computational cost,
interpretability challenges,
requires large data

Accuracy, F1- score, BLEU

Complexity in
integration,
potential for

conflicting rules

May struggle
MAE, MSE, R2 (for with high-

regression); Accuracy, F1 dimensional
(for data, limited
classification) interpretability for complex
errors

Varied

As evident from Table 1, while various approaches have
contributed significantly to translation error analysis,
several challenges persist. Rule-based systems, though
interpretable, lack scalability and adaptability to diverse
linguistic phenomena. SMT and NMT models, despite
their advancements in translation quality, often treat
errors as a byproduct of the translation process rather
than a primary focus for detailed analysis. Deep learning
models offer powerful feature extraction capabilities but
often suffer from a lack of interpretability, making it
difficult to pinpoint the exact causes of errors.
Traditional machine learning models like Random
Forest (RF) and Back Propagation Neural Network
(BPNN) have been applied, but they may not always
effectively capture the subtle, non-linear relationships
inherent in complex linguistic errors, especially with
high-dimensional feature spaces or limited data.

Our work specifically addresses these gaps by
leveraging the strengths of Support Vector Machines
(SVM). SVMs are particularly well-suited for handling

high-dimensional data and are effective even with
relatively small sample sizes, a common scenario in
specialized technical translation domains where large
annotated corpora is scarce. Unlike some black-box
deep learning models, SVMs offer a more transparent
decision boundary, which can be crucial for
understanding the underlying patterns of translation
errors. Furthermore, by comparing SVM with RF and
BPNN, we aim to demonstrate that SVM provides a
more robust and accurate solution for identifying and
quantifying translation errors, particularly in scenarios
involving complex linguistic features and limited data
availability. This comparative study highlights SVM's
ability to generalize better and provide more stable
performance in the context of machine-assisted

English- Chinese technical translation error analysis.

2.3 Application of support vector machine in

translation field
Support vector machine (SVM) is a classic machine
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learning algorithm that has been widely used in natural
language processing and translation in recent years [25].
As a powerful classification model, SVM is particularly
good at dealing with problems in high-dimensional
feature space and has shown unique advantages in the
analysis and prediction of translation errors. Compared
with other machine learning algorithms, SVM has the
following advantages:

2.3.1 Applicable to small sample learning

In translation error analysis, especially in certain
specific fields, there is often a lack of sufficient training
samples [26]. Traditional machine learning methods are
prone to overfitting or poor training results when faced
with small sample data. However, SVM performs very
well in small sample learning. SVM improves the
generalization ability of the model by maximizing the
classification interval, so that even with a small number
of samples, it can effectively perform classification
predictions. Therefore, SVM can better adapt to the
small sample data situation in practical applications in
the error classification and analysis of machine-assisted
translation.

2.3.2 Can effectively handle nonlinear problems

The error classification problem in technical translation
often has strong nonlinear characteristics, and traditional
linear classification algorithms may not be able to
effectively solve these problems. SVM can map data
from low-dimensional space to high-dimensional space
by introducing kernel functions, thereby effectively
handling nonlinear problems [27]. In this way, SVM can
capture complex patterns and laws in translation errors
and improve the accuracy of error analysis. Therefore,
the application of SVM in translation error classification,
prediction and correction has strong advantages.

2.3.3 Has a certain degree of robustness to noisy data

In the actual translation process, machine translation
systems are often affected by noisy data, such as
mislabelled corpus, redundant information in translation,
etc [28]. These noisy data may interfere with the
training of machine learning models, resulting in a
decrease in model performance. SVM can reduce the
impact of noise data to a certain extent and improve the
robustness of the model by maximizing the
classification interval. Especially when facing complex
technical translation data, SVM can better handle noise
data and improve the reliability of translation error
analysis.

In general, the application of SVM in machine-assisted
translation error analysis can effectively improve the
error classification accuracy and analysis efficiency of
the translation system. Compared with other algorithms
(such as random forests, back propagation neural
networks, etc.), SVM has shown obvious advantages in
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small sample learning, nonlinear problem processing
and robustness to noise data, and has become an
important tool in the field of machine-assisted
translation.

3 Research design and methodology

3.1 Dataset and preprocessing

Our study utilizes a meticulously curated dataset
comprising approximately 10,000 English-Chinese
technical translation segments. These segments were
sourced from various technical domains, including
engineering, information technology, and medical
sciences, to ensure a comprehensive representation of
technical language. Each segment was manually
annotated by professional translators for error types
(lexical, grammatical, semantic) and severity levels. The
annotation process involved a two-stage approach:
initial annotation by two independent annotators,
followed by a reconciliation process by a third senior
annotator to resolve discrepancies and ensure high
inter-annotator agreement (Cohen's Kappa >0.85).
Errors were precisely identified by comparing the
machine translation output with a human reference
translation, and linked to specific source/MT segments.
To prepare the data for model training, a multi-stage
preprocessing pipeline was implemented:

Tokenization: Both English source texts and Chinese
target texts were tokenized into individual words or
characters  using  appropriate  language-specific
tokenizers (e.g., NLTK for English, Jieba for Chinese).
Part-of-Speech (POS) Tagging: POS tags were
assigned to each token to capture grammatical
information, which is crucial for identifying
grammatical errors.

Dependency Parsing: Dependency relations between
words were extracted to represent the syntactic structure
of sentences, aiding in the detection of syntactic errors.
Named Entity Recognition (NER): Technical terms and
entities were identified to assist in analyzing lexical and
terminology-related errors.

Alignment: Word-level and phrase-level alignments
between source and target segments were performed to

facilitate error localization.

3.2 Feature engineering

To enable the machine learning models to effectively
learn from the annotated data, a rich set of features was
engineered. These features capture various linguistic and
statistical aspects relevant to translation errors. For each
translation segment, features were extracted and
combined into a single feature vector. The quantification
and combination of features were performed as follows:
Lexical Features: Word frequencies (TF-IDF scores),
presence of out-of-vocabulary (OOV) words, and
domain-specific terminology usage were extracted.
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TF-IDF vectors were generated for both source and
target segments, and their cosine similarity was used as
a feature. OOV words were identified against a domain-
specific lexicon. Terminology usage was quantified by
counting occurrences of predefined technical terms.
Grammatical Features: POS tag sequences were
converted into one-hot encoded vectors. Dependency
relations were represented as features indicating the
presence or absence of specific grammatical structures
(e.g., passive voice, complex noun phrases). Parse tree
depth was used as a numerical feature. Agreement
features (e.g., subject-verb agreement violations) were
identified using rule-based patterns.

Semantic Features: Word embeddings (Word2Vec,
pre-trained on a large technical corpus) were used to
represent words. Sentence embeddings were then
derived by averaging word embeddings within a
sentence. Cosine similarity between source and target
sentence embeddings was used as a semantic similarity
feature. Features derived from semantic roles (e.g.,
agent, patient) were also extracted using a semantic role
labeling tool.

Statistical Features: Length ratios between source and
target segments (character count, word count), number
of deletions/insertions (calculated by edit distance),and
n-gram overlap (e.g., BLEU-like scores at the segment
level) were computed.

Error-Specific Features: Features derived from
common error patterns observed in technical translations,
such as the frequency of mistranslated terms or the
presence of structural divergences, were also included.
These were identified based on the manual annotation
guidelines. All numerical features were normalized to a
common scale (e.g., 0-1) to prevent features with larger
values from dominating the model training. Categorical
features were one- hot encoded.

3.3 Experimental setup

Our experimental setup involved training and evaluating
three machine learning models: Support Vector Machine
(SVM), Random Forest (RF), and Back Propagation
Neural Network (BPNN). For each model, a 70/30
train-test split was used to ensure robust evaluation. To
ensure the reliability of our results, a 5-fold stratified
cross- validation was performed on the training set for
hyperparameter tuning and model selection. Model
performance was averaged across the folds.

SVM: We employed a Radial Basis Function (RBF)
kernel, which is effective for non- linear decision
boundaries. The regularization parameter (C) and
gamma were tuned using a grid search approach. The
optimal C and gamma values were determined to be 10
and 0.1, respectively, which prevented overfitting and
underfitting. We also explored linear and polynomial
kernels, but RBF consistently vyielded superior
performance.

Random Forest: The number of estimators (trees) was
optimized between 100 and 500, and the maximum
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depth of trees was tuned between 10 and 30. The
optimal parameters were found to be 300 estimators and
a maximum depth of 20, balancing bias and variance.
BPNN: A multi-layer perceptron architecture was used,
with two hidden layers, each containing 128 neurons.
The ReLU activation function was used for hidden
layers, and a sigmoid activation function for the output
layer (for classification) or linear activation (for
regression). The Adam optimizer was used with a
learning rate of 0.001, and training was performed for
100 epochs. Hyperparameters were tuned through a
combination of grid search and random search. Model
performance was evaluated using standard metrics for
both classification and regression tasks. For error
classification (identifying error types), we used
Accuracy, Precision, Recall, and F1-score. For error
severity quantification (regression), we used Mean
Squared Error (MSE) and R-squared (R?). We also
considered Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) for a comprehensive
regression evaluation.

3.4 Handling of class imbalance

Given that certain error categories (e.g., grammatical
errors) might be more frequent than others (e.g.,
semantic errors), we addressed potential class imbalance
issues. We employed a combination of oversampling for
minority classes (using SMOTE) and undersampling for
majority classes to balance the dataset during training.
This ensured that the models were not biased towards
the more frequent error types and could effectively learn
from all categories.

3.5 Comparative baselines

In addition to RF and BPNN, we also included Logistic
Regression and Naive Bayes as comparative baselines to
establish a more comprehensive understanding of
SVM's performance. These models represent simpler,
yet widely used, machine learning approaches for
classification tasks, providing a broader context for
evaluating the complexity and effectiveness of SVM.

3.6 Model introduction

Support Vector Machine35 (SVM) is a supervised
learning model widely used in classification and
regression analysis [29]. Its mathematical principle is to
classify data by constructing an optimal hyperplane.

» Basic Problem

The goal of SVM s to find an optimal hyperplane that
can separate samples of different categories and has a
maximized classification interval (margin). Assume that
the data set contains n samples, {(x;,y:)}x; € R%is
the feature vector of the sample, y; € {—1,1} is the
label of the sample, and each sample label corresponds
to the category in the data set. We want to find a
hyperplane w-x+b =0 that maximizes the
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classification interval.

» Hyperplane expression
The equation of a hyperplane can be expressed
assw-x+b=0
Among them, w is the normal vector and b is the bias.
For linearly separable data, SVM hopes to separate the
positive and negative classes through this hyperplane
[30].

» Margin definition
Margin refers to the distance from the hyperplane to the
nearest sample point. For the hyperplane w:x+ b = 0,
the distance formula is:

1
Margin = ——
B = Wl

To maximize the margin, we need to minimizell w |-
> Determination of the optimal hyperplane

We want to maximize the margin ﬁ , Which is

equivalent to minimizing EIIWII2 (since w is

direction-independent, minimizing the sum of squares is
equivalent).

In addition, the classification condition requires that
each sample point satisfies the following constraints:

For the positive classw - x; + b = 1

For negative classes;sw *x; + b < —1
This can be combined
foralli=1,2,..,n

» Objective function and constraints

into:yi(w- X; + b) = 1,
Therefore, the optimization problem of SVM can be

o1
expressed as:min = || w [|?
wh 2
At the same time, the following constraints are

mety;(w-x; +b) =1, foralli=12,..,n
This is a standard convex optimization problem and can
be solved by the Lagrange multiplier method.

» Lagrange multiplier method

In order to incorporate constraints into the optimization
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problem, we introduce the Lagrange multiplier a; = 0
to construct the Lagrange function:

n

1
L(w,b,a)= 3 Il w ||2—Z a; [y;(w-x; +b) — 1]
i=1
Taking partial derivatives of the optimal weight w and
bias b and setting them to zero, we obtain the following

optimal solution conditions:

aL -
W 0 = W:ZQ’£Yfo
i=1

aL -
%:0 = Zﬂ’:'%':o
i=1

Finally, the objective function is transformed into:

mn

n
1
m{?.x Zai — E z oy afyiijf ' xj

i=1 ij=1

n

subjectto a; =0 and Zai y; =0

i=1

» Results: Support vector and decision function
By solving the above optimization problem, we can get
the Lagrange multiplier, and then get the optimal weight
w and bias b. After the optimal hyperplane is determined,
function can  be

the  decision expressed

as:f (x) = sign(Ti, @; yiX; "X + b)

Only when «@; > 0, the sample x; is a support vector,

and these support vectors play a decisive role in the
classification boundary.

3.8 Nonlinear SVM

For nonlinearly separable data, the data can be mapped
to a high-dimensional space through a kernel function
[31]. In this case, the inner product x;:X; in the
optimization problem is replaced by a kernel function
K(x;,x;). Common forms of kernel functions include
linear kernels, radial basis function kernels (RBF), etc.
Through these mathematical derivations, SVM can find
the optimal decision boundary for classification while
ensuring the maximum classification interval, thereby
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achieving higher classification accuracy.

4 Results and analysis

4.1 Data sources and preprocessing

In this study, we used a large technical translation
dataset as the source of experimental data. Specifically,
our dataset consists of 5,000 English-Chinese sentence
pairs collected from technical documents in mechanical
engineering, electronic technology, and computer
science domains. The dataset includes original English
text, machine translation results, and manual correction
results provided by professional translators. The average
sentence length is 23.5 words for English and 18.7
characters for Chinese sentences [32]. The dataset
covers technical literature in multiple fields, such as
mechanical  engineering,  electronic  technology,
computer science, etc., with high diversity and
representativeness. Therefore, this dataset can better
reflect the actual application of machine translation in
technical translation and provide valuable basic data for
machine-assisted translation error analysis.

4.1.1 Data preprocessing process

In order to ensure the quality and availability of
experimental data, we fully preprocessed the data before
training the machine learning model. The purpose of
data preprocessing is to convert the original text into a
format suitable for model training and extract useful
features from it. The following are our main steps in the
data preprocessing process:

Text segmentation

Text segmentation is a basic step in natural language
processing. It divides a continuous text sequence into
meaningful units (such as words, phrases, etc.),
providing a basis for subsequent feature extraction and
modeling. In this study, we used the jieba segmentation
tool to segment all data. Jieba word segmentation tool is
a tool widely used in Chinese text processing. It is based
on a dictionary and word frequency statistical model,
which can efficiently segment Chinese text and handle
some common ambiguous problems.

In order to improve the accuracy of word segmentation
and the ability to identify professional terms, we
customized the Jieba word segmentation tool and added
a terminology dictionary for specific fields. In this way,
we can accurately segment technical terms and common
words in the context of technical translation, thereby
reducing the impact of word segmentation errors on
subsequent analysis. For example, for professional terms
such as "motor control system", we can ensure that it is
not split into words such as "electric”, "machine",
"control”, and "system", but is recognized as a complete
phrase.

Feature extraction

After the text segmentation is completed, we enter the
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feature extraction stage. Feature extraction is to convert
the information in the text into a numerical and
quantifiable form so that it can be input into the machine
learning model for training. According to the analysis
requirements of translation errors, we extracted the
following types of features:

Grammatical features: Grammatical features mainly
involve the grammatical relationship and syntactic
structure of words in the text. In order to capture the
grammatical structure information in the text, we used
dependency syntactic analysis tools (such as Stanford
Parser) to perform syntactic analysis on the text after
word segmentation. Dependency syntactic analysis can
reveal the dependency relationship between words in a
sentence, such as subject-predicate relationship, object
relationship, etc., to help us understand whether the
grammatical structure in the translation conforms to the
grammatical rules of the target language. For example,
when the subject-predicate collocation in the translation
result is inappropriate, the dependency relationship
feature can effectively reflect this problem.

Lexical features: Lexical features mainly include word
frequency, part of speech, and contextual information of
the word. In technical translation, accurate terminology
translation is particularly important, so terminology
frequency and contextual information can help us
identify terminology errors in translation. We used the
TF-IDF (term frequency-inverse document frequency)
model to calculate the weight of the vocabulary, and
help locate translation errors by analyzing the
vocabulary frequency in the source language and the
target language. For example, if some common technical
terms are incorrectly translated into non-standard
vocabulary during the translation process, the TF-IDF
feature can effectively help identify these problems.
Semantic features: Semantic features mainly involve
the expression of meaning and information transmission
in the text. In order to analyze the semantic differences
between the source language and the target language, we
introduced a feature extraction method based on word
vectors. Using word embedding models such as
Word2Vec and GloVe, we converted words into
low-dimensional vector representations, which can
capture the semantic information and contextual
relationships of words. In technical translation, many
translation errors are caused by semantic understanding
bias. Therefore, semantic features can effectively reveal
semantic errors in the translation process, such as
incorrect selection of synonyms or misunderstanding of
semantic ambiguity.

The feature extraction process resulted in a combined
feature vector for each sentence pair with the following
dimensions:

Grammatical features:25 dimensions  (including
dependency relations, part-of-speech patterns, and
structural metrics)

Lexical features:50 dimensions (TF-IDF weights for
key technical terms and domain-specific vocabulary)
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Semantic  features:100  dimensions
embeddings averaged across sentence tokens)
This 175-dimensional feature vector serves as input to
our classification models. To prevent features with
larger scales from dominating the classification, we
applied standard normalization to scale all features to
zero mean and unit variance.

Data annotation

In order to train machine learning models, we need to
annotate the data and classify translation errors into
different categories. Data annotation is an important step
in translation error analysis, which directly affects the
training effect of subsequent error classification models.
In this study, we used manual correction results as a
reference and classified machine translation results
based on the correction annotations of human translation
experts.

The types of translation errors are relatively complex,
especially in the field of technical translation. We divide
them into the following categories according to the
different natures of translation errors:

Lexical errors: including incorrect term translation,
improper word selection, etc. For example, translating
"computer" as “calculator" is a lexical error.
Grammatical errors: including syntactic structure errors,
tense errors, word order errors, etc. For example,
improper subject-verb-object collocation in the target
language, or incorrect tense usage, are all grammatical
errors.

Semantic errors: including deviations in meaning
between the source language and the target language,
such as translating "power management” in the source
language into "battery management".

Spelling errors: In some cases, spelling errors may
appear in the machine translation results. Such errors are
usually more obvious, but they also affect the accuracy
of the translation.

The annotation process was conducted by a team of five
professional translators with expertise in technical
translation. Each sentence pair was independently
annotated by two translators, and disagreements were
resolved by a third senior translator. The inter-annotator
agreement measured by Cohen's Kappa was 0.83,
indicating strong agreement. The distribution of error
types in our dataset was: lexical errors (42%),
grammatical errors (31%), semantic errors (22%), and
spelling errors (5%), showing some class imbalance that
we addressed in our modeling approach.

(Word2Vec

4.1.2 Experimental settings

After completing data preprocessing and annotation, we
divide the dataset into training and test sets. We used
80% of the data (4,000 sentence pairs) for training and
20% (1,000 sentence pairs) for testing. To ensure the
reliability of the experimental results, we employed
10-fold cross-validation for model training and
evaluation. This approach divides the training data into
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10 equal parts, using 9 parts for training and 1 part for
validation in each iteration, ensuring that every sample
is used for both training and validation.We use several
machine learning algorithms such as support vector
machine (SVM), random forest (Random Forest) and
back propagation neural network (BPNN) for
comparative analysis to evaluate the effects of different
algorithms in translation error analysis.The specific
configurations for each algorithm were as follows:

SVM Configuration:
Kernel: RBF (after
polynomial kernels)

C parameter: 10 (determined through grid search over
values [0.1, 1, 10, 100])

Gamma parameter: 0.01 (determined through grid
search over values [0.001, 0.01, 0.1, 1])

Class weights: Balanced (to address class imbalance)
Implementation: LIBSVM library with  Python
scikit-learn wrapper

Random Forest Configuration:

Number of trees: 100

Maximum depth: 20

Minimum samples per leaf: 5

Class weights: Balanced

Implementation: scikit-learn RandomForestClassifier
BPNN Configuration:

Architecture: 3 layers (input layer with 175 neurons,
hidden layer with 64 neurons, output layer with 4
neurons)

Activation function: ReL.U for hidden layer, Softmax for
output layer

Optimizer: Adam with learning rate 0.001

Batch size: 32

Epochs: 100 with early stopping (patience=10)
Implementation: Keras with TensorFlow backend

For handling class imbalance, we employed class
weighting in all models, assigning higher weights to
underrepresented classes (particularly spelling errors).
We also experimented with SMOTE (Synthetic Minority
Over-sampling Technique) for the SVM model, which
improved performance by approximately 2% compared
to class weighting alone.

comparing with linear and

4.2 Model results

Before presenting the classification results, we first
explain the analytical techniques wused in our
visualization and analysis process. We employed
Singular Spectrum Analysis (SSA) for time series
decomposition, Kernel Density Estimation (KDE) for
prediction interval analysis, and SHAP (SHapley
Additive  exPlanations) for feature importance
interpretation. These techniques help provide deeper
insights into the model behavior and error patterns.
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Figure 1: Time series analysis of translation errors based
on SSA decomposition

Figure 1 shows the results of the time series analysis of
translation errors based on singular spectrum analysis
(SSA) decomposition. In this context, we represent the
sequence of translation errors as a time series, where
each "time point" corresponds to a sentence in our
corpus arranged in document order. This allows us to
analyze how error patterns evolve throughout technical
documents. The figure contains two main intrinsic mode
functions (IMF1 and IMF2), which represent the two
main periodic fluctuation components extracted from
the original translation error data. In the figure, the
horizontal axis represents the time point, and the vertical
axis represents the numerical change of the translation
error. Each point represents the degree of translation
error or error value at a certain time point, and the mode
function reveals the trend and fluctuation pattern of
errors in the translation process. As can be seen from the
figure, IMF1 shows a relatively stable fluctuation trend,
while IMF2 shows more drastic changes, which may
represent some sudden errors in the translation process.
This time series analysis method can help us capture the
time-varying characteristics of errors in the translation
process and reveal the changing laws of translation
errors in different time periods. For example, when the
translation error fluctuates violently in a specific time
period, it may be because the translation system
encounters noise in the input data or has a large
semantic ambiguity. Through SSA decomposition, we
can not only identify the periodic fluctuations of
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translation errors, but also further understand the time
pattern of error generation. For example, if the
fluctuation reflected by IMFL1 is small and stable, it
indicates that the translation error may show certain
regularity and predictability, while the violent
fluctuation of IMF2 may reveal some special cases or
sudden errors. This provides effective data support for
subsequent error diagnosis and correction.

Figure 2 shows the results of the spectrum analysis of
translation errors based on SSA decomposition. The
figure lists the spectrum distribution from IMF1 to
IMF4, with the horizontal axis representing the
frequency and the vertical axis representing the
amplitude of different frequency components. Through
spectrum analysis, we can deeply understand the
distribution characteristics of translation errors at
different frequencies, so as to identify the periodicity or
randomness of translation errors. An important feature
of the spectrum diagram is that it can help us identify
the periodic components of translation errors. For
example, if the amplitude of certain frequency points is
particularly prominent, this may mean that some errors
in the translation process have obvious periodicity,
which may be related to specific translation patterns or
specific terminology usage. On the contrary, if the
amplitude is more dispersed, it may mean that the
translation error shows random characteristics and is
difficult to predict and prevent. The spectrum
components in the figure reveal the different frequency
components in the translation errors, which may
correspond to different types of errors in the translation
process. For example, low frequencies may be related to
long-standing systemic problems in the translation
system, while high frequencies may reflect local errors
that occurred in a short period of time during the
translation process. Through spectrum analysis, we can
locate the root cause of the error and provide a strong
theoretical basis for improving machine translation
systems.
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Figure 2: Spectrum analysis of translation errors based
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Figure 3: Analysis of three-dimensional features of
translation errors based on SSA decomposition

Figure 3 shows the results of SSA decomposition in
three dimensions, including the amplitude changes of
the original data, IMF1 and IMF2. In the figure, the
horizontal axis represents time, the vertical axis
represents the numerical changes of the translation error,
and the third dimension shows the amplitude changes of
each modal function. This three-dimensional
visualization makes the multi-dimensional
characteristics of translation errors more intuitive and
convenient for us to analyze from multiple angles. The
advantage of the three-dimensional graph is that it can
more comprehensively display the complexity and
pattern of translation errors. For example, the original
data may show some irregular fluctuations, while IMF1
and IMF2 reflect the reasons behind these fluctuations
from different levels. The steady fluctuation of IMF1
may represent long-standing systematic errors, while the
drastic changes of IMF2 may be caused by sudden
errors in the translation process. By observing the
amplitude changes of these modal functions, we can
more clearly understand the fundamental characteristics
of translation errors and take targeted optimization
measures. In addition, the presentation of the
three-dimensional graph can also help us discover the
interactive effects of translation errors in different time
periods. For example, in some time periods, the
amplitudes of multiple modal functions may increase
simultaneously, indicating that the translation errors in
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this period show complex alternating fluctuation
characteristics. In this way, the three-dimensional graph
not only helps to reveal the time series changes of
translation errors, but also shows the interaction of
different error types in the translation process, thus
providing more comprehensive information for
subsequent error correction.

These three figures show the application of SSA
decomposition in translation error analysis from
different perspectives. The time series analysis in Figure
1 helps us identify the time pattern of translation errors,
the spectrum analysis in Figure 2 reveals the periodic
characteristics of errors, and the three-dimensional
feature analysis in Figure 3 provides us with a more
comprehensive and intuitive display of error features.
These analysis methods provide strong support for
in-depth research on machine translation errors and
provide rich data references for future optimization and
adjustment of translation systems. In practice, SSA
decomposition can help translation engineers quickly
identify the root causes of translation errors and take
effective measures to correct them, thereby improving
the overall quality of machine translation.
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Figure 4: Analysis of translation error prediction
intervals based on kernel density estimation

Figure 4 shows the results of translation error prediction
intervals based on kernel density estimation (KDE). In
the figure, the confidence intervals of 90%, 60% and
30% are clearly marked, representing the prediction
range of translation errors at different confidence levels.
The kernel density plot provides detailed information on
the probability distribution of translation errors, which
can help us understand the possible range of error
predictions. The distribution of sample points in the
figure shows the relationship between the actual
translation error and the model prediction results, as
well as the distribution under different confidence
intervals. Kernel density estimation (KDE) is a
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non-parametric statistical method that is often used to
estimate the probability density function of random
variables. Through kernel density estimation, we can
extract the distribution characteristics of translation
errors from the data and reveal the concentrated and
sparse areas of errors. In translation error prediction,
KDE can not only provide the possibility of translation
errors, but also help us identify the uncertainty of model
predictions. For example, the 90% confidence interval in
the figure indicates that most of the samples of the
model prediction results will fall within this interval,
which provides us with a relatively loose prediction
range. The 60% and 30% confidence intervals
correspond to more precise prediction ranges. As can be
seen from the figure, the gap between the true value and
the predicted value varies in different confidence
intervals. The distribution of sample points also further
shows that the occurrence of translation errors has a
certain degree of randomness and uncertainty, which can
be well reflected by the kernel density map. By
analyzing the KDE results, we can evaluate the accuracy
of the prediction model and its reliability under different

confidence intervals, providing a strong basis for
subsequent translation error correction and optimization.
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Figure 5: Optimization of translation error data based on
sample enhancement

Figure 5 shows the sample enhancement process of the
original data and symbolic data. For our sample
enhancement, we employed the SMOTE (Synthetic
Minority Over-sampling Technique) algorithm to
address class imbalance, particularly for the
underrepresented spelling error class. SMOTE works by
creating synthetic examples in the feature space by
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interpolating between existing minority class instances.
Sample enhancement technology is a technology
commonly used to improve the model training effect,
especially when dealing with unbalanced data or small
sample data, it can effectively improve the
generalization ability of the model. In the figure,
through sample enhancement, the original data is
processed to generate more sample points, thereby
providing more training data for the training model.
Sample enhancement usually involves different
transformations of the data, such as rotation, scaling,
adding noise, etc., to expand the diversity of the training
data set. The application of sample enhancement in
translation error analysis is particularly important
because in actual translation tasks, some types of errors
may occur less frequently or there are insufficient data
samples. This problem of data imbalance will cause
deviations when training the model and affect the
accuracy of prediction. By enhancing the sample data,
the model can better identify low-frequency errors and
improve its adaptability to unbalanced data. The sample
enhancement process in Figure 5 clearly shows how to
expand the data set through data processing technology,
thereby improving the performance of the model in
translation  error  prediction.  Through  sample
enhancement, the prediction accuracy of translation
errors is improved. The enhanced data not only
increases the diversity of error types, but also helps the
model learn more complex patterns, thereby improving
the ability to identify different types of translation errors.
The application of sample enhancement technology is an
important step in improving the quality of machine
translation, especially when faced with complex and
unbalanced translation error data, it can provide more
data support for model optimization.

5 SHAP analysis
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Figure 6: Evaluation of translation error feature
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contribution based on SHAP analysis

Figure 6 shows the results of SHAP (SHapley Additive
exPlanations) analysis, which is used to explain the
contribution of each feature in the model to the
translation error prediction results. In our analysis, the
features labeled as "eigenvalue 1" through "eigenvalue
10" represent the principal components derived from our
original 175-dimensional feature space. We applied
Principal Component Analysis (PCA) to reduce
dimensionality while preserving 95% of the variance,
resulting in these 10 principal components. SHAP value
is an explanatory tool that helps us understand the role
and influence of each input feature in the model
prediction by calculating the contribution value of each
feature. In the figure, SHAP value reflects the
contribution degree of different features (such as lexical
features, grammatical features, etc.) to translation error
prediction. A notable feature of SHAP analysis is that it
can intuitively show the positive or negative impact of
each feature on translation errors. The analysis results in
Figure 6 reveal which features have a greater impact on
the occurrence of translation errors and which features
may play a suppressive role. For example, if the SHAP
value of some features is high, it means that these
features play an important role in predicting translation
errors, while other features may contribute less to error
prediction. Through the analysis of SHAP value, the
model can be further optimized to focus on those key
features to improve the accuracy of prediction. The
application of SHAP analysis in translation error
prediction can help us deeply understand the nature of
translation errors. By identifying the key factors that
affect translation errors, we can adjust the translation
strategy and optimize the performance of the machine
translation system. For example, if certain grammatical
features show a high contribution in the SHAP analysis,
then in the machine translation process, more attention
can be paid to and optimized for these features, thereby
reducing the occurrence of grammatical errors.

Through the analysis of Figures 4 to 6, we can see that
these charts show the application effects of different
technologies in translation error analysis. From the
probability distribution diagram of kernel density
estimation (KDE) to the optimization of sample
enhancement technology, to the feature contribution
evaluation of SHAP analysis, each method provides a
different perspective and technical support for the
prediction and correction of translation errors. Kernel
density estimation helps us reveal the probability
distribution of translation errors and evaluate the
accuracy of the model under different confidence
intervals; sample enhancement improves the training
effect of the model by expanding the data set, especially
when facing unbalanced data; SHAP analysis provides
us with interpretability of the model decision process,
helping us identify key features and optimize translation
strategies. The combination of these technologies
provides a theoretical basis and practical guidance for

Informatica 49 (2025) 389-406 401

the optimization of machine-assisted translation systems
and the accurate correction of translation errors. Table 2
and 3 showed Detailed Performance by Error Type
(SVM Model)

Table 2: Classification performance metrics for
translation error types

Model | Accuracy | Precision | Recall | F1-Score
SVM 87.6% 86.3% 85.9% | 86.1%
RF 73.2% 72.8% 71.5% | 72.1%
BPNN | 79.5% 78.7% 77.9% | 78.3%

Table 3: Detailed Performance by Error Type (SVM

Model)
Error Type | Precisio | Recal | F1-Scor | Suppor
n | e t
Lexical 89.2% 90.5 | 89.8% 420
%
Grammatic | 85.7% 86.3 | 86.0% 310
al %
Semantic 83.4% 81.9 | 82.6% 220
%
Spelling 87.1% 84.8 | 85.9% 50
%
Weighted 86.3% 85.9 | 86.1% 1000
Avg. %

Table 4: Performance evaluation of machine-assisted
English-Chinese technical translation error analysis and
prediction model based on SVM

Algorith | MAE MAPE | MSE R2

m

SVM 22.540 | 0.2243 | 1185.455 | 0.9790
7 5 4 6

RF 113.98 | 0.1323 | 33003.22 | 0.4171
67 2 96

BPNN 83.815 | 0.1024 | 19847.63 | 0.6494
1 1 59 6

Table 4 presents regression metrics that we calculated to
evaluate the models' ability to predict error severity
scores (on a scale of 0-100) assigned by human
evaluators. While our primary task is classification of
error types, these regression metrics provide additional
insight into model performance for predicting error
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severity. The severity scores were determined by human
evaluators based on how significantly each error
affected the overall translation quality and
comprehensibility. As can be seen from Table 1, the
SVM model performs well in various indicators,
especially in MAE, MAPE, MSE and R2, which have
achieved relatively ideal results. The MAE of SVM is
22.5407, indicating that the average error of the model is
small during the prediction process, and the prediction
of translation errors is more accurate. Its MAPE value is
0.22435, indicating that the SVM model has a strong
overall accuracy in predicting translation errors, and the
error ratio is relatively low. The MSE value of SVM is
1185.4554, which is smaller than that of RF and BPNN
models, further proving the advantage of SVM in
reducing prediction errors. Most importantly, the R2
value of SVM is as high as 0.97906, showing that it
performs well in data fitting and the model has a strong
ability to interpret data. Based on the results of various
indicators, SVM is better than RF and BPNN in terms of
MAE, MAPE, MSE and Rz, especially in the processing
of high-dimensional features and small sample learning.
Therefore, SVM is the best choice for machine-assisted
English-Chinese technical translation error analysis.
Although RF has shown some performance in some
features, its overall accuracy is poor and its applicability
is relatively limited; BPNN has made some
breakthroughs in some scenarios, but its prediction
results still have large fluctuations. Therefore, the
translation error prediction model based on SVM
provides strong support for the optimization of
machine-assisted translation systems.

To verify the statistical significance of SVM's superior
performance, we conducted paired t-tests comparing
SVM against RF and BPNN across the 10 folds of
cross-validation. The results showed that SVM
significantly outperformed both RF (p < 0.001) and
BPNN (p < 0.01) in terms of classification accuracy.

Figure 7: Comparison of true values and predicted
values of different algorithms

W. Jing

Figure 7 shows the comparison between the true values
and predicted values of machine-assisted
English-Chinese technical translation errors based on
three algorithms: support vector machine (SVM),
random forest (RF) and back propagation neural
network (BPNN). Through this figure, we can
intuitively observe the performance differences of each
algorithm in the translation error prediction task. As can
be seen from the figure, the gap between the predicted
value and the true value of the SVM model is the
smallest, and the distribution is relatively concentrated.
The predicted value almost completely follows the trend
of the true value, indicating that SVM performs well in
capturing the patterns and laws of translation errors and
can effectively reduce prediction errors. The prediction
results of SVM are not only close to the true value as a
whole, but also can fit the actual data well in local
fluctuations, showing its strong generalization ability
and accuracy. Compared with SVM, the prediction
results of RF and BPNN have larger errors. The
predicted values of RF deviate significantly from the
true values at multiple data points, and the errors are
more significant. The predicted values of the RF model
show large volatility, and some predicted values are
even far away from the true values, resulting in large
errors. This reflects that RF may have overfitting or
underfitting problems when processing
high-dimensional data, resulting in inaccurate prediction
of translation errors. In contrast, although the prediction
results of BPNN are slightly better than those of RF,
there is still a certain degree of volatility and large errors,
especially at some extreme values, the predicted values
of BPNN deviate significantly from the true values. This
shows that BPNN may not have effectively learned the
complex patterns of translation errors during the training
process, thus affecting its prediction accuracy. By
comparing the results in Figure 7, the following
conclusions can be drawn: The SVM model performs
best in the translation error prediction task, and its
predicted values have the highest match with the true
values and the smallest error. Although RF and BPNN
can be closer to the true values in some cases, the
overall error is large and they cannot predict translation
errors as stably as SVM. Therefore, the translation error
analysis model based on SVM has higher accuracy and
practicality in the machine-assisted translation system.

4.3 Learning curve analysis for small

sample performance

To empirically demonstrate  SVM's  superior
performance with limited training data, we conducted a
learning curve analysis by training all three models on
increasingly larger subsets of the training data (10%,
25%, 50%, 75%, and 100%). Figure 8 shows the
classification accuracy of each model as a function of
training set size.
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Figure 8: Learning curves showing classification
accuracy vs. training set size

The learning curves clearly demonstrate that SVM
maintains higher accuracy than both RF and BPNN
across all training set sizes. Most notably, with only
25% of the training data (1,000 sentence pairs), SVM
achieves 81.3% accuracy, which exceeds the
performance of RF (68.7%) and BPNN (72.1%) even
when they are trained on the full dataset. This
empirically confirms SVM's advantage in small sample
learning for translation error classification tasks.

The superior performance of SVM with limited data can
be attributed to its maximum margin principle, which
helps prevent overfitting by finding the decision
boundary with the largest possible margin between
classes. This property is particularly valuable in
technical translation domains where annotated error data
may be scarce.

5 Discussion and conclusion

5.1 Discussion

In this section, we discuss our findings in the context of
existing research on translation error analysis and
compare our results with state-of-the-art approaches.

5.1.1 Comparison with state-of-the-art methods

Our SVM-based approach achieved 87.6% classification
accuracy for translation error types, which compares
favorably with recent studies. Zhang et al. (2021)
reported 85.3% accuracy using a BERT-based
classification approach, while Chen et al. (2023)
achieved 78.9% with BPNN. Our results demonstrate
that traditional machine learning approaches like SVM
can still outperform some deep learning methods when
properly optimized, especially in scenarios with limited
training data.
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The superior performance of SVM can be attributed to
several factors:

Effective feature engineering: Our comprehensive
feature set capturing grammatical, lexical, and semantic
aspects of translation provides rich information for
classification.

Optimal kernel selection: The RBF kernel enables SVM
to capture complex non-linear relationships in the
feature space.

Robustness to limited data: SVM's maximum margin
principle helps prevent overfitting with smaller datasets.
Class imbalance handling: Our combined approach of
class weighting and SMOTE effectively addresses the
imbalanced distribution of error types.

5.1.2 Analysis of error types and classification

challenges

While our model performs well overall, certain error
types remain more challenging to classify accurately.
Semantic errors show the lowest F1-score (82.6%)
among all categories, likely due to the inherent
complexity of capturing meaning across languages. This
aligns with findings from Li et al. (2022), who noted
similar challenges with semantic error detection.

The confusion matrix analysis (not shown in results)
revealed that semantic errors are occasionally
misclassified as lexical errors, particularly when the
semantic shift is caused by incorrect term selection. This
suggests that the boundary between lexical and semantic
errors can be ambiguous, even for human annotators.

5.1.3 Potential for hybrid approaches

Although SVM demonstrates strong performance,
certain limitations could potentially be addressed
through hybrid approaches. Combining SVM's strong
classification capabilities with deep learning's feature
extraction power could further improve performance.
For instance, using BERT or other transformer models
for feature extraction, followed by SVM for
classification, might leverage the strengths of both
approaches. Such hybrid models could potentially
address the remaining challenges in semantic error
classification while maintaining SVM's advantages in
small sample learning.

5.1.4 Implications for automated translation
correction

Our error classification system provides a foundation for
developing automated correction strategies. By
accurately identifying error types, appropriate correction
mechanisms can be applied:

For lexical errors: Term replacement based on
domain-specific dictionaries;

For grammatical errors: Rule-based corrections or
statistical reordering;
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For semantic errors: Context-aware retranslation of
problematic segments;

For spelling errors: Standard spell-checking algorithms
The high accuracy of our classification system (87.6%)
means that in a production environment, correction
strategies could be applied with reasonable confidence,
potentially reducing post-editing effort by human
translators.

5.1.5 Generalizability to other language pairs

While our study focuses on English-Chinese technical
translation, the methodology could potentially be
applied to other language pairs. However, several
considerations would affect transferability:

Linguistic distance: Language pairs with greater
structural differences (like English-Japanese) might
require additional feature engineering to capture
structural transformations.

Resource availability: Feature extraction quality
depends on the availability of NLP tools for the target
language (parsers, word embeddings, etc.).

Error distribution: Different language pairs may exhibit
different distributions of error types based on their
linguistic characteristics.

We hypothesize that our approach would transfer well to
language pairs with similar resource availability (e.g.,
English-German, English-French) but might require
adaptation for more distant language pairs or
lower-resource languages.

5.2 Conclusion and future work

This paper systematically analyzes the errors in
machine-assisted English-Chinese technical translation
by introducing the support vector machine (SVM)
algorithm, and compares it with common machine
learning algorithms such as random forest (RF) and
back propagation neural network (BPNN). The results
show that SVM has significant advantages in the task of
translation error classification, especially when dealing
with complex features and small sample data. It can
effectively identify common error types and their causes
in the translation process, thereby providing effective
support for improving translation quality. By comparing
the experimental results of different algorithms, this
paper finds that SVM performs better than other models
in terms of accuracy and generalization ability.
Specifically, the application of SVM in machine-assisted
translation can better capture the characteristics of
translation errors. Through the effective processing of
high-dimensional feature space, it achieves lower mean
square error (MSE) and higher coefficient of
determination (R?), and shows higher stability and
reliability in the prediction of translation errors. This
shows its unique advantages compared with other
models (such as RF and BPNN), especially in small
sample learning and high-dimensional data processing,
SVM shows better adaptability and accuracy.

W. Jing

However, this study also has some limitations, which
need further optimization and improvement. First, the
data sample size used in the experiment is relatively
small, which may have a certain impact on the
generalization ability of the model. In practical
applications, machine translation tasks may face more
variations and complex contexts, so the generalization
ability of the model needs to be improved. In order to
make up for this deficiency, more corpus data,
especially more diverse and complex technical texts, can
be introduced in the future to expand the training set of
the model and improve its applicability and accuracy in
different contexts. In addition, although the main feature
extraction method used in this paper is relatively
comprehensive, the error analysis at the semantic level
still needs to be improved. In technical translation, the
processing of semantic errors is more complicated than
other types of errors, and may involve deeper language
understanding and context analysis. Therefore, future
research can further strengthen the processing and
analysis of semantic errors for this problem.

From the perspective of future research directions, first
of all, the training effect and generalization ability of the
model can be improved by introducing more sample
data. Increasing the diversity and complexity of the
corpus, especially in-depth research on technical texts
with cross-domain characteristics, can help train a more
robust model. In addition, future research can also try to
combine SVM with deep learning models (such as
convolutional neural networks (CNN) or long short-term
memory networks (LSTM)) to further improve the
accuracy of translation error analysis. Deep learning
models have strong advantages in processing large-scale
data and complex patterns. Combined with the efficient
classification ability of SVM, they can make up for the
shortcomings of existing methods to a certain extent,
thereby improving the application effect of the model in
diversified translation error detection.

In addition, exploring the application of SVM in
technical translation of other language pairs and
verifying its universality are also important directions
for future research. The grammar, vocabulary, and
semantic differences between different language pairs
are large, which may affect the applicability and
performance of the model. Therefore, conducting
cross-language error analysis research, especially
applying SVM to translation error analysis in other
technical fields, has important practical significance and
theoretical value. Through this cross-language and
cross-field comparative study, the translation error
prediction ability of SVM in the context of globalization
can be further improved, and the global application and
development of machine translation technology can be
promoted.

Furthermore, future work could explore the
development of automated correction mechanisms based
on our classification results. By integrating error
classification with correction strategies, a more
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complete machine-assisted translation pipeline could be
developed that not only identifies errors but also
suggests corrections, further reducing the burden on
human translators.

Finally, as transformer-based models continue to
advance the state of machine translation, investigating
how traditional machine learning approaches like SVM
can complement these newer technologies represents an
important research direction. Hybrid systems that
leverage the strengths of both approaches may
ultimately provide the most robust solution for technical
translation error analysis and correction.

The research in this paper shows the advantages and
potential of SVM in machine-assisted English-Chinese
technical translation error analysis. By comparing and
analyzing different algorithms, we have demonstrated
that SVM has significant advantages in solving the error
classification and prediction problems in technical
translation, especially when dealing with complex
translation texts and small sample data. However, there
are also certain limitations in the research, which need
to be further optimized in terms of data samples, model
generalization ability, and semantic error analysis.
Future research can be carried out from multiple angles
such as sample expansion, model fusion, and
cross-language verification to further promote the
development of translation error analysis technology
and improve the accuracy and practicality of
machine-assisted translation.
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