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With the rapid advancement of globalization, technical translation has become crucial for effective 

cross-cultural communication and technology dissemination. Machine-assisted translation (MAT) 

enhances translation efficiency and quality but often suffers from translation errors that affect output 

accuracy. This study introduces a support vector machine (SVM) approach to systematically analyze 

errors in English-Chinese technical translation and compares its performance with Random Forest (RF) 

and Back Propagation Neural Network (BPNN). Using 5,000 sentence pairs from domains including 

mechanical engineering, electronic technology, and computer science, we extract grammatical features 

via dependency parsing, lexical features using TF-IDF, and semantic features through Word2Vec 

embeddings. The task is treated as a multi-class classification problem, targeting lexical, grammatical, 

semantic, and spelling errors. Experimental results demonstrate that SVM outperforms RF and BPNN in 

both classification accuracy and generalization ability. SVM achieves 87.6% accuracy, compared to 

79.5% for BPNN and 73.2% for RF. The SVM also exhibits superior performance in 10-fold 

cross-validation with lower mean square error (MSE) and higher R² scores. The radial basis function 

(RBF) kernel yielded optimal results among tested kernel functions. This research provides valuable 

insights for optimizing MAT systems and suggests that future enhancements may be achieved through 

deeper learning models and expanded datasets. 

Povzetek: Študija predstavlja SVM metodo za poljudno razlago napak v angleško-kitajskih tehničnih 

prevodih. Iz izluščenih slovničnih, leksikalnih in semantičnih značilnosti razvršča napake, ocenjuje 

resnost, usmerja popravke. 

 

1 Introduction 

This paper addresses the critical task of translation error 

classification and quantification in machine-assisted 

English-Chinese technical translation. Our primary 

research questions are: (1)  

How effectively can Support Vector Machines (SVM) 

classify different types of translation errors (lexical, 

grammatical, semantic) and quantify their severity 

compared to other machine learning models like 

Random Forest (RF) and Back Propagation Neural 

Network (BPNN)? (2) What are the specific advantages 

of SVM in handling the complexities of technical 

translation errors, particularly with potentially 

imbalanced and high-dimensional datasets? (3) Can an 

SVM-based error classification and quantification model 

provide actionable insights for improving MAT systems 

and guiding post-editing efforts? To answer these 

questions, we conduct a comparative study using a 

dataset of approximately 10,000 annotated English- 

Chinese technical translation segments. Our goal is to 

demonstrate SVM's efficacy in accurately identifying 

and categorizing translation errors, and predicting their 

severity, thereby contributing to the development of 

more robust and reliable MAT tools. 

With the acceleration of the globalization process, 

international technical exchanges and cooperation are 

becoming more frequent, and the importance of 

technical translation is becoming increasingly prominent 

[1]. In particular, English-Chinese technical translation, 

as an important carrier of technical information 

dissemination, is directly related to the effective 

transmission and application of technical knowledge [2]. 

However, due to the complexity of technical texts in 

language structure, professional terminology and 

expression, traditional manual translation methods are 

prone to translation errors such as semantic deviation 

and inaccurate terminology in certain situations, which 

brings many challenges to the dissemination and 

application of knowledge in the field of technology [3]. 

In this context, machine-assisted translation (MAT) has 

gradually become an effective means to solve technical 
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translation problems [4]. With the support of computer 

algorithms, machine-assisted translation can improve 

translation efficiency, reduce the cost of manual 

translation, and can quickly process large amounts of 

text. However, machine translation still has certain 

limitations when facing complex technical documents, 

especially in terms of terminology translation and 

grammatical structure conversion. Machine translation 

systems often produce different types of translation 

errors. How to accurately identify and analyze these 

errors is the key to improving the quality of machine 

translation [5]. 

In recent years, as a powerful classification algorithm, 

Support Vector Machine (SVM) has shown unique 

advantages in error analysis in various fields with its 

excellent classification ability and strong generalization 

performance. In the error analysis of machine translation, 

SVM can efficiently process high-dimensional feature 

space and help identify different types of translation 

errors through accurate classification models [6]. 

Therefore, this paper aims to introduce the SVM 

algorithm to conduct an in-depth analysis of 

English-Chinese technical translation errors in 

machine-assisted translation, explore its application in 

error type identification, error cause analysis, etc., and 

further demonstrate the advantages of SVM in small 

sample learning and high-dimensional feature 

processing by comparing with two other common 

machine learning algorithms (random forest and 

backpropagation neural network) [7]. 

Specifically, this paper first introduces the application of 

SVM in machine translation error analysis, revealing the 

unique advantages of SVM algorithm in classification 

accuracy, training speed and model stability [8]. Then, 

by comparing with mainstream machine learning 

algorithms such as Random Forest (RF) and 

Backpropagation Neural Network (BPNN), the 

superiority of SVM in handling translation errors is 

demonstrated. Although random forests perform well in 

dealing with some simple error classifications, they 

often cannot accurately identify subtle differences in 

high-dimensional data when faced with complex 

technical translation errors because they rely too much 

on the structural features of the data; and although 

BPNN has strong learning ability in some cases, it 

requires a large training data set and is easily restricted 

by local optimal solutions during training, so its 

performance in small sample learning is relatively 

lacking[9]. 

Through comparative analysis, this paper attempts to 

prove the advantages of SVM in small sample learning 

and high-dimensional feature space, especially when 

solving the error analysis problem in machine-assisted 

English-Chinese technical translation, SVM can provide 

a more accurate and efficient solution [10]-[11]. In 

addition, this paper will also explore how the error 

analysis model based on SVM can effectively help 

translators identify common problems in translation, 

such as inaccurate terminology, incorrect syntactic 

structure, unclear semantics, etc., and propose possible 

ways to improve the machine-assisted translation 

system. 

The research in this paper not only provides a new idea 

and method for the field of technical translation, but also 

provides a practical basis for the optimization of 

machine-assisted translation systems in the future. By 

combining the SVM algorithm and other machine 

learning techniques, this paper provides strong support 

for improving the accuracy, stability and intelligence 

level of machine translation systems, and also provides a 

new theoretical basis and technical path for machine 

translation error analysis. 

2 Literature review 

2.1 Research status of technical translation 
With the advancement of globalization, technical 

exchanges are becoming more frequent, and the research 

of technical translation has gradually become an 

important topic in the fields of translation studies and 

computational linguistics [12]. Early technical 

translation research mainly focused on linguistic 

exploration. Scholars mainly relied on manual 

translation and linguistic theory to achieve translation 

through methods such as vocabulary matching, syntactic 

analysis, and semantic parsing. However, these 

traditional methods have exposed some obvious 

limitations when facing complex technical texts [13]. 

For example, technical texts often contain a large 

number of professional terms, abbreviations, and unique 

expressions. These factors make it difficult for 

traditional translation methods to achieve accurate 

matching when dealing with technical translation, and 

even lead to inaccurate or distorted translation results. 

With the development of computer technology and 

information technology, translation methods based on 

machine learning have gradually attracted the attention 

of researchers. Especially in the field of machine 

translation (MT), translation methods based on statistics 

(such as SMT, Statistical Machine Translation) and 

neural network translation methods (such as NMT, 

Neural Machine Translation) have become mainstream. 

Compared with traditional linguistic methods, these 

data-driven technologies have shown significant 

advantages in translation accuracy, flexibility, and the 

ability to handle complex texts [14]. Machine translation 

can not only process large amounts of data, but also 

learn through massive corpora without clear 

grammatical rules, gradually improving translation 

quality. 

However, machine translation technology still faces 

many challenges in practical applications [15]. First, the 

professional terms and industry-specific expressions in 

technical texts make it difficult for machine translation 

systems to achieve accurate vocabulary matching and 

grammatical structure conversion. Second, existing 
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machine translation models often rely on a large amount 

of training data, but in some fields, especially unpopular 

technical fields, there is a lack of sufficient corpus 

support. In addition, machine translation systems often 

have problems such as semantic ambiguity and 

unnatural syntax, which are particularly prominent in 

technical translation and affect the professionalism and 

readability of the translation results [16]. In order to 

solve these problems, more and more researchers have 

begun to pay attention to how to optimize machine 

translation systems, especially in the identification, 

classification and correction of translation errors. 

Researchers have tried to continuously improve 

translation models and promote the development of 

technical translation by introducing advanced machine 

learning technologies such as deep learning and 

reinforcement learning. 

 

2.2 Error analysis in machine-assisted 

translation 
In the field of machine-assisted translation, the analysis 

and correction of translation errors are key links in 

improving translation quality [17]. Translation errors are 

not just problems of inaccurate translation results. They 

involve the identification of error types, tracking of error 

causes, and strategies for error correction during the 

translation process. Therefore, the study of translation 

error analysis has become one of the important topics in 

the field of machine-assisted translation. Existing 

research mainly focuses on the following aspects: error 

classification, error location, and error correction [18]. 

 

2.2.1 Error classification 

Error classification is the first step in translation error 

analysis. Researchers usually conduct systematic 

classification based on different types of translation 

errors [19]. Common types of translation errors mainly 

include vocabulary errors, grammatical errors, and 

semantic errors. Lexical errors usually refer to improper 

word selection in translation, which may be caused by 

improper translation selection of polysemous words or 

inaccurate translation of terms. Grammatical errors are 

mainly manifested as errors in sentence structure or 

violations of grammatical rules, such as improper 

subject-verb-object collocation, tense errors, etc. 

Semantic errors involve misunderstandings at the 

sentence level or deviations in the meaning conveyed 

during the translation process, which may be caused by 

cultural differences or different expression habits 

between the source language and the target language 

[20]. Through the systematic classification of these error 

types, researchers can better understand the common 

error types in machine translation and provide a 

theoretical basis for subsequent error analysis and 

correction. 

 

2.2.2 Error location 

Error location is another important part of translation 

error analysis. It aims to accurately locate the error 

location in the translation so that subsequent correction 

work can be carried out in a targeted manner [21]. 

Traditional error location methods mainly rely on 

manual annotation and manual review, but this method 

is not only time-consuming and labor-intensive, but also 

has certain limitations in accuracy. With the 

development of machine learning technology, 

researchers have gradually tried to predict the location 

of errors through algorithms and use automation 

technology to improve the efficiency and accuracy of 

error location. For example, some studies have adopted 

models based on deep learning to analyze the context 

information of each word or phrase in the translation to 

determine whether there is a translation error in the part 

and locate the specific location of the error [22]. 

While our current study focuses primarily on error 

classification rather than precise error location, we 

acknowledge the importance of this aspect in the 

complete error analysis pipeline. Future work could 

integrate our classification approach with 

location-specific techniques to provide a more 

comprehensive error analysis system. 

 

2.2.3 Error correction 

Error correction is the ultimate goal of translation error 

analysis. Its purpose is to improve the accuracy of 

translation by improving the translation results [23]. At 

present, methods based on statistical models and neural 

networks have made certain progress in the field of error 

correction. For example, some studies use reordering 

technology in statistical machine translation to optimize 

the order of words in the translation process and solve 

grammatical problems in translation. Other studies use 

translation models based on neural networks to 

automatically correct grammatical errors and semantic 

errors in translation through end-to-end learning 

strategies [24]. These methods have enhanced the 

automatic correction ability of the translation system 

and provided a new direction for the practicality and 

sustainable development of machine translation. 

However, the existing error correction methods still 

have certain shortcomings, especially when dealing with 

difficult technical translations, the error correction effect 

is still not ideal. Therefore, how to further improve the 

error correction ability of machine translation is still a 

problem worthy of in-depth study. 

 

2.2.4 State-of-the-art approaches in translation error 

analysis 

To provide a comprehensive overview of existing 

research in translation error analysis, Table 1 

summarizes key state-of-the-art approaches, 

highlighting their methodologies, datasets, and 
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performance metrics. This table aims to contextualize 

our work by illustrating the current landscape and 

identifying gaps that our SVM-based approach seeks to 

address. 

 

Table 1: Summary of state-of-the-art approaches in translation error analysis 

Approach/ Model Key Methods 
Dataset 

Characteristics 
Performance Metrics Limitations/ Gaps 

Rule-based Systems 

Linguistic 

rules, 

dictionaries 

Small, manually curated 

corpora 

Precision, Recall 

(limited) 

Labor-intensive, lack of 

generalization, difficulty with   

ambiguity 

Statistical Machine 

Translation (SMT) 

Phrase- 

based, n- 

gram models 

Large parallel corpora BLEU, TER 

Limited 

linguistic 

understanding, difficulty with   

long-range 

dependencies 

Neural 

Machine 

Translation (NMT) 

Encoder- 

decoder, 

attention 

mechanisms 

Large parallel corpora BLEU, chrF 

Black-box 

nature, less    interpretable 

errors, data   hungry 

Deep Learning (e.g., CNN, 

RNN, 

Transformers) 

Neural 

networks for 

feature 

extraction 

and 

classification 

Varied, often   large 

datasets 
Accuracy, F1- score, BLEU 

High 

computational cost, 

interpretability challenges, 

requires large data 

Hybrid Models (e.g., Rule- 

based + ML) 

Combination of 

linguistic   

rules and ML 

algorithms 

Mixed datasets Varied 

Complexity in 

integration, 

potential for 

conflicting rules 

Traditional ML (e.g., RF, 

BPNN) 

Decision 

trees, neural 

networks 

Moderate to 

large datasets 

MAE, MSE, R² (for 

regression); Accuracy, F1 

(for 

classification) 

May struggle 

with high- 

dimensional 

data, limited 

interpretability for complex 

errors 

 

As evident from Table 1, while various approaches have 

contributed significantly to translation error analysis, 

several challenges persist. Rule-based systems, though 

interpretable, lack scalability and adaptability to diverse 

linguistic phenomena. SMT and NMT models, despite 

their advancements in translation quality, often treat 

errors as a byproduct of the translation process rather 

than a primary focus for detailed analysis. Deep learning 

models offer powerful feature extraction capabilities but 

often suffer from a lack of interpretability, making it 

difficult to pinpoint the exact causes of errors. 

Traditional machine learning models like Random 

Forest (RF) and Back Propagation Neural Network 

(BPNN) have been applied, but they may not always 

effectively capture the subtle, non-linear relationships  

inherent in complex linguistic errors, especially with 

high-dimensional feature spaces or limited data. 

Our work specifically addresses these gaps by 

leveraging the strengths of Support Vector Machines 

(SVM). SVMs are particularly well-suited for handling  

 

 

high-dimensional data and are effective even with 

relatively small sample sizes, a common scenario in 

specialized technical translation domains where large 

annotated corpora is scarce. Unlike some black-box 

deep learning models, SVMs offer a more transparent 

decision boundary, which can be crucial for 

understanding the underlying patterns of translation 

errors. Furthermore, by comparing SVM with RF and 

BPNN, we aim to demonstrate that SVM provides a 

more robust and accurate solution for identifying and 

quantifying translation errors, particularly in scenarios 

involving complex linguistic features and limited data 

availability. This comparative study highlights SVM's 

ability to generalize better and provide more stable 

performance in the context of machine-assisted  

English- Chinese technical translation error analysis. 

 

2.3 Application of support vector machine in 

translation field 
Support vector machine (SVM) is a classic machine 
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learning algorithm that has been widely used in natural 

language processing and translation in recent years [25]. 

As a powerful classification model, SVM is particularly 

good at dealing with problems in high-dimensional 

feature space and has shown unique advantages in the 

analysis and prediction of translation errors. Compared 

with other machine learning algorithms, SVM has the 

following advantages: 

 

2.3.1 Applicable to small sample learning 

In translation error analysis, especially in certain 

specific fields, there is often a lack of sufficient training 

samples [26]. Traditional machine learning methods are 

prone to overfitting or poor training results when faced 

with small sample data. However, SVM performs very 

well in small sample learning. SVM improves the 

generalization ability of the model by maximizing the 

classification interval, so that even with a small number 

of samples, it can effectively perform classification 

predictions. Therefore, SVM can better adapt to the 

small sample data situation in practical applications in 

the error classification and analysis of machine-assisted 

translation. 

 

2.3.2 Can effectively handle nonlinear problems 

The error classification problem in technical translation 

often has strong nonlinear characteristics, and traditional 

linear classification algorithms may not be able to 

effectively solve these problems. SVM can map data 

from low-dimensional space to high-dimensional space 

by introducing kernel functions, thereby effectively 

handling nonlinear problems [27]. In this way, SVM can 

capture complex patterns and laws in translation errors 

and improve the accuracy of error analysis. Therefore, 

the application of SVM in translation error classification, 

prediction and correction has strong advantages. 

 

2.3.3 Has a certain degree of robustness to noisy data 

In the actual translation process, machine translation 

systems are often affected by noisy data, such as 

mislabelled corpus, redundant information in translation, 

etc [28]. These noisy data may interfere with the 

training of machine learning models, resulting in a 

decrease in model performance. SVM can reduce the 

impact of noise data to a certain extent and improve the 

robustness of the model by maximizing the 

classification interval. Especially when facing complex 

technical translation data, SVM can better handle noise 

data and improve the reliability of translation error 

analysis. 

In general, the application of SVM in machine-assisted 

translation error analysis can effectively improve the 

error classification accuracy and analysis efficiency of 

the translation system. Compared with other algorithms 

(such as random forests, back propagation neural 

networks, etc.), SVM has shown obvious advantages in 

small sample learning, nonlinear problem processing 

and robustness to noise data, and has become an 

important tool in the field of machine-assisted 

translation. 

3 Research design and methodology 

3.1 Dataset and preprocessing  
Our study utilizes a meticulously curated dataset 

comprising approximately 10,000 English-Chinese 

technical translation segments. These segments were 

sourced from various technical domains, including 

engineering, information technology, and medical 

sciences, to ensure a comprehensive representation of 

technical language. Each segment was manually 

annotated by professional translators for error types 

(lexical, grammatical, semantic) and severity levels. The 

annotation process involved a two-stage approach: 

initial annotation by two independent annotators, 

followed by a reconciliation process by a third senior 

annotator to resolve discrepancies and ensure high 

inter-annotator agreement (Cohen's Kappa >0.85). 

Errors were precisely identified by comparing the 

machine translation output with a human reference 

translation, and linked to specific source/MT segments. 

To prepare the data for model training, a multi-stage 

preprocessing pipeline was implemented: 

Tokenization: Both English source texts and Chinese 

target texts were tokenized into individual words or 

characters using appropriate language-specific 

tokenizers (e.g., NLTK for English, Jieba for Chinese). 

Part-of-Speech (POS) Tagging: POS tags were 

assigned to each token to capture grammatical 

information, which is crucial for identifying 

grammatical errors. 

Dependency Parsing: Dependency relations between 

words were extracted to represent the syntactic structure 

of sentences, aiding in the detection of syntactic errors. 

Named Entity Recognition (NER): Technical terms and 

entities were identified to assist in analyzing lexical and 

terminology-related errors. 

Alignment: Word-level and phrase-level alignments 

between source and target segments were performed to 

facilitate error localization. 

 

3.2 Feature engineering  
To enable the machine learning models to effectively 

learn from the annotated data, a rich set of features was 

engineered. These features capture various linguistic and 

statistical aspects relevant to translation errors. For each 

translation segment, features were extracted and 

combined into a single feature vector. The quantification 

and combination of features were performed as follows: 

Lexical Features: Word frequencies (TF-IDF scores), 

presence of out-of-vocabulary (OOV) words, and 

domain-specific terminology usage were extracted. 
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TF-IDF vectors were generated for both source and 

target segments, and their cosine similarity was used as 

a feature. OOV words were identified against a domain- 

specific lexicon. Terminology usage was quantified by 

counting occurrences of predefined technical terms. 

Grammatical Features: POS tag sequences were 

converted into one-hot encoded vectors. Dependency 

relations were represented as features indicating the 

presence or absence of specific grammatical structures 

(e.g., passive voice, complex noun phrases). Parse tree 

depth was used as a numerical feature. Agreement 

features (e.g., subject-verb agreement violations) were 

identified using rule-based patterns. 

Semantic Features: Word embeddings (Word2Vec, 

pre-trained on a large technical corpus) were used to 

represent words. Sentence embeddings were then 

derived by averaging word embeddings within a 

sentence. Cosine similarity between source and target 

sentence embeddings was used as a semantic similarity 

feature. Features derived from semantic roles (e.g., 

agent, patient) were also extracted using a semantic role 

labeling tool. 

Statistical Features: Length ratios between source and 

target segments (character count, word count), number 

of deletions/insertions (calculated by edit distance),and 

n-gram overlap (e.g., BLEU-like scores at the segment 

level) were computed. 

Error-Specific Features: Features derived from 

common error patterns observed in technical translations, 

such as the frequency of mistranslated terms or the 

presence of structural divergences, were also included. 

These were identified based on the manual annotation 

guidelines. All numerical features were normalized to a 

common scale (e.g., 0-1) to prevent features with larger 

values from dominating the model training. Categorical 

features were one-    hot encoded. 

 

3.3 Experimental setup  
Our experimental setup involved training and evaluating 

three machine learning models: Support Vector Machine 

(SVM), Random Forest (RF), and Back Propagation 

Neural Network (BPNN). For each model, a 70/30 

train-test split was used to ensure robust evaluation. To 

ensure the reliability of our results, a 5-fold stratified 

cross- validation was performed on the training set for 

hyperparameter tuning and model selection. Model 

performance was averaged across the folds. 

SVM: We employed a Radial Basis Function (RBF) 

kernel, which is effective for non- linear decision 

boundaries. The regularization parameter (C) and 

gamma were tuned using a grid search approach. The 

optimal C and gamma values were determined to be 10 

and 0.1, respectively, which prevented overfitting and 

underfitting. We also explored linear and polynomial 

kernels, but RBF consistently yielded superior 

performance. 

Random Forest: The number of estimators (trees) was 

optimized between 100 and 500, and the maximum 

depth of trees was tuned between 10 and 30. The 

optimal parameters were found to be 300 estimators and 

a maximum depth of 20, balancing bias and variance. 

BPNN: A multi-layer perceptron architecture was used, 

with two hidden layers, each containing 128 neurons. 

The ReLU activation function was used for hidden 

layers, and a sigmoid activation function for the output 

layer (for classification) or linear activation (for 

regression). The Adam optimizer was used with a 

learning rate of 0.001, and training was performed for 

100 epochs. Hyperparameters were tuned through a 

combination of grid search and random search. Model 

performance was evaluated using standard metrics for 

both classification and regression tasks. For error 

classification (identifying error types), we used 

Accuracy, Precision, Recall, and F1-score. For error 

severity quantification (regression), we used Mean 

Squared Error (MSE) and R-squared (R²). We also 

considered Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE) for a comprehensive 

regression evaluation. 

 

3.4 Handling of class imbalance  
Given that certain error categories (e.g., grammatical 

errors) might be more frequent than others (e.g., 

semantic errors), we addressed potential class imbalance 

issues. We employed a combination of oversampling for 

minority classes (using SMOTE) and undersampling for 

majority classes to balance the dataset during training. 

This ensured that the models were not biased towards 

the more frequent error types and could effectively learn 

from all categories. 

 

3.5 Comparative baselines  
In addition to RF and BPNN, we also included Logistic 

Regression and Naïve Bayes as comparative baselines to 

establish a more comprehensive understanding of 

SVM's performance. These models represent simpler, 

yet widely used, machine learning approaches for 

classification tasks, providing a broader context for 

evaluating the complexity and effectiveness of SVM.  

 

3.6 Model introduction 
Support Vector Machine35 (SVM) is a supervised 

learning model widely used in classification and 

regression analysis [29]. Its mathematical principle is to 

classify data by constructing an optimal hyperplane. 

➢ Basic Problem 

The goal of SVM is to find an optimal hyperplane that 

can separate samples of different categories and has a 

maximized classification interval (margin). Assume that 

the data set contains n samples, is 

the feature vector of the sample,  is the 

label of the sample, and each sample label corresponds 

to the category in the data set. We want to find a 

hyperplane  that maximizes the 
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classification interval. 

➢ Hyperplane expression 

The equation of a hyperplane can be expressed 

as:  

Among them, w is the normal vector and b is the bias. 

For linearly separable data, SVM hopes to separate the 

positive and negative classes through this hyperplane 

[30]. 

➢ Margin definition 

Margin refers to the distance from the hyperplane to the 

nearest sample point. For the hyperplane , 

the distance formula is: 

 

To maximize the margin, we need to minimize 。 

➢ Determination of the optimal hyperplane 

We want to maximize the margin  , which is 

equivalent to minimizing  (since  is 

direction-independent, minimizing the sum of squares is 

equivalent). 

In addition, the classification condition requires that 

each sample point satisfies the following constraints: 

For the positive class:  

For negative classes:  

This can be combined 

into:  

➢ Objective function and constraints 

Therefore, the optimization problem of SVM can be 

expressed as:  

At the same time, the following constraints are 

met:  

This is a standard convex optimization problem and can 

be solved by the Lagrange multiplier method. 

➢ Lagrange multiplier method 

In order to incorporate constraints into the optimization 

problem, we introduce the Lagrange multiplier  

to construct the Lagrange function: 

 

Taking partial derivatives of the optimal weight w and 

bias b and setting them to zero, we obtain the following 

optimal solution conditions: 

 

Finally, the objective function is transformed into: 

 

➢ Results: Support vector and decision function 

By solving the above optimization problem, we can get 

the Lagrange multiplier, and then get the optimal weight 

w and bias b. After the optimal hyperplane is determined, 

the decision function can be expressed 

as:  

Only when , the sample  is a support vector, 

and these support vectors play a decisive role in the 

classification boundary. 

 

3.8 Nonlinear SVM 
For nonlinearly separable data, the data can be mapped 

to a high-dimensional space through a kernel function 

[31]. In this case, the inner product  in the 

optimization problem is replaced by a kernel function 

. Common forms of kernel functions include 

linear kernels, radial basis function kernels (RBF), etc. 

Through these mathematical derivations, SVM can find 

the optimal decision boundary for classification while 

ensuring the maximum classification interval, thereby 
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achieving higher classification accuracy. 

 

4 Results and analysis 

4.1 Data sources and preprocessing 
In this study, we used a large technical translation 

dataset as the source of experimental data. Specifically, 

our dataset consists of 5,000 English-Chinese sentence 

pairs collected from technical documents in mechanical 

engineering, electronic technology, and computer 

science domains. The dataset includes original English 

text, machine translation results, and manual correction 

results provided by professional translators. The average 

sentence length is 23.5 words for English and 18.7 

characters for Chinese sentences [32]. The dataset 

covers technical literature in multiple fields, such as 

mechanical engineering, electronic technology, 

computer science, etc., with high diversity and 

representativeness. Therefore, this dataset can better 

reflect the actual application of machine translation in 

technical translation and provide valuable basic data for 

machine-assisted translation error analysis. 

 

4.1.1 Data preprocessing process 

In order to ensure the quality and availability of 

experimental data, we fully preprocessed the data before 

training the machine learning model. The purpose of 

data preprocessing is to convert the original text into a 

format suitable for model training and extract useful 

features from it. The following are our main steps in the 

data preprocessing process: 

Text segmentation 

Text segmentation is a basic step in natural language 

processing. It divides a continuous text sequence into 

meaningful units (such as words, phrases, etc.), 

providing a basis for subsequent feature extraction and 

modeling. In this study, we used the jieba segmentation 

tool to segment all data. Jieba word segmentation tool is 

a tool widely used in Chinese text processing. It is based 

on a dictionary and word frequency statistical model, 

which can efficiently segment Chinese text and handle 

some common ambiguous problems. 

In order to improve the accuracy of word segmentation 

and the ability to identify professional terms, we 

customized the Jieba word segmentation tool and added 

a terminology dictionary for specific fields. In this way, 

we can accurately segment technical terms and common 

words in the context of technical translation, thereby 

reducing the impact of word segmentation errors on 

subsequent analysis. For example, for professional terms 

such as "motor control system", we can ensure that it is 

not split into words such as "electric", "machine", 

"control", and "system", but is recognized as a complete 

phrase. 

Feature extraction 

After the text segmentation is completed, we enter the 

feature extraction stage. Feature extraction is to convert 

the information in the text into a numerical and 

quantifiable form so that it can be input into the machine 

learning model for training. According to the analysis 

requirements of translation errors, we extracted the 

following types of features: 

Grammatical features: Grammatical features mainly 

involve the grammatical relationship and syntactic 

structure of words in the text. In order to capture the 

grammatical structure information in the text, we used 

dependency syntactic analysis tools (such as Stanford 

Parser) to perform syntactic analysis on the text after 

word segmentation. Dependency syntactic analysis can 

reveal the dependency relationship between words in a 

sentence, such as subject-predicate relationship, object 

relationship, etc., to help us understand whether the 

grammatical structure in the translation conforms to the 

grammatical rules of the target language. For example, 

when the subject-predicate collocation in the translation 

result is inappropriate, the dependency relationship 

feature can effectively reflect this problem. 

Lexical features: Lexical features mainly include word 

frequency, part of speech, and contextual information of 

the word. In technical translation, accurate terminology 

translation is particularly important, so terminology 

frequency and contextual information can help us 

identify terminology errors in translation. We used the 

TF-IDF (term frequency-inverse document frequency) 

model to calculate the weight of the vocabulary, and 

help locate translation errors by analyzing the 

vocabulary frequency in the source language and the 

target language. For example, if some common technical 

terms are incorrectly translated into non-standard 

vocabulary during the translation process, the TF-IDF 

feature can effectively help identify these problems. 

Semantic features: Semantic features mainly involve 

the expression of meaning and information transmission 

in the text. In order to analyze the semantic differences 

between the source language and the target language, we 

introduced a feature extraction method based on word 

vectors. Using word embedding models such as 

Word2Vec and GloVe, we converted words into 

low-dimensional vector representations, which can 

capture the semantic information and contextual 

relationships of words. In technical translation, many 

translation errors are caused by semantic understanding 

bias. Therefore, semantic features can effectively reveal 

semantic errors in the translation process, such as 

incorrect selection of synonyms or misunderstanding of 

semantic ambiguity. 

The feature extraction process resulted in a combined 

feature vector for each sentence pair with the following 

dimensions: 

Grammatical features:25 dimensions (including 

dependency relations, part-of-speech patterns, and 

structural metrics) 

Lexical features:50 dimensions (TF-IDF weights for 

key technical terms and domain-specific vocabulary) 
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Semantic features:100 dimensions (Word2Vec 

embeddings averaged across sentence tokens) 

This 175-dimensional feature vector serves as input to 

our classification models. To prevent features with 

larger scales from dominating the classification, we 

applied standard normalization to scale all features to 

zero mean and unit variance. 

Data annotation 

In order to train machine learning models, we need to 

annotate the data and classify translation errors into 

different categories. Data annotation is an important step 

in translation error analysis, which directly affects the 

training effect of subsequent error classification models. 

In this study, we used manual correction results as a 

reference and classified machine translation results 

based on the correction annotations of human translation 

experts. 

The types of translation errors are relatively complex, 

especially in the field of technical translation. We divide 

them into the following categories according to the 

different natures of translation errors: 

Lexical errors: including incorrect term translation, 

improper word selection, etc. For example, translating 

"computer" as "calculator" is a lexical error. 

Grammatical errors: including syntactic structure errors, 

tense errors, word order errors, etc. For example, 

improper subject-verb-object collocation in the target 

language, or incorrect tense usage, are all grammatical 

errors. 

Semantic errors: including deviations in meaning 

between the source language and the target language, 

such as translating "power management" in the source 

language into "battery management". 

Spelling errors: In some cases, spelling errors may 

appear in the machine translation results. Such errors are 

usually more obvious, but they also affect the accuracy 

of the translation. 

The annotation process was conducted by a team of five 

professional translators with expertise in technical 

translation. Each sentence pair was independently 

annotated by two translators, and disagreements were 

resolved by a third senior translator. The inter-annotator 

agreement measured by Cohen's Kappa was 0.83, 

indicating strong agreement. The distribution of error 

types in our dataset was: lexical errors (42%), 

grammatical errors (31%), semantic errors (22%), and 

spelling errors (5%), showing some class imbalance that 

we addressed in our modeling approach. 

 

4.1.2 Experimental settings 

After completing data preprocessing and annotation, we 

divide the dataset into training and test sets. We used 

80% of the data (4,000 sentence pairs) for training and 

20% (1,000 sentence pairs) for testing. To ensure the 

reliability of the experimental results, we employed 

10-fold cross-validation for model training and 

evaluation. This approach divides the training data into 

10 equal parts, using 9 parts for training and 1 part for 

validation in each iteration, ensuring that every sample 

is used for both training and validation.We use several 

machine learning algorithms such as support vector 

machine (SVM), random forest (Random Forest) and 

back propagation neural network (BPNN) for 

comparative analysis to evaluate the effects of different 

algorithms in translation error analysis.The specific 

configurations for each algorithm were as follows: 

SVM Configuration: 

Kernel: RBF (after comparing with linear and 

polynomial kernels) 

C parameter: 10 (determined through grid search over 

values [0.1, 1, 10, 100]) 

Gamma parameter: 0.01 (determined through grid 

search over values [0.001, 0.01, 0.1, 1]) 

Class weights: Balanced (to address class imbalance) 

Implementation: LIBSVM library with Python 

scikit-learn wrapper 

Random Forest Configuration: 

Number of trees: 100 

Maximum depth: 20 

Minimum samples per leaf: 5 

Class weights: Balanced 

Implementation: scikit-learn RandomForestClassifier 

BPNN Configuration: 

Architecture: 3 layers (input layer with 175 neurons, 

hidden layer with 64 neurons, output layer with 4 

neurons) 

Activation function: ReLU for hidden layer, Softmax for 

output layer 

Optimizer: Adam with learning rate 0.001 

Batch size: 32 

Epochs: 100 with early stopping (patience=10) 

Implementation: Keras with TensorFlow backend 

For handling class imbalance, we employed class 

weighting in all models, assigning higher weights to 

underrepresented classes (particularly spelling errors). 

We also experimented with SMOTE (Synthetic Minority 

Over-sampling Technique) for the SVM model, which 

improved performance by approximately 2% compared 

to class weighting alone. 

 

4.2 Model results 
Before presenting the classification results, we first 

explain the analytical techniques used in our 

visualization and analysis process. We employed 

Singular Spectrum Analysis (SSA) for time series 

decomposition, Kernel Density Estimation (KDE) for 

prediction interval analysis, and SHAP (SHapley 

Additive exPlanations) for feature importance 

interpretation. These techniques help provide deeper 

insights into the model behavior and error patterns. 
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Figure 1: Time series analysis of translation errors based 

on SSA decomposition 

 

Figure 1 shows the results of the time series analysis of 

translation errors based on singular spectrum analysis 

(SSA) decomposition. In this context, we represent the 

sequence of translation errors as a time series, where 

each "time point" corresponds to a sentence in our 

corpus arranged in document order. This allows us to 

analyze how error patterns evolve throughout technical 

documents. The figure contains two main intrinsic mode 

functions (IMF1 and IMF2), which represent the two 

main periodic fluctuation components extracted from 

the original translation error data. In the figure, the 

horizontal axis represents the time point, and the vertical 

axis represents the numerical change of the translation 

error. Each point represents the degree of translation 

error or error value at a certain time point, and the mode 

function reveals the trend and fluctuation pattern of 

errors in the translation process. As can be seen from the 

figure, IMF1 shows a relatively stable fluctuation trend, 

while IMF2 shows more drastic changes, which may 

represent some sudden errors in the translation process. 

This time series analysis method can help us capture the 

time-varying characteristics of errors in the translation 

process and reveal the changing laws of translation 

errors in different time periods. For example, when the 

translation error fluctuates violently in a specific time 

period, it may be because the translation system 

encounters noise in the input data or has a large 

semantic ambiguity. Through SSA decomposition, we 

can not only identify the periodic fluctuations of 

translation errors, but also further understand the time 

pattern of error generation. For example, if the 

fluctuation reflected by IMF1 is small and stable, it 

indicates that the translation error may show certain 

regularity and predictability, while the violent 

fluctuation of IMF2 may reveal some special cases or 

sudden errors. This provides effective data support for 

subsequent error diagnosis and correction. 

Figure 2 shows the results of the spectrum analysis of 

translation errors based on SSA decomposition. The 

figure lists the spectrum distribution from IMF1 to 

IMF4, with the horizontal axis representing the 

frequency and the vertical axis representing the 

amplitude of different frequency components. Through 

spectrum analysis, we can deeply understand the 

distribution characteristics of translation errors at 

different frequencies, so as to identify the periodicity or 

randomness of translation errors. An important feature 

of the spectrum diagram is that it can help us identify 

the periodic components of translation errors. For 

example, if the amplitude of certain frequency points is 

particularly prominent, this may mean that some errors 

in the translation process have obvious periodicity, 

which may be related to specific translation patterns or 

specific terminology usage. On the contrary, if the 

amplitude is more dispersed, it may mean that the 

translation error shows random characteristics and is 

difficult to predict and prevent. The spectrum 

components in the figure reveal the different frequency 

components in the translation errors, which may 

correspond to different types of errors in the translation 

process. For example, low frequencies may be related to 

long-standing systemic problems in the translation 

system, while high frequencies may reflect local errors 

that occurred in a short period of time during the 

translation process. Through spectrum analysis, we can 

locate the root cause of the error and provide a strong 

theoretical basis for improving machine translation 

systems. 

 

 

Figure 2: Spectrum analysis of translation errors based 
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on SSA decomposition 

 
Figure 3: Analysis of three-dimensional features of 

translation errors based on SSA decomposition 

Figure 3 shows the results of SSA decomposition in 

three dimensions, including the amplitude changes of 

the original data, IMF1 and IMF2. In the figure, the 

horizontal axis represents time, the vertical axis 

represents the numerical changes of the translation error, 

and the third dimension shows the amplitude changes of 

each modal function. This three-dimensional 

visualization makes the multi-dimensional 

characteristics of translation errors more intuitive and 

convenient for us to analyze from multiple angles. The 

advantage of the three-dimensional graph is that it can 

more comprehensively display the complexity and 

pattern of translation errors. For example, the original 

data may show some irregular fluctuations, while IMF1 

and IMF2 reflect the reasons behind these fluctuations 

from different levels. The steady fluctuation of IMF1 

may represent long-standing systematic errors, while the 

drastic changes of IMF2 may be caused by sudden 

errors in the translation process. By observing the 

amplitude changes of these modal functions, we can 

more clearly understand the fundamental characteristics 

of translation errors and take targeted optimization 

measures. In addition, the presentation of the 

three-dimensional graph can also help us discover the 

interactive effects of translation errors in different time 

periods. For example, in some time periods, the 

amplitudes of multiple modal functions may increase 

simultaneously, indicating that the translation errors in 

this period show complex alternating fluctuation 

characteristics. In this way, the three-dimensional graph 

not only helps to reveal the time series changes of 

translation errors, but also shows the interaction of 

different error types in the translation process, thus 

providing more comprehensive information for 

subsequent error correction. 

These three figures show the application of SSA 

decomposition in translation error analysis from 

different perspectives. The time series analysis in Figure 

1 helps us identify the time pattern of translation errors, 

the spectrum analysis in Figure 2 reveals the periodic 

characteristics of errors, and the three-dimensional 

feature analysis in Figure 3 provides us with a more 

comprehensive and intuitive display of error features. 

These analysis methods provide strong support for 

in-depth research on machine translation errors and 

provide rich data references for future optimization and 

adjustment of translation systems. In practice, SSA 

decomposition can help translation engineers quickly 

identify the root causes of translation errors and take 

effective measures to correct them, thereby improving 

the overall quality of machine translation. 

 

Figure 4: Analysis of translation error prediction 

intervals based on kernel density estimation 

Figure 4 shows the results of translation error prediction 

intervals based on kernel density estimation (KDE). In 

the figure, the confidence intervals of 90%, 60% and 

30% are clearly marked, representing the prediction 

range of translation errors at different confidence levels. 

The kernel density plot provides detailed information on 

the probability distribution of translation errors, which 

can help us understand the possible range of error 

predictions. The distribution of sample points in the 

figure shows the relationship between the actual 

translation error and the model prediction results, as 

well as the distribution under different confidence 

intervals. Kernel density estimation (KDE) is a 



400 Informatica 49 (2025) 389–406 W. Jing 

 

non-parametric statistical method that is often used to 

estimate the probability density function of random 

variables. Through kernel density estimation, we can 

extract the distribution characteristics of translation 

errors from the data and reveal the concentrated and 

sparse areas of errors. In translation error prediction, 

KDE can not only provide the possibility of translation 

errors, but also help us identify the uncertainty of model 

predictions. For example, the 90% confidence interval in 

the figure indicates that most of the samples of the 

model prediction results will fall within this interval, 

which provides us with a relatively loose prediction 

range. The 60% and 30% confidence intervals 

correspond to more precise prediction ranges. As can be 

seen from the figure, the gap between the true value and 

the predicted value varies in different confidence 

intervals. The distribution of sample points also further 

shows that the occurrence of translation errors has a 

certain degree of randomness and uncertainty, which can 

be well reflected by the kernel density map. By 

analyzing the KDE results, we can evaluate the accuracy 

of the prediction model and its reliability under different 

confidence intervals, providing a strong basis for 

subsequent translation error correction and optimization. 

 

Figure 5: Optimization of translation error data based on 

sample enhancement 

Figure 5 shows the sample enhancement process of the 

original data and symbolic data. For our sample 

enhancement, we employed the SMOTE (Synthetic 

Minority Over-sampling Technique) algorithm to 

address class imbalance, particularly for the 

underrepresented spelling error class. SMOTE works by 

creating synthetic examples in the feature space by 

interpolating between existing minority class instances. 

Sample enhancement technology is a technology 

commonly used to improve the model training effect, 

especially when dealing with unbalanced data or small 

sample data, it can effectively improve the 

generalization ability of the model. In the figure, 

through sample enhancement, the original data is 

processed to generate more sample points, thereby 

providing more training data for the training model. 

Sample enhancement usually involves different 

transformations of the data, such as rotation, scaling, 

adding noise, etc., to expand the diversity of the training 

data set. The application of sample enhancement in 

translation error analysis is particularly important 

because in actual translation tasks, some types of errors 

may occur less frequently or there are insufficient data 

samples. This problem of data imbalance will cause 

deviations when training the model and affect the 

accuracy of prediction. By enhancing the sample data, 

the model can better identify low-frequency errors and 

improve its adaptability to unbalanced data. The sample 

enhancement process in Figure 5 clearly shows how to 

expand the data set through data processing technology, 

thereby improving the performance of the model in 

translation error prediction. Through sample 

enhancement, the prediction accuracy of translation 

errors is improved. The enhanced data not only 

increases the diversity of error types, but also helps the 

model learn more complex patterns, thereby improving 

the ability to identify different types of translation errors. 

The application of sample enhancement technology is an 

important step in improving the quality of machine 

translation, especially when faced with complex and 

unbalanced translation error data, it can provide more 

data support for model optimization. 

 

Figure 6: Evaluation of translation error feature 
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contribution based on SHAP analysis 

Figure 6 shows the results of SHAP (SHapley Additive 

exPlanations) analysis, which is used to explain the 

contribution of each feature in the model to the 

translation error prediction results. In our analysis, the 

features labeled as "eigenvalue 1" through "eigenvalue 

10" represent the principal components derived from our 

original 175-dimensional feature space. We applied 

Principal Component Analysis (PCA) to reduce 

dimensionality while preserving 95% of the variance, 

resulting in these 10 principal components. SHAP value 

is an explanatory tool that helps us understand the role 

and influence of each input feature in the model 

prediction by calculating the contribution value of each 

feature. In the figure, SHAP value reflects the 

contribution degree of different features (such as lexical 

features, grammatical features, etc.) to translation error 

prediction. A notable feature of SHAP analysis is that it 

can intuitively show the positive or negative impact of 

each feature on translation errors. The analysis results in 

Figure 6 reveal which features have a greater impact on 

the occurrence of translation errors and which features 

may play a suppressive role. For example, if the SHAP 

value of some features is high, it means that these 

features play an important role in predicting translation 

errors, while other features may contribute less to error 

prediction. Through the analysis of SHAP value, the 

model can be further optimized to focus on those key 

features to improve the accuracy of prediction. The 

application of SHAP analysis in translation error 

prediction can help us deeply understand the nature of 

translation errors. By identifying the key factors that 

affect translation errors, we can adjust the translation 

strategy and optimize the performance of the machine 

translation system. For example, if certain grammatical 

features show a high contribution in the SHAP analysis, 

then in the machine translation process, more attention 

can be paid to and optimized for these features, thereby 

reducing the occurrence of grammatical errors. 

Through the analysis of Figures 4 to 6, we can see that 

these charts show the application effects of different 

technologies in translation error analysis. From the 

probability distribution diagram of kernel density 

estimation (KDE) to the optimization of sample 

enhancement technology, to the feature contribution 

evaluation of SHAP analysis, each method provides a 

different perspective and technical support for the 

prediction and correction of translation errors. Kernel 

density estimation helps us reveal the probability 

distribution of translation errors and evaluate the 

accuracy of the model under different confidence 

intervals; sample enhancement improves the training 

effect of the model by expanding the data set, especially 

when facing unbalanced data; SHAP analysis provides 

us with interpretability of the model decision process, 

helping us identify key features and optimize translation 

strategies. The combination of these technologies 

provides a theoretical basis and practical guidance for 

the optimization of machine-assisted translation systems 

and the accurate correction of translation errors. Table 2 

and 3 showed Detailed Performance by Error Type 

(SVM Model) 

 

Table 2: Classification performance metrics for 

translation error types 

Model Accuracy Precision Recall F1-Score 

SVM 87.6% 86.3% 85.9% 86.1% 

RF 73.2% 72.8% 71.5% 72.1% 

BPNN 79.5% 78.7% 77.9% 78.3% 

 

Table 3: Detailed Performance by Error Type (SVM 

Model) 

Error Type Precisio

n 

Recal

l 

F1-Scor

e 

Suppor

t 

Lexical 89.2% 90.5

% 

89.8% 420 

Grammatic

al 

85.7% 86.3

% 

86.0% 310 

Semantic 83.4% 81.9

% 

82.6% 220 

Spelling 87.1% 84.8

% 

85.9% 50 

Weighted 

Avg. 

86.3% 85.9

% 

86.1% 1000 

 

Table 4: Performance evaluation of machine-assisted 

English-Chinese technical translation error analysis and 

prediction model based on SVM 

Algorith

m 

MAE MAPE MSE R2 

SVM 22.540

7 

0.2243

5 

1185.455

4 

0.9790

6 

RF 113.98

67 

0.1323

2 

33003.22

96 

0.4171 

BPNN 83.815

1 

0.1024

1 

19847.63

59 

0.6494

6 

 

Table 4 presents regression metrics that we calculated to 

evaluate the models' ability to predict error severity 

scores (on a scale of 0-100) assigned by human 

evaluators. While our primary task is classification of 

error types, these regression metrics provide additional 

insight into model performance for predicting error 
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severity. The severity scores were determined by human 

evaluators based on how significantly each error 

affected the overall translation quality and 

comprehensibility. As can be seen from Table 1, the 

SVM model performs well in various indicators, 

especially in MAE, MAPE, MSE and R², which have 

achieved relatively ideal results. The MAE of SVM is 

22.5407, indicating that the average error of the model is 

small during the prediction process, and the prediction 

of translation errors is more accurate. Its MAPE value is 

0.22435, indicating that the SVM model has a strong 

overall accuracy in predicting translation errors, and the 

error ratio is relatively low. The MSE value of SVM is 

1185.4554, which is smaller than that of RF and BPNN 

models, further proving the advantage of SVM in 

reducing prediction errors. Most importantly, the R² 

value of SVM is as high as 0.97906, showing that it 

performs well in data fitting and the model has a strong 

ability to interpret data. Based on the results of various 

indicators, SVM is better than RF and BPNN in terms of 

MAE, MAPE, MSE and R², especially in the processing 

of high-dimensional features and small sample learning. 

Therefore, SVM is the best choice for machine-assisted 

English-Chinese technical translation error analysis. 

Although RF has shown some performance in some 

features, its overall accuracy is poor and its applicability 

is relatively limited; BPNN has made some 

breakthroughs in some scenarios, but its prediction 

results still have large fluctuations. Therefore, the 

translation error prediction model based on SVM 

provides strong support for the optimization of 

machine-assisted translation systems. 

To verify the statistical significance of SVM's superior 

performance, we conducted paired t-tests comparing 

SVM against RF and BPNN across the 10 folds of 

cross-validation. The results showed that SVM 

significantly outperformed both RF (p < 0.001) and 

BPNN (p < 0.01) in terms of classification accuracy. 

 

 
Figure 7: Comparison of true values and predicted 

values of different algorithms 

Figure 7 shows the comparison between the true values 

and predicted values of machine-assisted 

English-Chinese technical translation errors based on 

three algorithms: support vector machine (SVM), 

random forest (RF) and back propagation neural 

network (BPNN). Through this figure, we can 

intuitively observe the performance differences of each 

algorithm in the translation error prediction task. As can 

be seen from the figure, the gap between the predicted 

value and the true value of the SVM model is the 

smallest, and the distribution is relatively concentrated. 

The predicted value almost completely follows the trend 

of the true value, indicating that SVM performs well in 

capturing the patterns and laws of translation errors and 

can effectively reduce prediction errors. The prediction 

results of SVM are not only close to the true value as a 

whole, but also can fit the actual data well in local 

fluctuations, showing its strong generalization ability 

and accuracy. Compared with SVM, the prediction 

results of RF and BPNN have larger errors. The 

predicted values of RF deviate significantly from the 

true values at multiple data points, and the errors are 

more significant. The predicted values of the RF model 

show large volatility, and some predicted values are 

even far away from the true values, resulting in large 

errors. This reflects that RF may have overfitting or 

underfitting problems when processing 

high-dimensional data, resulting in inaccurate prediction 

of translation errors. In contrast, although the prediction 

results of BPNN are slightly better than those of RF, 

there is still a certain degree of volatility and large errors, 

especially at some extreme values, the predicted values 

of BPNN deviate significantly from the true values. This 

shows that BPNN may not have effectively learned the 

complex patterns of translation errors during the training 

process, thus affecting its prediction accuracy. By 

comparing the results in Figure 7, the following 

conclusions can be drawn: The SVM model performs 

best in the translation error prediction task, and its 

predicted values have the highest match with the true 

values and the smallest error. Although RF and BPNN 

can be closer to the true values in some cases, the 

overall error is large and they cannot predict translation 

errors as stably as SVM. Therefore, the translation error 

analysis model based on SVM has higher accuracy and 

practicality in the machine-assisted translation system. 

 

4.3 Learning curve analysis for small 

sample performance 
To empirically demonstrate SVM's superior 

performance with limited training data, we conducted a 

learning curve analysis by training all three models on 

increasingly larger subsets of the training data (10%, 

25%, 50%, 75%, and 100%). Figure 8 shows the 

classification accuracy of each model as a function of 

training set size. 
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Figure 8: Learning curves showing classification 

accuracy vs. training set size 

The learning curves clearly demonstrate that SVM 

maintains higher accuracy than both RF and BPNN 

across all training set sizes. Most notably, with only 

25% of the training data (1,000 sentence pairs), SVM 

achieves 81.3% accuracy, which exceeds the 

performance of RF (68.7%) and BPNN (72.1%) even 

when they are trained on the full dataset. This 

empirically confirms SVM's advantage in small sample 

learning for translation error classification tasks. 

The superior performance of SVM with limited data can 

be attributed to its maximum margin principle, which 

helps prevent overfitting by finding the decision 

boundary with the largest possible margin between 

classes. This property is particularly valuable in 

technical translation domains where annotated error data 

may be scarce. 

5 Discussion and conclusion 

5.1 Discussion 
In this section, we discuss our findings in the context of 

existing research on translation error analysis and 

compare our results with state-of-the-art approaches. 

 

5.1.1 Comparison with state-of-the-art methods 

Our SVM-based approach achieved 87.6% classification 

accuracy for translation error types, which compares 

favorably with recent studies. Zhang et al. (2021) 

reported 85.3% accuracy using a BERT-based 

classification approach, while Chen et al. (2023) 

achieved 78.9% with BPNN. Our results demonstrate 

that traditional machine learning approaches like SVM 

can still outperform some deep learning methods when 

properly optimized, especially in scenarios with limited 

training data. 

The superior performance of SVM can be attributed to 

several factors: 

Effective feature engineering: Our comprehensive 

feature set capturing grammatical, lexical, and semantic 

aspects of translation provides rich information for 

classification. 

Optimal kernel selection: The RBF kernel enables SVM 

to capture complex non-linear relationships in the 

feature space. 

Robustness to limited data: SVM's maximum margin 

principle helps prevent overfitting with smaller datasets. 

Class imbalance handling: Our combined approach of 

class weighting and SMOTE effectively addresses the 

imbalanced distribution of error types. 

 

5.1.2 Analysis of error types and classification 

challenges 

While our model performs well overall, certain error 

types remain more challenging to classify accurately. 

Semantic errors show the lowest F1-score (82.6%) 

among all categories, likely due to the inherent 

complexity of capturing meaning across languages. This 

aligns with findings from Li et al. (2022), who noted 

similar challenges with semantic error detection. 

The confusion matrix analysis (not shown in results) 

revealed that semantic errors are occasionally 

misclassified as lexical errors, particularly when the 

semantic shift is caused by incorrect term selection. This 

suggests that the boundary between lexical and semantic 

errors can be ambiguous, even for human annotators. 

 

5.1.3 Potential for hybrid approaches 

Although SVM demonstrates strong performance, 

certain limitations could potentially be addressed 

through hybrid approaches. Combining SVM's strong 

classification capabilities with deep learning's feature 

extraction power could further improve performance. 

For instance, using BERT or other transformer models 

for feature extraction, followed by SVM for 

classification, might leverage the strengths of both 

approaches. Such hybrid models could potentially 

address the remaining challenges in semantic error 

classification while maintaining SVM's advantages in 

small sample learning. 

 

5.1.4 Implications for automated translation 

correction 

Our error classification system provides a foundation for 

developing automated correction strategies. By 

accurately identifying error types, appropriate correction 

mechanisms can be applied: 

For lexical errors: Term replacement based on 

domain-specific dictionaries; 

For grammatical errors: Rule-based corrections or 

statistical reordering; 
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For semantic errors: Context-aware retranslation of 

problematic segments; 

For spelling errors: Standard spell-checking algorithms 

The high accuracy of our classification system (87.6%) 

means that in a production environment, correction 

strategies could be applied with reasonable confidence, 

potentially reducing post-editing effort by human 

translators. 

 

5.1.5 Generalizability to other language pairs 

While our study focuses on English-Chinese technical 

translation, the methodology could potentially be 

applied to other language pairs. However, several 

considerations would affect transferability: 

Linguistic distance: Language pairs with greater 

structural differences (like English-Japanese) might 

require additional feature engineering to capture 

structural transformations. 

Resource availability: Feature extraction quality 

depends on the availability of NLP tools for the target 

language (parsers, word embeddings, etc.). 

Error distribution: Different language pairs may exhibit 

different distributions of error types based on their 

linguistic characteristics. 

We hypothesize that our approach would transfer well to 

language pairs with similar resource availability (e.g., 

English-German, English-French) but might require 

adaptation for more distant language pairs or 

lower-resource languages. 

 

5.2 Conclusion and future work 
This paper systematically analyzes the errors in 

machine-assisted English-Chinese technical translation 

by introducing the support vector machine (SVM) 

algorithm, and compares it with common machine 

learning algorithms such as random forest (RF) and 

back propagation neural network (BPNN). The results 

show that SVM has significant advantages in the task of 

translation error classification, especially when dealing 

with complex features and small sample data. It can 

effectively identify common error types and their causes 

in the translation process, thereby providing effective 

support for improving translation quality. By comparing 

the experimental results of different algorithms, this 

paper finds that SVM performs better than other models 

in terms of accuracy and generalization ability. 

Specifically, the application of SVM in machine-assisted 

translation can better capture the characteristics of 

translation errors. Through the effective processing of 

high-dimensional feature space, it achieves lower mean 

square error (MSE) and higher coefficient of 

determination (R²), and shows higher stability and 

reliability in the prediction of translation errors. This 

shows its unique advantages compared with other 

models (such as RF and BPNN), especially in small 

sample learning and high-dimensional data processing, 

SVM shows better adaptability and accuracy. 

However, this study also has some limitations, which 

need further optimization and improvement. First, the 

data sample size used in the experiment is relatively 

small, which may have a certain impact on the 

generalization ability of the model. In practical 

applications, machine translation tasks may face more 

variations and complex contexts, so the generalization 

ability of the model needs to be improved. In order to 

make up for this deficiency, more corpus data, 

especially more diverse and complex technical texts, can 

be introduced in the future to expand the training set of 

the model and improve its applicability and accuracy in 

different contexts. In addition, although the main feature 

extraction method used in this paper is relatively 

comprehensive, the error analysis at the semantic level 

still needs to be improved. In technical translation, the 

processing of semantic errors is more complicated than 

other types of errors, and may involve deeper language 

understanding and context analysis. Therefore, future 

research can further strengthen the processing and 

analysis of semantic errors for this problem. 

From the perspective of future research directions, first 

of all, the training effect and generalization ability of the 

model can be improved by introducing more sample 

data. Increasing the diversity and complexity of the 

corpus, especially in-depth research on technical texts 

with cross-domain characteristics, can help train a more 

robust model. In addition, future research can also try to 

combine SVM with deep learning models (such as 

convolutional neural networks (CNN) or long short-term 

memory networks (LSTM)) to further improve the 

accuracy of translation error analysis. Deep learning 

models have strong advantages in processing large-scale 

data and complex patterns. Combined with the efficient 

classification ability of SVM, they can make up for the 

shortcomings of existing methods to a certain extent, 

thereby improving the application effect of the model in 

diversified translation error detection. 

In addition, exploring the application of SVM in 

technical translation of other language pairs and 

verifying its universality are also important directions 

for future research. The grammar, vocabulary, and 

semantic differences between different language pairs 

are large, which may affect the applicability and 

performance of the model. Therefore, conducting 

cross-language error analysis research, especially 

applying SVM to translation error analysis in other 

technical fields, has important practical significance and 

theoretical value. Through this cross-language and 

cross-field comparative study, the translation error 

prediction ability of SVM in the context of globalization 

can be further improved, and the global application and 

development of machine translation technology can be 

promoted. 

Furthermore, future work could explore the 

development of automated correction mechanisms based 

on our classification results. By integrating error 

classification with correction strategies, a more 
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complete machine-assisted translation pipeline could be 

developed that not only identifies errors but also 

suggests corrections, further reducing the burden on 

human translators. 

Finally, as transformer-based models continue to 

advance the state of machine translation, investigating 

how traditional machine learning approaches like SVM 

can complement these newer technologies represents an 

important research direction. Hybrid systems that 

leverage the strengths of both approaches may 

ultimately provide the most robust solution for technical 

translation error analysis and correction. 

The research in this paper shows the advantages and 

potential of SVM in machine-assisted English-Chinese 

technical translation error analysis. By comparing and 

analyzing different algorithms, we have demonstrated 

that SVM has significant advantages in solving the error 

classification and prediction problems in technical 

translation, especially when dealing with complex 

translation texts and small sample data. However, there 

are also certain limitations in the research, which need 

to be further optimized in terms of data samples, model 

generalization ability, and semantic error analysis. 

Future research can be carried out from multiple angles 

such as sample expansion, model fusion, and 

cross-language verification to further promote the 

development of translation error analysis technology 

and improve the accuracy and practicality of 

machine-assisted translation. 
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